|
a |
|
b/notebooks/03-Effnet-B0 Windowed Image.ipynb |
|
|
1 |
{ |
|
|
2 |
"cells": [ |
|
|
3 |
{ |
|
|
4 |
"cell_type": "markdown", |
|
|
5 |
"metadata": {}, |
|
|
6 |
"source": [ |
|
|
7 |
"# RSNA Intracranial Hemorrhage Detection " |
|
|
8 |
] |
|
|
9 |
}, |
|
|
10 |
{ |
|
|
11 |
"cell_type": "markdown", |
|
|
12 |
"metadata": {}, |
|
|
13 |
"source": [ |
|
|
14 |
"<b>Competition Overview</b><br/><br/>\n", |
|
|
15 |
"Intracranial hemorrhage, bleeding that occurs inside the cranium, is a serious health problem requiring rapid and often intensive medical treatment. For example, intracranial hemorrhages account for approximately 10% of strokes in the U.S., where stroke is the fifth-leading cause of death. Identifying the location and type of any hemorrhage present is a critical step in treating the patient.\n", |
|
|
16 |
"\n", |
|
|
17 |
"Diagnosis requires an urgent procedure. When a patient shows acute neurological symptoms such as severe headache or loss of consciousness, highly trained specialists review medical images of the patient’s cranium to look for the presence, location and type of hemorrhage. The process is complicated and often time consuming." |
|
|
18 |
] |
|
|
19 |
}, |
|
|
20 |
{ |
|
|
21 |
"cell_type": "markdown", |
|
|
22 |
"metadata": {}, |
|
|
23 |
"source": [ |
|
|
24 |
"<b>What am i predicting?</b><br/><br/>\n", |
|
|
25 |
"In this competition our goal is to predict intracranial hemorrhage and its subtypes. Given an image the we need to predict probablity of each subtype. This indicates its a multilabel classification problem." |
|
|
26 |
] |
|
|
27 |
}, |
|
|
28 |
{ |
|
|
29 |
"cell_type": "markdown", |
|
|
30 |
"metadata": {}, |
|
|
31 |
"source": [ |
|
|
32 |
"<b>Competition Evaluation Metric</b><br/><br/>\n", |
|
|
33 |
"Evaluation metric is weighted multi-label logarithmic loss. So for given image we need to predict probality for each subtype. There is also an any label, which indicates that a hemorrhage of ANY kind exists in the image. The any label is weighted more highly than specific hemorrhage sub-types.\n", |
|
|
34 |
"\n", |
|
|
35 |
"<b>Note:</b>The weights for each subtype for calculating weighted multi-label logarithmic loss is **not** given as part of the competition. We will be using binary cross entropy loss as weights are not available" |
|
|
36 |
] |
|
|
37 |
}, |
|
|
38 |
{ |
|
|
39 |
"cell_type": "markdown", |
|
|
40 |
"metadata": {}, |
|
|
41 |
"source": [ |
|
|
42 |
"<b>Dataset Description</b>\n", |
|
|
43 |
"\n", |
|
|
44 |
"The dataset is divided into two parts\n", |
|
|
45 |
"\n", |
|
|
46 |
"1. Train\n", |
|
|
47 |
"2. Test\n", |
|
|
48 |
"\n", |
|
|
49 |
"**1. Train**\n", |
|
|
50 |
"Number of rows: 40,45,548 records.\n", |
|
|
51 |
"Number of columns: 2\n", |
|
|
52 |
"\n", |
|
|
53 |
"Columns:\n", |
|
|
54 |
"\n", |
|
|
55 |
"**Id**: An image Id. Each Id corresponds to a unique image, and will contain an underscore.\n", |
|
|
56 |
"\n", |
|
|
57 |
"Example: ID_28fbab7eb_epidural. So the Id consists of two parts one is image file id ID_28fbab7eb and the other is sub type name\n", |
|
|
58 |
"\n", |
|
|
59 |
"**Label**: The target label whether that sub-type of hemorrhage (or any hemorrhage in the case of any) exists in the indicated image. 1 --> Exists and 0 --> Doesn't exist.\n", |
|
|
60 |
"\n", |
|
|
61 |
"**2. Test**\n", |
|
|
62 |
"Number of rows: 4,71,270 records.\n", |
|
|
63 |
"\n", |
|
|
64 |
"Columns:\n", |
|
|
65 |
"\n", |
|
|
66 |
"**Id**: An image Id. Each Id corresponds to a unique image, and will contain an underscore.\n", |
|
|
67 |
"\n", |
|
|
68 |
"Example: ID_28fbab7eb_epidural. So the Id consists of two parts one is image file id ID_28fbab7eb and the other is sub type name" |
|
|
69 |
] |
|
|
70 |
}, |
|
|
71 |
{ |
|
|
72 |
"cell_type": "code", |
|
|
73 |
"execution_count": 1, |
|
|
74 |
"metadata": {}, |
|
|
75 |
"outputs": [ |
|
|
76 |
{ |
|
|
77 |
"name": "stderr", |
|
|
78 |
"output_type": "stream", |
|
|
79 |
"text": [ |
|
|
80 |
"Using TensorFlow backend.\n" |
|
|
81 |
] |
|
|
82 |
} |
|
|
83 |
], |
|
|
84 |
"source": [ |
|
|
85 |
"import numpy as np\n", |
|
|
86 |
"import pandas as pd\n", |
|
|
87 |
"import pydicom\n", |
|
|
88 |
"import os\n", |
|
|
89 |
"import glob\n", |
|
|
90 |
"import random\n", |
|
|
91 |
"import cv2\n", |
|
|
92 |
"import tensorflow as tf\n", |
|
|
93 |
"from math import ceil, floor\n", |
|
|
94 |
"from tqdm import tqdm\n", |
|
|
95 |
"from imgaug import augmenters as iaa\n", |
|
|
96 |
"import matplotlib.pyplot as plt\n", |
|
|
97 |
"from math import ceil, floor\n", |
|
|
98 |
"import keras\n", |
|
|
99 |
"import keras.backend as K\n", |
|
|
100 |
"from keras.callbacks import Callback, ModelCheckpoint\n", |
|
|
101 |
"from keras.layers import Dense, Flatten, Dropout\n", |
|
|
102 |
"from keras.models import Model, load_model\n", |
|
|
103 |
"from keras.utils import Sequence\n", |
|
|
104 |
"from keras.losses import binary_crossentropy\n", |
|
|
105 |
"from keras.optimizers import Adam" |
|
|
106 |
] |
|
|
107 |
}, |
|
|
108 |
{ |
|
|
109 |
"cell_type": "code", |
|
|
110 |
"execution_count": 2, |
|
|
111 |
"metadata": {}, |
|
|
112 |
"outputs": [], |
|
|
113 |
"source": [ |
|
|
114 |
"# Random Seed\n", |
|
|
115 |
"SEED = 42\n", |
|
|
116 |
"np.random.seed(SEED)\n", |
|
|
117 |
"\n", |
|
|
118 |
"# some constants\n", |
|
|
119 |
"TEST_SIZE = 0.06\n", |
|
|
120 |
"HEIGHT = 256\n", |
|
|
121 |
"WIDTH = 256\n", |
|
|
122 |
"TRAIN_BATCH_SIZE = 32\n", |
|
|
123 |
"VALID_BATCH_SIZE = 64\n", |
|
|
124 |
"\n", |
|
|
125 |
"# Train and Test folders\n", |
|
|
126 |
"input_folder = '../input/rsna-intracranial-hemorrhage-detection/'\n", |
|
|
127 |
"path_train_img = input_folder + 'stage_1_train_images/'\n", |
|
|
128 |
"path_test_img = input_folder + 'stage_1_test_images/'" |
|
|
129 |
] |
|
|
130 |
}, |
|
|
131 |
{ |
|
|
132 |
"cell_type": "code", |
|
|
133 |
"execution_count": 3, |
|
|
134 |
"metadata": {}, |
|
|
135 |
"outputs": [ |
|
|
136 |
{ |
|
|
137 |
"data": { |
|
|
138 |
"text/html": [ |
|
|
139 |
"<div>\n", |
|
|
140 |
"<style scoped>\n", |
|
|
141 |
" .dataframe tbody tr th:only-of-type {\n", |
|
|
142 |
" vertical-align: middle;\n", |
|
|
143 |
" }\n", |
|
|
144 |
"\n", |
|
|
145 |
" .dataframe tbody tr th {\n", |
|
|
146 |
" vertical-align: top;\n", |
|
|
147 |
" }\n", |
|
|
148 |
"\n", |
|
|
149 |
" .dataframe thead th {\n", |
|
|
150 |
" text-align: right;\n", |
|
|
151 |
" }\n", |
|
|
152 |
"</style>\n", |
|
|
153 |
"<table border=\"1\" class=\"dataframe\">\n", |
|
|
154 |
" <thead>\n", |
|
|
155 |
" <tr style=\"text-align: right;\">\n", |
|
|
156 |
" <th></th>\n", |
|
|
157 |
" <th>ID</th>\n", |
|
|
158 |
" <th>Label</th>\n", |
|
|
159 |
" </tr>\n", |
|
|
160 |
" </thead>\n", |
|
|
161 |
" <tbody>\n", |
|
|
162 |
" <tr>\n", |
|
|
163 |
" <th>0</th>\n", |
|
|
164 |
" <td>ID_63eb1e259_epidural</td>\n", |
|
|
165 |
" <td>0</td>\n", |
|
|
166 |
" </tr>\n", |
|
|
167 |
" <tr>\n", |
|
|
168 |
" <th>1</th>\n", |
|
|
169 |
" <td>ID_63eb1e259_intraparenchymal</td>\n", |
|
|
170 |
" <td>0</td>\n", |
|
|
171 |
" </tr>\n", |
|
|
172 |
" <tr>\n", |
|
|
173 |
" <th>2</th>\n", |
|
|
174 |
" <td>ID_63eb1e259_intraventricular</td>\n", |
|
|
175 |
" <td>0</td>\n", |
|
|
176 |
" </tr>\n", |
|
|
177 |
" <tr>\n", |
|
|
178 |
" <th>3</th>\n", |
|
|
179 |
" <td>ID_63eb1e259_subarachnoid</td>\n", |
|
|
180 |
" <td>0</td>\n", |
|
|
181 |
" </tr>\n", |
|
|
182 |
" <tr>\n", |
|
|
183 |
" <th>4</th>\n", |
|
|
184 |
" <td>ID_63eb1e259_subdural</td>\n", |
|
|
185 |
" <td>0</td>\n", |
|
|
186 |
" </tr>\n", |
|
|
187 |
" </tbody>\n", |
|
|
188 |
"</table>\n", |
|
|
189 |
"</div>" |
|
|
190 |
], |
|
|
191 |
"text/plain": [ |
|
|
192 |
" ID Label\n", |
|
|
193 |
"0 ID_63eb1e259_epidural 0\n", |
|
|
194 |
"1 ID_63eb1e259_intraparenchymal 0\n", |
|
|
195 |
"2 ID_63eb1e259_intraventricular 0\n", |
|
|
196 |
"3 ID_63eb1e259_subarachnoid 0\n", |
|
|
197 |
"4 ID_63eb1e259_subdural 0" |
|
|
198 |
] |
|
|
199 |
}, |
|
|
200 |
"execution_count": 3, |
|
|
201 |
"metadata": {}, |
|
|
202 |
"output_type": "execute_result" |
|
|
203 |
} |
|
|
204 |
], |
|
|
205 |
"source": [ |
|
|
206 |
"train_df = pd.read_csv(input_folder + 'stage_1_train.csv')\n", |
|
|
207 |
"train_df.head()" |
|
|
208 |
] |
|
|
209 |
}, |
|
|
210 |
{ |
|
|
211 |
"cell_type": "code", |
|
|
212 |
"execution_count": 4, |
|
|
213 |
"metadata": {}, |
|
|
214 |
"outputs": [ |
|
|
215 |
{ |
|
|
216 |
"data": { |
|
|
217 |
"text/html": [ |
|
|
218 |
"<div>\n", |
|
|
219 |
"<style scoped>\n", |
|
|
220 |
" .dataframe tbody tr th:only-of-type {\n", |
|
|
221 |
" vertical-align: middle;\n", |
|
|
222 |
" }\n", |
|
|
223 |
"\n", |
|
|
224 |
" .dataframe tbody tr th {\n", |
|
|
225 |
" vertical-align: top;\n", |
|
|
226 |
" }\n", |
|
|
227 |
"\n", |
|
|
228 |
" .dataframe thead th {\n", |
|
|
229 |
" text-align: right;\n", |
|
|
230 |
" }\n", |
|
|
231 |
"</style>\n", |
|
|
232 |
"<table border=\"1\" class=\"dataframe\">\n", |
|
|
233 |
" <thead>\n", |
|
|
234 |
" <tr style=\"text-align: right;\">\n", |
|
|
235 |
" <th></th>\n", |
|
|
236 |
" <th>ID</th>\n", |
|
|
237 |
" <th>Label</th>\n", |
|
|
238 |
" <th>sub_type</th>\n", |
|
|
239 |
" <th>file_name</th>\n", |
|
|
240 |
" </tr>\n", |
|
|
241 |
" </thead>\n", |
|
|
242 |
" <tbody>\n", |
|
|
243 |
" <tr>\n", |
|
|
244 |
" <th>0</th>\n", |
|
|
245 |
" <td>ID_63eb1e259_epidural</td>\n", |
|
|
246 |
" <td>0</td>\n", |
|
|
247 |
" <td>epidural</td>\n", |
|
|
248 |
" <td>ID_63eb1e259.dcm</td>\n", |
|
|
249 |
" </tr>\n", |
|
|
250 |
" <tr>\n", |
|
|
251 |
" <th>1</th>\n", |
|
|
252 |
" <td>ID_63eb1e259_intraparenchymal</td>\n", |
|
|
253 |
" <td>0</td>\n", |
|
|
254 |
" <td>intraparenchymal</td>\n", |
|
|
255 |
" <td>ID_63eb1e259.dcm</td>\n", |
|
|
256 |
" </tr>\n", |
|
|
257 |
" <tr>\n", |
|
|
258 |
" <th>2</th>\n", |
|
|
259 |
" <td>ID_63eb1e259_intraventricular</td>\n", |
|
|
260 |
" <td>0</td>\n", |
|
|
261 |
" <td>intraventricular</td>\n", |
|
|
262 |
" <td>ID_63eb1e259.dcm</td>\n", |
|
|
263 |
" </tr>\n", |
|
|
264 |
" <tr>\n", |
|
|
265 |
" <th>3</th>\n", |
|
|
266 |
" <td>ID_63eb1e259_subarachnoid</td>\n", |
|
|
267 |
" <td>0</td>\n", |
|
|
268 |
" <td>subarachnoid</td>\n", |
|
|
269 |
" <td>ID_63eb1e259.dcm</td>\n", |
|
|
270 |
" </tr>\n", |
|
|
271 |
" <tr>\n", |
|
|
272 |
" <th>4</th>\n", |
|
|
273 |
" <td>ID_63eb1e259_subdural</td>\n", |
|
|
274 |
" <td>0</td>\n", |
|
|
275 |
" <td>subdural</td>\n", |
|
|
276 |
" <td>ID_63eb1e259.dcm</td>\n", |
|
|
277 |
" </tr>\n", |
|
|
278 |
" </tbody>\n", |
|
|
279 |
"</table>\n", |
|
|
280 |
"</div>" |
|
|
281 |
], |
|
|
282 |
"text/plain": [ |
|
|
283 |
" ID Label sub_type file_name\n", |
|
|
284 |
"0 ID_63eb1e259_epidural 0 epidural ID_63eb1e259.dcm\n", |
|
|
285 |
"1 ID_63eb1e259_intraparenchymal 0 intraparenchymal ID_63eb1e259.dcm\n", |
|
|
286 |
"2 ID_63eb1e259_intraventricular 0 intraventricular ID_63eb1e259.dcm\n", |
|
|
287 |
"3 ID_63eb1e259_subarachnoid 0 subarachnoid ID_63eb1e259.dcm\n", |
|
|
288 |
"4 ID_63eb1e259_subdural 0 subdural ID_63eb1e259.dcm" |
|
|
289 |
] |
|
|
290 |
}, |
|
|
291 |
"execution_count": 4, |
|
|
292 |
"metadata": {}, |
|
|
293 |
"output_type": "execute_result" |
|
|
294 |
} |
|
|
295 |
], |
|
|
296 |
"source": [ |
|
|
297 |
"# extract subtype\n", |
|
|
298 |
"train_df['sub_type'] = train_df['ID'].apply(lambda x: x.split('_')[-1])\n", |
|
|
299 |
"# extract filename\n", |
|
|
300 |
"train_df['file_name'] = train_df['ID'].apply(lambda x: '_'.join(x.split('_')[:2]) + '.dcm')\n", |
|
|
301 |
"train_df.head()" |
|
|
302 |
] |
|
|
303 |
}, |
|
|
304 |
{ |
|
|
305 |
"cell_type": "code", |
|
|
306 |
"execution_count": 5, |
|
|
307 |
"metadata": {}, |
|
|
308 |
"outputs": [ |
|
|
309 |
{ |
|
|
310 |
"data": { |
|
|
311 |
"text/plain": [ |
|
|
312 |
"(4045572, 4)" |
|
|
313 |
] |
|
|
314 |
}, |
|
|
315 |
"execution_count": 5, |
|
|
316 |
"metadata": {}, |
|
|
317 |
"output_type": "execute_result" |
|
|
318 |
} |
|
|
319 |
], |
|
|
320 |
"source": [ |
|
|
321 |
"train_df.shape" |
|
|
322 |
] |
|
|
323 |
}, |
|
|
324 |
{ |
|
|
325 |
"cell_type": "code", |
|
|
326 |
"execution_count": 6, |
|
|
327 |
"metadata": {}, |
|
|
328 |
"outputs": [ |
|
|
329 |
{ |
|
|
330 |
"data": { |
|
|
331 |
"text/plain": [ |
|
|
332 |
"(4045548, 4)" |
|
|
333 |
] |
|
|
334 |
}, |
|
|
335 |
"execution_count": 6, |
|
|
336 |
"metadata": {}, |
|
|
337 |
"output_type": "execute_result" |
|
|
338 |
} |
|
|
339 |
], |
|
|
340 |
"source": [ |
|
|
341 |
"# remove duplicates\n", |
|
|
342 |
"train_df.drop_duplicates(['Label', 'sub_type', 'file_name'], inplace=True)\n", |
|
|
343 |
"train_df.shape" |
|
|
344 |
] |
|
|
345 |
}, |
|
|
346 |
{ |
|
|
347 |
"cell_type": "code", |
|
|
348 |
"execution_count": 7, |
|
|
349 |
"metadata": {}, |
|
|
350 |
"outputs": [ |
|
|
351 |
{ |
|
|
352 |
"name": "stdout", |
|
|
353 |
"output_type": "stream", |
|
|
354 |
"text": [ |
|
|
355 |
"Number of train images availabe: 674258\n" |
|
|
356 |
] |
|
|
357 |
} |
|
|
358 |
], |
|
|
359 |
"source": [ |
|
|
360 |
"print(\"Number of train images availabe:\", len(os.listdir(path_train_img)))" |
|
|
361 |
] |
|
|
362 |
}, |
|
|
363 |
{ |
|
|
364 |
"cell_type": "code", |
|
|
365 |
"execution_count": 8, |
|
|
366 |
"metadata": {}, |
|
|
367 |
"outputs": [ |
|
|
368 |
{ |
|
|
369 |
"data": { |
|
|
370 |
"text/html": [ |
|
|
371 |
"<div>\n", |
|
|
372 |
"<style scoped>\n", |
|
|
373 |
" .dataframe tbody tr th:only-of-type {\n", |
|
|
374 |
" vertical-align: middle;\n", |
|
|
375 |
" }\n", |
|
|
376 |
"\n", |
|
|
377 |
" .dataframe tbody tr th {\n", |
|
|
378 |
" vertical-align: top;\n", |
|
|
379 |
" }\n", |
|
|
380 |
"\n", |
|
|
381 |
" .dataframe thead th {\n", |
|
|
382 |
" text-align: right;\n", |
|
|
383 |
" }\n", |
|
|
384 |
"</style>\n", |
|
|
385 |
"<table border=\"1\" class=\"dataframe\">\n", |
|
|
386 |
" <thead>\n", |
|
|
387 |
" <tr style=\"text-align: right;\">\n", |
|
|
388 |
" <th>sub_type</th>\n", |
|
|
389 |
" <th>any</th>\n", |
|
|
390 |
" <th>epidural</th>\n", |
|
|
391 |
" <th>intraparenchymal</th>\n", |
|
|
392 |
" <th>intraventricular</th>\n", |
|
|
393 |
" <th>subarachnoid</th>\n", |
|
|
394 |
" <th>subdural</th>\n", |
|
|
395 |
" </tr>\n", |
|
|
396 |
" <tr>\n", |
|
|
397 |
" <th>file_name</th>\n", |
|
|
398 |
" <th></th>\n", |
|
|
399 |
" <th></th>\n", |
|
|
400 |
" <th></th>\n", |
|
|
401 |
" <th></th>\n", |
|
|
402 |
" <th></th>\n", |
|
|
403 |
" <th></th>\n", |
|
|
404 |
" </tr>\n", |
|
|
405 |
" </thead>\n", |
|
|
406 |
" <tbody>\n", |
|
|
407 |
" <tr>\n", |
|
|
408 |
" <th>ID_000039fa0.dcm</th>\n", |
|
|
409 |
" <td>0</td>\n", |
|
|
410 |
" <td>0</td>\n", |
|
|
411 |
" <td>0</td>\n", |
|
|
412 |
" <td>0</td>\n", |
|
|
413 |
" <td>0</td>\n", |
|
|
414 |
" <td>0</td>\n", |
|
|
415 |
" </tr>\n", |
|
|
416 |
" <tr>\n", |
|
|
417 |
" <th>ID_00005679d.dcm</th>\n", |
|
|
418 |
" <td>0</td>\n", |
|
|
419 |
" <td>0</td>\n", |
|
|
420 |
" <td>0</td>\n", |
|
|
421 |
" <td>0</td>\n", |
|
|
422 |
" <td>0</td>\n", |
|
|
423 |
" <td>0</td>\n", |
|
|
424 |
" </tr>\n", |
|
|
425 |
" <tr>\n", |
|
|
426 |
" <th>ID_00008ce3c.dcm</th>\n", |
|
|
427 |
" <td>0</td>\n", |
|
|
428 |
" <td>0</td>\n", |
|
|
429 |
" <td>0</td>\n", |
|
|
430 |
" <td>0</td>\n", |
|
|
431 |
" <td>0</td>\n", |
|
|
432 |
" <td>0</td>\n", |
|
|
433 |
" </tr>\n", |
|
|
434 |
" <tr>\n", |
|
|
435 |
" <th>ID_0000950d7.dcm</th>\n", |
|
|
436 |
" <td>0</td>\n", |
|
|
437 |
" <td>0</td>\n", |
|
|
438 |
" <td>0</td>\n", |
|
|
439 |
" <td>0</td>\n", |
|
|
440 |
" <td>0</td>\n", |
|
|
441 |
" <td>0</td>\n", |
|
|
442 |
" </tr>\n", |
|
|
443 |
" <tr>\n", |
|
|
444 |
" <th>ID_0000aee4b.dcm</th>\n", |
|
|
445 |
" <td>0</td>\n", |
|
|
446 |
" <td>0</td>\n", |
|
|
447 |
" <td>0</td>\n", |
|
|
448 |
" <td>0</td>\n", |
|
|
449 |
" <td>0</td>\n", |
|
|
450 |
" <td>0</td>\n", |
|
|
451 |
" </tr>\n", |
|
|
452 |
" </tbody>\n", |
|
|
453 |
"</table>\n", |
|
|
454 |
"</div>" |
|
|
455 |
], |
|
|
456 |
"text/plain": [ |
|
|
457 |
"sub_type any epidural intraparenchymal intraventricular \\\n", |
|
|
458 |
"file_name \n", |
|
|
459 |
"ID_000039fa0.dcm 0 0 0 0 \n", |
|
|
460 |
"ID_00005679d.dcm 0 0 0 0 \n", |
|
|
461 |
"ID_00008ce3c.dcm 0 0 0 0 \n", |
|
|
462 |
"ID_0000950d7.dcm 0 0 0 0 \n", |
|
|
463 |
"ID_0000aee4b.dcm 0 0 0 0 \n", |
|
|
464 |
"\n", |
|
|
465 |
"sub_type subarachnoid subdural \n", |
|
|
466 |
"file_name \n", |
|
|
467 |
"ID_000039fa0.dcm 0 0 \n", |
|
|
468 |
"ID_00005679d.dcm 0 0 \n", |
|
|
469 |
"ID_00008ce3c.dcm 0 0 \n", |
|
|
470 |
"ID_0000950d7.dcm 0 0 \n", |
|
|
471 |
"ID_0000aee4b.dcm 0 0 " |
|
|
472 |
] |
|
|
473 |
}, |
|
|
474 |
"execution_count": 8, |
|
|
475 |
"metadata": {}, |
|
|
476 |
"output_type": "execute_result" |
|
|
477 |
} |
|
|
478 |
], |
|
|
479 |
"source": [ |
|
|
480 |
"train_final_df = pd.pivot_table(train_df.drop(columns='ID'), index=\"file_name\", \\\n", |
|
|
481 |
" columns=\"sub_type\", values=\"Label\")\n", |
|
|
482 |
"train_final_df.head()" |
|
|
483 |
] |
|
|
484 |
}, |
|
|
485 |
{ |
|
|
486 |
"cell_type": "code", |
|
|
487 |
"execution_count": 9, |
|
|
488 |
"metadata": {}, |
|
|
489 |
"outputs": [ |
|
|
490 |
{ |
|
|
491 |
"data": { |
|
|
492 |
"text/plain": [ |
|
|
493 |
"(674258, 6)" |
|
|
494 |
] |
|
|
495 |
}, |
|
|
496 |
"execution_count": 9, |
|
|
497 |
"metadata": {}, |
|
|
498 |
"output_type": "execute_result" |
|
|
499 |
} |
|
|
500 |
], |
|
|
501 |
"source": [ |
|
|
502 |
"train_final_df.shape" |
|
|
503 |
] |
|
|
504 |
}, |
|
|
505 |
{ |
|
|
506 |
"cell_type": "code", |
|
|
507 |
"execution_count": 10, |
|
|
508 |
"metadata": {}, |
|
|
509 |
"outputs": [], |
|
|
510 |
"source": [ |
|
|
511 |
"# Invalid image ID_6431af929.dcm\n", |
|
|
512 |
"train_final_df.drop('ID_6431af929.dcm', inplace=True)" |
|
|
513 |
] |
|
|
514 |
}, |
|
|
515 |
{ |
|
|
516 |
"cell_type": "code", |
|
|
517 |
"execution_count": 11, |
|
|
518 |
"metadata": {}, |
|
|
519 |
"outputs": [ |
|
|
520 |
{ |
|
|
521 |
"name": "stdout", |
|
|
522 |
"output_type": "stream", |
|
|
523 |
"text": [ |
|
|
524 |
"Collecting efficientnet\n", |
|
|
525 |
" Downloading https://files.pythonhosted.org/packages/97/82/f3ae07316f0461417dc54affab6e86ab188a5a22f33176d35271628b96e0/efficientnet-1.0.0-py3-none-any.whl\n", |
|
|
526 |
"Requirement already satisfied: keras-applications<=1.0.8,>=1.0.7 in /opt/conda/lib/python3.6/site-packages (from efficientnet) (1.0.8)\n", |
|
|
527 |
"Requirement already satisfied: scikit-image in /opt/conda/lib/python3.6/site-packages (from efficientnet) (0.16.1)\n", |
|
|
528 |
"Requirement already satisfied: numpy>=1.9.1 in /opt/conda/lib/python3.6/site-packages (from keras-applications<=1.0.8,>=1.0.7->efficientnet) (1.16.4)\n", |
|
|
529 |
"Requirement already satisfied: h5py in /opt/conda/lib/python3.6/site-packages (from keras-applications<=1.0.8,>=1.0.7->efficientnet) (2.9.0)\n", |
|
|
530 |
"Requirement already satisfied: PyWavelets>=0.4.0 in /opt/conda/lib/python3.6/site-packages (from scikit-image->efficientnet) (1.0.3)\n", |
|
|
531 |
"Requirement already satisfied: scipy>=0.19.0 in /opt/conda/lib/python3.6/site-packages (from scikit-image->efficientnet) (1.2.1)\n", |
|
|
532 |
"Requirement already satisfied: networkx>=2.0 in /opt/conda/lib/python3.6/site-packages (from scikit-image->efficientnet) (2.4)\n", |
|
|
533 |
"Requirement already satisfied: imageio>=2.3.0 in /opt/conda/lib/python3.6/site-packages (from scikit-image->efficientnet) (2.6.0)\n", |
|
|
534 |
"Requirement already satisfied: pillow>=4.3.0 in /opt/conda/lib/python3.6/site-packages (from scikit-image->efficientnet) (5.4.1)\n", |
|
|
535 |
"Requirement already satisfied: matplotlib!=3.0.0,>=2.0.0 in /opt/conda/lib/python3.6/site-packages (from scikit-image->efficientnet) (3.0.3)\n", |
|
|
536 |
"Requirement already satisfied: six in /opt/conda/lib/python3.6/site-packages (from h5py->keras-applications<=1.0.8,>=1.0.7->efficientnet) (1.12.0)\n", |
|
|
537 |
"Requirement already satisfied: decorator>=4.3.0 in /opt/conda/lib/python3.6/site-packages (from networkx>=2.0->scikit-image->efficientnet) (4.4.0)\n", |
|
|
538 |
"Requirement already satisfied: cycler>=0.10 in /opt/conda/lib/python3.6/site-packages (from matplotlib!=3.0.0,>=2.0.0->scikit-image->efficientnet) (0.10.0)\n", |
|
|
539 |
"Requirement already satisfied: kiwisolver>=1.0.1 in /opt/conda/lib/python3.6/site-packages (from matplotlib!=3.0.0,>=2.0.0->scikit-image->efficientnet) (1.1.0)\n", |
|
|
540 |
"Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /opt/conda/lib/python3.6/site-packages (from matplotlib!=3.0.0,>=2.0.0->scikit-image->efficientnet) (2.4.2)\n", |
|
|
541 |
"Requirement already satisfied: python-dateutil>=2.1 in /opt/conda/lib/python3.6/site-packages (from matplotlib!=3.0.0,>=2.0.0->scikit-image->efficientnet) (2.8.0)\n", |
|
|
542 |
"Requirement already satisfied: setuptools in /opt/conda/lib/python3.6/site-packages (from kiwisolver>=1.0.1->matplotlib!=3.0.0,>=2.0.0->scikit-image->efficientnet) (41.4.0)\n", |
|
|
543 |
"Installing collected packages: efficientnet\n", |
|
|
544 |
"Successfully installed efficientnet-1.0.0\n", |
|
|
545 |
"Collecting iterative-stratification\n", |
|
|
546 |
" Downloading https://files.pythonhosted.org/packages/9d/79/9ba64c8c07b07b8b45d80725b2ebd7b7884701c1da34f70d4749f7b45f9a/iterative_stratification-0.1.6-py3-none-any.whl\n", |
|
|
547 |
"Requirement already satisfied: scikit-learn in /opt/conda/lib/python3.6/site-packages (from iterative-stratification) (0.21.3)\n", |
|
|
548 |
"Requirement already satisfied: scipy in /opt/conda/lib/python3.6/site-packages (from iterative-stratification) (1.2.1)\n", |
|
|
549 |
"Requirement already satisfied: numpy in /opt/conda/lib/python3.6/site-packages (from iterative-stratification) (1.16.4)\n", |
|
|
550 |
"Requirement already satisfied: joblib>=0.11 in /opt/conda/lib/python3.6/site-packages (from scikit-learn->iterative-stratification) (0.13.2)\n", |
|
|
551 |
"Installing collected packages: iterative-stratification\n", |
|
|
552 |
"Successfully installed iterative-stratification-0.1.6\n" |
|
|
553 |
] |
|
|
554 |
} |
|
|
555 |
], |
|
|
556 |
"source": [ |
|
|
557 |
"# Install Efficient Net as it is not part of Keras\n", |
|
|
558 |
"!pip install efficientnet\n", |
|
|
559 |
"!pip install iterative-stratification" |
|
|
560 |
] |
|
|
561 |
}, |
|
|
562 |
{ |
|
|
563 |
"cell_type": "code", |
|
|
564 |
"execution_count": 12, |
|
|
565 |
"metadata": {}, |
|
|
566 |
"outputs": [], |
|
|
567 |
"source": [ |
|
|
568 |
"import efficientnet.keras as efn \n", |
|
|
569 |
"from iterstrat.ml_stratifiers import MultilabelStratifiedShuffleSplit" |
|
|
570 |
] |
|
|
571 |
}, |
|
|
572 |
{ |
|
|
573 |
"cell_type": "code", |
|
|
574 |
"execution_count": 13, |
|
|
575 |
"metadata": {}, |
|
|
576 |
"outputs": [], |
|
|
577 |
"source": [ |
|
|
578 |
"from IPython.display import HTML\n", |
|
|
579 |
"\n", |
|
|
580 |
"def create_download_link(title = \"Download CSV file\", filename = \"data.csv\"): \n", |
|
|
581 |
" \"\"\"\n", |
|
|
582 |
" Helper function to generate download link to files in kaggle kernel \n", |
|
|
583 |
" \"\"\"\n", |
|
|
584 |
" html = '<a href={filename}>{title}</a>'\n", |
|
|
585 |
" html = html.format(title=title,filename=filename)\n", |
|
|
586 |
" return HTML(html)" |
|
|
587 |
] |
|
|
588 |
}, |
|
|
589 |
{ |
|
|
590 |
"cell_type": "code", |
|
|
591 |
"execution_count": 14, |
|
|
592 |
"metadata": {}, |
|
|
593 |
"outputs": [], |
|
|
594 |
"source": [ |
|
|
595 |
"def get_dicom_field_value(val):\n", |
|
|
596 |
" \"\"\"\n", |
|
|
597 |
" Helper function to get value of dicom field in dicom file\n", |
|
|
598 |
" \"\"\"\n", |
|
|
599 |
" if type(val) == pydicom.multival.MultiValue:\n", |
|
|
600 |
" return int(val[0])\n", |
|
|
601 |
" else:\n", |
|
|
602 |
" return int(val)\n", |
|
|
603 |
"\n", |
|
|
604 |
"def get_windowing(data):\n", |
|
|
605 |
" \"\"\"\n", |
|
|
606 |
" Helper function to extract meta data features in dicom file\n", |
|
|
607 |
" return: window center, window width, slope, intercept\n", |
|
|
608 |
" \"\"\"\n", |
|
|
609 |
" dicom_fields = [data.WindowCenter, data.WindowWidth, data.RescaleSlope, data.RescaleIntercept]\n", |
|
|
610 |
" return [get_dicom_field_value(x) for x in dicom_fields]\n", |
|
|
611 |
"\n", |
|
|
612 |
"\n", |
|
|
613 |
"def get_windowed_image(image, wc, ww, slope, intercept):\n", |
|
|
614 |
" \"\"\"\n", |
|
|
615 |
" Helper function to construct windowed image from meta data features\n", |
|
|
616 |
" return: windowed image\n", |
|
|
617 |
" \"\"\"\n", |
|
|
618 |
" img = (image*slope +intercept)\n", |
|
|
619 |
" img_min = wc - ww//2\n", |
|
|
620 |
" img_max = wc + ww//2\n", |
|
|
621 |
" img[img<img_min] = img_min\n", |
|
|
622 |
" img[img>img_max] = img_max\n", |
|
|
623 |
" return img \n", |
|
|
624 |
"\n", |
|
|
625 |
"\n", |
|
|
626 |
"def _normalize(img):\n", |
|
|
627 |
" if img.max() == img.min():\n", |
|
|
628 |
" return np.zeros(img.shape)\n", |
|
|
629 |
" return 2 * (img - img.min())/(img.max() - img.min()) - 1\n", |
|
|
630 |
"\n", |
|
|
631 |
"def _read(path, desired_size=(224, 224)):\n", |
|
|
632 |
" \"\"\"\n", |
|
|
633 |
" Helper function to generate windowed image \n", |
|
|
634 |
" \"\"\"\n", |
|
|
635 |
" # 1. read dicom file\n", |
|
|
636 |
" dcm = pydicom.dcmread(path)\n", |
|
|
637 |
" \n", |
|
|
638 |
" # 2. Extract meta data features\n", |
|
|
639 |
" # window center, window width, slope, intercept\n", |
|
|
640 |
" window_params = get_windowing(dcm)\n", |
|
|
641 |
"\n", |
|
|
642 |
" try:\n", |
|
|
643 |
" # 3. Generate windowed image\n", |
|
|
644 |
" img = get_windowed_image(dcm.pixel_array, *window_params)\n", |
|
|
645 |
" except:\n", |
|
|
646 |
" img = np.zeros(desired_size)\n", |
|
|
647 |
"\n", |
|
|
648 |
" img = _normalize(img)\n", |
|
|
649 |
"\n", |
|
|
650 |
" if desired_size != (512, 512):\n", |
|
|
651 |
" # resize image\n", |
|
|
652 |
" img = cv2.resize(img, desired_size, interpolation = cv2.INTER_LINEAR)\n", |
|
|
653 |
" return img[:,:,np.newaxis]" |
|
|
654 |
] |
|
|
655 |
}, |
|
|
656 |
{ |
|
|
657 |
"cell_type": "code", |
|
|
658 |
"execution_count": 15, |
|
|
659 |
"metadata": {}, |
|
|
660 |
"outputs": [ |
|
|
661 |
{ |
|
|
662 |
"data": { |
|
|
663 |
"text/plain": [ |
|
|
664 |
"(128, 128, 1)" |
|
|
665 |
] |
|
|
666 |
}, |
|
|
667 |
"execution_count": 15, |
|
|
668 |
"metadata": {}, |
|
|
669 |
"output_type": "execute_result" |
|
|
670 |
} |
|
|
671 |
], |
|
|
672 |
"source": [ |
|
|
673 |
"_read(path_train_img + 'ID_ffff922b9.dcm', (128, 128)).shape" |
|
|
674 |
] |
|
|
675 |
}, |
|
|
676 |
{ |
|
|
677 |
"cell_type": "code", |
|
|
678 |
"execution_count": 16, |
|
|
679 |
"metadata": {}, |
|
|
680 |
"outputs": [ |
|
|
681 |
{ |
|
|
682 |
"data": { |
|
|
683 |
"text/plain": [ |
|
|
684 |
"<matplotlib.image.AxesImage at 0x7f821e7b95c0>" |
|
|
685 |
] |
|
|
686 |
}, |
|
|
687 |
"execution_count": 16, |
|
|
688 |
"metadata": {}, |
|
|
689 |
"output_type": "execute_result" |
|
|
690 |
}, |
|
|
691 |
{ |
|
|
692 |
"data": { |
|
|
693 |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzsnXeYVdW5/z/r7NPmTC8wdBhgKKKIoIC9R0W9JmrUxMpNYqLG+Eu50XhTb0zx5t7Um6jYjS3G2GvsURERREFAeu8D08tpe/3+eNfeZw4zwwzMDFLW93nmOWf2XnvttffZe623fl+ltcbCwsLCQ+CzHoCFhcW+BTspWFhYZMFOChYWFlmwk4KFhUUW7KRgYWGRBTspWFhYZMFOChYWFlnotUlBKXWmUmqJUmq5Uuqm3jqPhYVFz0L1RvCSUsoBlgKnA+uBD4Avaa0X9fjJLCwsehTBXup3MrBca70SQCn1KHAe0O6kEFYRHSW3l4ZisbeRLpHfcuygbSxbWgyAbol/lkOyAOqprtJa9+msXW9NCgOBda3+Xw9Mad1AKXU1cDVAlBhT1Km9NBSLvY3aaVMBmPWb25l22kUApBct/SyHZAG8qh9f05V2vTUpqHa2ZekpWusZwAyAAlViEzAOADR9Qeb9bUfK/2cMmEDTF0RSiFnFcb9Bb00K64HBrf4fBGzspXNZ7COIPfk+ACOfbLvNYv9Bb3kfPgAqlVIVSqkwcAnwTC+dy8LCogfRK5KC1jqllPom8DLgAPdorRf2xrksLCx6Fr2lPqC1fgF4obf6t7Cw6B3YiEYLC4ss2EnBwsIiC3ZSsLCwyIKdFCwsLLJgJwULC4ss2EnBwsIiC3ZSsLCwyIKdFCwsLLJgJwULC4ss2EnBwsIiC70W5mxx8CGQnw+AW18vG5Ri5UOHA5Cf1wxA/281s+aSQQAM/PXMvT9Ii05hJQULC4ssWEnBottwRo0AoGlkCQD1g+WxKrvjPYZ/+SMA4v8cBoC7tYorL5OE2TvKTgdgxPdm7c3hWnSCXiFu3V0UqBJt6dj2fQTGj+EfLzwAwKFPXQ9A5TczJCoqEgEgedyhAGy6Js7gCz8BoPm8yQCsP02Rs9EB4OVr/huArww5bi+M3uJV/fhcrfWRnbWz6oOFhUUWrPpg0SmO+igNwC19HwXCAKw8/w7ZeT4Mf/LrAFReJ1JD8LW5APSNHoVTVgpAztOzpc3T8PJGUSlmxyN7ZfwWuwcrKVhYWGTBSgoWHeKCxVsBKHUadtlu5RdEarjocLELLX5mNAAD/nsmadNm3Q+PAWDwLTM5Y8AEAP605t2eHrJFD8BKChYWFlmw3geLLFRdfTRzf3rbXj3n9LXHs3FqfaftLlq8GYDHxvbr9jk3PnkIg69cD0C6rq7b/e0P6Kr3waoPBwkC+fkwQkpxuB8vlm15eaQmjgRg+ZdCAIwdvYbbawYC8I2iDXtlbPcOeduvClL5wDUADL/pPX9/+qSJAHyl8B4AHmPPJ4XgULkHZw5dzMsPjAFgSJGUuXOvySO9eNke932gwKoPFhYWWbCSwkECt74ePlrUZltzmbgYrz3uVQAuzP+YIcGYadHza8b0tceLZNABll0hqsvx74ubs6G/Q9nC5qw2KhJBx/esYG1qjZQ4Pb1gIb+ZPC9r37RNJ+5RnwcarKRgYWGRBWtoPMgR7C/6+af/3R+Arxw+k1AgBcC82iEAnFm6AIB+wVqOizYCEAuEO+37whWn8fgIkUAWJ5oA+H/DjvGDl7oKz4XpYemdR6Ei4uysvOLD3errYEavGxqVUoOBB4B+gAvM0Fr/QSlVAvwNGAasBi7SWlfv6Xks9gyBXGM8a2zcZbvUJrHol75WAcB9oSm4G0R96PeeLBiPLu4LgGps5n9Xr23TR+QtmVieqXwpa7s3IQAMD4khM3HmUcDuTQo7Y9XZd/rfz2DCLlp2DcF+5QCkNm/pdl8HArqjPqSA72qtxwJTgeuUUocANwGvaa0rgdfM/xYWFvsJ9lhS0FpvAjaZ7/VKqcXAQOA84CTT7H7gTeDGbo3SoktYf/MxlM9JABD655wuHeOUixSw4zCRCsJBF7dRAbD9EFkz6i+Tz4uHL6E8VAvAH5acDED+QwUErpNttS+JQbAwkNPmPBElksIfbv8TEO3yNY2+9xqGIe7JAbPyu3zc7sBKCNnoEUOjUmoYcATwPlBuJgxv4ujbwTFXK6XmKKXmJNkzS7KFhUXPo9suSaVUHvAP4P9preuUUl06Tms9A5gBYmjs7jgOZpy1sAaAP73iEqxP7tax7vYdAKRzhwGQSARJ9xUj3kVTJLNxSGQ7ALc9cC7Nh4o0UHG3/M7OG+/z6d1iuzri6f8HwLvn/i8ASeCMu74PgBYKBX795QcYH951LkVrLJl+G0xvu33UfRLkVMF7bXdadAvd8j4opULAc8DLWuvfmm1LgJO01puUUv2BN7XWo3fVj/U+7BkmGDf7P16fCsDImz5EJxO71YczTn6a1edLinPRMhfMI7HpNJkccleI6D/0sY3oRvEipLdIslSwfz+Wf1OMlKUL5MCmPiKADrtwBc0nthXNd9f70BU81ZjHbZUje7zfAwm9TrKiRCS4G1jsTQgGzwBXmu9XAk/v6TksLCz2PvZYUlBKHQe8DSxAXJIANyN2hceAIcBa4Ita6x276stKCruPwndKWfSsrPIDb90zVuRgxVBWXi55DsEWs9GF4PHyc9XVicFw8MOiZeZ+upXkgGIA0hHRB5r7hth8jDxDw58Q1SU0+1PpqqkJAkZvcL0kalj25ykAlMyTNWnOf/VMAtbWtLhfLx98bI/0d6Ch1+MUtNbvAB0ZEOwbbmGxn8LmPuxnCL0pkYcr7x3GwLv3UEIYLHUXEkNKyN0oq3xsm6zkdUOCxOcIK/PgObLya0fm/vrx5cQLZeWPF8q2ouVJ8taIzcFpESOk29SUOVkrCQFABYM+bVvq1En+9vkJEVX+Y5jYR5q+INLE23++w2/jRTYGDh9L/p/FpvHY8Nf8/RtT8jjHpx0FQOSFD7pyOyx2gs19sLCwyIKVFPYTDJqVB8Dch8XSX74HUoIX+tx4mEgbOWvraTxR7AaxbaZNSuO0iBTQVC6PR0up/J/Mh3RYJIuyj8WMFFtdQ7DFBBXNmt/pGHQq5X9f+UWROuYnWvh+5Qlmq3hPYk+KNDHttRNwDQ8ESL0I9+PFVN8kUkPF9K8CsOqsu5hgKOZrvy6ELbXTRNpoTUNv0TnspLAfYNkDE1k2W0T0yj/uucqgjVgfSMgLnSqKUrZAxPu85RKVWHVYKcl8efEbKozonyOfOcsjlH0q+4rmiqtR50YJzpSXVUUlUtFt8ayW7eOYj+XFf7nPDACOveEG8pLy4k5fsgaAS/IlXeaMARNgnvS//HeiWoTqFUN/LPEJo96RPk8892oe+rM4wWqqZAKNbpNJZ/MNx9DvD7ZEXVdh1QcLC4ssWElhH4ZzyCgABvStoeCbVQCkd3XALpBatx6nWNyJDQMl7blhiCJmDI2hgaICxMtcwjtkrQg2yuMRbJLP0sVJUjmyr3FMHwBir85HhaU/v7DsLrDy10dzX/FvABj50H8AMOLv7xEcJK7RS/KzA5taE6pUPij9v/TsQ5zx4+zsyOizs7mq/lvSr5a7FNooGaCLby7uBoHbwQcrKVhYWGTBSgr7MMb+dTkA8248gnTdym73lxorpCkNQ0x4iYbipaL/uyFZH7SjiZvch6JPZFufDyVXQaVd3KjYNtS7sqK7AMaGsPbHUtth0IlCeRY4dR11XxI7QO0F0kfwE8X0EacAMCKZyVt4fvbz7Y556Z3jfCIVPXehv92rPJWu2p7Z9mY24YoeL8SsJbPCfmj1zoQtFm1hJ4V9EA0XyYv0rgkeL3y1+1WZ3eOPYONx4mkIGSk/tsUlUSQveXOJiTxULqFamQz6vSUqi14vYjjpNKp1DALi0fDUh9hmUUWak9Knfmk41e9LX2WPGNKXkMuGG0xQnZFTQ8dtpyPilZWn3dOGSOWWqjHseEBUofxbZaJz3l2Q5dkAcOdLZGXDxUdzS5VMEP+5Us7zi+F2cugIVn2wsLDIgpUU9kFsOU8Ma2Uv7F4B1q3XHkPDUFmtR/5EUig99+CKi8OopLgiC5bJWpCOKJztJt5gmxxX8lGQ3M3GnOnKNt0skYo6lSJw+Fj5/qmoM25jIxjKNy+eob5ajJYVX/qYPKSdF6FYPSbAkOOF0u3lsc916bo80X/E374BwICmhcya8LjsfEQ+1qYauGzx5QAk/ir0aoUPioQ17D/f477oSQD88EsiPfyiS2c+OGElBQsLiyxYSWEfgueCHHGprPLO2Eqgczfk5hvEwFc3NkWwRmwDKlfIVzdfI9WVFn/hD/x4q+QEvPbJ0QCEG1yiq0wCa0geBeUWEt4h0kXNhDLp9/NCnlX+QZwdN4hU0Pe8tmxZQ/5gjI+t7A5q0jgZx1RZf0L18O2hr3RyRe1jxcW3d7hvSDCPe8f8FYDrv3KRbJwnWaTphUuo/LEwUscvkXyOZfdPpPJKywTdHuyksA9h2RViUR/5czHKdVbCbNWv5eV2TK2Ufv8KUPyxvOQNxwvhyMf/8RfTOsSt5fLSji+SSaRgTYqWocVZfW49IkSoQQyFKVMTxjNMPnL/H3edljxqGAAe+9bGUwqJbRH1xCNgqR+suPbdSwF48+Q/AvJCp7W0c9TuCa+bUuLVmNkygJsfEzamoS/KDVG5menUY7WedrmoICsfvLtHmKAPRFj1wcLCIgtWUtiH4BVVrb1EXJL5j7Z1Raqg/GQb/t9k0hHDbWM+tILF3xYj36ppMzo8z6HnS4HZjWcUsmaFqAY56436oMEVQYEhM6Rd6pChQMfkJZu+I5LH4MckbyFdXiT/P7ySdJVILk6ZpGPnj+rP2jzJkWjRGTqO3ZUQPPQPSp5Dn2Adsc3SX3CHSAXpT5e3aR98fS4gLNEjxhl+yoVL9ujcByqspGBhYZEFWzZuH0HqlEn+KubVYvDIUQFUSAKElv23GA4jgxuIhCRYp3ZdoTQqSLLytHs6Pdfpi88FYGzhZt7/gwQSlb0uq3x8VD+cNzo2wHkRigWPzPLHWv606PAbp2bnPgRiMZKTJWho+6EiHTQO0lwx7Q0Aflj2aZv+z/z0bLnOjXIPht8JrzxyLwBnjT4ekByLbdeIPeXDH2Wo3JYmRUI445/CKj36m5LK3W4xWqVY/oDYFEZePq/t/gMQvU7camFhcWDC2hT2EQRfn0vA8BG0lhA8rPqpUJdFh9QBkEo51MclbLmsQnTj2Uf8fZfnmBsXHoNfD/8HAN+5/psUPSd2jPhJIoGEtzR06AJ9eeNHnDEge9v6y0aSnto+V0Fi6liSBeIira0Uw4fOT1EREUaXxxpEwrn5g/O54BBZrZv+INmSBYPk0Vw9TXP2lHMAcOvX+333uc3kTfwoc76hQZGmfnb8kwA8Mvo02bFoeZsQaLQmtqBtJSsLOynsU+hIlXNKS0jlmOjCpQUABCvrGdtPiE5+NORZ0zJTCdpz1XmGOIBJEdk/5s5rARj63Ey2fEuMhLmbZCpoKi8hf1H2+b2IwjPPuxwh786g//92TF4SXbaFTVeY3IS4jN+pCfPLT84EoHmDjC1ns8NTq0UdGBCXl7fxOFEF3jj2z5xRKwVlBv0yMyl4mLZkGgAvjH6BGTXihr39QVFBmq6TmIRBL00i9pQUtqHVPQ6acIrVfxsPwLCLO2eOOhhg1QcLC4ssWElhH0K7BjGA0mJytsr8nThcVtCCWAsb6kX89iQAgLtrhU7k0Y0SvfjK2GfZGYPekIjF2sumMuCFTQBsPUmOaxgChYeKcdD9RAyBFU9dDcCoD2bv1vWk1q0nf53wK9YZRuiC1ZqWGhl3362iUlT/WwMsl4CtmhHiD71xgox7UDCPlrHNHZ/kPFOC7lP4yyLheRzyK5FenMrhch0FOaRPMEzQb2WMiv0fEpfrBdfJ5+PRYZ1SyR0MsJKChYVFFnqiwKwDzAE2aK3PUUpVAI8CJcCHwOVa690rcHgQQoXCHdaBXH5VX5Kloh8HNotxbEtjiFXT7mrT9u9XnA7AK0//tc2+kY9IiG/wWpE2+t/jsOQnEmjkNokuP+rrH/jlvuq+LO7H0ffIaqwR+wZAevsui375CNcbktiYrD+1IyEs9XBRRr2PRJKkmkSSKDtfCFqigUyh3L5ldR32n66TfUuTjRQ8IzaK9MliNMW4Vp2CAlRabCbNZ5maEC9+QLpayGF/8ep5AHz3wxd45pDSLl3XgYyeUB9uABYDBeb/W4Hfaa0fVUrdDnwF6Jm6YAcwAhWDSS9dkbXNi1dwEopUi1jxJx0l+RCra0va7eeldiYDD8cfK8xFn1QJxftTd83gqAe/A8BIE03pFBez/VxRHwpWiSjdUi4TUTQS6fJkABA/+yiSMXnZY5vks3h5Ejco3zecLBNFwT+LibQYQ6SSSeTdOkkGuzR/O5s3y8RVQMe44dAzqblJvpe9Kd6bTSaWod9jS3DN5BFslskhEI36qsKIx2Qydk51/YK7B3OUY7fUB6XUIOBs4C7zvwJOAUyyO/cDn+/OOSwsLPYuuisp/B74PmCqgVAK1GitPafwemBgN89xUGBnKQGg+QjJOUgUuKhSMULOe0fSq5dd0TXhq9YVI93FSy/khDLJBfjzBCm1dsx/f5cR94qLccflsqqWvrScogdEalh/s7gr+8wTUd6dNAbnY+lD5UhMhW5qRhvRXCdkxd1yvfQ18Mm1pKbIz1+4Rh6JnDcW+qnV0XHSf797PmTVzUcAUP+OuDDXJuTaP/rKW1TeuVOMQTtw6+tRKZFAUuvEdVl3vKR+3/79l/nxRf8OgPOvj2WsocyjH3hbjI+//fg0ZjwjktavRozv9JwHKrpTiv4cYKvWem7rze00bdf5rpS6Wik1Ryk1J0kHVncLC4u9ju5ICscC/6aUmgZEEZXv90CRUipopIVBwMb2DtZazwBmgOQ+dGMcBxycInHZbZ5imJPTGmeNrMxLpmckhOlrJRfg3iFvt+ljvQleOv61GwD4n2P/zt+3Sdj7BZfJqhw7xGX1tw8DYNDrsnqnt21j/Q9kBdeGyzW6Vfa50RB1Z0v76HaRHoKvf4jTV2pAqKjQxwWb5Odcf/4QkkaGzFsn23JHDsFJid1g6NPCxLzjwgmkTHBhuELyJ9KL5cCLZ3+NyNHiruzfSZGnin+IvSMwTKSNI4cK7dvkSIill0kflR8YqSbeNm5z+G9djn1KrksdJdepP1jQpt2Bjj2WFLTWP9BaD9JaDwMuAV7XWl8KvAFcaJpdCTzd7VFaWFjsNfRG8NKNwKNKqVuAecDdvXCOAxpbLjoEgFRMVtfIDkX+OrdNO09COPFqCS4KNaTo+4tVALy3QKz3r54lPPGnvfgdxnxXvA9rvi2ei+YhSfqbSu6BdySUOTB+DMYBQOEy+VI1ocCMRzHgQQn08dx5gfx84odKgNKmqSIp5G2QcYdPr6J+hZwrkJL1p/j+T2n+/GQANh4rosghk1fxZIXYpr2w7N+PHQZAVCX53fJ/6/ymAS++9CgAw5/4umxYLqv+Zeok5p4v9+FL930NAD1vYZvj9QcLmL5GsnVvevQh4OC0LfTIpKC1fhN403xfCUzuiX4PZLSXHt14oTAehxrlpQo2y4s05MUaXnzh4TZ9VLwgFZf7FUi7rROjrFo1DIAHPyd8hpf8TEqzjX12OWsekH2JuKgDFfc4hF6bI+MpkBc/WZxDwRqZDJI5YiIKN5jScs3anwy8aMH44GK2j5PJoHipiOR1FfKyP3bofYydKJxu126QmIcVv4YNFxoRfbOMe/m2MkpGSh9b0xJD8dVCiabMC0T5fWVD+zexFbz4CYCV598BwLj3hPZtRzxGwFDEbf+5nLv088FMubtWnJKL7xO26pN++iYAv+r0zAcebESjhYVFFmzuw2eFMkOYaiSFwPgxbD1S5mjHRPeVfyCr2pLvRNvtYuyNUlNh+Xcl4KbvxM1MKN0AwM8uFxdcaYsE7Qx+voFlb0oW4fAnZWUMVlXjmtXSiwx0Zi2iyEgNnuEwNVBWYWfVZpInipHSmScu1Eg4RN9mcRmmY/I41YwUSWFsOOaP9S8DDbXcRvCqQd24RfIRltX3YeocqdkwtkwyPx+ueMM/1nEMqasZV7qujqAxJq47fxAA87/3F3bG/KniXjxq7pf40WbJi/hg4mMAVN5yjU9/54yskH6Xr6L0E7k3HtlL7aWiGhU+1P0qXfsLrKRgYWGRBSspfEZQjdmZf9snFuMaF2CqXHTz7WPFJfnrqY+1Of6ZxhirrxljOhOdf/PCviy/SQJ36r8o0sX2c019x58fxvBn38vqoz0yFR2P43pGxFFiNwg0SVBS4+Rh5L4nEoInWbCwzg9O8R6mQcZ4ecavJnDGJ9LuOyUi1TxaX8wtC4UDIb5MVv5QnUKbg5tOkXOvSoodoV4H6Vcobsod54oBtvChWaTXi6d7/veeaecqBHWuhDGn3AALqoUd5qUikX6mT3udd34nAVLuasm3CA4ehN4q4128UkLBQ+c0m3N2eJoDDnZS+IyQWi0+9GA/KXEWL1Y4CXmBXaMtNE2QB/KivNo2x39n9sWkB4nYPuhlk1/w5Ptw5KEARGrklR/xa3mh9cKF7UeRtQOPpUjViyitXCO+98vLqvLcFfz5lc8BcI8xKhasdolPlPEqMyvpEJR+Iv/MLxsGgCsffNA8jB2NooZEWzlg2jAptYOLll4MwP8c+jhff3U6AP8bkPFcP+Q13u4jqpA2Klxq3Xr00YfLwQkZb9INc7DBqg8WFhZZsJLCZ4xtZ4qInsiHRKmsliFT+m34/WJoPL3/uT5Zys+2iQjtrIwy6q+ywnl5E2rSOPh4KQARk4btLa5bvnUMpZ9IOLnHGg0Z450qlE8dDUOdSZWOiPpSN0Hcp+GaFASMjuN2VsxOMPLb2Qa62sum+sHw/WZn+oiYCMlR4+Sa/lYrnJSbEwW4pj5EzrYkO+OXVWJkvbmsbVbjmvfFCFlQ0ULAuHdXrJNr+c68KwheJP0O/SRzTP0wL7TSSCJue5H7BzaspGBhYZEFKyl8BggOHQwpL9DH4xvQBFvk5+g3U3T5TcfL6j3wmmZOGimReGunyTxe+ZPZYAJ2vApNA/40p0OilgF/XcyOs2VVLR0qbja3OJ/NUyXPIs+Unw/XpHCWiVFw85el37z1si+6qYH4yeJGDL7WOg+uc+hjRFcvWNlM7XDJQ1h/urEtJBRjfisMzzUJMQQmTeLF2sYS6qrFplBQIPcn1Krfv8+QCMSbb17CcfPPB+Cd8U8AULJQrCj/teZcKg8XY+LKWeLKTEc18X7GdnKEFMHVHy0iWi3XevRYkb7mbRy0W9d5IMBOCp8FHAd3h9APxTYb85+CsvkiHq89S0TY5EAR99ercvrOE0t65Tc/AGDNfx1NvL9hS/qaZAq1NiR6EZO6yRRbLSqgdOZmAFLrxHLfNOlISj+R/Y0DxboZSWufuchLbMJEA1YdWUKiQL73q+s8YUgddRjOZvEmrJ8iE0H57CbShpk6vN3wTha5frrzxtUSDLutVBKiNtQXEo7JfYkXiNEvE/0Aff/PZEndDC8d6kV9yrU095H+P104mKlHiFq1JpExcrr9pN/Vn5eJceg8TVMfeSWWVUuS17WH/AuA58guxHsgw6oPFhYWWbCSwl6EX+xl7XoC+bISNhoKmr4futRWyM+RKDYGuCYRofvPbMBZtBqAxbfLSqpicQ75vkQves65QH4+LceIihCqk1WwpVzE8di6RvhYjHGBw4SopW6oQzxfpJL89cYwGQpQdZgc48oH9eLOxw1r34246jxJXEpeP5HAFmnYd65IANsmyGqsHQg1yHV6lIvrTo1RsFLa1UrOFsGmAIGYrP+lH8g1zxsmN6ZqUyE40j5vo3TiFBf7ORgeDnv/yyyYkp0f8vH3Jcrx8P++lsTh0m/hZDFkVi0qQ63NMec34xg8iKCpT7GtXvaVhwyhpJUULCwsDlZYSWEvouVECSyKvr2ILRdJNGKexDCxY4xDzhZDXlooK2Ll12RlT0+oZPmMYQCohMgFRTMjpDZLnoBXbNWJQ6JQVulQnZjjgoYQNQbUXiQkK8lcaRMv1n5GZMMA0de3HpcCDHN0o6yupaMlYGnbhiKCeYZcZYGs7DqUJmpIWdMmzmfs0ZK+3fDzgaz6oqw7sTUynkSJS6hRtumAnFu5iqZT5N70nWWIYZ+RKMZCt4b6E0WkCP3zfTlPO/d20KWroW3leQCa+ms+XCUGxtIScbeGawOETUyY9pZGrSlcINc68Fsyjie2TTI7u05Yu7/DSgoWFhZZsJLCXsSGk4wz7apKlFnVItWyyuZu0FSdIt6GMT8RPbbpJHGVbTw+SHqTWfG3yDze5/aZ/Ga1BAaND0vWYeWD1/i1EgOGXiB/rfTfPCCXdEi+950pq15xSYwtk41efaKskGptEcE6OYc7TDwTJTmidIeGpLlxxEsA3Foi9SBr3+hHyWKRHmoq5fo+3WSCnSZFUIb2LFFgQrgjrm9HcfMMNVqDw5bJIpWURYXOPd94PJb8R4xQVMZR8bwxcqTTbcKcA31KOWvalwHacE+kypIUfCj2nBFfXA3AokkOweflXOUvrjXjaGDDF8WAktws55o4oG39ygMddlLYC1j9cxHvh0+Rh2/JigFETKRcbIvJK0hoSt6WB3Hdb+RFbTBiebRPA+UPi7gee1JccDueG+VPBhXPSwxD4TpFyvjrUrnyEibzjDvxsCD9Z4pbUzvK//RYluKzpAiKKnNJG8ankeVVALw05vk213TaocJydNi2r1NXKy9c7XgxVqotMgj38CYwjEs0mRc65EJctnmqiNvo4LQYJuaIfAaqTZ2GcARt7lVgsCQ16Y1bcAZKwpLnLk2tXgtr248+DOclKF4q+96fL+njueWNvg83vU2uM5CXi2veiGBQJqzyiIxjW7s9H5iw6oOFhUUWrKTQi/Ai5RJ9ZNVZVy3iKmlFjll6St8Rt+K6Cwdz1XQRzZ/fLEa38yokMOj5O48nWmVSrSdL0NAHEzP/JiZ1AAAgAElEQVSVoEZfI3UL3MnjWH+KBAklik25NmNUDNcE2HRM1GyTVfvwE5dyTrFE7jlm2VzdUsoP+gr3Y5mT2+G1zU+IuH9C5XLeSouLM5wjK38ibapBFTRRbySEeJE8atHCOC0ml6EgVySX+nSUfGPw3HKa9FH4kARYVd4cYvmvJbgo2U8+A8tXoRpMgNJRIwDIaWhk5bdGmdFlisgCRGfmETKp6gVLRQpL9YWGwWYcx8v9Dr+1gESR3IcLhgqH4/oW85vRcem6Aw1WUrCwsMiClRR6AMGKoWw/VnTcwgczWYEbTpWVLbxdVp+WXBOmuyZI/0fF3bjkB+Ju+8G0J/jzshMBuGmMSAw3vnWRdDQuRV2lrLjvnP8n03uef56WzwkvwI6xIVr6yIobbJD53rMZtJSnCW+X1f3Kc18H2s8shDVAtoQwq0UknZfrD+OvCyV46rzR8wGIp4P07Su+vaqFEhqcO0JW1eraXM/uiYpKH47jEi4Qg2ptrXFrFqRp7itGypx8UxjIsxWsWoMzX3IwksZVm1sxlNSqNXKOSnHt5qwoZMC/TN7HV7OvSJ9czbpSWfEHvyYSw7qjA4w8UVynOxaJcTGUTPhVpgKGuGZUrgQ7baF9SrwDEXZS6AHocIgqyRMiXiAPcMMwTdp7EcrkQS94V16C/q9uZcnNMhmMPFys239YcjL5UWnnkaqccubvAfgkkc/IkLxoHgV6a2z7ingHkokggQ0mb8KLigyZWIAmh/hgeWn+o3QRAA/UlXNFgRjZbq8Rl8A3ijawyRSSOecWYYIuNwVbf/zSY4yetAmAASGJKHy25gifTn7Ya+IRqBkl526qDlOwRCaiOrMtUpokYOITEtXyoqlomsZBsi32nikjqzOZHPmmkEx0q6gbzZV9CJlJwSs2s+34cj9OYmfMn/wII1ZJxe3qUabc3RKIDRAVZfUwmUDzgX6zZOIpv1Du98QcmTjeZmL7nR+AsOqDhYVFFqyk0AOonlhGmbFtefH8eaOrUUYEDT7hFUQxov2MBoanTAbkqxJpd+Elb/GzPtkFSjxD30k5Lq3VhZ1x3GBJdX5l9ngCxisXLRUxuWWbSA45Gx36nSqr/DHzvgTApRWzecDYzxY1ibuv4s2zGfyybOs3V1yojeNl36VPXceLF/wvAKNCMrbnlYagqRORJ1JB80dyvZE0NA4296CsxR+vY+5L6Rxp31IWJF4s25oGmHs0WFKWU+vWU7BKjk1HpH2wMYUytHOFK6V9c2mA+C7SE3IrRPpKr5BGxUtcPh4l0tGA08TYG/z7MALvfJp13PZ0x/f9QIWVFCwsLLLQLUlBKVUE3AUcioSC/DuwBPgbMAxYDVykta7uoIv9GumTRM/M3Zwg+LYY3gpbRdp59QTW3CrLcdgExKx4aTiuCW5cfH2mXsEZAyZk9f/yxo92ef43DcXY9ris2ocetoatjbKyVdXIpzLuwdSEBtZsNfUbVor0cO9r0yibLxJL6C0p0a7uSvOv23ZV6S/bCHlr+UfcOk3GefsxsvL+/nEp8+aGIVUs9yNm6M1KYs2smiftBm0090oFSUyQylDBxTLu+kkinUSHlBHaJBGe6eWi3wcHDUQXSruECc7KqXKJntNxiNH8yY8AcNi71wJQsMYlUS9GiPMOlWt/etTpRAzXxF8WSZ2IOyb9deeuDnh0V334A/CS1vpCpVQYybu5GXhNa/1rpdRNwE1IfckDB4anMPyhxCqn6+raZUpedal4JPKj8rA2zBTrfKpQs/SK27LaDn/i61Ty/m4NQ9QKOGnEqwA8VF/Kj2fLC6lrjNXNDMxxXL44WnScJyNSH7FpRQFNn5MX7r2/zjG9ep+7j28UiRj+ja/KtVWnm5j09LflXHVi4Nsc0PQZJ/djXUDuR58PNclmmSXTRXJN28fKoxkYFaTPR4ZxyUwKqfUbwEQflxQKo1Pd8Bz+OOZRM5LW3EzZaDxMVJH+76SJrpUJbuYYiXVY/XnFMC33Rs2X+1czIdZOLwc29lh9UEoVACdgCshqrRNa6xrgPOB+0+x+4PPdHaSFhcXeQ3ckheFISPi9SqnDgbnADUC51noTgNZ6k1Kqb/eHuW/BqRS1QBtRsyMMv0OiBdc1yEqULJdlO39M2zTcym+2lRKO+IWIuvP+s21JtPZwaf52fhkTt2NzWub7MUPFuLiproBb+kqEpPfJ0V3q1se1G6byxnOiMnkRk8F6xbcvkIIsnqTgodiJ+cVevcKxx9/3PbaNECPojPPuBOBPk05jgAmo+Gi18EcGK6RNcayZmjqRuPq0M6bGQaIK1Q8JMDnSsYTg4akT5F5eWXgVOS+KFDB3tRh7oxuDuEbNyV8jv9VND1wFwGBmdtr3gYLuGBqDwETgNq31EUAjoip0CUqpq5VSc5RSc5LEuzEMCwuLnkR3JIX1wHqttbfEPY5MCluUUv2NlNAf2NrewVrrGcAMgAJV0tXiRZ85ggMH4Oa0LWHeHuqOGQZAygTDlb8vq+E7l/2tS+c68d9nA1Dx1NWs+vwMAL67SVbqJxdOYOVp97Q55oMp9wJw/LzLAFjxrkkFLnbhqC6d1sehs6SUe2KpBBRFtypM9jVhk14drtHM+KPYMe45VwKhZh/xd78PLxpyalT099nTf8sRr18HwJwmqXmRF4pz99BXABg773oAThsnxsuJeWu49MeS1v2n6+VanhuX8T2Ga2Vl/8X0R+kKvr/yAgB+dsgz3JQU9uexZdK/O1CxoXYYAH0/EkmldK78xl2rcnFgYI8lBa31ZmCdUmq02XQqsAh4BrjSbLsSeLpbI7SwsNir6K734XrgIeN5WAlMRyaax5RSXwHWAl/s5jn2KejCPNyPF3exsXwMfEdWHS/4BuDkfxcOhA0nyE9QQXbxV4DFkwyFO7M541rPXSnSRiUfmrLu2XijRVb1ukXCj+AZ4vOXOYy+9xoAlky/re2BrTD2DrFlxAyxS2GNfCZyM3RvOdtkHIE0BEy+QPrJMrmWzZJ8sOqsu5jbMgyATxOiIl5VsJWfT5F1osgRO0Oh08SDdWJL8Ahe02a9WhXvA/mykl9fLKHN129c47tvw6+IR+U3Kz7H5029h/bwbouMt+ohsR9s/G4xxw4Wb8bKerlXU0pXU3uWiHXuApFG9Io1u7xXByK6NSlorT8Cjmxn16nd6XefhEnQSS9a2qXm1VcdTZ+X5aFrnCAP/N23/87szSP8ktRvqHgpc8x/rhSR+YSdcm8uXHEaEwulmMlb43N2ed4f/v7fAQj0M5GETTLuZJ6wK3eGU674CoOSMoltnpJ9rmiNJhXz+BiNHpHQfr/RGnnx+r5pZqKz4LoiGbdXqOWq8U/whVwxfq4yBXHu3XQcjxu36tNHrQbwq0RHnBQrCsVNOiKUiS70YjhO+qpMrqmHgzwzQgyHlSFRYwYHZWI57JlvMXas+DDL5ktex21LT+Cew8VJdt12YWyauW04J5aLm/mDtMfNePDBRjRaWFhkweY+dBHBQYZYMOj4abvtwSNWKX5gNtq4LtfIItnuSjf875K9N/BNzQnR9iMYvVUU4OZde0GZ9YM/ADDpjzcAkDZSh3Y0eWbYR30oKdmHlm3izU/EJFR5j8jtdePCpHIMXZsRBgIm8LBuaIBwnUgg8RJDULLaJRHMbl87si0t2vcNt+P8RAvjwzKoceG217e92WSS5ta12tdx/sGbd4lb85dVo7nxwauATB2Hpv4iuRzyx40k7hZxJlUq525Y6ZAcb2pBRCSgafmCQTySI47PIaYSViB+8HnGrKRgYWGRBaX1Z+8NLFAleorat80Qy/8qRCYjL5/XScsMvDLvzf8Qo9Ub4zKOGM9QNmCWEALcO+RtLlt9EgDvrRAJo3KgeHNbE6d6XAfXr/k8XyoXl+UFeRmqsEtWnQLA+5+Kuy+01ej3WqpQAbQUy1pQvLgZDIlrw0AhccnZmqSp3NRoyJd9jlksEwWKiDE6erUjkgUQNSQyxYvFFrH1SFnt68YnWHXmXZ3fqFbX1R5fxJ5i6kcXypeHythm3LEeQWzZR5qf3iI5Hq/UScblk29MgX5ysSVFMp6iX8i1qJkf99i4Piu8qh+fq7VuzwaYBTsptELTF6YAEHsyE1244mF5eaMfy8Mx8NauRbYFBw8i1V8mg5efaptUM+ot8douPVGMXSNen47bKNqcSmULcE5xnHDEMB8vKPS3Bw6TdOCmWjEIhraECJgCqm5EftdQbaaEm+dN+P6NQoH+uxWnoR8UcTlSJxOGG1TsGCNidaLQ0MV7TnoXcrZlF35pGuiSsyWb5Sluwk7yV8LAS8XY+kxlK4vqTjh/+ek8MfKVDvd3Fyd98nmiP5A4iYZfGK7GS2tYfa2wNk2/WHLFH15xFK7RgS4bKRNuVInu9PAvzqLg4Vnsz+jqpGDVBwsLiyxYSYG2KcqtU5iDA8U1ltrQiYVvJzSfN5l4gay479/acVzAn2vEXXnn7edSV2no20xZtVSR/F+4MEjSSNUpU5MhNawFt96UhmuQ82iVcUGGjUbR3EfalyyCxv6yb9TZywA4oXQZt//jLABi5vLSOcqPwPQMdg1DRQTI2RrwjYmeGzJR5BLZEcgaW8GKTJv6Yea7MWmrikafxbnuI4kPuPzf3uCHZdnkJj2JMyumoLtiMAw4BE09iaqT5XdpPl+ySMvzG9j6nGzr97v9Mw/CSgoWFhZ7BOuSbIXpa4833+r9bbsrIXiIFzpUn7Xr3AjIBPcMvv4+bviXBNHouCzHJR/Kctw4SPsGMt/FmA6gTOWktOFVCDYG0EFZrZtNSqH3f93wAIb7lU/elSpJH+UNh6GyguZsNZF8IfzaB66p1oQnHajM95ZykWKCDQGS+dLeK1MfajbnHBbIuAdHSvZmYFOMqhwxagaHi35/RGx1p/epO+iSlADgpkmtkyCnoge8T9nljKwgb6KJ4jx8rDTvamTrfgYrKVhYWGTBSgrAUf8pOQEl97bNP9hdpE82fAMFiqvGdd1a/Xb9aIJVpvbBFlmOqw+VpTe20fELtKZLxAsR3hAmUSL7Pcq1QAI/QKnRVD+KbpXPYIumTmgdCNUbd2KhxjGSRNw4NUKNmfM3jJD+o5uNzSIAqTzjkWgxRWhDmTDnyHZTI9JkRjb3hemnvQnAqKiENj++9Ug+rRKKjcZ6kU5yVaLD+7I13cjlF0iAV3tenK6g6QtTsjxKe4L08lXkGeYnt1s97fuwkwI9Mxl42HKkPOiBBDy4VJzj7Rddycazzx5N3hb5Xlcpj13uennbVBpSA+TFcbaZtG0nMxmopHyWfqLZdJy8tEWL5AXVht65qVxhWOFoKTMvdjxAzkfizvQ4I5v7aUJ1ZpJpkj5KFstLnooqakZlRysqV5GOeBVfzPgHy2PlFseZUy3pzoea6s0Bpf3JwCscm0Zx8xahQftl+fys/vs6udSMESvrlBtl8r7mP//BVQUSw/GQSWa6NH97G47LSfPkPr795zuo+qMkX10++nQZ6uABpJcsx6ItrPpgYWGRBeuS7GHUXzwVgIZBAepHSuDLqvNmdHrcEbdc65eR91bcvA2y0tUOD/guPdcxRj2dyTWIVJsApSB+una41hgLg5nIQ29bfYVpU62IlxojpXFlukH8UvRRE5QUNnbXYJMmUivtt04ybshcjSnjQLBB+kgMNOqAVuSXyApdv0OCh5TjgiGV1TGRQKYcsoI5aySl+ZVj/w+AitCuIxtfMoVrfzdy7C7bAdS+MJJZEx7P2laVbmTqY98FYNQ9QjaeXti5RLc/w7okLSws9gjWptDDKH5XXIyFRfl8WlnQaft/NEib+grtG/hyN8pqXGdqHOogBGXBJWEqo4dqlC9ZeMQkiRzIX+vlJmS3DzZCS5mxFSQ9l6O4MSETeBRIgQ6Z/SaUuXGACZluUOwYn23AdBKKhKFlz19t2o8WSSG5Npd6LQMJhEUqcJuDqIDHOy+f4UCKdJM8ip97VOpXVk4Wi+kLo19o976dGRM34+/a3ZuNwmnLOQOxN3iBamVOLuk8U4fjEqmHMexHXejsIICdFHoYqfWG0XijQ7Bmcqftb1k8DQAnAaFGU526RF7UtEjIRLdDkyFN8TwHbghy18u26sNMQtIC5ccxuIZM0ctHcMPQPFDUmbzlQb8Pz3PgGIk/UZr2VRC/ZkQ8kxodqg343wHcoCZcY8brFXj9RJK8Ajkaqs0jpsWSGejfAo3mwky5uR3xXPIXmYNNv0s+EnVixPrpXHioJKHdWt42tdx7yXc2MnYFoe0ytlSuXKhTVEi6pna3+znQYNUHCwuLLFhJoZegJo6lYNz2Tts1LJFMytg25ec3eO7BkGTvkiiEgHE7eqtatEpRZ4rZegbBSL1L/eDsVduLKGzpo8lZLz+3J4FoJ5NNGa0yRsK+mui67PoJ8b6mjPxWh4CRKJImgzLdL47aISfz4hTccCbCMdyYMUgCpLdGfCboeFjOs66mqA1VnGtEe1qCbGgWHWjSXCGHmTvpMY76obgn7/vxbwGoe3EEBWetoCMEckWN8SSKlzd+xNKrJCfliA8uAaDqvEMovr/n3NP7K6ykYGFhkQUrKfQSWspzaO5CyL1jKrSnYmRyCAz9WcCQo4Zr8I2KfsHYnEyuQU6VHNcwIOAbGD03omcsVGnlGySTJjoy2KDQhmSlfpiJ629wfKOjJz2w1VCZ5Wifmi1VKF9CoTSYvIwmY5CMbDf/D8rE/gUbjS3EgXRU2mljU9BkuBv88Ubk4sLRJOsbRFJoahERp+LZr7HqFi/zVIKv3jv8Hz679X11EjH5yJgB/vndRrHUusd5toeMfaJmi9hAYgMUu6hmf9DATgq9hNjM5ThjjQ/9mI7b+UQmOcKjCBA21aQ9oxtK4gcAgualbO7rUrBC2rWI8RztZDwRUTNRVAtlJJEditRORNCBNDgmSSreT17CUFWQcI15gc0L6nkXgo3KV21Ui0wUyXSEfEO84nEieolaKpVRhTyrpdOSSaMOFYgukkgE/YnCbx2X/mNFjT7xSWGuJFCFZuVz8sLzgGw2Kw9etONVG+WztREy8E5bY+XIEZsBWNEygODgQQB+YtTBCKs+WFhYZMFKCr2EdHU1has7LzamSkXHCKyL+rkGXkShJ3JLQ/loHGqSlDY5OHFp19RP9mkHctdJw8aBJo7AqCcqDcl8WcnD1XKeRH4mGlElZVsgrnwVoaU0exxOs/JTsX11IOT4pCyeazJhkqvSJSmiq02uhjFoagfSOeakhnbO1QrXbPPyOJyYDKJ6YyF9KkUv2FglakQkDNXPGnbtcW1u6S5Rf8lU8y0jMRSGRQLRUZeao0VSyLOSgoWFhYWgW5KCUurbwFcRhXEBUjauP/AoUAJ8CFyute44N/YARu7azklW3GbzE0S1r1d7OQSeITHVyt7gSRPBZmg2EYpetGMyX5PMN/0aF59KZvoIGVegR8Qa2qF8qrWwoVRL52i0kQJ8OcUs7DoEEWN8bBxm0rYTipRxpXq2CA+hLSFfKvCuJR3TvrRRWCArdM2OXH+/Z2RN14oxQsXSbGsU66mbzKxhhauk4T+bpN3nYkk6wrI/T6HyOkmdLnzKSAi/zexftEVErYJFIZqk8h2R06RCVOjVuR32e6BijyUFpdRA4FvAkVrrQwEHuAS4Ffid1roSqAa+0hMDtbCw2Dvork0hCOQopZJADNgEnAJ82ey/H/gpsOuKpgcotNP5nHvsOCFRfXdBJeFt8nME0h7/mXy4YUgUeyu6sfrntqoNaQwDwWblByYFjS3B81okCjTR7V7ug+leQWxD9hgjOzSNRl33ApW8PtIhjdOcLQ1EqwI0l8vYvBBsb1yBhPJtFp4HQ6UlNBqgMEcGWZPIR+d63g+xQYSHNfjnqN4oRoqA8coEmyBUL5LCC7WHA/C52Bw6wrzzfs+UKsmI/PRrf2mzv2+BnKu+KZ/6U0TsGvCihDunOuz1wMUeTwpa6w1Kqf9BKks3A/8E5gI1WmvvXq4HBnZ7lPspUvmhTtucUCwFa9/Vo0j0kdsWrDWTg3m50lExAEImQjGZr9HmffZyE1Qa4mWmfkNT9gsabFJ+lGOoXl7KxkEZVSUokjwtZcoX5Z2EV5zWI2XJTAj+C9rYSjUw6o/nhpRzerqHOS6hSBvGqKoGUQuc/CRqvfhLk4Uy/nSdsV6mFZiYBdcPewj4KeGvPyT5JUtveItRoVzaQ2Egp93JwMP6bRKdkD4izeeGyyS9elVzh+0PdHRHfSgGzgMqgAFALnBWO03bJWxQSl2tlJqjlJqT5OCr12dhsa+iO+rDacAqrfU2AKXUE0iYTpFSKmikhUH4cWbZ0FrPAGaAkKwALP3LZMbeLEQX+3u2WiA3l+iG+k7bDQlJfkS4uIXUJglbdENedSeTN5DnEqky+QKt3IRejoFHh6YDyl/dfSuhv0JngpG8DMpAEsLmNicyhaf8duHt2fu0q4mbQCmPlCUVa+We9PItPLKVVjUhEmWeezZAXpGswomEycWoC0OBYYeu2ykJQmlImLUrmFlfQg2iA6VyRV/68i3f8w2vxSdKMNI745+gKxj9wx0A1E7sx+wBQh9XHlop15w8+Gzk3XFJrgWmKqViSikFnAosAt4ATBE/rgTahpxZWFjss+iOTeF9pdTjiNsxBcxDVv7ngUeVUreYbXd3tc9R186m83Cf/QM6HocVHZes9zAxIqtUKuHgRo0xzgTwePYBp1n5rj3PSOeGMiuyx7Ccimk/WMmDx2eSzsnUjmgYkgli8vR/7zNR7Porv1c7wpM6kvnalxA8F2kyH5Ieq3TKC2/2aksqPzvSC312oy6NpvZlaZlIUtubQ2gTNu2TwLa0CvWOmLyM2qC/LZVrXJbmgdFKmKgB6k2ORGfw3JmpVfI75a5aQ+4/ZF+g2NgZqg8+SaFb3get9U+An+y0eSXQObvIAQ6dSqFTnduu6115CWJ5cRpMvD+ewc68KCrl+Fb8UL0Rx0vTBJKZRCUQI56XV9CacxHk5fEIVzzjoxvRuK2MlN6nZ7j01RIzKTjNyo+K9FSbdI72JzFv8vDzHdxMvIQ2F+A0BXBKZOaqbciwOquER1Nvzm36cBoc0t5EmONdQIDGfoa0xbyzTiv1qHajBGs0ubIzFvDYX7Lx9TelyO8o2nou0tXV7R4DsP1rRwNQPwSG/ejAS7W2EY0WFhZZsLkPewE/3HoYALf0XdBm3wjDWlwca6ahWgyNykspVmY1LkwRaDRSgSEfia0L+mqDt0IHWzIruW7JXu0JgDaqRcZImIk78PIttEMmPsJb8b2wiQASooYfGoETVyS9FVx5PI8y7mSR28rQafIcIpqwY8ZoRJBkPFMCz+s3kC+GRJ0IEMw13zeKZBEv1eRUSbu0yfxM5KtM3IZZ6p5slGKxl+a3T3ZT+p4p0NtfIhpTmza3267NcXeKdFAKqCMk+UJ/bArkuvu/AmwlBQsLiyxYSaG3oBSYmhoP/0sIFW65sK2k4MEJuJT1FXKDHTUmCMdzK7rKN+yFakxEY6H2bQnaGOISGgLG2OcFNnkrb3SLon6MrLixlRkjnWcI9NqH6gJ+9KS/zSszl6+JbJPzJwpMm5DGMZRrfnl6Y3h0GgO+29QNG2NhIkDAWD+9YCSnIEm63ozJ2EncRvk/1KRItshjqjwuBzfDDeFfZzpzrYSk44HBju0Cae0SMUFcXZUQdgU99VAZx8yPu93XZw07KfQWWhXZ6feuebsv7KAtcHjJBj7YJgzGfpKUebhJBfyn3zMkBuLgmFkjbdiT3JiLYyaNVK73EmYiG50aw+JsjPOhBuW/VN5L5rTgJzh5qoXXxi1M4RqLvUcDH4hn4iW8RCfPC5EuSvlkLB5jlBt1/VuTMmpGuj6UUTO86EgTxZjKUwRCaXMNxkMR1aRyso2bicLMd49O/qQcPwSyDcbPupy+dd0T9bdedwy1o6WPym91r1blvgSrPlhYWGTBSgp7AfmrGjttUxxsojgqkX6bzErneJLClnCb6MV0TKONSO6YKEAvUhEy7M+eUbGpn+uToHhIxVqlVhvJQgcVOZulnUev5rkoSalW9GoC7bRyI8a8Fd3Ld8iQsng1HlST46sPQc+gWudkpI2db4xWuKZQjC9tBLX/3cutUCnlu1xPGbV0517aoM/dMXaMlovp91KnzdtF8tRaRv/U5GXsWRf7JKykYGFhkQUrKewNBFSnTS4qnMM/VkkacH6hSAwNpmS7W5wiVO1VdTJGOgeCno3AW40DWtyAtJdD0DZ4SaUzKdle+bh4n5QfceRTtRnVO9DQakXPMRvjDoEGOTa0TVbeZB8RP4LbM7YCN2rWHw3RkAR1Ve2QknlB3coeYdyUqi7kjyGQJ+3TZp9LoE2QViqmiRiSlzsHv0tnyF2wicZ+gztttysM+qXyRQQVMkVz0+a+7MeuSSspWFhYZMFKCr0JZUhIF60GIKkNkYhy2jQdGYrQJ09sD9VN2VzsgWbHpylzPS9BK3efZ3VXKeWHHHtuxBZT3SlUG/D5Djy3ZTJP+56CeH9jXEgrP6Mx0OJlaXpuS03Q0MF5K3+wVb/RKq/OpKzybiSTK0HCy6TUNDQb94dHFpsCbfgZvLBsT0zRClwjNXjjcSMu6UhG8gBxrUbGdp5Ze/OW8dLH9h2Uzi9q3cVuQ8/5ZI+P3ZdhJ4VehFMiSTWp0SKmXr5abvejFa+3aRtSDuOKNgHwRr3Ug3ONf95JqsyLaYyLNDtoMyl4cQKBVjSFnkHSM8gFkpmkqnhh2u8rXCXnyFkjL1681M3kRuRli8BOreMbJkPVxrgZybwWYVNDwkuWiJdpP8LSj4SMK1ImFsF7ycO1iniRicMwSV4tfYw7NKT96tQ+yYsO4BgKjniJuc6SOAumPExneP6B4wDo1zQTZ7Xc7/1X0O8dWPXBwsIiC1ZS6CUEolHS2yUtOrhNxN1Hj4MAABV9SURBVNTZc0bJznYkBYB+ZqltaRajledqRGl0IDswKNis0MFsLketaEXBLPDciV7kIkimIoCbyhjKvIKxys24GF0jMnjnDtVlVAVPmgjVBvy+E2I39MvOaQdfmvHo29yoi9tgjIhe9qOTCZDyIyyDGckoaIysrbkfPeIXb6y3HfMAXcGAOwybc24u6arOCwAfjLCSgoWFRRaspNBLSE0ZS+CteQCklwm1V9/ZUviUL7Z/zEd1po5hnSntblx9yQLX18lDJgApHdG+wdDLgYhtCvjkrN6q6pGuNPdP47R45CdmX2siVt8eoXySlRZjLwgb+4EnAQCkoxluAy9YyZMUgl54dMj1JRs/R8FV6IA5tpWU4tk7Ag1erLI5kaN9N6wfCBUAN2IMqqaWxak5u7YMnL74XDm0aZ1026cPNHYeVHYwwk4KvQRn5kKcfuUApDZvASBvo5B+bEo10D+Y1+aYy8olJfeDT0bIcV6UoaMJmVJvPgFKWBOuNkZErwBMMJMC7UX6OXHPCKl8QpJ0K1IWL2U5OUxiI2ILcnyaeE809+IUojsULcawFzFU866j/dgCj4zFe4kDLSorJgJkMvNyMNJF4lJRdQF//86kLCQCvgriEbskStO+SvPG9P8xd6/t/WyNwGlSBs6LJ0hv27bL9gczrPpgYWGRBSsp9BJ0MkHdMcMAiD0hkkLwnU8AOPaNb7Hy9HvaHPNvuVLU4Qd9RKxVRttoaojgGt5Bx5QjCDYrPzchb50pSV+WIU3xuQvNyhvZHsjQtrVSGzypwdlgCExKNKG6bGul06oojFd81pMGgo0ZHkbv3H6bYGYcftxEqJVnX2XaeVKJt0w5vmFSZzgijVs2p6yJYaVixG1P4toZY9+9nCFa0tYDI4WtOb14WafHHaywkoKFhUUWrKTQi4g9ITn2LecIj230udkAVNyv4PSOj3ts0l0AnPPKt2RD0PV16LQpnBSpzujrnp7fGt7KmzSreLBJZcrRGaOiG9ZoY+zz7BPJglZ97UTLlsrRfnCRZ3RMR3Um/t+TTrzVPtGqtJ1n3GzOrEOebUE7GekiaCQKLygpWNJCwNC3pZLS/vyRH7dLbdcRhnxxAU65iF1WQugcdlLYC8j7WOrhxE+eCEDw9bm82yIP+rHRtsLauLDEMuf3kRqH8YVF/r7WlOleirMX3dc42CXa6HEzyjaf1Tmi/XTqpGFNciOaoJfM5JVuVIpkfnZ0oR93EMz06yUkJYrSftSkMrNB6yhKZdQdbzJzQ9pnZfZCslUqE5WZ8CYlz9HguBTnG7Vq5ItARs3qDNPGnGC+1YF7IAYk9w6s+mBhYZEFKynsBaTWiTus5nOSA1H6BvzoG1cD8Pp9d3V43NEDVgPwasMYn2gkut6kJxe4PkOyt3qH6gJ+XIIXi+CrAJFMPoRXOyKdysQAJApaGR+j3kHy4RWRSRa6vhShvdyKpCJQIpZItUUkHC9RK1yjSBm6SU+aSRZAsN7EPZhSceGagD8Or3qNR/fmOC7fG/EK0HUJ4bDfXQvAgLqZAAQHD/J/A4vOYSUFCwuLLHQqKSil7gHOAbZqrQ8120qAvwHDgNXARVrralNT8g/ANKAJuEpr/WHvDH3/Q5+HJMJRlZXCK3M7bX/HIAlmGrFkDCrsBTLJvlB9gJxtsprWSawT4VpF0gtk8lbalkzugxdc5JeMj7pEN8kj4JVcixdljJQhr3CsMTSGdwRo6ZdNuaa0Im0klkBOdip3KpYZh2+LcDTKc4k6bY2a6Zibta8g1sIFeXV0BV9fL5WbBvxmZtZ23WAjF3cHXZEU7gPO3GnbTcBrWutK4DXzP0gp+krzdzVwW88M08LCYm+hU0lBa/0vpdSwnTafB5xkvt8PvAncaLY/oLXWwCylVJFSqr/WelNPDXhvY/nvpgKw4uLbATjrrC/hfrx4j/pyW0ThTx99CM4bkqFX8dJXAVh1Zse2haWn3E3la9IuUWwIUJKKtCnz7tVUQCtfd/fqKvreilZ1Ebzw4uD2UKZWg8lbyKo56VG7m6fEaclkaXoIJBROtcnqNBJAwsu4bMW14PEuKFeRyjMn8IlYM3YIj2NBGzuFZ0/oDHPjCVZPzS4GGxxsckn2gj1h5a0ipSy7XNbBMwZM6PVz9hb21NBY7r3oWutNSnmxdwwE1rVqt95s228nhRGPG8vdxfLx4ouPdPsHD73/KQHzwI76d1PcdGPH7R0VYOVpEgE5/PGvA/KSNffLxCCASVX2AgP9eg9eMZZWuQxVGf5DzzDpqQjxPmmiW0zKtKcGmBwM5QZ8dcQzVqIzEY9e7Yh0vmGjrnJ8VcLbFt4W9FWJdJFhQo4EMoxLxdLZ+KEbADpVHTalxJf646MvAHdL1r705q27PLYn4U0GBwJ62vvQHkNpuw5ipdTViIpBlFgPD8PCwmJPsaeTwhZPLVBK9Qe8KXk90JoidxAdrIFa6xnADIAC1U5I3j4C9e5HbbbtbkHSneE2NaHHiXXQqZWV8MgfXcOcn3e+2qy88A4AKp77GqmYzMGRqkxZeC//IFGanZ7sJBTJYq/evHyEdjgZV2F+Ji/Cd0l6JRta0b0lTaqB10alFEEToOQbJLc7bcajPL7HWCaXAa9CVEkSZVyRv5zyJACX5Hdc8g2k7BvAV0+8VLravMbfF6yQ/IbUqjVtD+xhLL1tsvkmz8nx14kkF2P/rRi1py7JZ4Arzfcrgadbbb9CCaYCtfuzPcHC4mCE0nrXi7RS6hHEqFgGbAF+AjwFPAYMAdYCX9Ra7zAuyf9DvBVNwHSt9ZzOBlGgSvQUdWo3LqP3UX2lGJJm/yqzmveEMSl1yiRAQp//bZEYH68rWrerQ3x49oVIlUdakDHYpYaIscCjPgvVOH5GpDZ6OzVhP1S6daZjosizQ2TbLALJjPHRI3iJl6WJrTeSQSR7fF5WY2u4OW6GLMXUi3QiaV4/7v8AGNKFrEeAM88WCUHPW+hv25uGRQ8vb8yWJPdlA+Or+vG5WusjO2vXFe/DlzrY1eYtNl6H6zof3v6H4vslZoBfZba1fqH3FN6x6ZMn8swhEtJx3cauTQqeKnHO0rMAqGnJ4S9jhNF4fFiSDW7cIg/pU88dDaWiKxQVSmRgdTpAIm7o2H1SFuUbDp1EtokoHZEoRcjkMuig9l9+b19LX9NXQqIgvXaARCwaVSGvSPSO9466h7xA55NBrSvtv3z8JehVC7P2OYeMwl29d6MWB83KjPmUK74CQIg9fxb2FdiIRgsLiyx0qj7sDewP6oMHfczh/PPx+7O29YjIqJRfvj44cAAAz3/wQvf7bYXZccmZdowF8cI3r8HZYayDbqaIjE+dZrIjEyVGzG8M+IZDj4exNUt0tMorZpvhVNR9RTpRntoRcDlyyFoAHq54o0vj/lO1GA6fP7yP9JtK+fucQ4Qh280JoecubHtwL6K16rAvqw0euqo+WEnBwsIiCzZLcjehZn5MkytKdywgkXwNLw0n78yV3etYawJRUdRTG8SLe/aUcwB4/v3nute3weRIdh35VWfczSG3SUZhvMQQmcQgaAKUPKkgUyRW+0SvKWMXcJqUH62YMnYGL/uRgCYvTySFgYVS0u2/Kp5qM45d4YzF5xD4roRb6tQif7szbjQA6VwTujm766Qr3cX+JiHsLqykYGFhkQVrU+gG9taK4ZSV8sL813qtf4CJcySOu3pjIQFTQcrPsCzwkiFaHWCEiJwNjl8zwnNlJgbIhrMPW8CP+0k1rL5O7m6NZ8ydIsFU3PoRblM2j0LqlEl+dazQPzv1ePcYVv7a5DdcIW7pyfO+SPHZ+w+9W1dtCnZS6AaqrpaHZO5PezZ2wYNncPTUCYCrl4qa0tV04j3BQ/WlANy55ngAttXLCx2PhwiYQi75uRIHsaMqn+9MfhWA64u7H0F45rkm/mBu2/iDxvH9AYi9u5R0TecVpnsa+1NMQnuwhkYLC4s9gpUUegC/Xf2eT7Y6fa2srhun1vdY/87YStL5xopnDGrJ0ybx+gN399g5PmtMGy+//85FX93jJlA9Ru5t6V3v7fVxeTgQjItWUrCwsNgjWJdkD+A7w472V5J7h7wNwInnXk302dk90n/rWgWpU01odXOaMwbJd3XEGACOvHv+btVD+Kzxk23jAJh1eAgQCUEF5ZFs+LxcW8FrSyl9Z9cZk72Jby3/1P9+9He/AUABsz6r4ewVWPWhh6Aikg300qpMymxvi5lVXxdDZ6hBfsPS9zbj5ouovX2C1IqoO1tISE4cttznfPws8UBdGY9MkhgDt1XVZzVJJoiWfsKtEXn+g70/uFYof09iIx4Y+i9A1MKeVAk/C1j1wcLCYo9gJYUeRtMXpgDw9p/v8LftNcPU5MPYNkky98J1phjrdokuTEcVeSY1GyU+/sU3FnHESHEjPjGya1yIu4PqdBPH3PU9AIb8bGab/cGhwsez+suDGfK8FIx153/apt3exLofHgPAomv/krV9fzUutoaVFCwsLPYIVlLoJSy7bxIrP5ftMvSpup7ce1RdziihfdM5YTYfVyzbEhmG58KVkpsQWSIBUrqxidS4CgCaBoobdOO5EqEYjKS4dKxEEL6/YxgAS+cOYdS9YghML1wi/Rr7io7HcUpLAIhPMH2Wh0hFRVLp84TkMnwWgUjtYe1Pj2Hx1QeehODBRjTuA1j798MAWHzsX7O27+tGq2C/cgB0sUlECotHIN4nRv0QSUD6/+2df2xV5RnHP19ahVE1UGTaiaHUNWNqJiXGUOUPMmeQjWmMZpORjA0TxmbUmWWOhky3/bFF2Sabc7KpjGQSJIJz2Ew75tyPGME5fzAmVIoss0QpbEgyTFwLz/543yP39La03N5z7m33fBJy73nPhfPtcw9Pn/d53/M8U58/BEDv2WfQVxfOKzZx7a0LlZjO3P1vbF8oGJOUt69GrnvtIADLJ+1/f2wsOYMEnz44jlMSHinkwEDJx4TZ3/kyAFPXVH658P+J/3xmDs+tXlM0PhYjhASPFBzHKQmPFCrAnW+8xBUTiv3x3FtCIrJu8+jtGVCtHFkc2v9tW1UcHTRtDnZvvmVs290jBcdxSsIjhUoxLmToO7oHLwk+86GQb5h+p+cbSmHPfSGX88b1xbmc+w5Pp/2iyXlLqii+JDnaGFdzUgeR9G94pSUvQaOLmin13Lw97Jr81MTi5U+3n08fHMcpkSEfnZa0FlgI9JjZxXFsFfBp4L/AXkJ7uHfiuTbgJuAYcKuZdWSkfWxx/FjRcljhk3p3nxOLfBS0623+wxcAaPpccRPcsc6R33wYgG2zNg36maatSwFoXvJSLprGCsOJFNYRekMWshW42Mw+BrwOtAFIuhC4Ebgo/p2fSqopm1rHcTJnOL0k/ySpsd/YbwsOtwE3xPfXAo+a2XvAPkldwGWAZ8pK4EBrKM46n1m8fXt4eu/Vr5/Ym79n3rrwpiB6ePrd8NzBN78bfkvWrx3dpt+/4nK2fuUeABpSzWeLo6OrFn0RgHF/fBmAZjxCKIVhJRqjU2hPpg/9zj0JbDSzRyT9BNhmZo/Ecw8DT5nZ4DEenmgsla57w9r73s8Wr72fjAs2hgpCjU/2jqg57kipbTgXgN13NJ7yz3DJPaEE/Lmrix/JdgambF2nT4aklUAfsD4ZGuBjA3odScuAZQATmDgSGY7jlJGSIwVJS4DlwJVm9m4cawMws+/F4w7gW2Z20hjWI4Uycll4MvPwXWFZ7oWWx8r2T7/ee5QH/zUXgOd7wqPQh49+gLPiEuDMyT0ALKx/FShPb4qmzV8a8zsN8yLTJUlJVwPfAK5JHEJkC3CjpPGSZgDNQHmqlzqOkwtDRgqSNgDzgLOBA8BdhNWG8SQleEMeYXn8/EpgKWFa8VUze2ooER4p5EuSi2i5tItNF/yuYjpmPLEMgDP31tLwA88NZI3vaHTKz7garDVMT96bHIqtnHa0j9o/7wDA+voqJs0ZGt/R6DhOSXgzGGf4HD+Gngv7AyYUDFc+1nTKiUcKjuOkcKfgOE4KdwqO46Rwp+A4Tgp3Co7jpHCn4DhOiqrYvCTpIHAUOFRpLYSdm67jBK4jzWjWMd3Mpg71oapwCgCSXhzObivX4TpcR7Y6fPrgOE4KdwqO46SoJqfw80oLiLiONK4jzZjXUTU5BcdxqoNqihQcx6kCqsIpSLpaUqekLkkrcrrm+ZKelbRL0t8l3RbH6yVtlbQnvubSW0xSjaSXJbXH4xmStkcdGyWdnoOGSZI2Sdod7dJaCXtIuj1+JzslbZA0IS97SForqUfSzoKxAW2gwI/jfbtD0uyMdayK380OSb+SNKngXFvU0Slp/kiuXXGnEPtC3A8sAC4EFsX+EVnTB3zNzD4KzAFujtddATxjZs3AM/E4D24DdhUc3w3cG3UcJjTYyZofAU+b2UzgkqgnV3tIOg+4Fbg01gStIfQSycse6yjuczKYDRYQSg42E4oQP5Cxjnz6rZhZRf8ArUBHwXEb0FYBHb8GrgI6gYY41gB05nDtaYSb7eNAO6Eq9iGgdiAbZaThLGAfMc9UMJ6rPYDzgDeBekK9j3Zgfp72ABqBnUPZAPgZsGigz2Who9+564D18X3q/wzQAbSWet2KRwqcuAkSuuNYbsRq1S3AduAcM3sLIL5+MAcJq4E7gOPxeArwjpkl9c3ysEkTcBD4RZzGPCSpjpztYWb7ge8D/wTeAo4AfyV/exQymA0qee8uBZL6p2XVUQ1OYdi9IjK5uHQGsJlQZHbkNclP/fpJn87CriyVsEktMBt4wMxaCNvO85o6vU+cr18LzAA+BNQRwvT+VMOyWUXu3ZH0WxkO1eAUuoHzC46nkWqElh2STiM4hPVm9ngcPiCpIZ5vAHoylnEFcI2kfwCPEqYQq4FJkpJyeXnYpBvoNrOkycImgpPI2x6fAPaZ2UEz6wUeBy4nf3sUMpgNcr93Y7+VhcBii3OFcuuoBqfwF6A5ZpdPJyRMtmR9UUkCHgZ2mdkPC05tAZbE90sIuYbMMLM2M5tmZo2En/33ZrYYeJYTPTrz0PE28Kakj8ShK4HXyNkehGnDHEkT43eU6MjVHv0YzAZbgM/HVYg5wJFkmpEFufVbyTJpdAoJlU8Ssql7gZU5XXMuIcTaQehW+krUMYWQ9NsTX+tztMM8QicuCHP8F4Au4DFgfA7XnwW8GG3yBDC5EvYAvg3sBnYCvyT0GMnFHsAGQi6jl/Ab+KbBbEAI2++P9+3fCCsmWeroIuQOkvt1TcHnV0YdncCCkVzbdzQ6jpOiGqYPjuNUEe4UHMdJ4U7BcZwU7hQcx0nhTsFxnBTuFBzHSeFOwXGcFO4UHMdJ8T/z+Hm69fOSnwAAAABJRU5ErkJggg==\n", |
|
|
694 |
"text/plain": [ |
|
|
695 |
"<Figure size 432x288 with 1 Axes>" |
|
|
696 |
] |
|
|
697 |
}, |
|
|
698 |
"metadata": { |
|
|
699 |
"needs_background": "light" |
|
|
700 |
}, |
|
|
701 |
"output_type": "display_data" |
|
|
702 |
} |
|
|
703 |
], |
|
|
704 |
"source": [ |
|
|
705 |
"plt.imshow(\n", |
|
|
706 |
" _read(path_train_img + 'ID_ffff922b9.dcm', (128, 128))[:, :, 0]\n", |
|
|
707 |
")" |
|
|
708 |
] |
|
|
709 |
}, |
|
|
710 |
{ |
|
|
711 |
"cell_type": "code", |
|
|
712 |
"execution_count": 17, |
|
|
713 |
"metadata": {}, |
|
|
714 |
"outputs": [], |
|
|
715 |
"source": [ |
|
|
716 |
"# Augmentations\n", |
|
|
717 |
"# Flip Left Right\n", |
|
|
718 |
"# Cropping\n", |
|
|
719 |
"sometimes = lambda aug: iaa.Sometimes(0.25, aug)\n", |
|
|
720 |
"augmentation = iaa.Sequential([ \n", |
|
|
721 |
" iaa.Fliplr(0.25),\n", |
|
|
722 |
" sometimes(iaa.Crop(px=(0, 25), keep_size = True, \n", |
|
|
723 |
" sample_independently = False)) \n", |
|
|
724 |
" ], random_order = True)" |
|
|
725 |
] |
|
|
726 |
}, |
|
|
727 |
{ |
|
|
728 |
"cell_type": "code", |
|
|
729 |
"execution_count": 18, |
|
|
730 |
"metadata": {}, |
|
|
731 |
"outputs": [], |
|
|
732 |
"source": [ |
|
|
733 |
"# Train Data Generator\n", |
|
|
734 |
"class TrainDataGenerator(keras.utils.Sequence):\n", |
|
|
735 |
"\n", |
|
|
736 |
" def __init__(self, dataset, labels, batch_size=16, img_size=(512, 512), img_dir = path_train_img, \\\n", |
|
|
737 |
" augment = False, *args, **kwargs):\n", |
|
|
738 |
" self.dataset = dataset\n", |
|
|
739 |
" self.ids = dataset.index\n", |
|
|
740 |
" self.labels = labels\n", |
|
|
741 |
" self.batch_size = batch_size\n", |
|
|
742 |
" self.img_size = img_size\n", |
|
|
743 |
" self.img_dir = img_dir\n", |
|
|
744 |
" self.augment = augment\n", |
|
|
745 |
" self.on_epoch_end()\n", |
|
|
746 |
"\n", |
|
|
747 |
" def __len__(self):\n", |
|
|
748 |
" return int(ceil(len(self.ids) / self.batch_size))\n", |
|
|
749 |
"\n", |
|
|
750 |
" def __getitem__(self, index):\n", |
|
|
751 |
" indices = self.indices[index*self.batch_size:(index+1)*self.batch_size]\n", |
|
|
752 |
" X, Y = self.__data_generation(indices)\n", |
|
|
753 |
" return X, Y\n", |
|
|
754 |
"\n", |
|
|
755 |
" def augmentor(self, image):\n", |
|
|
756 |
" augment_img = augmentation \n", |
|
|
757 |
" image_aug = augment_img.augment_image(image)\n", |
|
|
758 |
" return image_aug\n", |
|
|
759 |
"\n", |
|
|
760 |
" def on_epoch_end(self):\n", |
|
|
761 |
" self.indices = np.arange(len(self.ids))\n", |
|
|
762 |
" np.random.shuffle(self.indices)\n", |
|
|
763 |
" \n", |
|
|
764 |
" def __data_generation(self, indices):\n", |
|
|
765 |
" X = np.empty((self.batch_size, *self.img_size, 3))\n", |
|
|
766 |
" Y = np.empty((self.batch_size, 6), dtype=np.float32)\n", |
|
|
767 |
" \n", |
|
|
768 |
" for i, index in enumerate(indices):\n", |
|
|
769 |
" ID = self.ids[index]\n", |
|
|
770 |
" image = _read(self.img_dir + ID, self.img_size)\n", |
|
|
771 |
" if self.augment:\n", |
|
|
772 |
" X[i,] = self.augmentor(image)\n", |
|
|
773 |
" else:\n", |
|
|
774 |
" X[i,] = image \n", |
|
|
775 |
" Y[i,] = self.labels.iloc[index].values \n", |
|
|
776 |
" return X, Y\n", |
|
|
777 |
" \n", |
|
|
778 |
"class TestDataGenerator(keras.utils.Sequence):\n", |
|
|
779 |
" def __init__(self, ids, labels, batch_size = 5, img_size = (512, 512), img_dir = path_test_img, \\\n", |
|
|
780 |
" *args, **kwargs):\n", |
|
|
781 |
" self.ids = ids\n", |
|
|
782 |
" self.labels = labels\n", |
|
|
783 |
" self.batch_size = batch_size\n", |
|
|
784 |
" self.img_size = img_size\n", |
|
|
785 |
" self.img_dir = img_dir\n", |
|
|
786 |
" self.on_epoch_end()\n", |
|
|
787 |
"\n", |
|
|
788 |
" def __len__(self):\n", |
|
|
789 |
" return int(ceil(len(self.ids) / self.batch_size))\n", |
|
|
790 |
"\n", |
|
|
791 |
" def __getitem__(self, index):\n", |
|
|
792 |
" indices = self.indices[index*self.batch_size:(index+1)*self.batch_size]\n", |
|
|
793 |
" list_IDs_temp = [self.ids[k] for k in indices]\n", |
|
|
794 |
" X = self.__data_generation(list_IDs_temp)\n", |
|
|
795 |
" return X\n", |
|
|
796 |
"\n", |
|
|
797 |
" def on_epoch_end(self):\n", |
|
|
798 |
" self.indices = np.arange(len(self.ids))\n", |
|
|
799 |
"\n", |
|
|
800 |
" def __data_generation(self, list_IDs_temp):\n", |
|
|
801 |
" X = np.empty((self.batch_size, *self.img_size, 3))\n", |
|
|
802 |
" for i, ID in enumerate(list_IDs_temp):\n", |
|
|
803 |
" image = _read(self.img_dir + ID, self.img_size)\n", |
|
|
804 |
" X[i,] = image \n", |
|
|
805 |
" return X" |
|
|
806 |
] |
|
|
807 |
}, |
|
|
808 |
{ |
|
|
809 |
"cell_type": "markdown", |
|
|
810 |
"metadata": {}, |
|
|
811 |
"source": [ |
|
|
812 |
"As we have seen in EDA notebook that we have very few epidural subtypes so we need oversample this sub type" |
|
|
813 |
] |
|
|
814 |
}, |
|
|
815 |
{ |
|
|
816 |
"cell_type": "code", |
|
|
817 |
"execution_count": 19, |
|
|
818 |
"metadata": {}, |
|
|
819 |
"outputs": [ |
|
|
820 |
{ |
|
|
821 |
"name": "stdout", |
|
|
822 |
"output_type": "stream", |
|
|
823 |
"text": [ |
|
|
824 |
"Train Shape: (677018, 6)\n" |
|
|
825 |
] |
|
|
826 |
} |
|
|
827 |
], |
|
|
828 |
"source": [ |
|
|
829 |
"# Oversampling\n", |
|
|
830 |
"epidural_df = train_final_df[train_final_df.epidural == 1]\n", |
|
|
831 |
"train_final_df = pd.concat([train_final_df, epidural_df])\n", |
|
|
832 |
"print('Train Shape: {}'.format(train_final_df.shape))" |
|
|
833 |
] |
|
|
834 |
}, |
|
|
835 |
{ |
|
|
836 |
"cell_type": "code", |
|
|
837 |
"execution_count": 20, |
|
|
838 |
"metadata": {}, |
|
|
839 |
"outputs": [ |
|
|
840 |
{ |
|
|
841 |
"data": { |
|
|
842 |
"text/html": [ |
|
|
843 |
"<div>\n", |
|
|
844 |
"<style scoped>\n", |
|
|
845 |
" .dataframe tbody tr th:only-of-type {\n", |
|
|
846 |
" vertical-align: middle;\n", |
|
|
847 |
" }\n", |
|
|
848 |
"\n", |
|
|
849 |
" .dataframe tbody tr th {\n", |
|
|
850 |
" vertical-align: top;\n", |
|
|
851 |
" }\n", |
|
|
852 |
"\n", |
|
|
853 |
" .dataframe thead th {\n", |
|
|
854 |
" text-align: right;\n", |
|
|
855 |
" }\n", |
|
|
856 |
"</style>\n", |
|
|
857 |
"<table border=\"1\" class=\"dataframe\">\n", |
|
|
858 |
" <thead>\n", |
|
|
859 |
" <tr style=\"text-align: right;\">\n", |
|
|
860 |
" <th></th>\n", |
|
|
861 |
" <th>ID</th>\n", |
|
|
862 |
" <th>Label</th>\n", |
|
|
863 |
" </tr>\n", |
|
|
864 |
" </thead>\n", |
|
|
865 |
" <tbody>\n", |
|
|
866 |
" <tr>\n", |
|
|
867 |
" <th>0</th>\n", |
|
|
868 |
" <td>ID_28fbab7eb_epidural</td>\n", |
|
|
869 |
" <td>0.5</td>\n", |
|
|
870 |
" </tr>\n", |
|
|
871 |
" <tr>\n", |
|
|
872 |
" <th>1</th>\n", |
|
|
873 |
" <td>ID_28fbab7eb_intraparenchymal</td>\n", |
|
|
874 |
" <td>0.5</td>\n", |
|
|
875 |
" </tr>\n", |
|
|
876 |
" <tr>\n", |
|
|
877 |
" <th>2</th>\n", |
|
|
878 |
" <td>ID_28fbab7eb_intraventricular</td>\n", |
|
|
879 |
" <td>0.5</td>\n", |
|
|
880 |
" </tr>\n", |
|
|
881 |
" <tr>\n", |
|
|
882 |
" <th>3</th>\n", |
|
|
883 |
" <td>ID_28fbab7eb_subarachnoid</td>\n", |
|
|
884 |
" <td>0.5</td>\n", |
|
|
885 |
" </tr>\n", |
|
|
886 |
" <tr>\n", |
|
|
887 |
" <th>4</th>\n", |
|
|
888 |
" <td>ID_28fbab7eb_subdural</td>\n", |
|
|
889 |
" <td>0.5</td>\n", |
|
|
890 |
" </tr>\n", |
|
|
891 |
" </tbody>\n", |
|
|
892 |
"</table>\n", |
|
|
893 |
"</div>" |
|
|
894 |
], |
|
|
895 |
"text/plain": [ |
|
|
896 |
" ID Label\n", |
|
|
897 |
"0 ID_28fbab7eb_epidural 0.5\n", |
|
|
898 |
"1 ID_28fbab7eb_intraparenchymal 0.5\n", |
|
|
899 |
"2 ID_28fbab7eb_intraventricular 0.5\n", |
|
|
900 |
"3 ID_28fbab7eb_subarachnoid 0.5\n", |
|
|
901 |
"4 ID_28fbab7eb_subdural 0.5" |
|
|
902 |
] |
|
|
903 |
}, |
|
|
904 |
"execution_count": 20, |
|
|
905 |
"metadata": {}, |
|
|
906 |
"output_type": "execute_result" |
|
|
907 |
} |
|
|
908 |
], |
|
|
909 |
"source": [ |
|
|
910 |
"# load test set\n", |
|
|
911 |
"test_df = pd.read_csv(input_folder + 'stage_1_sample_submission.csv')\n", |
|
|
912 |
"test_df.head()" |
|
|
913 |
] |
|
|
914 |
}, |
|
|
915 |
{ |
|
|
916 |
"cell_type": "code", |
|
|
917 |
"execution_count": 21, |
|
|
918 |
"metadata": {}, |
|
|
919 |
"outputs": [ |
|
|
920 |
{ |
|
|
921 |
"data": { |
|
|
922 |
"text/plain": [ |
|
|
923 |
"(78545, 6)" |
|
|
924 |
] |
|
|
925 |
}, |
|
|
926 |
"execution_count": 21, |
|
|
927 |
"metadata": {}, |
|
|
928 |
"output_type": "execute_result" |
|
|
929 |
} |
|
|
930 |
], |
|
|
931 |
"source": [ |
|
|
932 |
"# extract subtype\n", |
|
|
933 |
"test_df['sub_type'] = test_df['ID'].apply(lambda x: x.split('_')[-1])\n", |
|
|
934 |
"# extract filename\n", |
|
|
935 |
"test_df['file_name'] = test_df['ID'].apply(lambda x: '_'.join(x.split('_')[:2]) + '.dcm')\n", |
|
|
936 |
"\n", |
|
|
937 |
"test_df = pd.pivot_table(test_df.drop(columns='ID'), index=\"file_name\", \\\n", |
|
|
938 |
" columns=\"sub_type\", values=\"Label\")\n", |
|
|
939 |
"test_df.head()\n", |
|
|
940 |
"\n", |
|
|
941 |
"test_df.shape" |
|
|
942 |
] |
|
|
943 |
}, |
|
|
944 |
{ |
|
|
945 |
"cell_type": "code", |
|
|
946 |
"execution_count": 22, |
|
|
947 |
"metadata": {}, |
|
|
948 |
"outputs": [ |
|
|
949 |
{ |
|
|
950 |
"data": { |
|
|
951 |
"text/html": [ |
|
|
952 |
"<div>\n", |
|
|
953 |
"<style scoped>\n", |
|
|
954 |
" .dataframe tbody tr th:only-of-type {\n", |
|
|
955 |
" vertical-align: middle;\n", |
|
|
956 |
" }\n", |
|
|
957 |
"\n", |
|
|
958 |
" .dataframe tbody tr th {\n", |
|
|
959 |
" vertical-align: top;\n", |
|
|
960 |
" }\n", |
|
|
961 |
"\n", |
|
|
962 |
" .dataframe thead th {\n", |
|
|
963 |
" text-align: right;\n", |
|
|
964 |
" }\n", |
|
|
965 |
"</style>\n", |
|
|
966 |
"<table border=\"1\" class=\"dataframe\">\n", |
|
|
967 |
" <thead>\n", |
|
|
968 |
" <tr style=\"text-align: right;\">\n", |
|
|
969 |
" <th>sub_type</th>\n", |
|
|
970 |
" <th>any</th>\n", |
|
|
971 |
" <th>epidural</th>\n", |
|
|
972 |
" <th>intraparenchymal</th>\n", |
|
|
973 |
" <th>intraventricular</th>\n", |
|
|
974 |
" <th>subarachnoid</th>\n", |
|
|
975 |
" <th>subdural</th>\n", |
|
|
976 |
" </tr>\n", |
|
|
977 |
" <tr>\n", |
|
|
978 |
" <th>file_name</th>\n", |
|
|
979 |
" <th></th>\n", |
|
|
980 |
" <th></th>\n", |
|
|
981 |
" <th></th>\n", |
|
|
982 |
" <th></th>\n", |
|
|
983 |
" <th></th>\n", |
|
|
984 |
" <th></th>\n", |
|
|
985 |
" </tr>\n", |
|
|
986 |
" </thead>\n", |
|
|
987 |
" <tbody>\n", |
|
|
988 |
" <tr>\n", |
|
|
989 |
" <th>ID_000012eaf.dcm</th>\n", |
|
|
990 |
" <td>0.5</td>\n", |
|
|
991 |
" <td>0.5</td>\n", |
|
|
992 |
" <td>0.5</td>\n", |
|
|
993 |
" <td>0.5</td>\n", |
|
|
994 |
" <td>0.5</td>\n", |
|
|
995 |
" <td>0.5</td>\n", |
|
|
996 |
" </tr>\n", |
|
|
997 |
" <tr>\n", |
|
|
998 |
" <th>ID_0000ca2f6.dcm</th>\n", |
|
|
999 |
" <td>0.5</td>\n", |
|
|
1000 |
" <td>0.5</td>\n", |
|
|
1001 |
" <td>0.5</td>\n", |
|
|
1002 |
" <td>0.5</td>\n", |
|
|
1003 |
" <td>0.5</td>\n", |
|
|
1004 |
" <td>0.5</td>\n", |
|
|
1005 |
" </tr>\n", |
|
|
1006 |
" <tr>\n", |
|
|
1007 |
" <th>ID_000259ccf.dcm</th>\n", |
|
|
1008 |
" <td>0.5</td>\n", |
|
|
1009 |
" <td>0.5</td>\n", |
|
|
1010 |
" <td>0.5</td>\n", |
|
|
1011 |
" <td>0.5</td>\n", |
|
|
1012 |
" <td>0.5</td>\n", |
|
|
1013 |
" <td>0.5</td>\n", |
|
|
1014 |
" </tr>\n", |
|
|
1015 |
" <tr>\n", |
|
|
1016 |
" <th>ID_0002d438a.dcm</th>\n", |
|
|
1017 |
" <td>0.5</td>\n", |
|
|
1018 |
" <td>0.5</td>\n", |
|
|
1019 |
" <td>0.5</td>\n", |
|
|
1020 |
" <td>0.5</td>\n", |
|
|
1021 |
" <td>0.5</td>\n", |
|
|
1022 |
" <td>0.5</td>\n", |
|
|
1023 |
" </tr>\n", |
|
|
1024 |
" <tr>\n", |
|
|
1025 |
" <th>ID_00032d440.dcm</th>\n", |
|
|
1026 |
" <td>0.5</td>\n", |
|
|
1027 |
" <td>0.5</td>\n", |
|
|
1028 |
" <td>0.5</td>\n", |
|
|
1029 |
" <td>0.5</td>\n", |
|
|
1030 |
" <td>0.5</td>\n", |
|
|
1031 |
" <td>0.5</td>\n", |
|
|
1032 |
" </tr>\n", |
|
|
1033 |
" </tbody>\n", |
|
|
1034 |
"</table>\n", |
|
|
1035 |
"</div>" |
|
|
1036 |
], |
|
|
1037 |
"text/plain": [ |
|
|
1038 |
"sub_type any epidural intraparenchymal intraventricular \\\n", |
|
|
1039 |
"file_name \n", |
|
|
1040 |
"ID_000012eaf.dcm 0.5 0.5 0.5 0.5 \n", |
|
|
1041 |
"ID_0000ca2f6.dcm 0.5 0.5 0.5 0.5 \n", |
|
|
1042 |
"ID_000259ccf.dcm 0.5 0.5 0.5 0.5 \n", |
|
|
1043 |
"ID_0002d438a.dcm 0.5 0.5 0.5 0.5 \n", |
|
|
1044 |
"ID_00032d440.dcm 0.5 0.5 0.5 0.5 \n", |
|
|
1045 |
"\n", |
|
|
1046 |
"sub_type subarachnoid subdural \n", |
|
|
1047 |
"file_name \n", |
|
|
1048 |
"ID_000012eaf.dcm 0.5 0.5 \n", |
|
|
1049 |
"ID_0000ca2f6.dcm 0.5 0.5 \n", |
|
|
1050 |
"ID_000259ccf.dcm 0.5 0.5 \n", |
|
|
1051 |
"ID_0002d438a.dcm 0.5 0.5 \n", |
|
|
1052 |
"ID_00032d440.dcm 0.5 0.5 " |
|
|
1053 |
] |
|
|
1054 |
}, |
|
|
1055 |
"execution_count": 22, |
|
|
1056 |
"metadata": {}, |
|
|
1057 |
"output_type": "execute_result" |
|
|
1058 |
} |
|
|
1059 |
], |
|
|
1060 |
"source": [ |
|
|
1061 |
"test_df.head()" |
|
|
1062 |
] |
|
|
1063 |
}, |
|
|
1064 |
{ |
|
|
1065 |
"cell_type": "code", |
|
|
1066 |
"execution_count": 23, |
|
|
1067 |
"metadata": { |
|
|
1068 |
"scrolled": false |
|
|
1069 |
}, |
|
|
1070 |
"outputs": [ |
|
|
1071 |
{ |
|
|
1072 |
"name": "stdout", |
|
|
1073 |
"output_type": "stream", |
|
|
1074 |
"text": [ |
|
|
1075 |
"Downloading data from https://github.com/Callidior/keras-applications/releases/download/efficientnet/efficientnet-b0_weights_tf_dim_ordering_tf_kernels_autoaugment_notop.h5\n", |
|
|
1076 |
"16809984/16804768 [==============================] - 1s 0us/step\n", |
|
|
1077 |
"Model: \"model_1\"\n", |
|
|
1078 |
"__________________________________________________________________________________________________\n", |
|
|
1079 |
"Layer (type) Output Shape Param # Connected to \n", |
|
|
1080 |
"==================================================================================================\n", |
|
|
1081 |
"input_1 (InputLayer) (None, 256, 256, 3) 0 \n", |
|
|
1082 |
"__________________________________________________________________________________________________\n", |
|
|
1083 |
"stem_conv (Conv2D) (None, 128, 128, 32) 864 input_1[0][0] \n", |
|
|
1084 |
"__________________________________________________________________________________________________\n", |
|
|
1085 |
"stem_bn (BatchNormalization) (None, 128, 128, 32) 128 stem_conv[0][0] \n", |
|
|
1086 |
"__________________________________________________________________________________________________\n", |
|
|
1087 |
"stem_activation (Activation) (None, 128, 128, 32) 0 stem_bn[0][0] \n", |
|
|
1088 |
"__________________________________________________________________________________________________\n", |
|
|
1089 |
"block1a_dwconv (DepthwiseConv2D (None, 128, 128, 32) 288 stem_activation[0][0] \n", |
|
|
1090 |
"__________________________________________________________________________________________________\n", |
|
|
1091 |
"block1a_bn (BatchNormalization) (None, 128, 128, 32) 128 block1a_dwconv[0][0] \n", |
|
|
1092 |
"__________________________________________________________________________________________________\n", |
|
|
1093 |
"block1a_activation (Activation) (None, 128, 128, 32) 0 block1a_bn[0][0] \n", |
|
|
1094 |
"__________________________________________________________________________________________________\n", |
|
|
1095 |
"block1a_se_squeeze (GlobalAvera (None, 32) 0 block1a_activation[0][0] \n", |
|
|
1096 |
"__________________________________________________________________________________________________\n", |
|
|
1097 |
"block1a_se_reshape (Reshape) (None, 1, 1, 32) 0 block1a_se_squeeze[0][0] \n", |
|
|
1098 |
"__________________________________________________________________________________________________\n", |
|
|
1099 |
"block1a_se_reduce (Conv2D) (None, 1, 1, 8) 264 block1a_se_reshape[0][0] \n", |
|
|
1100 |
"__________________________________________________________________________________________________\n", |
|
|
1101 |
"block1a_se_expand (Conv2D) (None, 1, 1, 32) 288 block1a_se_reduce[0][0] \n", |
|
|
1102 |
"__________________________________________________________________________________________________\n", |
|
|
1103 |
"block1a_se_excite (Multiply) (None, 128, 128, 32) 0 block1a_activation[0][0] \n", |
|
|
1104 |
" block1a_se_expand[0][0] \n", |
|
|
1105 |
"__________________________________________________________________________________________________\n", |
|
|
1106 |
"block1a_project_conv (Conv2D) (None, 128, 128, 16) 512 block1a_se_excite[0][0] \n", |
|
|
1107 |
"__________________________________________________________________________________________________\n", |
|
|
1108 |
"block1a_project_bn (BatchNormal (None, 128, 128, 16) 64 block1a_project_conv[0][0] \n", |
|
|
1109 |
"__________________________________________________________________________________________________\n", |
|
|
1110 |
"block2a_expand_conv (Conv2D) (None, 128, 128, 96) 1536 block1a_project_bn[0][0] \n", |
|
|
1111 |
"__________________________________________________________________________________________________\n", |
|
|
1112 |
"block2a_expand_bn (BatchNormali (None, 128, 128, 96) 384 block2a_expand_conv[0][0] \n", |
|
|
1113 |
"__________________________________________________________________________________________________\n", |
|
|
1114 |
"block2a_expand_activation (Acti (None, 128, 128, 96) 0 block2a_expand_bn[0][0] \n", |
|
|
1115 |
"__________________________________________________________________________________________________\n", |
|
|
1116 |
"block2a_dwconv (DepthwiseConv2D (None, 64, 64, 96) 864 block2a_expand_activation[0][0] \n", |
|
|
1117 |
"__________________________________________________________________________________________________\n", |
|
|
1118 |
"block2a_bn (BatchNormalization) (None, 64, 64, 96) 384 block2a_dwconv[0][0] \n", |
|
|
1119 |
"__________________________________________________________________________________________________\n", |
|
|
1120 |
"block2a_activation (Activation) (None, 64, 64, 96) 0 block2a_bn[0][0] \n", |
|
|
1121 |
"__________________________________________________________________________________________________\n", |
|
|
1122 |
"block2a_se_squeeze (GlobalAvera (None, 96) 0 block2a_activation[0][0] \n", |
|
|
1123 |
"__________________________________________________________________________________________________\n", |
|
|
1124 |
"block2a_se_reshape (Reshape) (None, 1, 1, 96) 0 block2a_se_squeeze[0][0] \n", |
|
|
1125 |
"__________________________________________________________________________________________________\n", |
|
|
1126 |
"block2a_se_reduce (Conv2D) (None, 1, 1, 4) 388 block2a_se_reshape[0][0] \n", |
|
|
1127 |
"__________________________________________________________________________________________________\n", |
|
|
1128 |
"block2a_se_expand (Conv2D) (None, 1, 1, 96) 480 block2a_se_reduce[0][0] \n", |
|
|
1129 |
"__________________________________________________________________________________________________\n", |
|
|
1130 |
"block2a_se_excite (Multiply) (None, 64, 64, 96) 0 block2a_activation[0][0] \n", |
|
|
1131 |
" block2a_se_expand[0][0] \n", |
|
|
1132 |
"__________________________________________________________________________________________________\n", |
|
|
1133 |
"block2a_project_conv (Conv2D) (None, 64, 64, 24) 2304 block2a_se_excite[0][0] \n", |
|
|
1134 |
"__________________________________________________________________________________________________\n", |
|
|
1135 |
"block2a_project_bn (BatchNormal (None, 64, 64, 24) 96 block2a_project_conv[0][0] \n", |
|
|
1136 |
"__________________________________________________________________________________________________\n", |
|
|
1137 |
"block2b_expand_conv (Conv2D) (None, 64, 64, 144) 3456 block2a_project_bn[0][0] \n", |
|
|
1138 |
"__________________________________________________________________________________________________\n", |
|
|
1139 |
"block2b_expand_bn (BatchNormali (None, 64, 64, 144) 576 block2b_expand_conv[0][0] \n", |
|
|
1140 |
"__________________________________________________________________________________________________\n", |
|
|
1141 |
"block2b_expand_activation (Acti (None, 64, 64, 144) 0 block2b_expand_bn[0][0] \n", |
|
|
1142 |
"__________________________________________________________________________________________________\n", |
|
|
1143 |
"block2b_dwconv (DepthwiseConv2D (None, 64, 64, 144) 1296 block2b_expand_activation[0][0] \n", |
|
|
1144 |
"__________________________________________________________________________________________________\n", |
|
|
1145 |
"block2b_bn (BatchNormalization) (None, 64, 64, 144) 576 block2b_dwconv[0][0] \n", |
|
|
1146 |
"__________________________________________________________________________________________________\n", |
|
|
1147 |
"block2b_activation (Activation) (None, 64, 64, 144) 0 block2b_bn[0][0] \n", |
|
|
1148 |
"__________________________________________________________________________________________________\n", |
|
|
1149 |
"block2b_se_squeeze (GlobalAvera (None, 144) 0 block2b_activation[0][0] \n", |
|
|
1150 |
"__________________________________________________________________________________________________\n", |
|
|
1151 |
"block2b_se_reshape (Reshape) (None, 1, 1, 144) 0 block2b_se_squeeze[0][0] \n", |
|
|
1152 |
"__________________________________________________________________________________________________\n", |
|
|
1153 |
"block2b_se_reduce (Conv2D) (None, 1, 1, 6) 870 block2b_se_reshape[0][0] \n", |
|
|
1154 |
"__________________________________________________________________________________________________\n", |
|
|
1155 |
"block2b_se_expand (Conv2D) (None, 1, 1, 144) 1008 block2b_se_reduce[0][0] \n", |
|
|
1156 |
"__________________________________________________________________________________________________\n", |
|
|
1157 |
"block2b_se_excite (Multiply) (None, 64, 64, 144) 0 block2b_activation[0][0] \n", |
|
|
1158 |
" block2b_se_expand[0][0] \n", |
|
|
1159 |
"__________________________________________________________________________________________________\n", |
|
|
1160 |
"block2b_project_conv (Conv2D) (None, 64, 64, 24) 3456 block2b_se_excite[0][0] \n", |
|
|
1161 |
"__________________________________________________________________________________________________\n", |
|
|
1162 |
"block2b_project_bn (BatchNormal (None, 64, 64, 24) 96 block2b_project_conv[0][0] \n", |
|
|
1163 |
"__________________________________________________________________________________________________\n", |
|
|
1164 |
"block2b_drop (FixedDropout) (None, 64, 64, 24) 0 block2b_project_bn[0][0] \n", |
|
|
1165 |
"__________________________________________________________________________________________________\n", |
|
|
1166 |
"block2b_add (Add) (None, 64, 64, 24) 0 block2b_drop[0][0] \n", |
|
|
1167 |
" block2a_project_bn[0][0] \n", |
|
|
1168 |
"__________________________________________________________________________________________________\n", |
|
|
1169 |
"block3a_expand_conv (Conv2D) (None, 64, 64, 144) 3456 block2b_add[0][0] \n", |
|
|
1170 |
"__________________________________________________________________________________________________\n", |
|
|
1171 |
"block3a_expand_bn (BatchNormali (None, 64, 64, 144) 576 block3a_expand_conv[0][0] \n", |
|
|
1172 |
"__________________________________________________________________________________________________\n", |
|
|
1173 |
"block3a_expand_activation (Acti (None, 64, 64, 144) 0 block3a_expand_bn[0][0] \n", |
|
|
1174 |
"__________________________________________________________________________________________________\n", |
|
|
1175 |
"block3a_dwconv (DepthwiseConv2D (None, 32, 32, 144) 3600 block3a_expand_activation[0][0] \n", |
|
|
1176 |
"__________________________________________________________________________________________________\n", |
|
|
1177 |
"block3a_bn (BatchNormalization) (None, 32, 32, 144) 576 block3a_dwconv[0][0] \n", |
|
|
1178 |
"__________________________________________________________________________________________________\n", |
|
|
1179 |
"block3a_activation (Activation) (None, 32, 32, 144) 0 block3a_bn[0][0] \n", |
|
|
1180 |
"__________________________________________________________________________________________________\n", |
|
|
1181 |
"block3a_se_squeeze (GlobalAvera (None, 144) 0 block3a_activation[0][0] \n", |
|
|
1182 |
"__________________________________________________________________________________________________\n", |
|
|
1183 |
"block3a_se_reshape (Reshape) (None, 1, 1, 144) 0 block3a_se_squeeze[0][0] \n", |
|
|
1184 |
"__________________________________________________________________________________________________\n", |
|
|
1185 |
"block3a_se_reduce (Conv2D) (None, 1, 1, 6) 870 block3a_se_reshape[0][0] \n", |
|
|
1186 |
"__________________________________________________________________________________________________\n", |
|
|
1187 |
"block3a_se_expand (Conv2D) (None, 1, 1, 144) 1008 block3a_se_reduce[0][0] \n", |
|
|
1188 |
"__________________________________________________________________________________________________\n", |
|
|
1189 |
"block3a_se_excite (Multiply) (None, 32, 32, 144) 0 block3a_activation[0][0] \n", |
|
|
1190 |
" block3a_se_expand[0][0] \n", |
|
|
1191 |
"__________________________________________________________________________________________________\n", |
|
|
1192 |
"block3a_project_conv (Conv2D) (None, 32, 32, 40) 5760 block3a_se_excite[0][0] \n", |
|
|
1193 |
"__________________________________________________________________________________________________\n", |
|
|
1194 |
"block3a_project_bn (BatchNormal (None, 32, 32, 40) 160 block3a_project_conv[0][0] \n", |
|
|
1195 |
"__________________________________________________________________________________________________\n", |
|
|
1196 |
"block3b_expand_conv (Conv2D) (None, 32, 32, 240) 9600 block3a_project_bn[0][0] \n", |
|
|
1197 |
"__________________________________________________________________________________________________\n", |
|
|
1198 |
"block3b_expand_bn (BatchNormali (None, 32, 32, 240) 960 block3b_expand_conv[0][0] \n", |
|
|
1199 |
"__________________________________________________________________________________________________\n", |
|
|
1200 |
"block3b_expand_activation (Acti (None, 32, 32, 240) 0 block3b_expand_bn[0][0] \n", |
|
|
1201 |
"__________________________________________________________________________________________________\n", |
|
|
1202 |
"block3b_dwconv (DepthwiseConv2D (None, 32, 32, 240) 6000 block3b_expand_activation[0][0] \n", |
|
|
1203 |
"__________________________________________________________________________________________________\n", |
|
|
1204 |
"block3b_bn (BatchNormalization) (None, 32, 32, 240) 960 block3b_dwconv[0][0] \n", |
|
|
1205 |
"__________________________________________________________________________________________________\n", |
|
|
1206 |
"block3b_activation (Activation) (None, 32, 32, 240) 0 block3b_bn[0][0] \n", |
|
|
1207 |
"__________________________________________________________________________________________________\n", |
|
|
1208 |
"block3b_se_squeeze (GlobalAvera (None, 240) 0 block3b_activation[0][0] \n", |
|
|
1209 |
"__________________________________________________________________________________________________\n", |
|
|
1210 |
"block3b_se_reshape (Reshape) (None, 1, 1, 240) 0 block3b_se_squeeze[0][0] \n", |
|
|
1211 |
"__________________________________________________________________________________________________\n", |
|
|
1212 |
"block3b_se_reduce (Conv2D) (None, 1, 1, 10) 2410 block3b_se_reshape[0][0] \n", |
|
|
1213 |
"__________________________________________________________________________________________________\n", |
|
|
1214 |
"block3b_se_expand (Conv2D) (None, 1, 1, 240) 2640 block3b_se_reduce[0][0] \n", |
|
|
1215 |
"__________________________________________________________________________________________________\n", |
|
|
1216 |
"block3b_se_excite (Multiply) (None, 32, 32, 240) 0 block3b_activation[0][0] \n", |
|
|
1217 |
" block3b_se_expand[0][0] \n", |
|
|
1218 |
"__________________________________________________________________________________________________\n", |
|
|
1219 |
"block3b_project_conv (Conv2D) (None, 32, 32, 40) 9600 block3b_se_excite[0][0] \n", |
|
|
1220 |
"__________________________________________________________________________________________________\n", |
|
|
1221 |
"block3b_project_bn (BatchNormal (None, 32, 32, 40) 160 block3b_project_conv[0][0] \n", |
|
|
1222 |
"__________________________________________________________________________________________________\n", |
|
|
1223 |
"block3b_drop (FixedDropout) (None, 32, 32, 40) 0 block3b_project_bn[0][0] \n", |
|
|
1224 |
"__________________________________________________________________________________________________\n", |
|
|
1225 |
"block3b_add (Add) (None, 32, 32, 40) 0 block3b_drop[0][0] \n", |
|
|
1226 |
" block3a_project_bn[0][0] \n", |
|
|
1227 |
"__________________________________________________________________________________________________\n", |
|
|
1228 |
"block4a_expand_conv (Conv2D) (None, 32, 32, 240) 9600 block3b_add[0][0] \n", |
|
|
1229 |
"__________________________________________________________________________________________________\n", |
|
|
1230 |
"block4a_expand_bn (BatchNormali (None, 32, 32, 240) 960 block4a_expand_conv[0][0] \n", |
|
|
1231 |
"__________________________________________________________________________________________________\n", |
|
|
1232 |
"block4a_expand_activation (Acti (None, 32, 32, 240) 0 block4a_expand_bn[0][0] \n", |
|
|
1233 |
"__________________________________________________________________________________________________\n", |
|
|
1234 |
"block4a_dwconv (DepthwiseConv2D (None, 16, 16, 240) 2160 block4a_expand_activation[0][0] \n", |
|
|
1235 |
"__________________________________________________________________________________________________\n", |
|
|
1236 |
"block4a_bn (BatchNormalization) (None, 16, 16, 240) 960 block4a_dwconv[0][0] \n", |
|
|
1237 |
"__________________________________________________________________________________________________\n", |
|
|
1238 |
"block4a_activation (Activation) (None, 16, 16, 240) 0 block4a_bn[0][0] \n", |
|
|
1239 |
"__________________________________________________________________________________________________\n", |
|
|
1240 |
"block4a_se_squeeze (GlobalAvera (None, 240) 0 block4a_activation[0][0] \n", |
|
|
1241 |
"__________________________________________________________________________________________________\n", |
|
|
1242 |
"block4a_se_reshape (Reshape) (None, 1, 1, 240) 0 block4a_se_squeeze[0][0] \n", |
|
|
1243 |
"__________________________________________________________________________________________________\n", |
|
|
1244 |
"block4a_se_reduce (Conv2D) (None, 1, 1, 10) 2410 block4a_se_reshape[0][0] \n", |
|
|
1245 |
"__________________________________________________________________________________________________\n", |
|
|
1246 |
"block4a_se_expand (Conv2D) (None, 1, 1, 240) 2640 block4a_se_reduce[0][0] \n", |
|
|
1247 |
"__________________________________________________________________________________________________\n", |
|
|
1248 |
"block4a_se_excite (Multiply) (None, 16, 16, 240) 0 block4a_activation[0][0] \n", |
|
|
1249 |
" block4a_se_expand[0][0] \n", |
|
|
1250 |
"__________________________________________________________________________________________________\n", |
|
|
1251 |
"block4a_project_conv (Conv2D) (None, 16, 16, 80) 19200 block4a_se_excite[0][0] \n", |
|
|
1252 |
"__________________________________________________________________________________________________\n", |
|
|
1253 |
"block4a_project_bn (BatchNormal (None, 16, 16, 80) 320 block4a_project_conv[0][0] \n", |
|
|
1254 |
"__________________________________________________________________________________________________\n", |
|
|
1255 |
"block4b_expand_conv (Conv2D) (None, 16, 16, 480) 38400 block4a_project_bn[0][0] \n", |
|
|
1256 |
"__________________________________________________________________________________________________\n", |
|
|
1257 |
"block4b_expand_bn (BatchNormali (None, 16, 16, 480) 1920 block4b_expand_conv[0][0] \n", |
|
|
1258 |
"__________________________________________________________________________________________________\n", |
|
|
1259 |
"block4b_expand_activation (Acti (None, 16, 16, 480) 0 block4b_expand_bn[0][0] \n", |
|
|
1260 |
"__________________________________________________________________________________________________\n", |
|
|
1261 |
"block4b_dwconv (DepthwiseConv2D (None, 16, 16, 480) 4320 block4b_expand_activation[0][0] \n", |
|
|
1262 |
"__________________________________________________________________________________________________\n", |
|
|
1263 |
"block4b_bn (BatchNormalization) (None, 16, 16, 480) 1920 block4b_dwconv[0][0] \n", |
|
|
1264 |
"__________________________________________________________________________________________________\n", |
|
|
1265 |
"block4b_activation (Activation) (None, 16, 16, 480) 0 block4b_bn[0][0] \n", |
|
|
1266 |
"__________________________________________________________________________________________________\n", |
|
|
1267 |
"block4b_se_squeeze (GlobalAvera (None, 480) 0 block4b_activation[0][0] \n", |
|
|
1268 |
"__________________________________________________________________________________________________\n", |
|
|
1269 |
"block4b_se_reshape (Reshape) (None, 1, 1, 480) 0 block4b_se_squeeze[0][0] \n", |
|
|
1270 |
"__________________________________________________________________________________________________\n", |
|
|
1271 |
"block4b_se_reduce (Conv2D) (None, 1, 1, 20) 9620 block4b_se_reshape[0][0] \n", |
|
|
1272 |
"__________________________________________________________________________________________________\n", |
|
|
1273 |
"block4b_se_expand (Conv2D) (None, 1, 1, 480) 10080 block4b_se_reduce[0][0] \n", |
|
|
1274 |
"__________________________________________________________________________________________________\n", |
|
|
1275 |
"block4b_se_excite (Multiply) (None, 16, 16, 480) 0 block4b_activation[0][0] \n", |
|
|
1276 |
" block4b_se_expand[0][0] \n", |
|
|
1277 |
"__________________________________________________________________________________________________\n", |
|
|
1278 |
"block4b_project_conv (Conv2D) (None, 16, 16, 80) 38400 block4b_se_excite[0][0] \n", |
|
|
1279 |
"__________________________________________________________________________________________________\n", |
|
|
1280 |
"block4b_project_bn (BatchNormal (None, 16, 16, 80) 320 block4b_project_conv[0][0] \n", |
|
|
1281 |
"__________________________________________________________________________________________________\n", |
|
|
1282 |
"block4b_drop (FixedDropout) (None, 16, 16, 80) 0 block4b_project_bn[0][0] \n", |
|
|
1283 |
"__________________________________________________________________________________________________\n", |
|
|
1284 |
"block4b_add (Add) (None, 16, 16, 80) 0 block4b_drop[0][0] \n", |
|
|
1285 |
" block4a_project_bn[0][0] \n", |
|
|
1286 |
"__________________________________________________________________________________________________\n", |
|
|
1287 |
"block4c_expand_conv (Conv2D) (None, 16, 16, 480) 38400 block4b_add[0][0] \n", |
|
|
1288 |
"__________________________________________________________________________________________________\n", |
|
|
1289 |
"block4c_expand_bn (BatchNormali (None, 16, 16, 480) 1920 block4c_expand_conv[0][0] \n", |
|
|
1290 |
"__________________________________________________________________________________________________\n", |
|
|
1291 |
"block4c_expand_activation (Acti (None, 16, 16, 480) 0 block4c_expand_bn[0][0] \n", |
|
|
1292 |
"__________________________________________________________________________________________________\n", |
|
|
1293 |
"block4c_dwconv (DepthwiseConv2D (None, 16, 16, 480) 4320 block4c_expand_activation[0][0] \n", |
|
|
1294 |
"__________________________________________________________________________________________________\n", |
|
|
1295 |
"block4c_bn (BatchNormalization) (None, 16, 16, 480) 1920 block4c_dwconv[0][0] \n", |
|
|
1296 |
"__________________________________________________________________________________________________\n", |
|
|
1297 |
"block4c_activation (Activation) (None, 16, 16, 480) 0 block4c_bn[0][0] \n", |
|
|
1298 |
"__________________________________________________________________________________________________\n", |
|
|
1299 |
"block4c_se_squeeze (GlobalAvera (None, 480) 0 block4c_activation[0][0] \n", |
|
|
1300 |
"__________________________________________________________________________________________________\n", |
|
|
1301 |
"block4c_se_reshape (Reshape) (None, 1, 1, 480) 0 block4c_se_squeeze[0][0] \n", |
|
|
1302 |
"__________________________________________________________________________________________________\n", |
|
|
1303 |
"block4c_se_reduce (Conv2D) (None, 1, 1, 20) 9620 block4c_se_reshape[0][0] \n", |
|
|
1304 |
"__________________________________________________________________________________________________\n", |
|
|
1305 |
"block4c_se_expand (Conv2D) (None, 1, 1, 480) 10080 block4c_se_reduce[0][0] \n", |
|
|
1306 |
"__________________________________________________________________________________________________\n", |
|
|
1307 |
"block4c_se_excite (Multiply) (None, 16, 16, 480) 0 block4c_activation[0][0] \n", |
|
|
1308 |
" block4c_se_expand[0][0] \n", |
|
|
1309 |
"__________________________________________________________________________________________________\n", |
|
|
1310 |
"block4c_project_conv (Conv2D) (None, 16, 16, 80) 38400 block4c_se_excite[0][0] \n", |
|
|
1311 |
"__________________________________________________________________________________________________\n", |
|
|
1312 |
"block4c_project_bn (BatchNormal (None, 16, 16, 80) 320 block4c_project_conv[0][0] \n", |
|
|
1313 |
"__________________________________________________________________________________________________\n", |
|
|
1314 |
"block4c_drop (FixedDropout) (None, 16, 16, 80) 0 block4c_project_bn[0][0] \n", |
|
|
1315 |
"__________________________________________________________________________________________________\n", |
|
|
1316 |
"block4c_add (Add) (None, 16, 16, 80) 0 block4c_drop[0][0] \n", |
|
|
1317 |
" block4b_add[0][0] \n", |
|
|
1318 |
"__________________________________________________________________________________________________\n", |
|
|
1319 |
"block5a_expand_conv (Conv2D) (None, 16, 16, 480) 38400 block4c_add[0][0] \n", |
|
|
1320 |
"__________________________________________________________________________________________________\n", |
|
|
1321 |
"block5a_expand_bn (BatchNormali (None, 16, 16, 480) 1920 block5a_expand_conv[0][0] \n", |
|
|
1322 |
"__________________________________________________________________________________________________\n", |
|
|
1323 |
"block5a_expand_activation (Acti (None, 16, 16, 480) 0 block5a_expand_bn[0][0] \n", |
|
|
1324 |
"__________________________________________________________________________________________________\n", |
|
|
1325 |
"block5a_dwconv (DepthwiseConv2D (None, 16, 16, 480) 12000 block5a_expand_activation[0][0] \n", |
|
|
1326 |
"__________________________________________________________________________________________________\n", |
|
|
1327 |
"block5a_bn (BatchNormalization) (None, 16, 16, 480) 1920 block5a_dwconv[0][0] \n", |
|
|
1328 |
"__________________________________________________________________________________________________\n", |
|
|
1329 |
"block5a_activation (Activation) (None, 16, 16, 480) 0 block5a_bn[0][0] \n", |
|
|
1330 |
"__________________________________________________________________________________________________\n", |
|
|
1331 |
"block5a_se_squeeze (GlobalAvera (None, 480) 0 block5a_activation[0][0] \n", |
|
|
1332 |
"__________________________________________________________________________________________________\n", |
|
|
1333 |
"block5a_se_reshape (Reshape) (None, 1, 1, 480) 0 block5a_se_squeeze[0][0] \n", |
|
|
1334 |
"__________________________________________________________________________________________________\n", |
|
|
1335 |
"block5a_se_reduce (Conv2D) (None, 1, 1, 20) 9620 block5a_se_reshape[0][0] \n", |
|
|
1336 |
"__________________________________________________________________________________________________\n", |
|
|
1337 |
"block5a_se_expand (Conv2D) (None, 1, 1, 480) 10080 block5a_se_reduce[0][0] \n", |
|
|
1338 |
"__________________________________________________________________________________________________\n", |
|
|
1339 |
"block5a_se_excite (Multiply) (None, 16, 16, 480) 0 block5a_activation[0][0] \n", |
|
|
1340 |
" block5a_se_expand[0][0] \n", |
|
|
1341 |
"__________________________________________________________________________________________________\n", |
|
|
1342 |
"block5a_project_conv (Conv2D) (None, 16, 16, 112) 53760 block5a_se_excite[0][0] \n", |
|
|
1343 |
"__________________________________________________________________________________________________\n", |
|
|
1344 |
"block5a_project_bn (BatchNormal (None, 16, 16, 112) 448 block5a_project_conv[0][0] \n", |
|
|
1345 |
"__________________________________________________________________________________________________\n", |
|
|
1346 |
"block5b_expand_conv (Conv2D) (None, 16, 16, 672) 75264 block5a_project_bn[0][0] \n", |
|
|
1347 |
"__________________________________________________________________________________________________\n", |
|
|
1348 |
"block5b_expand_bn (BatchNormali (None, 16, 16, 672) 2688 block5b_expand_conv[0][0] \n", |
|
|
1349 |
"__________________________________________________________________________________________________\n", |
|
|
1350 |
"block5b_expand_activation (Acti (None, 16, 16, 672) 0 block5b_expand_bn[0][0] \n", |
|
|
1351 |
"__________________________________________________________________________________________________\n", |
|
|
1352 |
"block5b_dwconv (DepthwiseConv2D (None, 16, 16, 672) 16800 block5b_expand_activation[0][0] \n", |
|
|
1353 |
"__________________________________________________________________________________________________\n", |
|
|
1354 |
"block5b_bn (BatchNormalization) (None, 16, 16, 672) 2688 block5b_dwconv[0][0] \n", |
|
|
1355 |
"__________________________________________________________________________________________________\n", |
|
|
1356 |
"block5b_activation (Activation) (None, 16, 16, 672) 0 block5b_bn[0][0] \n", |
|
|
1357 |
"__________________________________________________________________________________________________\n", |
|
|
1358 |
"block5b_se_squeeze (GlobalAvera (None, 672) 0 block5b_activation[0][0] \n", |
|
|
1359 |
"__________________________________________________________________________________________________\n", |
|
|
1360 |
"block5b_se_reshape (Reshape) (None, 1, 1, 672) 0 block5b_se_squeeze[0][0] \n", |
|
|
1361 |
"__________________________________________________________________________________________________\n", |
|
|
1362 |
"block5b_se_reduce (Conv2D) (None, 1, 1, 28) 18844 block5b_se_reshape[0][0] \n", |
|
|
1363 |
"__________________________________________________________________________________________________\n", |
|
|
1364 |
"block5b_se_expand (Conv2D) (None, 1, 1, 672) 19488 block5b_se_reduce[0][0] \n", |
|
|
1365 |
"__________________________________________________________________________________________________\n", |
|
|
1366 |
"block5b_se_excite (Multiply) (None, 16, 16, 672) 0 block5b_activation[0][0] \n", |
|
|
1367 |
" block5b_se_expand[0][0] \n", |
|
|
1368 |
"__________________________________________________________________________________________________\n", |
|
|
1369 |
"block5b_project_conv (Conv2D) (None, 16, 16, 112) 75264 block5b_se_excite[0][0] \n", |
|
|
1370 |
"__________________________________________________________________________________________________\n", |
|
|
1371 |
"block5b_project_bn (BatchNormal (None, 16, 16, 112) 448 block5b_project_conv[0][0] \n", |
|
|
1372 |
"__________________________________________________________________________________________________\n", |
|
|
1373 |
"block5b_drop (FixedDropout) (None, 16, 16, 112) 0 block5b_project_bn[0][0] \n", |
|
|
1374 |
"__________________________________________________________________________________________________\n", |
|
|
1375 |
"block5b_add (Add) (None, 16, 16, 112) 0 block5b_drop[0][0] \n", |
|
|
1376 |
" block5a_project_bn[0][0] \n", |
|
|
1377 |
"__________________________________________________________________________________________________\n", |
|
|
1378 |
"block5c_expand_conv (Conv2D) (None, 16, 16, 672) 75264 block5b_add[0][0] \n", |
|
|
1379 |
"__________________________________________________________________________________________________\n", |
|
|
1380 |
"block5c_expand_bn (BatchNormali (None, 16, 16, 672) 2688 block5c_expand_conv[0][0] \n", |
|
|
1381 |
"__________________________________________________________________________________________________\n", |
|
|
1382 |
"block5c_expand_activation (Acti (None, 16, 16, 672) 0 block5c_expand_bn[0][0] \n", |
|
|
1383 |
"__________________________________________________________________________________________________\n", |
|
|
1384 |
"block5c_dwconv (DepthwiseConv2D (None, 16, 16, 672) 16800 block5c_expand_activation[0][0] \n", |
|
|
1385 |
"__________________________________________________________________________________________________\n", |
|
|
1386 |
"block5c_bn (BatchNormalization) (None, 16, 16, 672) 2688 block5c_dwconv[0][0] \n", |
|
|
1387 |
"__________________________________________________________________________________________________\n", |
|
|
1388 |
"block5c_activation (Activation) (None, 16, 16, 672) 0 block5c_bn[0][0] \n", |
|
|
1389 |
"__________________________________________________________________________________________________\n", |
|
|
1390 |
"block5c_se_squeeze (GlobalAvera (None, 672) 0 block5c_activation[0][0] \n", |
|
|
1391 |
"__________________________________________________________________________________________________\n", |
|
|
1392 |
"block5c_se_reshape (Reshape) (None, 1, 1, 672) 0 block5c_se_squeeze[0][0] \n", |
|
|
1393 |
"__________________________________________________________________________________________________\n", |
|
|
1394 |
"block5c_se_reduce (Conv2D) (None, 1, 1, 28) 18844 block5c_se_reshape[0][0] \n", |
|
|
1395 |
"__________________________________________________________________________________________________\n", |
|
|
1396 |
"block5c_se_expand (Conv2D) (None, 1, 1, 672) 19488 block5c_se_reduce[0][0] \n", |
|
|
1397 |
"__________________________________________________________________________________________________\n", |
|
|
1398 |
"block5c_se_excite (Multiply) (None, 16, 16, 672) 0 block5c_activation[0][0] \n", |
|
|
1399 |
" block5c_se_expand[0][0] \n", |
|
|
1400 |
"__________________________________________________________________________________________________\n", |
|
|
1401 |
"block5c_project_conv (Conv2D) (None, 16, 16, 112) 75264 block5c_se_excite[0][0] \n", |
|
|
1402 |
"__________________________________________________________________________________________________\n", |
|
|
1403 |
"block5c_project_bn (BatchNormal (None, 16, 16, 112) 448 block5c_project_conv[0][0] \n", |
|
|
1404 |
"__________________________________________________________________________________________________\n", |
|
|
1405 |
"block5c_drop (FixedDropout) (None, 16, 16, 112) 0 block5c_project_bn[0][0] \n", |
|
|
1406 |
"__________________________________________________________________________________________________\n", |
|
|
1407 |
"block5c_add (Add) (None, 16, 16, 112) 0 block5c_drop[0][0] \n", |
|
|
1408 |
" block5b_add[0][0] \n", |
|
|
1409 |
"__________________________________________________________________________________________________\n", |
|
|
1410 |
"block6a_expand_conv (Conv2D) (None, 16, 16, 672) 75264 block5c_add[0][0] \n", |
|
|
1411 |
"__________________________________________________________________________________________________\n", |
|
|
1412 |
"block6a_expand_bn (BatchNormali (None, 16, 16, 672) 2688 block6a_expand_conv[0][0] \n", |
|
|
1413 |
"__________________________________________________________________________________________________\n", |
|
|
1414 |
"block6a_expand_activation (Acti (None, 16, 16, 672) 0 block6a_expand_bn[0][0] \n", |
|
|
1415 |
"__________________________________________________________________________________________________\n", |
|
|
1416 |
"block6a_dwconv (DepthwiseConv2D (None, 8, 8, 672) 16800 block6a_expand_activation[0][0] \n", |
|
|
1417 |
"__________________________________________________________________________________________________\n", |
|
|
1418 |
"block6a_bn (BatchNormalization) (None, 8, 8, 672) 2688 block6a_dwconv[0][0] \n", |
|
|
1419 |
"__________________________________________________________________________________________________\n", |
|
|
1420 |
"block6a_activation (Activation) (None, 8, 8, 672) 0 block6a_bn[0][0] \n", |
|
|
1421 |
"__________________________________________________________________________________________________\n", |
|
|
1422 |
"block6a_se_squeeze (GlobalAvera (None, 672) 0 block6a_activation[0][0] \n", |
|
|
1423 |
"__________________________________________________________________________________________________\n", |
|
|
1424 |
"block6a_se_reshape (Reshape) (None, 1, 1, 672) 0 block6a_se_squeeze[0][0] \n", |
|
|
1425 |
"__________________________________________________________________________________________________\n", |
|
|
1426 |
"block6a_se_reduce (Conv2D) (None, 1, 1, 28) 18844 block6a_se_reshape[0][0] \n", |
|
|
1427 |
"__________________________________________________________________________________________________\n", |
|
|
1428 |
"block6a_se_expand (Conv2D) (None, 1, 1, 672) 19488 block6a_se_reduce[0][0] \n", |
|
|
1429 |
"__________________________________________________________________________________________________\n", |
|
|
1430 |
"block6a_se_excite (Multiply) (None, 8, 8, 672) 0 block6a_activation[0][0] \n", |
|
|
1431 |
" block6a_se_expand[0][0] \n", |
|
|
1432 |
"__________________________________________________________________________________________________\n", |
|
|
1433 |
"block6a_project_conv (Conv2D) (None, 8, 8, 192) 129024 block6a_se_excite[0][0] \n", |
|
|
1434 |
"__________________________________________________________________________________________________\n", |
|
|
1435 |
"block6a_project_bn (BatchNormal (None, 8, 8, 192) 768 block6a_project_conv[0][0] \n", |
|
|
1436 |
"__________________________________________________________________________________________________\n", |
|
|
1437 |
"block6b_expand_conv (Conv2D) (None, 8, 8, 1152) 221184 block6a_project_bn[0][0] \n", |
|
|
1438 |
"__________________________________________________________________________________________________\n", |
|
|
1439 |
"block6b_expand_bn (BatchNormali (None, 8, 8, 1152) 4608 block6b_expand_conv[0][0] \n", |
|
|
1440 |
"__________________________________________________________________________________________________\n", |
|
|
1441 |
"block6b_expand_activation (Acti (None, 8, 8, 1152) 0 block6b_expand_bn[0][0] \n", |
|
|
1442 |
"__________________________________________________________________________________________________\n", |
|
|
1443 |
"block6b_dwconv (DepthwiseConv2D (None, 8, 8, 1152) 28800 block6b_expand_activation[0][0] \n", |
|
|
1444 |
"__________________________________________________________________________________________________\n", |
|
|
1445 |
"block6b_bn (BatchNormalization) (None, 8, 8, 1152) 4608 block6b_dwconv[0][0] \n", |
|
|
1446 |
"__________________________________________________________________________________________________\n", |
|
|
1447 |
"block6b_activation (Activation) (None, 8, 8, 1152) 0 block6b_bn[0][0] \n", |
|
|
1448 |
"__________________________________________________________________________________________________\n", |
|
|
1449 |
"block6b_se_squeeze (GlobalAvera (None, 1152) 0 block6b_activation[0][0] \n", |
|
|
1450 |
"__________________________________________________________________________________________________\n", |
|
|
1451 |
"block6b_se_reshape (Reshape) (None, 1, 1, 1152) 0 block6b_se_squeeze[0][0] \n", |
|
|
1452 |
"__________________________________________________________________________________________________\n", |
|
|
1453 |
"block6b_se_reduce (Conv2D) (None, 1, 1, 48) 55344 block6b_se_reshape[0][0] \n", |
|
|
1454 |
"__________________________________________________________________________________________________\n", |
|
|
1455 |
"block6b_se_expand (Conv2D) (None, 1, 1, 1152) 56448 block6b_se_reduce[0][0] \n", |
|
|
1456 |
"__________________________________________________________________________________________________\n", |
|
|
1457 |
"block6b_se_excite (Multiply) (None, 8, 8, 1152) 0 block6b_activation[0][0] \n", |
|
|
1458 |
" block6b_se_expand[0][0] \n", |
|
|
1459 |
"__________________________________________________________________________________________________\n", |
|
|
1460 |
"block6b_project_conv (Conv2D) (None, 8, 8, 192) 221184 block6b_se_excite[0][0] \n", |
|
|
1461 |
"__________________________________________________________________________________________________\n", |
|
|
1462 |
"block6b_project_bn (BatchNormal (None, 8, 8, 192) 768 block6b_project_conv[0][0] \n", |
|
|
1463 |
"__________________________________________________________________________________________________\n", |
|
|
1464 |
"block6b_drop (FixedDropout) (None, 8, 8, 192) 0 block6b_project_bn[0][0] \n", |
|
|
1465 |
"__________________________________________________________________________________________________\n", |
|
|
1466 |
"block6b_add (Add) (None, 8, 8, 192) 0 block6b_drop[0][0] \n", |
|
|
1467 |
" block6a_project_bn[0][0] \n", |
|
|
1468 |
"__________________________________________________________________________________________________\n", |
|
|
1469 |
"block6c_expand_conv (Conv2D) (None, 8, 8, 1152) 221184 block6b_add[0][0] \n", |
|
|
1470 |
"__________________________________________________________________________________________________\n", |
|
|
1471 |
"block6c_expand_bn (BatchNormali (None, 8, 8, 1152) 4608 block6c_expand_conv[0][0] \n", |
|
|
1472 |
"__________________________________________________________________________________________________\n", |
|
|
1473 |
"block6c_expand_activation (Acti (None, 8, 8, 1152) 0 block6c_expand_bn[0][0] \n", |
|
|
1474 |
"__________________________________________________________________________________________________\n", |
|
|
1475 |
"block6c_dwconv (DepthwiseConv2D (None, 8, 8, 1152) 28800 block6c_expand_activation[0][0] \n", |
|
|
1476 |
"__________________________________________________________________________________________________\n", |
|
|
1477 |
"block6c_bn (BatchNormalization) (None, 8, 8, 1152) 4608 block6c_dwconv[0][0] \n", |
|
|
1478 |
"__________________________________________________________________________________________________\n", |
|
|
1479 |
"block6c_activation (Activation) (None, 8, 8, 1152) 0 block6c_bn[0][0] \n", |
|
|
1480 |
"__________________________________________________________________________________________________\n", |
|
|
1481 |
"block6c_se_squeeze (GlobalAvera (None, 1152) 0 block6c_activation[0][0] \n", |
|
|
1482 |
"__________________________________________________________________________________________________\n", |
|
|
1483 |
"block6c_se_reshape (Reshape) (None, 1, 1, 1152) 0 block6c_se_squeeze[0][0] \n", |
|
|
1484 |
"__________________________________________________________________________________________________\n", |
|
|
1485 |
"block6c_se_reduce (Conv2D) (None, 1, 1, 48) 55344 block6c_se_reshape[0][0] \n", |
|
|
1486 |
"__________________________________________________________________________________________________\n", |
|
|
1487 |
"block6c_se_expand (Conv2D) (None, 1, 1, 1152) 56448 block6c_se_reduce[0][0] \n", |
|
|
1488 |
"__________________________________________________________________________________________________\n", |
|
|
1489 |
"block6c_se_excite (Multiply) (None, 8, 8, 1152) 0 block6c_activation[0][0] \n", |
|
|
1490 |
" block6c_se_expand[0][0] \n", |
|
|
1491 |
"__________________________________________________________________________________________________\n", |
|
|
1492 |
"block6c_project_conv (Conv2D) (None, 8, 8, 192) 221184 block6c_se_excite[0][0] \n", |
|
|
1493 |
"__________________________________________________________________________________________________\n", |
|
|
1494 |
"block6c_project_bn (BatchNormal (None, 8, 8, 192) 768 block6c_project_conv[0][0] \n", |
|
|
1495 |
"__________________________________________________________________________________________________\n", |
|
|
1496 |
"block6c_drop (FixedDropout) (None, 8, 8, 192) 0 block6c_project_bn[0][0] \n", |
|
|
1497 |
"__________________________________________________________________________________________________\n", |
|
|
1498 |
"block6c_add (Add) (None, 8, 8, 192) 0 block6c_drop[0][0] \n", |
|
|
1499 |
" block6b_add[0][0] \n", |
|
|
1500 |
"__________________________________________________________________________________________________\n", |
|
|
1501 |
"block6d_expand_conv (Conv2D) (None, 8, 8, 1152) 221184 block6c_add[0][0] \n", |
|
|
1502 |
"__________________________________________________________________________________________________\n", |
|
|
1503 |
"block6d_expand_bn (BatchNormali (None, 8, 8, 1152) 4608 block6d_expand_conv[0][0] \n", |
|
|
1504 |
"__________________________________________________________________________________________________\n", |
|
|
1505 |
"block6d_expand_activation (Acti (None, 8, 8, 1152) 0 block6d_expand_bn[0][0] \n", |
|
|
1506 |
"__________________________________________________________________________________________________\n", |
|
|
1507 |
"block6d_dwconv (DepthwiseConv2D (None, 8, 8, 1152) 28800 block6d_expand_activation[0][0] \n", |
|
|
1508 |
"__________________________________________________________________________________________________\n", |
|
|
1509 |
"block6d_bn (BatchNormalization) (None, 8, 8, 1152) 4608 block6d_dwconv[0][0] \n", |
|
|
1510 |
"__________________________________________________________________________________________________\n", |
|
|
1511 |
"block6d_activation (Activation) (None, 8, 8, 1152) 0 block6d_bn[0][0] \n", |
|
|
1512 |
"__________________________________________________________________________________________________\n", |
|
|
1513 |
"block6d_se_squeeze (GlobalAvera (None, 1152) 0 block6d_activation[0][0] \n", |
|
|
1514 |
"__________________________________________________________________________________________________\n", |
|
|
1515 |
"block6d_se_reshape (Reshape) (None, 1, 1, 1152) 0 block6d_se_squeeze[0][0] \n", |
|
|
1516 |
"__________________________________________________________________________________________________\n", |
|
|
1517 |
"block6d_se_reduce (Conv2D) (None, 1, 1, 48) 55344 block6d_se_reshape[0][0] \n", |
|
|
1518 |
"__________________________________________________________________________________________________\n", |
|
|
1519 |
"block6d_se_expand (Conv2D) (None, 1, 1, 1152) 56448 block6d_se_reduce[0][0] \n", |
|
|
1520 |
"__________________________________________________________________________________________________\n", |
|
|
1521 |
"block6d_se_excite (Multiply) (None, 8, 8, 1152) 0 block6d_activation[0][0] \n", |
|
|
1522 |
" block6d_se_expand[0][0] \n", |
|
|
1523 |
"__________________________________________________________________________________________________\n", |
|
|
1524 |
"block6d_project_conv (Conv2D) (None, 8, 8, 192) 221184 block6d_se_excite[0][0] \n", |
|
|
1525 |
"__________________________________________________________________________________________________\n", |
|
|
1526 |
"block6d_project_bn (BatchNormal (None, 8, 8, 192) 768 block6d_project_conv[0][0] \n", |
|
|
1527 |
"__________________________________________________________________________________________________\n", |
|
|
1528 |
"block6d_drop (FixedDropout) (None, 8, 8, 192) 0 block6d_project_bn[0][0] \n", |
|
|
1529 |
"__________________________________________________________________________________________________\n", |
|
|
1530 |
"block6d_add (Add) (None, 8, 8, 192) 0 block6d_drop[0][0] \n", |
|
|
1531 |
" block6c_add[0][0] \n", |
|
|
1532 |
"__________________________________________________________________________________________________\n", |
|
|
1533 |
"block7a_expand_conv (Conv2D) (None, 8, 8, 1152) 221184 block6d_add[0][0] \n", |
|
|
1534 |
"__________________________________________________________________________________________________\n", |
|
|
1535 |
"block7a_expand_bn (BatchNormali (None, 8, 8, 1152) 4608 block7a_expand_conv[0][0] \n", |
|
|
1536 |
"__________________________________________________________________________________________________\n", |
|
|
1537 |
"block7a_expand_activation (Acti (None, 8, 8, 1152) 0 block7a_expand_bn[0][0] \n", |
|
|
1538 |
"__________________________________________________________________________________________________\n", |
|
|
1539 |
"block7a_dwconv (DepthwiseConv2D (None, 8, 8, 1152) 10368 block7a_expand_activation[0][0] \n", |
|
|
1540 |
"__________________________________________________________________________________________________\n", |
|
|
1541 |
"block7a_bn (BatchNormalization) (None, 8, 8, 1152) 4608 block7a_dwconv[0][0] \n", |
|
|
1542 |
"__________________________________________________________________________________________________\n", |
|
|
1543 |
"block7a_activation (Activation) (None, 8, 8, 1152) 0 block7a_bn[0][0] \n", |
|
|
1544 |
"__________________________________________________________________________________________________\n", |
|
|
1545 |
"block7a_se_squeeze (GlobalAvera (None, 1152) 0 block7a_activation[0][0] \n", |
|
|
1546 |
"__________________________________________________________________________________________________\n", |
|
|
1547 |
"block7a_se_reshape (Reshape) (None, 1, 1, 1152) 0 block7a_se_squeeze[0][0] \n", |
|
|
1548 |
"__________________________________________________________________________________________________\n", |
|
|
1549 |
"block7a_se_reduce (Conv2D) (None, 1, 1, 48) 55344 block7a_se_reshape[0][0] \n", |
|
|
1550 |
"__________________________________________________________________________________________________\n", |
|
|
1551 |
"block7a_se_expand (Conv2D) (None, 1, 1, 1152) 56448 block7a_se_reduce[0][0] \n", |
|
|
1552 |
"__________________________________________________________________________________________________\n", |
|
|
1553 |
"block7a_se_excite (Multiply) (None, 8, 8, 1152) 0 block7a_activation[0][0] \n", |
|
|
1554 |
" block7a_se_expand[0][0] \n", |
|
|
1555 |
"__________________________________________________________________________________________________\n", |
|
|
1556 |
"block7a_project_conv (Conv2D) (None, 8, 8, 320) 368640 block7a_se_excite[0][0] \n", |
|
|
1557 |
"__________________________________________________________________________________________________\n", |
|
|
1558 |
"block7a_project_bn (BatchNormal (None, 8, 8, 320) 1280 block7a_project_conv[0][0] \n", |
|
|
1559 |
"__________________________________________________________________________________________________\n", |
|
|
1560 |
"top_conv (Conv2D) (None, 8, 8, 1280) 409600 block7a_project_bn[0][0] \n", |
|
|
1561 |
"__________________________________________________________________________________________________\n", |
|
|
1562 |
"top_bn (BatchNormalization) (None, 8, 8, 1280) 5120 top_conv[0][0] \n", |
|
|
1563 |
"__________________________________________________________________________________________________\n", |
|
|
1564 |
"top_activation (Activation) (None, 8, 8, 1280) 0 top_bn[0][0] \n", |
|
|
1565 |
"__________________________________________________________________________________________________\n", |
|
|
1566 |
"avg_pool (GlobalAveragePooling2 (None, 1280) 0 top_activation[0][0] \n", |
|
|
1567 |
"__________________________________________________________________________________________________\n", |
|
|
1568 |
"dropout_1 (Dropout) (None, 1280) 0 avg_pool[0][0] \n", |
|
|
1569 |
"__________________________________________________________________________________________________\n", |
|
|
1570 |
"dense_1 (Dense) (None, 6) 7686 dropout_1[0][0] \n", |
|
|
1571 |
"==================================================================================================\n", |
|
|
1572 |
"Total params: 4,057,250\n", |
|
|
1573 |
"Trainable params: 4,015,234\n", |
|
|
1574 |
"Non-trainable params: 42,016\n", |
|
|
1575 |
"__________________________________________________________________________________________________\n" |
|
|
1576 |
] |
|
|
1577 |
} |
|
|
1578 |
], |
|
|
1579 |
"source": [ |
|
|
1580 |
"base_model = efn.EfficientNetB0(weights = 'imagenet', include_top = False, \\\n", |
|
|
1581 |
" pooling = 'avg', input_shape = (HEIGHT, WIDTH, 3))\n", |
|
|
1582 |
"x = base_model.output\n", |
|
|
1583 |
"x = Dropout(0.125)(x)\n", |
|
|
1584 |
"output_layer = Dense(6, activation = 'sigmoid')(x)\n", |
|
|
1585 |
"model = Model(inputs=base_model.input, outputs=output_layer)\n", |
|
|
1586 |
"model.compile(optimizer = Adam(learning_rate = 0.0001), \n", |
|
|
1587 |
" loss = 'binary_crossentropy',\n", |
|
|
1588 |
" metrics = ['acc', tf.keras.metrics.AUC()])\n", |
|
|
1589 |
"model.summary()" |
|
|
1590 |
] |
|
|
1591 |
}, |
|
|
1592 |
{ |
|
|
1593 |
"cell_type": "code", |
|
|
1594 |
"execution_count": 25, |
|
|
1595 |
"metadata": {}, |
|
|
1596 |
"outputs": [ |
|
|
1597 |
{ |
|
|
1598 |
"data": { |
|
|
1599 |
"text/plain": [ |
|
|
1600 |
"(636396, 40622)" |
|
|
1601 |
] |
|
|
1602 |
}, |
|
|
1603 |
"execution_count": 25, |
|
|
1604 |
"metadata": {}, |
|
|
1605 |
"output_type": "execute_result" |
|
|
1606 |
} |
|
|
1607 |
], |
|
|
1608 |
"source": [ |
|
|
1609 |
"# https://github.com/trent-b/iterative-stratification\n", |
|
|
1610 |
"# Mutlilabel stratification\n", |
|
|
1611 |
"splits = MultilabelStratifiedShuffleSplit(n_splits = 2, test_size = TEST_SIZE, random_state = SEED)\n", |
|
|
1612 |
"file_names = train_final_df.index\n", |
|
|
1613 |
"labels = train_final_df.values\n", |
|
|
1614 |
"# Lets take only the first split\n", |
|
|
1615 |
"split = next(splits.split(file_names, labels))\n", |
|
|
1616 |
"train_idx = split[0]\n", |
|
|
1617 |
"valid_idx = split[1]\n", |
|
|
1618 |
"submission_predictions = []\n", |
|
|
1619 |
"len(train_idx), len(valid_idx)" |
|
|
1620 |
] |
|
|
1621 |
}, |
|
|
1622 |
{ |
|
|
1623 |
"cell_type": "code", |
|
|
1624 |
"execution_count": 26, |
|
|
1625 |
"metadata": {}, |
|
|
1626 |
"outputs": [], |
|
|
1627 |
"source": [ |
|
|
1628 |
"# train data generator\n", |
|
|
1629 |
"data_generator_train = TrainDataGenerator(train_final_df.iloc[train_idx], \n", |
|
|
1630 |
" train_final_df.iloc[train_idx], \n", |
|
|
1631 |
" TRAIN_BATCH_SIZE, \n", |
|
|
1632 |
" (WIDTH, HEIGHT),\n", |
|
|
1633 |
" augment = True)\n", |
|
|
1634 |
"\n", |
|
|
1635 |
"# validation data generator\n", |
|
|
1636 |
"data_generator_val = TrainDataGenerator(train_final_df.iloc[valid_idx], \n", |
|
|
1637 |
" train_final_df.iloc[valid_idx], \n", |
|
|
1638 |
" VALID_BATCH_SIZE, \n", |
|
|
1639 |
" (WIDTH, HEIGHT),\n", |
|
|
1640 |
" augment = False)" |
|
|
1641 |
] |
|
|
1642 |
}, |
|
|
1643 |
{ |
|
|
1644 |
"cell_type": "code", |
|
|
1645 |
"execution_count": 27, |
|
|
1646 |
"metadata": {}, |
|
|
1647 |
"outputs": [ |
|
|
1648 |
{ |
|
|
1649 |
"data": { |
|
|
1650 |
"text/plain": [ |
|
|
1651 |
"(19888, 635)" |
|
|
1652 |
] |
|
|
1653 |
}, |
|
|
1654 |
"execution_count": 27, |
|
|
1655 |
"metadata": {}, |
|
|
1656 |
"output_type": "execute_result" |
|
|
1657 |
} |
|
|
1658 |
], |
|
|
1659 |
"source": [ |
|
|
1660 |
"len(data_generator_train), len(data_generator_val)" |
|
|
1661 |
] |
|
|
1662 |
}, |
|
|
1663 |
{ |
|
|
1664 |
"cell_type": "markdown", |
|
|
1665 |
"metadata": {}, |
|
|
1666 |
"source": [ |
|
|
1667 |
"Competition evaluation metric is evaluated based on weighted log loss but we haven't given weights for each subtype but as per discussion from this thread https://www.kaggle.com/c/rsna-intracranial-hemorrhage-detection/discussion/109526#latest-630190 any has a wieght of 2 than other types below sample is taken from the discussion threas" |
|
|
1668 |
] |
|
|
1669 |
}, |
|
|
1670 |
{ |
|
|
1671 |
"cell_type": "code", |
|
|
1672 |
"execution_count": 28, |
|
|
1673 |
"metadata": {}, |
|
|
1674 |
"outputs": [], |
|
|
1675 |
"source": [ |
|
|
1676 |
"from keras import backend as K\n", |
|
|
1677 |
"\n", |
|
|
1678 |
"def weighted_log_loss(y_true, y_pred):\n", |
|
|
1679 |
" \"\"\"\n", |
|
|
1680 |
" Can be used as the loss function in model.compile()\n", |
|
|
1681 |
" ---------------------------------------------------\n", |
|
|
1682 |
" \"\"\"\n", |
|
|
1683 |
" \n", |
|
|
1684 |
" class_weights = np.array([2., 1., 1., 1., 1., 1.])\n", |
|
|
1685 |
" \n", |
|
|
1686 |
" eps = K.epsilon()\n", |
|
|
1687 |
" \n", |
|
|
1688 |
" y_pred = K.clip(y_pred, eps, 1.0-eps)\n", |
|
|
1689 |
"\n", |
|
|
1690 |
" out = -( y_true * K.log( y_pred) * class_weights\n", |
|
|
1691 |
" + (1.0 - y_true) * K.log(1.0 - y_pred) * class_weights)\n", |
|
|
1692 |
" \n", |
|
|
1693 |
" return K.mean(out, axis=-1)\n", |
|
|
1694 |
"\n", |
|
|
1695 |
"\n", |
|
|
1696 |
"def _normalized_weighted_average(arr, weights=None):\n", |
|
|
1697 |
" \"\"\"\n", |
|
|
1698 |
" A simple Keras implementation that mimics that of \n", |
|
|
1699 |
" numpy.average(), specifically for this competition\n", |
|
|
1700 |
" \"\"\"\n", |
|
|
1701 |
" \n", |
|
|
1702 |
" if weights is not None:\n", |
|
|
1703 |
" scl = K.sum(weights)\n", |
|
|
1704 |
" weights = K.expand_dims(weights, axis=1)\n", |
|
|
1705 |
" return K.sum(K.dot(arr, weights), axis=1) / scl\n", |
|
|
1706 |
" return K.mean(arr, axis=1)\n", |
|
|
1707 |
"\n", |
|
|
1708 |
"\n", |
|
|
1709 |
"def weighted_loss(y_true, y_pred):\n", |
|
|
1710 |
" \"\"\"\n", |
|
|
1711 |
" Will be used as the metric in model.compile()\n", |
|
|
1712 |
" ---------------------------------------------\n", |
|
|
1713 |
" \n", |
|
|
1714 |
" Similar to the custom loss function 'weighted_log_loss()' above\n", |
|
|
1715 |
" but with normalized weights, which should be very similar \n", |
|
|
1716 |
" to the official competition metric:\n", |
|
|
1717 |
" https://www.kaggle.com/kambarakun/lb-probe-weights-n-of-positives-scoring\n", |
|
|
1718 |
" and hence:\n", |
|
|
1719 |
" sklearn.metrics.log_loss with sample weights\n", |
|
|
1720 |
" \"\"\"\n", |
|
|
1721 |
" \n", |
|
|
1722 |
" class_weights = K.variable([2., 1., 1., 1., 1., 1.])\n", |
|
|
1723 |
" \n", |
|
|
1724 |
" eps = K.epsilon()\n", |
|
|
1725 |
" \n", |
|
|
1726 |
" y_pred = K.clip(y_pred, eps, 1.0-eps)\n", |
|
|
1727 |
"\n", |
|
|
1728 |
" loss = -( y_true * K.log( y_pred)\n", |
|
|
1729 |
" + (1.0 - y_true) * K.log(1.0 - y_pred))\n", |
|
|
1730 |
" \n", |
|
|
1731 |
" loss_samples = _normalized_weighted_average(loss, class_weights)\n", |
|
|
1732 |
" \n", |
|
|
1733 |
" return K.mean(loss_samples)\n", |
|
|
1734 |
"\n", |
|
|
1735 |
"\n", |
|
|
1736 |
"def weighted_log_loss_metric(trues, preds):\n", |
|
|
1737 |
" \"\"\"\n", |
|
|
1738 |
" Will be used to calculate the log loss \n", |
|
|
1739 |
" of the validation set in PredictionCheckpoint()\n", |
|
|
1740 |
" ------------------------------------------\n", |
|
|
1741 |
" \"\"\"\n", |
|
|
1742 |
" class_weights = [2., 1., 1., 1., 1., 1.]\n", |
|
|
1743 |
" \n", |
|
|
1744 |
" epsilon = 1e-7\n", |
|
|
1745 |
" \n", |
|
|
1746 |
" preds = np.clip(preds, epsilon, 1-epsilon)\n", |
|
|
1747 |
" loss = trues * np.log(preds) + (1 - trues) * np.log(1 - preds)\n", |
|
|
1748 |
" loss_samples = np.average(loss, axis=1, weights=class_weights)\n", |
|
|
1749 |
"\n", |
|
|
1750 |
" return - loss_samples.mean()" |
|
|
1751 |
] |
|
|
1752 |
}, |
|
|
1753 |
{ |
|
|
1754 |
"cell_type": "code", |
|
|
1755 |
"execution_count": 29, |
|
|
1756 |
"metadata": {}, |
|
|
1757 |
"outputs": [], |
|
|
1758 |
"source": [ |
|
|
1759 |
"filepath=\"model.h5\"\n", |
|
|
1760 |
"checkpoint = ModelCheckpoint(filepath, monitor='val_loss', verbose=1, \\\n", |
|
|
1761 |
" save_best_only=True, mode='min')\n", |
|
|
1762 |
"\n", |
|
|
1763 |
"callbacks_list = [checkpoint]" |
|
|
1764 |
] |
|
|
1765 |
}, |
|
|
1766 |
{ |
|
|
1767 |
"cell_type": "markdown", |
|
|
1768 |
"metadata": {}, |
|
|
1769 |
"source": [ |
|
|
1770 |
"For a single epoch we are going to train only last 5 layers of Efficient. Since we have a large number of images around 600k so its better to train the all the layers on the whole train dataset but due its high computation resources required to train we only goin to train last five layers on whole dataset and for rest of epochs we only train on a sample of dataset but will train all the layers." |
|
|
1771 |
] |
|
|
1772 |
}, |
|
|
1773 |
{ |
|
|
1774 |
"cell_type": "code", |
|
|
1775 |
"execution_count": 31, |
|
|
1776 |
"metadata": {}, |
|
|
1777 |
"outputs": [], |
|
|
1778 |
"source": [ |
|
|
1779 |
"train = False" |
|
|
1780 |
] |
|
|
1781 |
}, |
|
|
1782 |
{ |
|
|
1783 |
"cell_type": "code", |
|
|
1784 |
"execution_count": 32, |
|
|
1785 |
"metadata": {}, |
|
|
1786 |
"outputs": [], |
|
|
1787 |
"source": [ |
|
|
1788 |
"if train:\n", |
|
|
1789 |
" if not os.path.isfile('../input/orginal-087-eff/model.h5'):\n", |
|
|
1790 |
" for layer in model.layers[:-5]:\n", |
|
|
1791 |
" layer.trainable = False\n", |
|
|
1792 |
" model.compile(optimizer = Adam(learning_rate = 0.0001), \n", |
|
|
1793 |
" loss = 'binary_crossentropy',\n", |
|
|
1794 |
" metrics = ['acc'])\n", |
|
|
1795 |
"\n", |
|
|
1796 |
" model.fit_generator(generator = data_generator_train,\n", |
|
|
1797 |
" validation_data = data_generator_val,\n", |
|
|
1798 |
" epochs = 2,\n", |
|
|
1799 |
" callbacks = callbacks_list,\n", |
|
|
1800 |
" verbose = 1)" |
|
|
1801 |
] |
|
|
1802 |
}, |
|
|
1803 |
{ |
|
|
1804 |
"cell_type": "code", |
|
|
1805 |
"execution_count": 33, |
|
|
1806 |
"metadata": {}, |
|
|
1807 |
"outputs": [], |
|
|
1808 |
"source": [ |
|
|
1809 |
"if train:\n", |
|
|
1810 |
" for base_layer in model.layers[:-1]:\n", |
|
|
1811 |
" base_layer.trainable = True\n", |
|
|
1812 |
"\n", |
|
|
1813 |
" model.load_weights('model.h5')\n", |
|
|
1814 |
"\n", |
|
|
1815 |
" model.compile(optimizer = Adam(learning_rate = 0.0004), \n", |
|
|
1816 |
" loss = 'binary_crossentropy',\n", |
|
|
1817 |
" metrics = ['acc'])\n", |
|
|
1818 |
" model.fit_generator(generator = data_generator_train,\n", |
|
|
1819 |
" validation_data = data_generator_val,\n", |
|
|
1820 |
" steps_per_epoch=len(data_generator_train)/6,\n", |
|
|
1821 |
" epochs = 10,\n", |
|
|
1822 |
" callbacks = callbacks_list,\n", |
|
|
1823 |
" verbose = 1)" |
|
|
1824 |
] |
|
|
1825 |
}, |
|
|
1826 |
{ |
|
|
1827 |
"cell_type": "code", |
|
|
1828 |
"execution_count": 34, |
|
|
1829 |
"metadata": {}, |
|
|
1830 |
"outputs": [ |
|
|
1831 |
{ |
|
|
1832 |
"name": "stdout", |
|
|
1833 |
"output_type": "stream", |
|
|
1834 |
"text": [ |
|
|
1835 |
"Collecting gdown\n", |
|
|
1836 |
" Downloading https://files.pythonhosted.org/packages/b0/b4/a8e9d0b02bca6aa53087001abf064cc9992bda11bd6840875b8098d93573/gdown-3.8.3.tar.gz\n", |
|
|
1837 |
"Requirement already satisfied: filelock in /opt/conda/lib/python3.6/site-packages (from gdown) (3.0.12)\n", |
|
|
1838 |
"Requirement already satisfied: requests in /opt/conda/lib/python3.6/site-packages (from gdown) (2.22.0)\n", |
|
|
1839 |
"Requirement already satisfied: six in /opt/conda/lib/python3.6/site-packages (from gdown) (1.12.0)\n", |
|
|
1840 |
"Requirement already satisfied: tqdm in /opt/conda/lib/python3.6/site-packages (from gdown) (4.36.1)\n", |
|
|
1841 |
"Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /opt/conda/lib/python3.6/site-packages (from requests->gdown) (1.24.2)\n", |
|
|
1842 |
"Requirement already satisfied: chardet<3.1.0,>=3.0.2 in /opt/conda/lib/python3.6/site-packages (from requests->gdown) (3.0.4)\n", |
|
|
1843 |
"Requirement already satisfied: idna<2.9,>=2.5 in /opt/conda/lib/python3.6/site-packages (from requests->gdown) (2.8)\n", |
|
|
1844 |
"Requirement already satisfied: certifi>=2017.4.17 in /opt/conda/lib/python3.6/site-packages (from requests->gdown) (2019.9.11)\n", |
|
|
1845 |
"Building wheels for collected packages: gdown\n", |
|
|
1846 |
" Building wheel for gdown (setup.py) ... \u001b[?25ldone\n", |
|
|
1847 |
"\u001b[?25h Created wheel for gdown: filename=gdown-3.8.3-cp36-none-any.whl size=8850 sha256=ca7bf131547dd1503032ee6ec7567ff06fb7ddad8d44a32f00f874aadbd01a5e\n", |
|
|
1848 |
" Stored in directory: /tmp/.cache/pip/wheels/a7/9d/16/9e0bda9a327ff2cddaee8de48a27553fb1efce73133593d066\n", |
|
|
1849 |
"Successfully built gdown\n", |
|
|
1850 |
"Installing collected packages: gdown\n", |
|
|
1851 |
"Successfully installed gdown-3.8.3\n" |
|
|
1852 |
] |
|
|
1853 |
} |
|
|
1854 |
], |
|
|
1855 |
"source": [ |
|
|
1856 |
"!pip install gdown" |
|
|
1857 |
] |
|
|
1858 |
}, |
|
|
1859 |
{ |
|
|
1860 |
"cell_type": "code", |
|
|
1861 |
"execution_count": 35, |
|
|
1862 |
"metadata": {}, |
|
|
1863 |
"outputs": [ |
|
|
1864 |
{ |
|
|
1865 |
"name": "stdout", |
|
|
1866 |
"output_type": "stream", |
|
|
1867 |
"text": [ |
|
|
1868 |
"Downloading...\n", |
|
|
1869 |
"From: https://drive.google.com/uc?id=1kZmMCCBOWSjCZjz2XWaouDIj5gFn2D-q\n", |
|
|
1870 |
"To: /kaggle/working/model (4).h5\n", |
|
|
1871 |
"49.2MB [00:03, 14.6MB/s]\n" |
|
|
1872 |
] |
|
|
1873 |
} |
|
|
1874 |
], |
|
|
1875 |
"source": [ |
|
|
1876 |
"!gdown https://drive.google.com/uc?id=1kZmMCCBOWSjCZjz2XWaouDIj5gFn2D-q" |
|
|
1877 |
] |
|
|
1878 |
}, |
|
|
1879 |
{ |
|
|
1880 |
"cell_type": "code", |
|
|
1881 |
"execution_count": 36, |
|
|
1882 |
"metadata": {}, |
|
|
1883 |
"outputs": [], |
|
|
1884 |
"source": [ |
|
|
1885 |
"!cp \"model (4).h5\" model.h5" |
|
|
1886 |
] |
|
|
1887 |
}, |
|
|
1888 |
{ |
|
|
1889 |
"cell_type": "code", |
|
|
1890 |
"execution_count": 37, |
|
|
1891 |
"metadata": {}, |
|
|
1892 |
"outputs": [ |
|
|
1893 |
{ |
|
|
1894 |
"name": "stdout", |
|
|
1895 |
"output_type": "stream", |
|
|
1896 |
"text": [ |
|
|
1897 |
"1228/1228 [==============================] - 856s 697ms/step\n" |
|
|
1898 |
] |
|
|
1899 |
}, |
|
|
1900 |
{ |
|
|
1901 |
"data": { |
|
|
1902 |
"text/plain": [ |
|
|
1903 |
"(78592, 6)" |
|
|
1904 |
] |
|
|
1905 |
}, |
|
|
1906 |
"execution_count": 37, |
|
|
1907 |
"metadata": {}, |
|
|
1908 |
"output_type": "execute_result" |
|
|
1909 |
} |
|
|
1910 |
], |
|
|
1911 |
"source": [ |
|
|
1912 |
"model.load_weights('model.h5')\n", |
|
|
1913 |
"\n", |
|
|
1914 |
"preds = model.predict_generator(TestDataGenerator(test_df.index, None, VALID_BATCH_SIZE, \\\n", |
|
|
1915 |
" (WIDTH, HEIGHT), path_test_img), \n", |
|
|
1916 |
" verbose=1)\n", |
|
|
1917 |
"preds.shape" |
|
|
1918 |
] |
|
|
1919 |
}, |
|
|
1920 |
{ |
|
|
1921 |
"cell_type": "code", |
|
|
1922 |
"execution_count": 38, |
|
|
1923 |
"metadata": {}, |
|
|
1924 |
"outputs": [], |
|
|
1925 |
"source": [ |
|
|
1926 |
"from tqdm import tqdm" |
|
|
1927 |
] |
|
|
1928 |
}, |
|
|
1929 |
{ |
|
|
1930 |
"cell_type": "code", |
|
|
1931 |
"execution_count": 39, |
|
|
1932 |
"metadata": {}, |
|
|
1933 |
"outputs": [], |
|
|
1934 |
"source": [ |
|
|
1935 |
"cols = list(train_final_df.columns)" |
|
|
1936 |
] |
|
|
1937 |
}, |
|
|
1938 |
{ |
|
|
1939 |
"cell_type": "code", |
|
|
1940 |
"execution_count": 40, |
|
|
1941 |
"metadata": {}, |
|
|
1942 |
"outputs": [ |
|
|
1943 |
{ |
|
|
1944 |
"name": "stderr", |
|
|
1945 |
"output_type": "stream", |
|
|
1946 |
"text": [ |
|
|
1947 |
"100%|█████████▉| 78545/78592 [00:01<00:00, 51807.96it/s]\n" |
|
|
1948 |
] |
|
|
1949 |
} |
|
|
1950 |
], |
|
|
1951 |
"source": [ |
|
|
1952 |
"# We have preditions for each of the image\n", |
|
|
1953 |
"# We need to make 6 rows for each of file according to the subtype\n", |
|
|
1954 |
"ids = []\n", |
|
|
1955 |
"values = []\n", |
|
|
1956 |
"for i, j in tqdm(zip(preds, test_df.index.to_list()), total=preds.shape[0]):\n", |
|
|
1957 |
"# print(i, j)\n", |
|
|
1958 |
" # i=[any_prob, epidural_prob, intraparenchymal_prob, intraventricular_prob, subarachnoid_prob, subdural_prob]\n", |
|
|
1959 |
" # j = filename ==> ID_xyz.dcm\n", |
|
|
1960 |
" for k in range(i.shape[0]):\n", |
|
|
1961 |
" ids.append([j.replace('.dcm', '_' + cols[k])])\n", |
|
|
1962 |
" values.append(i[k]) " |
|
|
1963 |
] |
|
|
1964 |
}, |
|
|
1965 |
{ |
|
|
1966 |
"cell_type": "code", |
|
|
1967 |
"execution_count": 41, |
|
|
1968 |
"metadata": {}, |
|
|
1969 |
"outputs": [ |
|
|
1970 |
{ |
|
|
1971 |
"data": { |
|
|
1972 |
"text/html": [ |
|
|
1973 |
"<div>\n", |
|
|
1974 |
"<style scoped>\n", |
|
|
1975 |
" .dataframe tbody tr th:only-of-type {\n", |
|
|
1976 |
" vertical-align: middle;\n", |
|
|
1977 |
" }\n", |
|
|
1978 |
"\n", |
|
|
1979 |
" .dataframe tbody tr th {\n", |
|
|
1980 |
" vertical-align: top;\n", |
|
|
1981 |
" }\n", |
|
|
1982 |
"\n", |
|
|
1983 |
" .dataframe thead th {\n", |
|
|
1984 |
" text-align: right;\n", |
|
|
1985 |
" }\n", |
|
|
1986 |
"</style>\n", |
|
|
1987 |
"<table border=\"1\" class=\"dataframe\">\n", |
|
|
1988 |
" <thead>\n", |
|
|
1989 |
" <tr style=\"text-align: right;\">\n", |
|
|
1990 |
" <th></th>\n", |
|
|
1991 |
" <th>0</th>\n", |
|
|
1992 |
" </tr>\n", |
|
|
1993 |
" </thead>\n", |
|
|
1994 |
" <tbody>\n", |
|
|
1995 |
" <tr>\n", |
|
|
1996 |
" <th>0</th>\n", |
|
|
1997 |
" <td>ID_000012eaf_any</td>\n", |
|
|
1998 |
" </tr>\n", |
|
|
1999 |
" <tr>\n", |
|
|
2000 |
" <th>1</th>\n", |
|
|
2001 |
" <td>ID_000012eaf_epidural</td>\n", |
|
|
2002 |
" </tr>\n", |
|
|
2003 |
" <tr>\n", |
|
|
2004 |
" <th>2</th>\n", |
|
|
2005 |
" <td>ID_000012eaf_intraparenchymal</td>\n", |
|
|
2006 |
" </tr>\n", |
|
|
2007 |
" <tr>\n", |
|
|
2008 |
" <th>3</th>\n", |
|
|
2009 |
" <td>ID_000012eaf_intraventricular</td>\n", |
|
|
2010 |
" </tr>\n", |
|
|
2011 |
" <tr>\n", |
|
|
2012 |
" <th>4</th>\n", |
|
|
2013 |
" <td>ID_000012eaf_subarachnoid</td>\n", |
|
|
2014 |
" </tr>\n", |
|
|
2015 |
" </tbody>\n", |
|
|
2016 |
"</table>\n", |
|
|
2017 |
"</div>" |
|
|
2018 |
], |
|
|
2019 |
"text/plain": [ |
|
|
2020 |
" 0\n", |
|
|
2021 |
"0 ID_000012eaf_any\n", |
|
|
2022 |
"1 ID_000012eaf_epidural\n", |
|
|
2023 |
"2 ID_000012eaf_intraparenchymal\n", |
|
|
2024 |
"3 ID_000012eaf_intraventricular\n", |
|
|
2025 |
"4 ID_000012eaf_subarachnoid" |
|
|
2026 |
] |
|
|
2027 |
}, |
|
|
2028 |
"execution_count": 41, |
|
|
2029 |
"metadata": {}, |
|
|
2030 |
"output_type": "execute_result" |
|
|
2031 |
} |
|
|
2032 |
], |
|
|
2033 |
"source": [ |
|
|
2034 |
"df = pd.DataFrame(data=ids)\n", |
|
|
2035 |
"df.head()" |
|
|
2036 |
] |
|
|
2037 |
}, |
|
|
2038 |
{ |
|
|
2039 |
"cell_type": "code", |
|
|
2040 |
"execution_count": 42, |
|
|
2041 |
"metadata": {}, |
|
|
2042 |
"outputs": [ |
|
|
2043 |
{ |
|
|
2044 |
"data": { |
|
|
2045 |
"text/html": [ |
|
|
2046 |
"<div>\n", |
|
|
2047 |
"<style scoped>\n", |
|
|
2048 |
" .dataframe tbody tr th:only-of-type {\n", |
|
|
2049 |
" vertical-align: middle;\n", |
|
|
2050 |
" }\n", |
|
|
2051 |
"\n", |
|
|
2052 |
" .dataframe tbody tr th {\n", |
|
|
2053 |
" vertical-align: top;\n", |
|
|
2054 |
" }\n", |
|
|
2055 |
"\n", |
|
|
2056 |
" .dataframe thead th {\n", |
|
|
2057 |
" text-align: right;\n", |
|
|
2058 |
" }\n", |
|
|
2059 |
"</style>\n", |
|
|
2060 |
"<table border=\"1\" class=\"dataframe\">\n", |
|
|
2061 |
" <thead>\n", |
|
|
2062 |
" <tr style=\"text-align: right;\">\n", |
|
|
2063 |
" <th></th>\n", |
|
|
2064 |
" <th>ID</th>\n", |
|
|
2065 |
" <th>Label</th>\n", |
|
|
2066 |
" </tr>\n", |
|
|
2067 |
" </thead>\n", |
|
|
2068 |
" <tbody>\n", |
|
|
2069 |
" <tr>\n", |
|
|
2070 |
" <th>0</th>\n", |
|
|
2071 |
" <td>ID_28fbab7eb_epidural</td>\n", |
|
|
2072 |
" <td>0.5</td>\n", |
|
|
2073 |
" </tr>\n", |
|
|
2074 |
" <tr>\n", |
|
|
2075 |
" <th>1</th>\n", |
|
|
2076 |
" <td>ID_28fbab7eb_intraparenchymal</td>\n", |
|
|
2077 |
" <td>0.5</td>\n", |
|
|
2078 |
" </tr>\n", |
|
|
2079 |
" <tr>\n", |
|
|
2080 |
" <th>2</th>\n", |
|
|
2081 |
" <td>ID_28fbab7eb_intraventricular</td>\n", |
|
|
2082 |
" <td>0.5</td>\n", |
|
|
2083 |
" </tr>\n", |
|
|
2084 |
" <tr>\n", |
|
|
2085 |
" <th>3</th>\n", |
|
|
2086 |
" <td>ID_28fbab7eb_subarachnoid</td>\n", |
|
|
2087 |
" <td>0.5</td>\n", |
|
|
2088 |
" </tr>\n", |
|
|
2089 |
" <tr>\n", |
|
|
2090 |
" <th>4</th>\n", |
|
|
2091 |
" <td>ID_28fbab7eb_subdural</td>\n", |
|
|
2092 |
" <td>0.5</td>\n", |
|
|
2093 |
" </tr>\n", |
|
|
2094 |
" </tbody>\n", |
|
|
2095 |
"</table>\n", |
|
|
2096 |
"</div>" |
|
|
2097 |
], |
|
|
2098 |
"text/plain": [ |
|
|
2099 |
" ID Label\n", |
|
|
2100 |
"0 ID_28fbab7eb_epidural 0.5\n", |
|
|
2101 |
"1 ID_28fbab7eb_intraparenchymal 0.5\n", |
|
|
2102 |
"2 ID_28fbab7eb_intraventricular 0.5\n", |
|
|
2103 |
"3 ID_28fbab7eb_subarachnoid 0.5\n", |
|
|
2104 |
"4 ID_28fbab7eb_subdural 0.5" |
|
|
2105 |
] |
|
|
2106 |
}, |
|
|
2107 |
"execution_count": 42, |
|
|
2108 |
"metadata": {}, |
|
|
2109 |
"output_type": "execute_result" |
|
|
2110 |
} |
|
|
2111 |
], |
|
|
2112 |
"source": [ |
|
|
2113 |
"sample_df = pd.read_csv(input_folder + 'stage_1_sample_submission.csv')\n", |
|
|
2114 |
"sample_df.head()" |
|
|
2115 |
] |
|
|
2116 |
}, |
|
|
2117 |
{ |
|
|
2118 |
"cell_type": "code", |
|
|
2119 |
"execution_count": 43, |
|
|
2120 |
"metadata": {}, |
|
|
2121 |
"outputs": [ |
|
|
2122 |
{ |
|
|
2123 |
"data": { |
|
|
2124 |
"text/html": [ |
|
|
2125 |
"<div>\n", |
|
|
2126 |
"<style scoped>\n", |
|
|
2127 |
" .dataframe tbody tr th:only-of-type {\n", |
|
|
2128 |
" vertical-align: middle;\n", |
|
|
2129 |
" }\n", |
|
|
2130 |
"\n", |
|
|
2131 |
" .dataframe tbody tr th {\n", |
|
|
2132 |
" vertical-align: top;\n", |
|
|
2133 |
" }\n", |
|
|
2134 |
"\n", |
|
|
2135 |
" .dataframe thead th {\n", |
|
|
2136 |
" text-align: right;\n", |
|
|
2137 |
" }\n", |
|
|
2138 |
"</style>\n", |
|
|
2139 |
"<table border=\"1\" class=\"dataframe\">\n", |
|
|
2140 |
" <thead>\n", |
|
|
2141 |
" <tr style=\"text-align: right;\">\n", |
|
|
2142 |
" <th></th>\n", |
|
|
2143 |
" <th>ID</th>\n", |
|
|
2144 |
" <th>Label</th>\n", |
|
|
2145 |
" </tr>\n", |
|
|
2146 |
" </thead>\n", |
|
|
2147 |
" <tbody>\n", |
|
|
2148 |
" <tr>\n", |
|
|
2149 |
" <th>0</th>\n", |
|
|
2150 |
" <td>ID_000012eaf_any</td>\n", |
|
|
2151 |
" <td>0.008506</td>\n", |
|
|
2152 |
" </tr>\n", |
|
|
2153 |
" <tr>\n", |
|
|
2154 |
" <th>1</th>\n", |
|
|
2155 |
" <td>ID_000012eaf_epidural</td>\n", |
|
|
2156 |
" <td>0.000114</td>\n", |
|
|
2157 |
" </tr>\n", |
|
|
2158 |
" <tr>\n", |
|
|
2159 |
" <th>2</th>\n", |
|
|
2160 |
" <td>ID_000012eaf_intraparenchymal</td>\n", |
|
|
2161 |
" <td>0.001682</td>\n", |
|
|
2162 |
" </tr>\n", |
|
|
2163 |
" <tr>\n", |
|
|
2164 |
" <th>3</th>\n", |
|
|
2165 |
" <td>ID_000012eaf_intraventricular</td>\n", |
|
|
2166 |
" <td>0.000329</td>\n", |
|
|
2167 |
" </tr>\n", |
|
|
2168 |
" <tr>\n", |
|
|
2169 |
" <th>4</th>\n", |
|
|
2170 |
" <td>ID_000012eaf_subarachnoid</td>\n", |
|
|
2171 |
" <td>0.000926</td>\n", |
|
|
2172 |
" </tr>\n", |
|
|
2173 |
" </tbody>\n", |
|
|
2174 |
"</table>\n", |
|
|
2175 |
"</div>" |
|
|
2176 |
], |
|
|
2177 |
"text/plain": [ |
|
|
2178 |
" ID Label\n", |
|
|
2179 |
"0 ID_000012eaf_any 0.008506\n", |
|
|
2180 |
"1 ID_000012eaf_epidural 0.000114\n", |
|
|
2181 |
"2 ID_000012eaf_intraparenchymal 0.001682\n", |
|
|
2182 |
"3 ID_000012eaf_intraventricular 0.000329\n", |
|
|
2183 |
"4 ID_000012eaf_subarachnoid 0.000926" |
|
|
2184 |
] |
|
|
2185 |
}, |
|
|
2186 |
"execution_count": 43, |
|
|
2187 |
"metadata": {}, |
|
|
2188 |
"output_type": "execute_result" |
|
|
2189 |
} |
|
|
2190 |
], |
|
|
2191 |
"source": [ |
|
|
2192 |
"df['Label'] = values\n", |
|
|
2193 |
"df.columns = sample_df.columns\n", |
|
|
2194 |
"df.head()" |
|
|
2195 |
] |
|
|
2196 |
}, |
|
|
2197 |
{ |
|
|
2198 |
"cell_type": "code", |
|
|
2199 |
"execution_count": 44, |
|
|
2200 |
"metadata": {}, |
|
|
2201 |
"outputs": [], |
|
|
2202 |
"source": [ |
|
|
2203 |
"df.to_csv('submission.csv', index=False)" |
|
|
2204 |
] |
|
|
2205 |
}, |
|
|
2206 |
{ |
|
|
2207 |
"cell_type": "code", |
|
|
2208 |
"execution_count": 45, |
|
|
2209 |
"metadata": {}, |
|
|
2210 |
"outputs": [ |
|
|
2211 |
{ |
|
|
2212 |
"data": { |
|
|
2213 |
"text/html": [ |
|
|
2214 |
"<a href=submission.csv>Download CSV file</a>" |
|
|
2215 |
], |
|
|
2216 |
"text/plain": [ |
|
|
2217 |
"<IPython.core.display.HTML object>" |
|
|
2218 |
] |
|
|
2219 |
}, |
|
|
2220 |
"execution_count": 45, |
|
|
2221 |
"metadata": {}, |
|
|
2222 |
"output_type": "execute_result" |
|
|
2223 |
} |
|
|
2224 |
], |
|
|
2225 |
"source": [ |
|
|
2226 |
"create_download_link(filename='submission.csv')" |
|
|
2227 |
] |
|
|
2228 |
} |
|
|
2229 |
], |
|
|
2230 |
"metadata": { |
|
|
2231 |
"kernelspec": { |
|
|
2232 |
"display_name": "Python 3", |
|
|
2233 |
"language": "python", |
|
|
2234 |
"name": "python3" |
|
|
2235 |
}, |
|
|
2236 |
"language_info": { |
|
|
2237 |
"codemirror_mode": { |
|
|
2238 |
"name": "ipython", |
|
|
2239 |
"version": 3 |
|
|
2240 |
}, |
|
|
2241 |
"file_extension": ".py", |
|
|
2242 |
"mimetype": "text/x-python", |
|
|
2243 |
"name": "python", |
|
|
2244 |
"nbconvert_exporter": "python", |
|
|
2245 |
"pygments_lexer": "ipython3", |
|
|
2246 |
"version": "3.6.5" |
|
|
2247 |
} |
|
|
2248 |
}, |
|
|
2249 |
"nbformat": 4, |
|
|
2250 |
"nbformat_minor": 1 |
|
|
2251 |
} |