Switch to unified view

a b/notebooks/03-Effnet-B0 Windowed Image.ipynb
1
{
2
 "cells": [
3
  {
4
   "cell_type": "markdown",
5
   "metadata": {},
6
   "source": [
7
    "# RSNA Intracranial Hemorrhage Detection "
8
   ]
9
  },
10
  {
11
   "cell_type": "markdown",
12
   "metadata": {},
13
   "source": [
14
    "<b>Competition Overview</b><br/><br/>\n",
15
    "Intracranial hemorrhage, bleeding that occurs inside the cranium, is a serious health problem requiring rapid and often intensive medical treatment. For example, intracranial hemorrhages account for approximately 10% of strokes in the U.S., where stroke is the fifth-leading cause of death. Identifying the location and type of any hemorrhage present is a critical step in treating the patient.\n",
16
    "\n",
17
    "Diagnosis requires an urgent procedure. When a patient shows acute neurological symptoms such as severe headache or loss of consciousness, highly trained specialists review medical images of the patient’s cranium to look for the presence, location and type of hemorrhage. The process is complicated and often time consuming."
18
   ]
19
  },
20
  {
21
   "cell_type": "markdown",
22
   "metadata": {},
23
   "source": [
24
    "<b>What am i predicting?</b><br/><br/>\n",
25
    "In this competition our goal is to predict intracranial hemorrhage and its subtypes. Given an image the we need to predict probablity of each subtype. This indicates its a multilabel classification problem."
26
   ]
27
  },
28
  {
29
   "cell_type": "markdown",
30
   "metadata": {},
31
   "source": [
32
    "<b>Competition Evaluation Metric</b><br/><br/>\n",
33
    "Evaluation metric is weighted multi-label logarithmic loss. So for given image we need to predict probality for each subtype. There is also an any label, which indicates that a hemorrhage of ANY kind exists in the image. The any label is weighted more highly than specific hemorrhage sub-types.\n",
34
    "\n",
35
    "<b>Note:</b>The weights for each subtype for calculating weighted multi-label logarithmic loss is **not** given as part of the competition. We will be using binary cross entropy loss as weights are not available"
36
   ]
37
  },
38
  {
39
   "cell_type": "markdown",
40
   "metadata": {},
41
   "source": [
42
    "<b>Dataset Description</b>\n",
43
    "\n",
44
    "The dataset is divided into two parts\n",
45
    "\n",
46
    "1. Train\n",
47
    "2. Test\n",
48
    "\n",
49
    "**1. Train**\n",
50
    "Number of rows: 40,45,548 records.\n",
51
    "Number of columns: 2\n",
52
    "\n",
53
    "Columns:\n",
54
    "\n",
55
    "**Id**: An image Id. Each Id corresponds to a unique image, and will contain an underscore.\n",
56
    "\n",
57
    "Example: ID_28fbab7eb_epidural. So the Id consists of two parts one is image file id ID_28fbab7eb and the other is sub type name\n",
58
    "\n",
59
    "**Label**: The target label whether that sub-type of hemorrhage (or any hemorrhage in the case of any) exists in the indicated image. 1 --> Exists and 0 --> Doesn't exist.\n",
60
    "\n",
61
    "**2. Test**\n",
62
    "Number of rows: 4,71,270 records.\n",
63
    "\n",
64
    "Columns:\n",
65
    "\n",
66
    "**Id**: An image Id. Each Id corresponds to a unique image, and will contain an underscore.\n",
67
    "\n",
68
    "Example: ID_28fbab7eb_epidural. So the Id consists of two parts one is image file id ID_28fbab7eb and the other is sub type name"
69
   ]
70
  },
71
  {
72
   "cell_type": "code",
73
   "execution_count": 1,
74
   "metadata": {},
75
   "outputs": [
76
    {
77
     "name": "stderr",
78
     "output_type": "stream",
79
     "text": [
80
      "Using TensorFlow backend.\n"
81
     ]
82
    }
83
   ],
84
   "source": [
85
    "import numpy as np\n",
86
    "import pandas as pd\n",
87
    "import pydicom\n",
88
    "import os\n",
89
    "import glob\n",
90
    "import random\n",
91
    "import cv2\n",
92
    "import tensorflow as tf\n",
93
    "from math import ceil, floor\n",
94
    "from tqdm import tqdm\n",
95
    "from imgaug import augmenters as iaa\n",
96
    "import matplotlib.pyplot as plt\n",
97
    "from math import ceil, floor\n",
98
    "import keras\n",
99
    "import keras.backend as K\n",
100
    "from keras.callbacks import Callback, ModelCheckpoint\n",
101
    "from keras.layers import Dense, Flatten, Dropout\n",
102
    "from keras.models import Model, load_model\n",
103
    "from keras.utils import Sequence\n",
104
    "from keras.losses import binary_crossentropy\n",
105
    "from keras.optimizers import Adam"
106
   ]
107
  },
108
  {
109
   "cell_type": "code",
110
   "execution_count": 2,
111
   "metadata": {},
112
   "outputs": [],
113
   "source": [
114
    "# Random Seed\n",
115
    "SEED = 42\n",
116
    "np.random.seed(SEED)\n",
117
    "\n",
118
    "# some constants\n",
119
    "TEST_SIZE = 0.06\n",
120
    "HEIGHT = 256\n",
121
    "WIDTH = 256\n",
122
    "TRAIN_BATCH_SIZE = 32\n",
123
    "VALID_BATCH_SIZE = 64\n",
124
    "\n",
125
    "# Train and Test folders\n",
126
    "input_folder = '../input/rsna-intracranial-hemorrhage-detection/'\n",
127
    "path_train_img = input_folder + 'stage_1_train_images/'\n",
128
    "path_test_img = input_folder + 'stage_1_test_images/'"
129
   ]
130
  },
131
  {
132
   "cell_type": "code",
133
   "execution_count": 3,
134
   "metadata": {},
135
   "outputs": [
136
    {
137
     "data": {
138
      "text/html": [
139
       "<div>\n",
140
       "<style scoped>\n",
141
       "    .dataframe tbody tr th:only-of-type {\n",
142
       "        vertical-align: middle;\n",
143
       "    }\n",
144
       "\n",
145
       "    .dataframe tbody tr th {\n",
146
       "        vertical-align: top;\n",
147
       "    }\n",
148
       "\n",
149
       "    .dataframe thead th {\n",
150
       "        text-align: right;\n",
151
       "    }\n",
152
       "</style>\n",
153
       "<table border=\"1\" class=\"dataframe\">\n",
154
       "  <thead>\n",
155
       "    <tr style=\"text-align: right;\">\n",
156
       "      <th></th>\n",
157
       "      <th>ID</th>\n",
158
       "      <th>Label</th>\n",
159
       "    </tr>\n",
160
       "  </thead>\n",
161
       "  <tbody>\n",
162
       "    <tr>\n",
163
       "      <th>0</th>\n",
164
       "      <td>ID_63eb1e259_epidural</td>\n",
165
       "      <td>0</td>\n",
166
       "    </tr>\n",
167
       "    <tr>\n",
168
       "      <th>1</th>\n",
169
       "      <td>ID_63eb1e259_intraparenchymal</td>\n",
170
       "      <td>0</td>\n",
171
       "    </tr>\n",
172
       "    <tr>\n",
173
       "      <th>2</th>\n",
174
       "      <td>ID_63eb1e259_intraventricular</td>\n",
175
       "      <td>0</td>\n",
176
       "    </tr>\n",
177
       "    <tr>\n",
178
       "      <th>3</th>\n",
179
       "      <td>ID_63eb1e259_subarachnoid</td>\n",
180
       "      <td>0</td>\n",
181
       "    </tr>\n",
182
       "    <tr>\n",
183
       "      <th>4</th>\n",
184
       "      <td>ID_63eb1e259_subdural</td>\n",
185
       "      <td>0</td>\n",
186
       "    </tr>\n",
187
       "  </tbody>\n",
188
       "</table>\n",
189
       "</div>"
190
      ],
191
      "text/plain": [
192
       "                              ID  Label\n",
193
       "0          ID_63eb1e259_epidural      0\n",
194
       "1  ID_63eb1e259_intraparenchymal      0\n",
195
       "2  ID_63eb1e259_intraventricular      0\n",
196
       "3      ID_63eb1e259_subarachnoid      0\n",
197
       "4          ID_63eb1e259_subdural      0"
198
      ]
199
     },
200
     "execution_count": 3,
201
     "metadata": {},
202
     "output_type": "execute_result"
203
    }
204
   ],
205
   "source": [
206
    "train_df = pd.read_csv(input_folder + 'stage_1_train.csv')\n",
207
    "train_df.head()"
208
   ]
209
  },
210
  {
211
   "cell_type": "code",
212
   "execution_count": 4,
213
   "metadata": {},
214
   "outputs": [
215
    {
216
     "data": {
217
      "text/html": [
218
       "<div>\n",
219
       "<style scoped>\n",
220
       "    .dataframe tbody tr th:only-of-type {\n",
221
       "        vertical-align: middle;\n",
222
       "    }\n",
223
       "\n",
224
       "    .dataframe tbody tr th {\n",
225
       "        vertical-align: top;\n",
226
       "    }\n",
227
       "\n",
228
       "    .dataframe thead th {\n",
229
       "        text-align: right;\n",
230
       "    }\n",
231
       "</style>\n",
232
       "<table border=\"1\" class=\"dataframe\">\n",
233
       "  <thead>\n",
234
       "    <tr style=\"text-align: right;\">\n",
235
       "      <th></th>\n",
236
       "      <th>ID</th>\n",
237
       "      <th>Label</th>\n",
238
       "      <th>sub_type</th>\n",
239
       "      <th>file_name</th>\n",
240
       "    </tr>\n",
241
       "  </thead>\n",
242
       "  <tbody>\n",
243
       "    <tr>\n",
244
       "      <th>0</th>\n",
245
       "      <td>ID_63eb1e259_epidural</td>\n",
246
       "      <td>0</td>\n",
247
       "      <td>epidural</td>\n",
248
       "      <td>ID_63eb1e259.dcm</td>\n",
249
       "    </tr>\n",
250
       "    <tr>\n",
251
       "      <th>1</th>\n",
252
       "      <td>ID_63eb1e259_intraparenchymal</td>\n",
253
       "      <td>0</td>\n",
254
       "      <td>intraparenchymal</td>\n",
255
       "      <td>ID_63eb1e259.dcm</td>\n",
256
       "    </tr>\n",
257
       "    <tr>\n",
258
       "      <th>2</th>\n",
259
       "      <td>ID_63eb1e259_intraventricular</td>\n",
260
       "      <td>0</td>\n",
261
       "      <td>intraventricular</td>\n",
262
       "      <td>ID_63eb1e259.dcm</td>\n",
263
       "    </tr>\n",
264
       "    <tr>\n",
265
       "      <th>3</th>\n",
266
       "      <td>ID_63eb1e259_subarachnoid</td>\n",
267
       "      <td>0</td>\n",
268
       "      <td>subarachnoid</td>\n",
269
       "      <td>ID_63eb1e259.dcm</td>\n",
270
       "    </tr>\n",
271
       "    <tr>\n",
272
       "      <th>4</th>\n",
273
       "      <td>ID_63eb1e259_subdural</td>\n",
274
       "      <td>0</td>\n",
275
       "      <td>subdural</td>\n",
276
       "      <td>ID_63eb1e259.dcm</td>\n",
277
       "    </tr>\n",
278
       "  </tbody>\n",
279
       "</table>\n",
280
       "</div>"
281
      ],
282
      "text/plain": [
283
       "                              ID  Label          sub_type         file_name\n",
284
       "0          ID_63eb1e259_epidural      0          epidural  ID_63eb1e259.dcm\n",
285
       "1  ID_63eb1e259_intraparenchymal      0  intraparenchymal  ID_63eb1e259.dcm\n",
286
       "2  ID_63eb1e259_intraventricular      0  intraventricular  ID_63eb1e259.dcm\n",
287
       "3      ID_63eb1e259_subarachnoid      0      subarachnoid  ID_63eb1e259.dcm\n",
288
       "4          ID_63eb1e259_subdural      0          subdural  ID_63eb1e259.dcm"
289
      ]
290
     },
291
     "execution_count": 4,
292
     "metadata": {},
293
     "output_type": "execute_result"
294
    }
295
   ],
296
   "source": [
297
    "# extract subtype\n",
298
    "train_df['sub_type'] = train_df['ID'].apply(lambda x: x.split('_')[-1])\n",
299
    "# extract filename\n",
300
    "train_df['file_name'] = train_df['ID'].apply(lambda x: '_'.join(x.split('_')[:2]) + '.dcm')\n",
301
    "train_df.head()"
302
   ]
303
  },
304
  {
305
   "cell_type": "code",
306
   "execution_count": 5,
307
   "metadata": {},
308
   "outputs": [
309
    {
310
     "data": {
311
      "text/plain": [
312
       "(4045572, 4)"
313
      ]
314
     },
315
     "execution_count": 5,
316
     "metadata": {},
317
     "output_type": "execute_result"
318
    }
319
   ],
320
   "source": [
321
    "train_df.shape"
322
   ]
323
  },
324
  {
325
   "cell_type": "code",
326
   "execution_count": 6,
327
   "metadata": {},
328
   "outputs": [
329
    {
330
     "data": {
331
      "text/plain": [
332
       "(4045548, 4)"
333
      ]
334
     },
335
     "execution_count": 6,
336
     "metadata": {},
337
     "output_type": "execute_result"
338
    }
339
   ],
340
   "source": [
341
    "# remove duplicates\n",
342
    "train_df.drop_duplicates(['Label', 'sub_type', 'file_name'], inplace=True)\n",
343
    "train_df.shape"
344
   ]
345
  },
346
  {
347
   "cell_type": "code",
348
   "execution_count": 7,
349
   "metadata": {},
350
   "outputs": [
351
    {
352
     "name": "stdout",
353
     "output_type": "stream",
354
     "text": [
355
      "Number of train images availabe: 674258\n"
356
     ]
357
    }
358
   ],
359
   "source": [
360
    "print(\"Number of train images availabe:\", len(os.listdir(path_train_img)))"
361
   ]
362
  },
363
  {
364
   "cell_type": "code",
365
   "execution_count": 8,
366
   "metadata": {},
367
   "outputs": [
368
    {
369
     "data": {
370
      "text/html": [
371
       "<div>\n",
372
       "<style scoped>\n",
373
       "    .dataframe tbody tr th:only-of-type {\n",
374
       "        vertical-align: middle;\n",
375
       "    }\n",
376
       "\n",
377
       "    .dataframe tbody tr th {\n",
378
       "        vertical-align: top;\n",
379
       "    }\n",
380
       "\n",
381
       "    .dataframe thead th {\n",
382
       "        text-align: right;\n",
383
       "    }\n",
384
       "</style>\n",
385
       "<table border=\"1\" class=\"dataframe\">\n",
386
       "  <thead>\n",
387
       "    <tr style=\"text-align: right;\">\n",
388
       "      <th>sub_type</th>\n",
389
       "      <th>any</th>\n",
390
       "      <th>epidural</th>\n",
391
       "      <th>intraparenchymal</th>\n",
392
       "      <th>intraventricular</th>\n",
393
       "      <th>subarachnoid</th>\n",
394
       "      <th>subdural</th>\n",
395
       "    </tr>\n",
396
       "    <tr>\n",
397
       "      <th>file_name</th>\n",
398
       "      <th></th>\n",
399
       "      <th></th>\n",
400
       "      <th></th>\n",
401
       "      <th></th>\n",
402
       "      <th></th>\n",
403
       "      <th></th>\n",
404
       "    </tr>\n",
405
       "  </thead>\n",
406
       "  <tbody>\n",
407
       "    <tr>\n",
408
       "      <th>ID_000039fa0.dcm</th>\n",
409
       "      <td>0</td>\n",
410
       "      <td>0</td>\n",
411
       "      <td>0</td>\n",
412
       "      <td>0</td>\n",
413
       "      <td>0</td>\n",
414
       "      <td>0</td>\n",
415
       "    </tr>\n",
416
       "    <tr>\n",
417
       "      <th>ID_00005679d.dcm</th>\n",
418
       "      <td>0</td>\n",
419
       "      <td>0</td>\n",
420
       "      <td>0</td>\n",
421
       "      <td>0</td>\n",
422
       "      <td>0</td>\n",
423
       "      <td>0</td>\n",
424
       "    </tr>\n",
425
       "    <tr>\n",
426
       "      <th>ID_00008ce3c.dcm</th>\n",
427
       "      <td>0</td>\n",
428
       "      <td>0</td>\n",
429
       "      <td>0</td>\n",
430
       "      <td>0</td>\n",
431
       "      <td>0</td>\n",
432
       "      <td>0</td>\n",
433
       "    </tr>\n",
434
       "    <tr>\n",
435
       "      <th>ID_0000950d7.dcm</th>\n",
436
       "      <td>0</td>\n",
437
       "      <td>0</td>\n",
438
       "      <td>0</td>\n",
439
       "      <td>0</td>\n",
440
       "      <td>0</td>\n",
441
       "      <td>0</td>\n",
442
       "    </tr>\n",
443
       "    <tr>\n",
444
       "      <th>ID_0000aee4b.dcm</th>\n",
445
       "      <td>0</td>\n",
446
       "      <td>0</td>\n",
447
       "      <td>0</td>\n",
448
       "      <td>0</td>\n",
449
       "      <td>0</td>\n",
450
       "      <td>0</td>\n",
451
       "    </tr>\n",
452
       "  </tbody>\n",
453
       "</table>\n",
454
       "</div>"
455
      ],
456
      "text/plain": [
457
       "sub_type          any  epidural  intraparenchymal  intraventricular  \\\n",
458
       "file_name                                                             \n",
459
       "ID_000039fa0.dcm    0         0                 0                 0   \n",
460
       "ID_00005679d.dcm    0         0                 0                 0   \n",
461
       "ID_00008ce3c.dcm    0         0                 0                 0   \n",
462
       "ID_0000950d7.dcm    0         0                 0                 0   \n",
463
       "ID_0000aee4b.dcm    0         0                 0                 0   \n",
464
       "\n",
465
       "sub_type          subarachnoid  subdural  \n",
466
       "file_name                                 \n",
467
       "ID_000039fa0.dcm             0         0  \n",
468
       "ID_00005679d.dcm             0         0  \n",
469
       "ID_00008ce3c.dcm             0         0  \n",
470
       "ID_0000950d7.dcm             0         0  \n",
471
       "ID_0000aee4b.dcm             0         0  "
472
      ]
473
     },
474
     "execution_count": 8,
475
     "metadata": {},
476
     "output_type": "execute_result"
477
    }
478
   ],
479
   "source": [
480
    "train_final_df = pd.pivot_table(train_df.drop(columns='ID'), index=\"file_name\", \\\n",
481
    "                                columns=\"sub_type\", values=\"Label\")\n",
482
    "train_final_df.head()"
483
   ]
484
  },
485
  {
486
   "cell_type": "code",
487
   "execution_count": 9,
488
   "metadata": {},
489
   "outputs": [
490
    {
491
     "data": {
492
      "text/plain": [
493
       "(674258, 6)"
494
      ]
495
     },
496
     "execution_count": 9,
497
     "metadata": {},
498
     "output_type": "execute_result"
499
    }
500
   ],
501
   "source": [
502
    "train_final_df.shape"
503
   ]
504
  },
505
  {
506
   "cell_type": "code",
507
   "execution_count": 10,
508
   "metadata": {},
509
   "outputs": [],
510
   "source": [
511
    "# Invalid image ID_6431af929.dcm\n",
512
    "train_final_df.drop('ID_6431af929.dcm', inplace=True)"
513
   ]
514
  },
515
  {
516
   "cell_type": "code",
517
   "execution_count": 11,
518
   "metadata": {},
519
   "outputs": [
520
    {
521
     "name": "stdout",
522
     "output_type": "stream",
523
     "text": [
524
      "Collecting efficientnet\n",
525
      "  Downloading https://files.pythonhosted.org/packages/97/82/f3ae07316f0461417dc54affab6e86ab188a5a22f33176d35271628b96e0/efficientnet-1.0.0-py3-none-any.whl\n",
526
      "Requirement already satisfied: keras-applications<=1.0.8,>=1.0.7 in /opt/conda/lib/python3.6/site-packages (from efficientnet) (1.0.8)\n",
527
      "Requirement already satisfied: scikit-image in /opt/conda/lib/python3.6/site-packages (from efficientnet) (0.16.1)\n",
528
      "Requirement already satisfied: numpy>=1.9.1 in /opt/conda/lib/python3.6/site-packages (from keras-applications<=1.0.8,>=1.0.7->efficientnet) (1.16.4)\n",
529
      "Requirement already satisfied: h5py in /opt/conda/lib/python3.6/site-packages (from keras-applications<=1.0.8,>=1.0.7->efficientnet) (2.9.0)\n",
530
      "Requirement already satisfied: PyWavelets>=0.4.0 in /opt/conda/lib/python3.6/site-packages (from scikit-image->efficientnet) (1.0.3)\n",
531
      "Requirement already satisfied: scipy>=0.19.0 in /opt/conda/lib/python3.6/site-packages (from scikit-image->efficientnet) (1.2.1)\n",
532
      "Requirement already satisfied: networkx>=2.0 in /opt/conda/lib/python3.6/site-packages (from scikit-image->efficientnet) (2.4)\n",
533
      "Requirement already satisfied: imageio>=2.3.0 in /opt/conda/lib/python3.6/site-packages (from scikit-image->efficientnet) (2.6.0)\n",
534
      "Requirement already satisfied: pillow>=4.3.0 in /opt/conda/lib/python3.6/site-packages (from scikit-image->efficientnet) (5.4.1)\n",
535
      "Requirement already satisfied: matplotlib!=3.0.0,>=2.0.0 in /opt/conda/lib/python3.6/site-packages (from scikit-image->efficientnet) (3.0.3)\n",
536
      "Requirement already satisfied: six in /opt/conda/lib/python3.6/site-packages (from h5py->keras-applications<=1.0.8,>=1.0.7->efficientnet) (1.12.0)\n",
537
      "Requirement already satisfied: decorator>=4.3.0 in /opt/conda/lib/python3.6/site-packages (from networkx>=2.0->scikit-image->efficientnet) (4.4.0)\n",
538
      "Requirement already satisfied: cycler>=0.10 in /opt/conda/lib/python3.6/site-packages (from matplotlib!=3.0.0,>=2.0.0->scikit-image->efficientnet) (0.10.0)\n",
539
      "Requirement already satisfied: kiwisolver>=1.0.1 in /opt/conda/lib/python3.6/site-packages (from matplotlib!=3.0.0,>=2.0.0->scikit-image->efficientnet) (1.1.0)\n",
540
      "Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /opt/conda/lib/python3.6/site-packages (from matplotlib!=3.0.0,>=2.0.0->scikit-image->efficientnet) (2.4.2)\n",
541
      "Requirement already satisfied: python-dateutil>=2.1 in /opt/conda/lib/python3.6/site-packages (from matplotlib!=3.0.0,>=2.0.0->scikit-image->efficientnet) (2.8.0)\n",
542
      "Requirement already satisfied: setuptools in /opt/conda/lib/python3.6/site-packages (from kiwisolver>=1.0.1->matplotlib!=3.0.0,>=2.0.0->scikit-image->efficientnet) (41.4.0)\n",
543
      "Installing collected packages: efficientnet\n",
544
      "Successfully installed efficientnet-1.0.0\n",
545
      "Collecting iterative-stratification\n",
546
      "  Downloading https://files.pythonhosted.org/packages/9d/79/9ba64c8c07b07b8b45d80725b2ebd7b7884701c1da34f70d4749f7b45f9a/iterative_stratification-0.1.6-py3-none-any.whl\n",
547
      "Requirement already satisfied: scikit-learn in /opt/conda/lib/python3.6/site-packages (from iterative-stratification) (0.21.3)\n",
548
      "Requirement already satisfied: scipy in /opt/conda/lib/python3.6/site-packages (from iterative-stratification) (1.2.1)\n",
549
      "Requirement already satisfied: numpy in /opt/conda/lib/python3.6/site-packages (from iterative-stratification) (1.16.4)\n",
550
      "Requirement already satisfied: joblib>=0.11 in /opt/conda/lib/python3.6/site-packages (from scikit-learn->iterative-stratification) (0.13.2)\n",
551
      "Installing collected packages: iterative-stratification\n",
552
      "Successfully installed iterative-stratification-0.1.6\n"
553
     ]
554
    }
555
   ],
556
   "source": [
557
    "# Install Efficient Net as it is not part of Keras\n",
558
    "!pip install efficientnet\n",
559
    "!pip install iterative-stratification"
560
   ]
561
  },
562
  {
563
   "cell_type": "code",
564
   "execution_count": 12,
565
   "metadata": {},
566
   "outputs": [],
567
   "source": [
568
    "import efficientnet.keras as efn \n",
569
    "from iterstrat.ml_stratifiers import MultilabelStratifiedShuffleSplit"
570
   ]
571
  },
572
  {
573
   "cell_type": "code",
574
   "execution_count": 13,
575
   "metadata": {},
576
   "outputs": [],
577
   "source": [
578
    "from IPython.display import HTML\n",
579
    "\n",
580
    "def create_download_link(title = \"Download CSV file\", filename = \"data.csv\"):  \n",
581
    "    \"\"\"\n",
582
    "    Helper function to generate download link to files in kaggle kernel \n",
583
    "    \"\"\"\n",
584
    "    html = '<a href={filename}>{title}</a>'\n",
585
    "    html = html.format(title=title,filename=filename)\n",
586
    "    return HTML(html)"
587
   ]
588
  },
589
  {
590
   "cell_type": "code",
591
   "execution_count": 14,
592
   "metadata": {},
593
   "outputs": [],
594
   "source": [
595
    "def get_dicom_field_value(val):\n",
596
    "    \"\"\"\n",
597
    "    Helper function to get value of dicom field in dicom file\n",
598
    "    \"\"\"\n",
599
    "    if type(val) == pydicom.multival.MultiValue:\n",
600
    "        return int(val[0])\n",
601
    "    else:\n",
602
    "        return int(val)\n",
603
    "\n",
604
    "def get_windowing(data):\n",
605
    "    \"\"\"\n",
606
    "    Helper function to extract meta data features in dicom file\n",
607
    "    return: window center, window width, slope, intercept\n",
608
    "    \"\"\"\n",
609
    "    dicom_fields = [data.WindowCenter, data.WindowWidth, data.RescaleSlope, data.RescaleIntercept]\n",
610
    "    return [get_dicom_field_value(x) for x in dicom_fields]\n",
611
    "\n",
612
    "\n",
613
    "def get_windowed_image(image, wc, ww, slope, intercept):\n",
614
    "    \"\"\"\n",
615
    "    Helper function to construct windowed image from meta data features\n",
616
    "    return: windowed image\n",
617
    "    \"\"\"\n",
618
    "    img = (image*slope +intercept)\n",
619
    "    img_min = wc - ww//2\n",
620
    "    img_max = wc + ww//2\n",
621
    "    img[img<img_min] = img_min\n",
622
    "    img[img>img_max] = img_max\n",
623
    "    return img \n",
624
    "\n",
625
    "\n",
626
    "def _normalize(img):\n",
627
    "    if img.max() == img.min():\n",
628
    "        return np.zeros(img.shape)\n",
629
    "    return 2 * (img - img.min())/(img.max() - img.min()) - 1\n",
630
    "\n",
631
    "def _read(path, desired_size=(224, 224)):\n",
632
    "    \"\"\"\n",
633
    "    Helper function to generate windowed image \n",
634
    "    \"\"\"\n",
635
    "    # 1. read dicom file\n",
636
    "    dcm = pydicom.dcmread(path)\n",
637
    "    \n",
638
    "    # 2. Extract meta data features\n",
639
    "    # window center, window width, slope, intercept\n",
640
    "    window_params = get_windowing(dcm)\n",
641
    "\n",
642
    "    try:\n",
643
    "        # 3. Generate windowed image\n",
644
    "        img = get_windowed_image(dcm.pixel_array, *window_params)\n",
645
    "    except:\n",
646
    "        img = np.zeros(desired_size)\n",
647
    "\n",
648
    "    img = _normalize(img)\n",
649
    "\n",
650
    "    if desired_size != (512, 512):\n",
651
    "        # resize image\n",
652
    "        img = cv2.resize(img, desired_size, interpolation = cv2.INTER_LINEAR)\n",
653
    "    return img[:,:,np.newaxis]"
654
   ]
655
  },
656
  {
657
   "cell_type": "code",
658
   "execution_count": 15,
659
   "metadata": {},
660
   "outputs": [
661
    {
662
     "data": {
663
      "text/plain": [
664
       "(128, 128, 1)"
665
      ]
666
     },
667
     "execution_count": 15,
668
     "metadata": {},
669
     "output_type": "execute_result"
670
    }
671
   ],
672
   "source": [
673
    "_read(path_train_img + 'ID_ffff922b9.dcm', (128, 128)).shape"
674
   ]
675
  },
676
  {
677
   "cell_type": "code",
678
   "execution_count": 16,
679
   "metadata": {},
680
   "outputs": [
681
    {
682
     "data": {
683
      "text/plain": [
684
       "<matplotlib.image.AxesImage at 0x7f821e7b95c0>"
685
      ]
686
     },
687
     "execution_count": 16,
688
     "metadata": {},
689
     "output_type": "execute_result"
690
    },
691
    {
692
     "data": {
693
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzsnXeYVdW5/z/r7NPmTC8wdBhgKKKIoIC9R0W9JmrUxMpNYqLG+Eu50XhTb0zx5t7Um6jYjS3G2GvsURERREFAeu8D08tpe/3+eNfeZw4zwwzMDFLW93nmOWf2XnvttffZe623fl+ltcbCwsLCQ+CzHoCFhcW+BTspWFhYZMFOChYWFlmwk4KFhUUW7KRgYWGRBTspWFhYZMFOChYWFlnotUlBKXWmUmqJUmq5Uuqm3jqPhYVFz0L1RvCSUsoBlgKnA+uBD4Avaa0X9fjJLCwsehTBXup3MrBca70SQCn1KHAe0O6kEFYRHSW3l4ZisbeRLpHfcuygbSxbWgyAbol/lkOyAOqprtJa9+msXW9NCgOBda3+Xw9Mad1AKXU1cDVAlBhT1Km9NBSLvY3aaVMBmPWb25l22kUApBct/SyHZAG8qh9f05V2vTUpqHa2ZekpWusZwAyAAlViEzAOADR9Qeb9bUfK/2cMmEDTF0RSiFnFcb9Bb00K64HBrf4fBGzspXNZ7COIPfk+ACOfbLvNYv9Bb3kfPgAqlVIVSqkwcAnwTC+dy8LCogfRK5KC1jqllPom8DLgAPdorRf2xrksLCx6Fr2lPqC1fgF4obf6t7Cw6B3YiEYLC4ss2EnBwsIiC3ZSsLCwyIKdFCwsLLJgJwULC4ss2EnBwsIiC3ZSsLCwyIKdFCwsLLJgJwULC4ss2EnBwsIiC70W5mxx8CGQnw+AW18vG5Ri5UOHA5Cf1wxA/281s+aSQQAM/PXMvT9Ii05hJQULC4ssWEnBottwRo0AoGlkCQD1g+WxKrvjPYZ/+SMA4v8cBoC7tYorL5OE2TvKTgdgxPdm7c3hWnSCXiFu3V0UqBJt6dj2fQTGj+EfLzwAwKFPXQ9A5TczJCoqEgEgedyhAGy6Js7gCz8BoPm8yQCsP02Rs9EB4OVr/huArww5bi+M3uJV/fhcrfWRnbWz6oOFhUUWrPpg0SmO+igNwC19HwXCAKw8/w7ZeT4Mf/LrAFReJ1JD8LW5APSNHoVTVgpAztOzpc3T8PJGUSlmxyN7ZfwWuwcrKVhYWGTBSgoWHeKCxVsBKHUadtlu5RdEarjocLELLX5mNAAD/nsmadNm3Q+PAWDwLTM5Y8AEAP605t2eHrJFD8BKChYWFlmw3geLLFRdfTRzf3rbXj3n9LXHs3FqfaftLlq8GYDHxvbr9jk3PnkIg69cD0C6rq7b/e0P6Kr3waoPBwkC+fkwQkpxuB8vlm15eaQmjgRg+ZdCAIwdvYbbawYC8I2iDXtlbPcOeduvClL5wDUADL/pPX9/+qSJAHyl8B4AHmPPJ4XgULkHZw5dzMsPjAFgSJGUuXOvySO9eNke932gwKoPFhYWWbCSwkECt74ePlrUZltzmbgYrz3uVQAuzP+YIcGYadHza8b0tceLZNABll0hqsvx74ubs6G/Q9nC5qw2KhJBx/esYG1qjZQ4Pb1gIb+ZPC9r37RNJ+5RnwcarKRgYWGRBWtoPMgR7C/6+af/3R+Arxw+k1AgBcC82iEAnFm6AIB+wVqOizYCEAuEO+37whWn8fgIkUAWJ5oA+H/DjvGDl7oKz4XpYemdR6Ei4uysvOLD3errYEavGxqVUoOBB4B+gAvM0Fr/QSlVAvwNGAasBi7SWlfv6Xks9gyBXGM8a2zcZbvUJrHol75WAcB9oSm4G0R96PeeLBiPLu4LgGps5n9Xr23TR+QtmVieqXwpa7s3IQAMD4khM3HmUcDuTQo7Y9XZd/rfz2DCLlp2DcF+5QCkNm/pdl8HArqjPqSA72qtxwJTgeuUUocANwGvaa0rgdfM/xYWFvsJ9lhS0FpvAjaZ7/VKqcXAQOA84CTT7H7gTeDGbo3SoktYf/MxlM9JABD655wuHeOUixSw4zCRCsJBF7dRAbD9EFkz6i+Tz4uHL6E8VAvAH5acDED+QwUErpNttS+JQbAwkNPmPBElksIfbv8TEO3yNY2+9xqGIe7JAbPyu3zc7sBKCNnoEUOjUmoYcATwPlBuJgxv4ujbwTFXK6XmKKXmJNkzS7KFhUXPo9suSaVUHvAP4P9preuUUl06Tms9A5gBYmjs7jgOZpy1sAaAP73iEqxP7tax7vYdAKRzhwGQSARJ9xUj3kVTJLNxSGQ7ALc9cC7Nh4o0UHG3/M7OG+/z6d1iuzri6f8HwLvn/i8ASeCMu74PgBYKBX795QcYH951LkVrLJl+G0xvu33UfRLkVMF7bXdadAvd8j4opULAc8DLWuvfmm1LgJO01puUUv2BN7XWo3fVj/U+7BkmGDf7P16fCsDImz5EJxO71YczTn6a1edLinPRMhfMI7HpNJkccleI6D/0sY3oRvEipLdIslSwfz+Wf1OMlKUL5MCmPiKADrtwBc0nthXNd9f70BU81ZjHbZUje7zfAwm9TrKiRCS4G1jsTQgGzwBXmu9XAk/v6TksLCz2PvZYUlBKHQe8DSxAXJIANyN2hceAIcBa4Ita6x276stKCruPwndKWfSsrPIDb90zVuRgxVBWXi55DsEWs9GF4PHyc9XVicFw8MOiZeZ+upXkgGIA0hHRB5r7hth8jDxDw58Q1SU0+1PpqqkJAkZvcL0kalj25ykAlMyTNWnOf/VMAtbWtLhfLx98bI/0d6Ch1+MUtNbvAB0ZEOwbbmGxn8LmPuxnCL0pkYcr7x3GwLv3UEIYLHUXEkNKyN0oq3xsm6zkdUOCxOcIK/PgObLya0fm/vrx5cQLZeWPF8q2ouVJ8taIzcFpESOk29SUOVkrCQFABYM+bVvq1En+9vkJEVX+Y5jYR5q+INLE23++w2/jRTYGDh9L/p/FpvHY8Nf8/RtT8jjHpx0FQOSFD7pyOyx2gs19sLCwyIKVFPYTDJqVB8Dch8XSX74HUoIX+tx4mEgbOWvraTxR7AaxbaZNSuO0iBTQVC6PR0up/J/Mh3RYJIuyj8WMFFtdQ7DFBBXNmt/pGHQq5X9f+UWROuYnWvh+5Qlmq3hPYk+KNDHttRNwDQ8ESL0I9+PFVN8kUkPF9K8CsOqsu5hgKOZrvy6ELbXTRNpoTUNv0TnspLAfYNkDE1k2W0T0yj/uucqgjVgfSMgLnSqKUrZAxPu85RKVWHVYKcl8efEbKozonyOfOcsjlH0q+4rmiqtR50YJzpSXVUUlUtFt8ayW7eOYj+XFf7nPDACOveEG8pLy4k5fsgaAS/IlXeaMARNgnvS//HeiWoTqFUN/LPEJo96RPk8892oe+rM4wWqqZAKNbpNJZ/MNx9DvD7ZEXVdh1QcLC4ssWElhH4ZzyCgABvStoeCbVQCkd3XALpBatx6nWNyJDQMl7blhiCJmDI2hgaICxMtcwjtkrQg2yuMRbJLP0sVJUjmyr3FMHwBir85HhaU/v7DsLrDy10dzX/FvABj50H8AMOLv7xEcJK7RS/KzA5taE6pUPij9v/TsQ5zx4+zsyOizs7mq/lvSr5a7FNooGaCLby7uBoHbwQcrKVhYWGTBSgr7MMb+dTkA8248gnTdym73lxorpCkNQ0x4iYbipaL/uyFZH7SjiZvch6JPZFufDyVXQaVd3KjYNtS7sqK7AMaGsPbHUtth0IlCeRY4dR11XxI7QO0F0kfwE8X0EacAMCKZyVt4fvbz7Y556Z3jfCIVPXehv92rPJWu2p7Z9mY24YoeL8SsJbPCfmj1zoQtFm1hJ4V9EA0XyYv0rgkeL3y1+1WZ3eOPYONx4mkIGSk/tsUlUSQveXOJiTxULqFamQz6vSUqi14vYjjpNKp1DALi0fDUh9hmUUWak9Knfmk41e9LX2WPGNKXkMuGG0xQnZFTQ8dtpyPilZWn3dOGSOWWqjHseEBUofxbZaJz3l2Q5dkAcOdLZGXDxUdzS5VMEP+5Us7zi+F2cugIVn2wsLDIgpUU9kFsOU8Ma2Uv7F4B1q3XHkPDUFmtR/5EUig99+CKi8OopLgiC5bJWpCOKJztJt5gmxxX8lGQ3M3GnOnKNt0skYo6lSJw+Fj5/qmoM25jIxjKNy+eob5ajJYVX/qYPKSdF6FYPSbAkOOF0u3lsc916bo80X/E374BwICmhcya8LjsfEQ+1qYauGzx5QAk/ir0aoUPioQ17D/f477oSQD88EsiPfyiS2c+OGElBQsLiyxYSWEfgueCHHGprPLO2Eqgczfk5hvEwFc3NkWwRmwDKlfIVzdfI9WVFn/hD/x4q+QEvPbJ0QCEG1yiq0wCa0geBeUWEt4h0kXNhDLp9/NCnlX+QZwdN4hU0Pe8tmxZQ/5gjI+t7A5q0jgZx1RZf0L18O2hr3RyRe1jxcW3d7hvSDCPe8f8FYDrv3KRbJwnWaTphUuo/LEwUscvkXyOZfdPpPJKywTdHuyksA9h2RViUR/5czHKdVbCbNWv5eV2TK2Ufv8KUPyxvOQNxwvhyMf/8RfTOsSt5fLSji+SSaRgTYqWocVZfW49IkSoQQyFKVMTxjNMPnL/H3edljxqGAAe+9bGUwqJbRH1xCNgqR+suPbdSwF48+Q/AvJCp7W0c9TuCa+bUuLVmNkygJsfEzamoS/KDVG5menUY7WedrmoICsfvLtHmKAPRFj1wcLCIgtWUtiH4BVVrb1EXJL5j7Z1Raqg/GQb/t9k0hHDbWM+tILF3xYj36ppMzo8z6HnS4HZjWcUsmaFqAY56436oMEVQYEhM6Rd6pChQMfkJZu+I5LH4MckbyFdXiT/P7ySdJVILk6ZpGPnj+rP2jzJkWjRGTqO3ZUQPPQPSp5Dn2Adsc3SX3CHSAXpT5e3aR98fS4gLNEjxhl+yoVL9ujcByqspGBhYZEFWzZuH0HqlEn+KubVYvDIUQFUSAKElv23GA4jgxuIhCRYp3ZdoTQqSLLytHs6Pdfpi88FYGzhZt7/gwQSlb0uq3x8VD+cNzo2wHkRigWPzPLHWv606PAbp2bnPgRiMZKTJWho+6EiHTQO0lwx7Q0Aflj2aZv+z/z0bLnOjXIPht8JrzxyLwBnjT4ekByLbdeIPeXDH2Wo3JYmRUI445/CKj36m5LK3W4xWqVY/oDYFEZePq/t/gMQvU7camFhcWDC2hT2EQRfn0vA8BG0lhA8rPqpUJdFh9QBkEo51MclbLmsQnTj2Uf8fZfnmBsXHoNfD/8HAN+5/psUPSd2jPhJIoGEtzR06AJ9eeNHnDEge9v6y0aSnto+V0Fi6liSBeIira0Uw4fOT1EREUaXxxpEwrn5g/O54BBZrZv+INmSBYPk0Vw9TXP2lHMAcOvX+333uc3kTfwoc76hQZGmfnb8kwA8Mvo02bFoeZsQaLQmtqBtJSsLOynsU+hIlXNKS0jlmOjCpQUABCvrGdtPiE5+NORZ0zJTCdpz1XmGOIBJEdk/5s5rARj63Ey2fEuMhLmbZCpoKi8hf1H2+b2IwjPPuxwh786g//92TF4SXbaFTVeY3IS4jN+pCfPLT84EoHmDjC1ns8NTq0UdGBCXl7fxOFEF3jj2z5xRKwVlBv0yMyl4mLZkGgAvjH6BGTXihr39QVFBmq6TmIRBL00i9pQUtqHVPQ6acIrVfxsPwLCLO2eOOhhg1QcLC4ssWElhH0K7BjGA0mJytsr8nThcVtCCWAsb6kX89iQAgLtrhU7k0Y0SvfjK2GfZGYPekIjF2sumMuCFTQBsPUmOaxgChYeKcdD9RAyBFU9dDcCoD2bv1vWk1q0nf53wK9YZRuiC1ZqWGhl3362iUlT/WwMsl4CtmhHiD71xgox7UDCPlrHNHZ/kPFOC7lP4yyLheRzyK5FenMrhch0FOaRPMEzQb2WMiv0fEpfrBdfJ5+PRYZ1SyR0MsJKChYVFFnqiwKwDzAE2aK3PUUpVAI8CJcCHwOVa690rcHgQQoXCHdaBXH5VX5Kloh8HNotxbEtjiFXT7mrT9u9XnA7AK0//tc2+kY9IiG/wWpE2+t/jsOQnEmjkNokuP+rrH/jlvuq+LO7H0ffIaqwR+wZAevsui375CNcbktiYrD+1IyEs9XBRRr2PRJKkmkSSKDtfCFqigUyh3L5ldR32n66TfUuTjRQ8IzaK9MliNMW4Vp2CAlRabCbNZ5maEC9+QLpayGF/8ep5AHz3wxd45pDSLl3XgYyeUB9uABYDBeb/W4Hfaa0fVUrdDnwF6Jm6YAcwAhWDSS9dkbXNi1dwEopUi1jxJx0l+RCra0va7eeldiYDD8cfK8xFn1QJxftTd83gqAe/A8BIE03pFBez/VxRHwpWiSjdUi4TUTQS6fJkABA/+yiSMXnZY5vks3h5Ejco3zecLBNFwT+LibQYQ6SSSeTdOkkGuzR/O5s3y8RVQMe44dAzqblJvpe9Kd6bTSaWod9jS3DN5BFslskhEI36qsKIx2Qydk51/YK7B3OUY7fUB6XUIOBs4C7zvwJOAUyyO/cDn+/OOSwsLPYuuisp/B74PmCqgVAK1GitPafwemBgN89xUGBnKQGg+QjJOUgUuKhSMULOe0fSq5dd0TXhq9YVI93FSy/khDLJBfjzBCm1dsx/f5cR94qLccflsqqWvrScogdEalh/s7gr+8wTUd6dNAbnY+lD5UhMhW5qRhvRXCdkxd1yvfQ18Mm1pKbIz1+4Rh6JnDcW+qnV0XHSf797PmTVzUcAUP+OuDDXJuTaP/rKW1TeuVOMQTtw6+tRKZFAUuvEdVl3vKR+3/79l/nxRf8OgPOvj2WsocyjH3hbjI+//fg0ZjwjktavRozv9JwHKrpTiv4cYKvWem7rze00bdf5rpS6Wik1Ryk1J0kHVncLC4u9ju5ICscC/6aUmgZEEZXv90CRUipopIVBwMb2DtZazwBmgOQ+dGMcBxycInHZbZ5imJPTGmeNrMxLpmckhOlrJRfg3iFvt+ljvQleOv61GwD4n2P/zt+3Sdj7BZfJqhw7xGX1tw8DYNDrsnqnt21j/Q9kBdeGyzW6Vfa50RB1Z0v76HaRHoKvf4jTV2pAqKjQxwWb5Odcf/4QkkaGzFsn23JHDsFJid1g6NPCxLzjwgmkTHBhuELyJ9KL5cCLZ3+NyNHiruzfSZGnin+IvSMwTKSNI4cK7dvkSIill0kflR8YqSbeNm5z+G9djn1KrksdJdepP1jQpt2Bjj2WFLTWP9BaD9JaDwMuAV7XWl8KvAFcaJpdCTzd7VFaWFjsNfRG8NKNwKNKqVuAecDdvXCOAxpbLjoEgFRMVtfIDkX+OrdNO09COPFqCS4KNaTo+4tVALy3QKz3r54lPPGnvfgdxnxXvA9rvi2ei+YhSfqbSu6BdySUOTB+DMYBQOEy+VI1ocCMRzHgQQn08dx5gfx84odKgNKmqSIp5G2QcYdPr6J+hZwrkJL1p/j+T2n+/GQANh4rosghk1fxZIXYpr2w7N+PHQZAVCX53fJ/6/ymAS++9CgAw5/4umxYLqv+Zeok5p4v9+FL930NAD1vYZvj9QcLmL5GsnVvevQh4OC0LfTIpKC1fhN403xfCUzuiX4PZLSXHt14oTAehxrlpQo2y4s05MUaXnzh4TZ9VLwgFZf7FUi7rROjrFo1DIAHPyd8hpf8TEqzjX12OWsekH2JuKgDFfc4hF6bI+MpkBc/WZxDwRqZDJI5YiIKN5jScs3anwy8aMH44GK2j5PJoHipiOR1FfKyP3bofYydKJxu126QmIcVv4YNFxoRfbOMe/m2MkpGSh9b0xJD8dVCiabMC0T5fWVD+zexFbz4CYCV598BwLj3hPZtRzxGwFDEbf+5nLv088FMubtWnJKL7xO26pN++iYAv+r0zAcebESjhYVFFmzuw2eFMkOYaiSFwPgxbD1S5mjHRPeVfyCr2pLvRNvtYuyNUlNh+Xcl4KbvxM1MKN0AwM8uFxdcaYsE7Qx+voFlb0oW4fAnZWUMVlXjmtXSiwx0Zi2iyEgNnuEwNVBWYWfVZpInipHSmScu1Eg4RN9mcRmmY/I41YwUSWFsOOaP9S8DDbXcRvCqQd24RfIRltX3YeocqdkwtkwyPx+ueMM/1nEMqasZV7qujqAxJq47fxAA87/3F3bG/KniXjxq7pf40WbJi/hg4mMAVN5yjU9/54yskH6Xr6L0E7k3HtlL7aWiGhU+1P0qXfsLrKRgYWGRBSspfEZQjdmZf9snFuMaF2CqXHTz7WPFJfnrqY+1Of6ZxhirrxljOhOdf/PCviy/SQJ36r8o0sX2c019x58fxvBn38vqoz0yFR2P43pGxFFiNwg0SVBS4+Rh5L4nEoInWbCwzg9O8R6mQcZ4ecavJnDGJ9LuOyUi1TxaX8wtC4UDIb5MVv5QnUKbg5tOkXOvSoodoV4H6Vcobsod54oBtvChWaTXi6d7/veeaecqBHWuhDGn3AALqoUd5qUikX6mT3udd34nAVLuasm3CA4ehN4q4128UkLBQ+c0m3N2eJoDDnZS+IyQWi0+9GA/KXEWL1Y4CXmBXaMtNE2QB/KivNo2x39n9sWkB4nYPuhlk1/w5Ptw5KEARGrklR/xa3mh9cKF7UeRtQOPpUjViyitXCO+98vLqvLcFfz5lc8BcI8xKhasdolPlPEqMyvpEJR+Iv/MLxsGgCsffNA8jB2NooZEWzlg2jAptYOLll4MwP8c+jhff3U6AP8bkPFcP+Q13u4jqpA2Klxq3Xr00YfLwQkZb9INc7DBqg8WFhZZsJLCZ4xtZ4qInsiHRKmsliFT+m34/WJoPL3/uT5Zys+2iQjtrIwy6q+ywnl5E2rSOPh4KQARk4btLa5bvnUMpZ9IOLnHGg0Z450qlE8dDUOdSZWOiPpSN0Hcp+GaFASMjuN2VsxOMPLb2Qa62sum+sHw/WZn+oiYCMlR4+Sa/lYrnJSbEwW4pj5EzrYkO+OXVWJkvbmsbVbjmvfFCFlQ0ULAuHdXrJNr+c68KwheJP0O/SRzTP0wL7TSSCJue5H7BzaspGBhYZEFKyl8BggOHQwpL9DH4xvQBFvk5+g3U3T5TcfL6j3wmmZOGimReGunyTxe+ZPZYAJ2vApNA/40p0OilgF/XcyOs2VVLR0qbja3OJ/NUyXPIs+Unw/XpHCWiVFw85el37z1si+6qYH4yeJGDL7WOg+uc+hjRFcvWNlM7XDJQ1h/urEtJBRjfisMzzUJMQQmTeLF2sYS6qrFplBQIPcn1Krfv8+QCMSbb17CcfPPB+Cd8U8AULJQrCj/teZcKg8XY+LKWeLKTEc18X7GdnKEFMHVHy0iWi3XevRYkb7mbRy0W9d5IMBOCp8FHAd3h9APxTYb85+CsvkiHq89S0TY5EAR99ercvrOE0t65Tc/AGDNfx1NvL9hS/qaZAq1NiR6EZO6yRRbLSqgdOZmAFLrxHLfNOlISj+R/Y0DxboZSWufuchLbMJEA1YdWUKiQL73q+s8YUgddRjOZvEmrJ8iE0H57CbShpk6vN3wTha5frrzxtUSDLutVBKiNtQXEo7JfYkXiNEvE/0Aff/PZEndDC8d6kV9yrU095H+P104mKlHiFq1JpExcrr9pN/Vn5eJceg8TVMfeSWWVUuS17WH/AuA58guxHsgw6oPFhYWWbCSwl6EX+xl7XoC+bISNhoKmr4futRWyM+RKDYGuCYRofvPbMBZtBqAxbfLSqpicQ75vkQves65QH4+LceIihCqk1WwpVzE8di6RvhYjHGBw4SopW6oQzxfpJL89cYwGQpQdZgc48oH9eLOxw1r34246jxJXEpeP5HAFmnYd65IANsmyGqsHQg1yHV6lIvrTo1RsFLa1UrOFsGmAIGYrP+lH8g1zxsmN6ZqUyE40j5vo3TiFBf7ORgeDnv/yyyYkp0f8vH3Jcrx8P++lsTh0m/hZDFkVi0qQ63NMec34xg8iKCpT7GtXvaVhwyhpJUULCwsDlZYSWEvouVECSyKvr2ILRdJNGKexDCxY4xDzhZDXlooK2Ll12RlT0+oZPmMYQCohMgFRTMjpDZLnoBXbNWJQ6JQVulQnZjjgoYQNQbUXiQkK8lcaRMv1n5GZMMA0de3HpcCDHN0o6yupaMlYGnbhiKCeYZcZYGs7DqUJmpIWdMmzmfs0ZK+3fDzgaz6oqw7sTUynkSJS6hRtumAnFu5iqZT5N70nWWIYZ+RKMZCt4b6E0WkCP3zfTlPO/d20KWroW3leQCa+ms+XCUGxtIScbeGawOETUyY9pZGrSlcINc68Fsyjie2TTI7u05Yu7/DSgoWFhZZsJLCXsSGk4wz7apKlFnVItWyyuZu0FSdIt6GMT8RPbbpJHGVbTw+SHqTWfG3yDze5/aZ/Ga1BAaND0vWYeWD1/i1EgOGXiB/rfTfPCCXdEi+950pq15xSYwtk41efaKskGptEcE6OYc7TDwTJTmidIeGpLlxxEsA3Foi9SBr3+hHyWKRHmoq5fo+3WSCnSZFUIb2LFFgQrgjrm9HcfMMNVqDw5bJIpWURYXOPd94PJb8R4xQVMZR8bwxcqTTbcKcA31KOWvalwHacE+kypIUfCj2nBFfXA3AokkOweflXOUvrjXjaGDDF8WAktws55o4oG39ygMddlLYC1j9cxHvh0+Rh2/JigFETKRcbIvJK0hoSt6WB3Hdb+RFbTBiebRPA+UPi7gee1JccDueG+VPBhXPSwxD4TpFyvjrUrnyEibzjDvxsCD9Z4pbUzvK//RYluKzpAiKKnNJG8ankeVVALw05vk213TaocJydNi2r1NXKy9c7XgxVqotMgj38CYwjEs0mRc65EJctnmqiNvo4LQYJuaIfAaqTZ2GcARt7lVgsCQ16Y1bcAZKwpLnLk2tXgtr248+DOclKF4q+96fL+njueWNvg83vU2uM5CXi2veiGBQJqzyiIxjW7s9H5iw6oOFhUUWrKTQi/Ai5RJ9ZNVZVy3iKmlFjll6St8Rt+K6Cwdz1XQRzZ/fLEa38yokMOj5O48nWmVSrSdL0NAHEzP/JiZ1AAAgAElEQVSVoEZfI3UL3MnjWH+KBAklik25NmNUDNcE2HRM1GyTVfvwE5dyTrFE7jlm2VzdUsoP+gr3Y5mT2+G1zU+IuH9C5XLeSouLM5wjK38ibapBFTRRbySEeJE8atHCOC0ml6EgVySX+nSUfGPw3HKa9FH4kARYVd4cYvmvJbgo2U8+A8tXoRpMgNJRIwDIaWhk5bdGmdFlisgCRGfmETKp6gVLRQpL9YWGwWYcx8v9Dr+1gESR3IcLhgqH4/oW85vRcem6Aw1WUrCwsMiClRR6AMGKoWw/VnTcwgczWYEbTpWVLbxdVp+WXBOmuyZI/0fF3bjkB+Ju+8G0J/jzshMBuGmMSAw3vnWRdDQuRV2lrLjvnP8n03uef56WzwkvwI6xIVr6yIobbJD53rMZtJSnCW+X1f3Kc18H2s8shDVAtoQwq0UknZfrD+OvCyV46rzR8wGIp4P07Su+vaqFEhqcO0JW1eraXM/uiYpKH47jEi4Qg2ptrXFrFqRp7itGypx8UxjIsxWsWoMzX3IwksZVm1sxlNSqNXKOSnHt5qwoZMC/TN7HV7OvSJ9czbpSWfEHvyYSw7qjA4w8UVynOxaJcTGUTPhVpgKGuGZUrgQ7baF9SrwDEXZS6AHocIgqyRMiXiAPcMMwTdp7EcrkQS94V16C/q9uZcnNMhmMPFys239YcjL5UWnnkaqccubvAfgkkc/IkLxoHgV6a2z7ingHkokggQ0mb8KLigyZWIAmh/hgeWn+o3QRAA/UlXNFgRjZbq8Rl8A3ijawyRSSOecWYYIuNwVbf/zSY4yetAmAASGJKHy25gifTn7Ya+IRqBkl526qDlOwRCaiOrMtUpokYOITEtXyoqlomsZBsi32nikjqzOZHPmmkEx0q6gbzZV9CJlJwSs2s+34cj9OYmfMn/wII1ZJxe3qUabc3RKIDRAVZfUwmUDzgX6zZOIpv1Du98QcmTjeZmL7nR+AsOqDhYVFFqyk0AOonlhGmbFtefH8eaOrUUYEDT7hFUQxov2MBoanTAbkqxJpd+Elb/GzPtkFSjxD30k5Lq3VhZ1x3GBJdX5l9ngCxisXLRUxuWWbSA45Gx36nSqr/DHzvgTApRWzecDYzxY1ibuv4s2zGfyybOs3V1yojeNl36VPXceLF/wvAKNCMrbnlYagqRORJ1JB80dyvZE0NA4296CsxR+vY+5L6Rxp31IWJF4s25oGmHs0WFKWU+vWU7BKjk1HpH2wMYUytHOFK6V9c2mA+C7SE3IrRPpKr5BGxUtcPh4l0tGA08TYG/z7MALvfJp13PZ0x/f9QIWVFCwsLLLQLUlBKVUE3AUcioSC/DuwBPgbMAxYDVykta7uoIv9GumTRM/M3Zwg+LYY3gpbRdp59QTW3CrLcdgExKx4aTiuCW5cfH2mXsEZAyZk9f/yxo92ef43DcXY9ris2ocetoatjbKyVdXIpzLuwdSEBtZsNfUbVor0cO9r0yibLxJL6C0p0a7uSvOv23ZV6S/bCHlr+UfcOk3GefsxsvL+/nEp8+aGIVUs9yNm6M1KYs2smiftBm0090oFSUyQylDBxTLu+kkinUSHlBHaJBGe6eWi3wcHDUQXSruECc7KqXKJntNxiNH8yY8AcNi71wJQsMYlUS9GiPMOlWt/etTpRAzXxF8WSZ2IOyb9deeuDnh0V334A/CS1vpCpVQYybu5GXhNa/1rpdRNwE1IfckDB4anMPyhxCqn6+raZUpedal4JPKj8rA2zBTrfKpQs/SK27LaDn/i61Ty/m4NQ9QKOGnEqwA8VF/Kj2fLC6lrjNXNDMxxXL44WnScJyNSH7FpRQFNn5MX7r2/zjG9ep+7j28UiRj+ja/KtVWnm5j09LflXHVi4Nsc0PQZJ/djXUDuR58PNclmmSXTRXJN28fKoxkYFaTPR4ZxyUwKqfUbwEQflxQKo1Pd8Bz+OOZRM5LW3EzZaDxMVJH+76SJrpUJbuYYiXVY/XnFMC33Rs2X+1czIdZOLwc29lh9UEoVACdgCshqrRNa6xrgPOB+0+x+4PPdHaSFhcXeQ3ckheFISPi9SqnDgbnADUC51noTgNZ6k1Kqb/eHuW/BqRS1QBtRsyMMv0OiBdc1yEqULJdlO39M2zTcym+2lRKO+IWIuvP+s21JtPZwaf52fhkTt2NzWub7MUPFuLiproBb+kqEpPfJ0V3q1se1G6byxnOiMnkRk8F6xbcvkIIsnqTgodiJ+cVevcKxx9/3PbaNECPojPPuBOBPk05jgAmo+Gi18EcGK6RNcayZmjqRuPq0M6bGQaIK1Q8JMDnSsYTg4akT5F5eWXgVOS+KFDB3tRh7oxuDuEbNyV8jv9VND1wFwGBmdtr3gYLuGBqDwETgNq31EUAjoip0CUqpq5VSc5RSc5LEuzEMCwuLnkR3JIX1wHqttbfEPY5MCluUUv2NlNAf2NrewVrrGcAMgAJV0tXiRZ85ggMH4Oa0LWHeHuqOGQZAygTDlb8vq+E7l/2tS+c68d9nA1Dx1NWs+vwMAL67SVbqJxdOYOVp97Q55oMp9wJw/LzLAFjxrkkFLnbhqC6d1sehs6SUe2KpBBRFtypM9jVhk14drtHM+KPYMe45VwKhZh/xd78PLxpyalT099nTf8sRr18HwJwmqXmRF4pz99BXABg773oAThsnxsuJeWu49MeS1v2n6+VanhuX8T2Ga2Vl/8X0R+kKvr/yAgB+dsgz3JQU9uexZdK/O1CxoXYYAH0/EkmldK78xl2rcnFgYI8lBa31ZmCdUmq02XQqsAh4BrjSbLsSeLpbI7SwsNir6K734XrgIeN5WAlMRyaax5RSXwHWAl/s5jn2KejCPNyPF3exsXwMfEdWHS/4BuDkfxcOhA0nyE9QQXbxV4DFkwyFO7M541rPXSnSRiUfmrLu2XijRVb1ukXCj+AZ4vOXOYy+9xoAlky/re2BrTD2DrFlxAyxS2GNfCZyM3RvOdtkHIE0BEy+QPrJMrmWzZJ8sOqsu5jbMgyATxOiIl5VsJWfT5F1osgRO0Oh08SDdWJL8Ahe02a9WhXvA/mykl9fLKHN129c47tvw6+IR+U3Kz7H5029h/bwbouMt+ohsR9s/G4xxw4Wb8bKerlXU0pXU3uWiHXuApFG9Io1u7xXByK6NSlorT8Cjmxn16nd6XefhEnQSS9a2qXm1VcdTZ+X5aFrnCAP/N23/87szSP8ktRvqHgpc8x/rhSR+YSdcm8uXHEaEwulmMlb43N2ed4f/v7fAQj0M5GETTLuZJ6wK3eGU674CoOSMoltnpJ9rmiNJhXz+BiNHpHQfr/RGnnx+r5pZqKz4LoiGbdXqOWq8U/whVwxfq4yBXHu3XQcjxu36tNHrQbwq0RHnBQrCsVNOiKUiS70YjhO+qpMrqmHgzwzQgyHlSFRYwYHZWI57JlvMXas+DDL5ktex21LT+Cew8VJdt12YWyauW04J5aLm/mDtMfNePDBRjRaWFhkweY+dBHBQYZYMOj4abvtwSNWKX5gNtq4LtfIItnuSjf875K9N/BNzQnR9iMYvVUU4OZde0GZ9YM/ADDpjzcAkDZSh3Y0eWbYR30oKdmHlm3izU/EJFR5j8jtdePCpHIMXZsRBgIm8LBuaIBwnUgg8RJDULLaJRHMbl87si0t2vcNt+P8RAvjwzKoceG217e92WSS5ta12tdx/sGbd4lb85dVo7nxwauATB2Hpv4iuRzyx40k7hZxJlUq525Y6ZAcb2pBRCSgafmCQTySI47PIaYSViB+8HnGrKRgYWGRBaX1Z+8NLFAleorat80Qy/8qRCYjL5/XScsMvDLvzf8Qo9Ub4zKOGM9QNmCWEALcO+RtLlt9EgDvrRAJo3KgeHNbE6d6XAfXr/k8XyoXl+UFeRmqsEtWnQLA+5+Kuy+01ej3WqpQAbQUy1pQvLgZDIlrw0AhccnZmqSp3NRoyJd9jlksEwWKiDE6erUjkgUQNSQyxYvFFrH1SFnt68YnWHXmXZ3fqFbX1R5fxJ5i6kcXypeHythm3LEeQWzZR5qf3iI5Hq/UScblk29MgX5ysSVFMp6iX8i1qJkf99i4Piu8qh+fq7VuzwaYBTsptELTF6YAEHsyE1244mF5eaMfy8Mx8NauRbYFBw8i1V8mg5efaptUM+ot8douPVGMXSNen47bKNqcSmULcE5xnHDEMB8vKPS3Bw6TdOCmWjEIhraECJgCqm5EftdQbaaEm+dN+P6NQoH+uxWnoR8UcTlSJxOGG1TsGCNidaLQ0MV7TnoXcrZlF35pGuiSsyWb5Sluwk7yV8LAS8XY+kxlK4vqTjh/+ek8MfKVDvd3Fyd98nmiP5A4iYZfGK7GS2tYfa2wNk2/WHLFH15xFK7RgS4bKRNuVInu9PAvzqLg4Vnsz+jqpGDVBwsLiyxYSYG2KcqtU5iDA8U1ltrQiYVvJzSfN5l4gay479/acVzAn2vEXXnn7edSV2no20xZtVSR/F+4MEjSSNUpU5MhNawFt96UhmuQ82iVcUGGjUbR3EfalyyCxv6yb9TZywA4oXQZt//jLABi5vLSOcqPwPQMdg1DRQTI2RrwjYmeGzJR5BLZEcgaW8GKTJv6Yea7MWmrikafxbnuI4kPuPzf3uCHZdnkJj2JMyumoLtiMAw4BE09iaqT5XdpPl+ySMvzG9j6nGzr97v9Mw/CSgoWFhZ7BOuSbIXpa4833+r9bbsrIXiIFzpUn7Xr3AjIBPcMvv4+bviXBNHouCzHJR/Kctw4SPsGMt/FmA6gTOWktOFVCDYG0EFZrZtNSqH3f93wAIb7lU/elSpJH+UNh6GyguZsNZF8IfzaB66p1oQnHajM95ZykWKCDQGS+dLeK1MfajbnHBbIuAdHSvZmYFOMqhwxagaHi35/RGx1p/epO+iSlADgpkmtkyCnoge8T9nljKwgb6KJ4jx8rDTvamTrfgYrKVhYWGTBSgrAUf8pOQEl97bNP9hdpE82fAMFiqvGdd1a/Xb9aIJVpvbBFlmOqw+VpTe20fELtKZLxAsR3hAmUSL7Pcq1QAI/QKnRVD+KbpXPYIumTmgdCNUbd2KhxjGSRNw4NUKNmfM3jJD+o5uNzSIAqTzjkWgxRWhDmTDnyHZTI9JkRjb3hemnvQnAqKiENj++9Ug+rRKKjcZ6kU5yVaLD+7I13cjlF0iAV3tenK6g6QtTsjxKe4L08lXkGeYnt1s97fuwkwI9Mxl42HKkPOiBBDy4VJzj7Rddycazzx5N3hb5Xlcpj13uennbVBpSA+TFcbaZtG0nMxmopHyWfqLZdJy8tEWL5AXVht65qVxhWOFoKTMvdjxAzkfizvQ4I5v7aUJ1ZpJpkj5KFstLnooqakZlRysqV5GOeBVfzPgHy2PlFseZUy3pzoea6s0Bpf3JwCscm0Zx8xahQftl+fys/vs6udSMESvrlBtl8r7mP//BVQUSw/GQSWa6NH97G47LSfPkPr795zuo+qMkX10++nQZ6uABpJcsx6ItrPpgYWGRBeuS7GHUXzwVgIZBAepHSuDLqvNmdHrcEbdc65eR91bcvA2y0tUOD/guPdcxRj2dyTWIVJsApSB+una41hgLg5nIQ29bfYVpU62IlxojpXFlukH8UvRRE5QUNnbXYJMmUivtt04ybshcjSnjQLBB+kgMNOqAVuSXyApdv0OCh5TjgiGV1TGRQKYcsoI5aySl+ZVj/w+AitCuIxtfMoVrfzdy7C7bAdS+MJJZEx7P2laVbmTqY98FYNQ9QjaeXti5RLc/w7okLSws9gjWptDDKH5XXIyFRfl8WlnQaft/NEib+grtG/hyN8pqXGdqHOogBGXBJWEqo4dqlC9ZeMQkiRzIX+vlJmS3DzZCS5mxFSQ9l6O4MSETeBRIgQ6Z/SaUuXGACZluUOwYn23AdBKKhKFlz19t2o8WSSG5Npd6LQMJhEUqcJuDqIDHOy+f4UCKdJM8ip97VOpXVk4Wi+kLo19o976dGRM34+/a3ZuNwmnLOQOxN3iBamVOLuk8U4fjEqmHMexHXejsIICdFHoYqfWG0XijQ7Bmcqftb1k8DQAnAaFGU526RF7UtEjIRLdDkyFN8TwHbghy18u26sNMQtIC5ccxuIZM0ctHcMPQPFDUmbzlQb8Pz3PgGIk/UZr2VRC/ZkQ8kxodqg343wHcoCZcY8brFXj9RJK8Ajkaqs0jpsWSGejfAo3mwky5uR3xXPIXmYNNv0s+EnVixPrpXHioJKHdWt42tdx7yXc2MnYFoe0ytlSuXKhTVEi6pna3+znQYNUHCwuLLFhJoZegJo6lYNz2Tts1LJFMytg25ec3eO7BkGTvkiiEgHE7eqtatEpRZ4rZegbBSL1L/eDsVduLKGzpo8lZLz+3J4FoJ5NNGa0yRsK+mui67PoJ8b6mjPxWh4CRKJImgzLdL47aISfz4hTccCbCMdyYMUgCpLdGfCboeFjOs66mqA1VnGtEe1qCbGgWHWjSXCGHmTvpMY76obgn7/vxbwGoe3EEBWetoCMEckWN8SSKlzd+xNKrJCfliA8uAaDqvEMovr/n3NP7K6ykYGFhkQUrKfQSWspzaO5CyL1jKrSnYmRyCAz9WcCQo4Zr8I2KfsHYnEyuQU6VHNcwIOAbGD03omcsVGnlGySTJjoy2KDQhmSlfpiJ629wfKOjJz2w1VCZ5Wifmi1VKF9CoTSYvIwmY5CMbDf/D8rE/gUbjS3EgXRU2mljU9BkuBv88Ubk4sLRJOsbRFJoahERp+LZr7HqFi/zVIKv3jv8Hz679X11EjH5yJgB/vndRrHUusd5toeMfaJmi9hAYgMUu6hmf9DATgq9hNjM5ThjjQ/9mI7b+UQmOcKjCBA21aQ9oxtK4gcAgualbO7rUrBC2rWI8RztZDwRUTNRVAtlJJEditRORNCBNDgmSSreT17CUFWQcI15gc0L6nkXgo3KV21Ui0wUyXSEfEO84nEieolaKpVRhTyrpdOSSaMOFYgukkgE/YnCbx2X/mNFjT7xSWGuJFCFZuVz8sLzgGw2Kw9etONVG+WztREy8E5bY+XIEZsBWNEygODgQQB+YtTBCKs+WFhYZMFKCr2EdHU1has7LzamSkXHCKyL+rkGXkShJ3JLQ/loHGqSlDY5OHFp19RP9mkHctdJw8aBJo7AqCcqDcl8WcnD1XKeRH4mGlElZVsgrnwVoaU0exxOs/JTsX11IOT4pCyeazJhkqvSJSmiq02uhjFoagfSOeakhnbO1QrXbPPyOJyYDKJ6YyF9KkUv2FglakQkDNXPGnbtcW1u6S5Rf8lU8y0jMRSGRQLRUZeao0VSyLOSgoWFhYWgW5KCUurbwFcRhXEBUjauP/AoUAJ8CFyute44N/YARu7azklW3GbzE0S1r1d7OQSeITHVyt7gSRPBZmg2EYpetGMyX5PMN/0aF59KZvoIGVegR8Qa2qF8qrWwoVRL52i0kQJ8OcUs7DoEEWN8bBxm0rYTipRxpXq2CA+hLSFfKvCuJR3TvrRRWCArdM2OXH+/Z2RN14oxQsXSbGsU66mbzKxhhauk4T+bpN3nYkk6wrI/T6HyOkmdLnzKSAi/zexftEVErYJFIZqk8h2R06RCVOjVuR32e6BijyUFpdRA4FvAkVrrQwEHuAS4Ffid1roSqAa+0hMDtbCw2Dvork0hCOQopZJADNgEnAJ82ey/H/gpsOuKpgcotNP5nHvsOCFRfXdBJeFt8nME0h7/mXy4YUgUeyu6sfrntqoNaQwDwWblByYFjS3B81okCjTR7V7ug+leQWxD9hgjOzSNRl33ApW8PtIhjdOcLQ1EqwI0l8vYvBBsb1yBhPJtFp4HQ6UlNBqgMEcGWZPIR+d63g+xQYSHNfjnqN4oRoqA8coEmyBUL5LCC7WHA/C52Bw6wrzzfs+UKsmI/PRrf2mzv2+BnKu+KZ/6U0TsGvCihDunOuz1wMUeTwpa6w1Kqf9BKks3A/8E5gI1WmvvXq4HBnZ7lPspUvmhTtucUCwFa9/Vo0j0kdsWrDWTg3m50lExAEImQjGZr9HmffZyE1Qa4mWmfkNT9gsabFJ+lGOoXl7KxkEZVSUokjwtZcoX5Z2EV5zWI2XJTAj+C9rYSjUw6o/nhpRzerqHOS6hSBvGqKoGUQuc/CRqvfhLk4Uy/nSdsV6mFZiYBdcPewj4KeGvPyT5JUtveItRoVzaQ2Egp93JwMP6bRKdkD4izeeGyyS9elVzh+0PdHRHfSgGzgMqgAFALnBWO03bJWxQSl2tlJqjlJqT5OCr12dhsa+iO+rDacAqrfU2AKXUE0iYTpFSKmikhUH4cWbZ0FrPAGaAkKwALP3LZMbeLEQX+3u2WiA3l+iG+k7bDQlJfkS4uIXUJglbdENedSeTN5DnEqky+QKt3IRejoFHh6YDyl/dfSuhv0JngpG8DMpAEsLmNicyhaf8duHt2fu0q4mbQCmPlCUVa+We9PItPLKVVjUhEmWeezZAXpGswomEycWoC0OBYYeu2ykJQmlImLUrmFlfQg2iA6VyRV/68i3f8w2vxSdKMNI745+gKxj9wx0A1E7sx+wBQh9XHlop15w8+Gzk3XFJrgWmKqViSikFnAosAt4ATBE/rgTahpxZWFjss+iOTeF9pdTjiNsxBcxDVv7ngUeVUreYbXd3tc9R186m83Cf/QM6HocVHZes9zAxIqtUKuHgRo0xzgTwePYBp1n5rj3PSOeGMiuyx7Ccimk/WMmDx2eSzsnUjmgYkgli8vR/7zNR7Porv1c7wpM6kvnalxA8F2kyH5Ieq3TKC2/2aksqPzvSC312oy6NpvZlaZlIUtubQ2gTNu2TwLa0CvWOmLyM2qC/LZVrXJbmgdFKmKgB6k2ORGfw3JmpVfI75a5aQ+4/ZF+g2NgZqg8+SaFb3get9U+An+y0eSXQObvIAQ6dSqFTnduu6115CWJ5cRpMvD+ewc68KCrl+Fb8UL0Rx0vTBJKZRCUQI56XV9CacxHk5fEIVzzjoxvRuK2MlN6nZ7j01RIzKTjNyo+K9FSbdI72JzFv8vDzHdxMvIQ2F+A0BXBKZOaqbciwOquER1Nvzm36cBoc0t5EmONdQIDGfoa0xbyzTiv1qHajBGs0ubIzFvDYX7Lx9TelyO8o2nou0tXV7R4DsP1rRwNQPwSG/ejAS7W2EY0WFhZZsLkPewE/3HoYALf0XdBm3wjDWlwca6ahWgyNykspVmY1LkwRaDRSgSEfia0L+mqDt0IHWzIruW7JXu0JgDaqRcZImIk78PIttEMmPsJb8b2wiQASooYfGoETVyS9FVx5PI8y7mSR28rQafIcIpqwY8ZoRJBkPFMCz+s3kC+GRJ0IEMw13zeKZBEv1eRUSbu0yfxM5KtM3IZZ6p5slGKxl+a3T3ZT+p4p0NtfIhpTmza3267NcXeKdFAKqCMk+UJ/bArkuvu/AmwlBQsLiyxYSaG3oBSYmhoP/0sIFW65sK2k4MEJuJT1FXKDHTUmCMdzK7rKN+yFakxEY6H2bQnaGOISGgLG2OcFNnkrb3SLon6MrLixlRkjnWcI9NqH6gJ+9KS/zSszl6+JbJPzJwpMm5DGMZRrfnl6Y3h0GgO+29QNG2NhIkDAWD+9YCSnIEm63ozJ2EncRvk/1KRItshjqjwuBzfDDeFfZzpzrYSk44HBju0Cae0SMUFcXZUQdgU99VAZx8yPu93XZw07KfQWWhXZ6feuebsv7KAtcHjJBj7YJgzGfpKUebhJBfyn3zMkBuLgmFkjbdiT3JiLYyaNVK73EmYiG50aw+JsjPOhBuW/VN5L5rTgJzh5qoXXxi1M4RqLvUcDH4hn4iW8RCfPC5EuSvlkLB5jlBt1/VuTMmpGuj6UUTO86EgTxZjKUwRCaXMNxkMR1aRyso2bicLMd49O/qQcPwSyDcbPupy+dd0T9bdedwy1o6WPym91r1blvgSrPlhYWGTBSgp7AfmrGjttUxxsojgqkX6bzErneJLClnCb6MV0TKONSO6YKEAvUhEy7M+eUbGpn+uToHhIxVqlVhvJQgcVOZulnUev5rkoSalW9GoC7bRyI8a8Fd3Ld8iQsng1HlST46sPQc+gWudkpI2db4xWuKZQjC9tBLX/3cutUCnlu1xPGbV0517aoM/dMXaMlovp91KnzdtF8tRaRv/U5GXsWRf7JKykYGFhkQUrKewNBFSnTS4qnMM/VkkacH6hSAwNpmS7W5wiVO1VdTJGOgeCno3AW40DWtyAtJdD0DZ4SaUzKdle+bh4n5QfceRTtRnVO9DQakXPMRvjDoEGOTa0TVbeZB8RP4LbM7YCN2rWHw3RkAR1Ve2QknlB3coeYdyUqi7kjyGQJ+3TZp9LoE2QViqmiRiSlzsHv0tnyF2wicZ+gztttysM+qXyRQQVMkVz0+a+7MeuSSspWFhYZMFKCr0JZUhIF60GIKkNkYhy2jQdGYrQJ09sD9VN2VzsgWbHpylzPS9BK3efZ3VXKeWHHHtuxBZT3SlUG/D5Djy3ZTJP+56CeH9jXEgrP6Mx0OJlaXpuS03Q0MF5K3+wVb/RKq/OpKzybiSTK0HCy6TUNDQb94dHFpsCbfgZvLBsT0zRClwjNXjjcSMu6UhG8gBxrUbGdp5Ze/OW8dLH9h2Uzi9q3cVuQ8/5ZI+P3ZdhJ4VehFMiSTWp0SKmXr5abvejFa+3aRtSDuOKNgHwRr3Ug3ONf95JqsyLaYyLNDtoMyl4cQKBVjSFnkHSM8gFkpmkqnhh2u8rXCXnyFkjL1681M3kRuRli8BOreMbJkPVxrgZybwWYVNDwkuWiJdpP8LSj4SMK1ImFsF7ycO1iniRicMwSV4tfYw7NKT96tQ+yYsO4BgKjniJuc6SOAumPExneP6B4wDo1zQTZ7Xc7/1X0O8dWPXBwsIiC1ZS6CUEolHS2yUtOrhNxN1Hj4MAABV9SURBVNTZc0bJznYkBYB+ZqltaRajledqRGl0IDswKNis0MFsLketaEXBLPDciV7kIkimIoCbyhjKvIKxys24GF0jMnjnDtVlVAVPmgjVBvy+E2I39MvOaQdfmvHo29yoi9tgjIhe9qOTCZDyIyyDGckoaIysrbkfPeIXb6y3HfMAXcGAOwybc24u6arOCwAfjLCSgoWFRRaspNBLSE0ZS+CteQCklwm1V9/ZUviUL7Z/zEd1po5hnSntblx9yQLX18lDJgApHdG+wdDLgYhtCvjkrN6q6pGuNPdP47R45CdmX2siVt8eoXySlRZjLwgb+4EnAQCkoxluAy9YyZMUgl54dMj1JRs/R8FV6IA5tpWU4tk7Ag1erLI5kaN9N6wfCBUAN2IMqqaWxak5u7YMnL74XDm0aZ1026cPNHYeVHYwwk4KvQRn5kKcfuUApDZvASBvo5B+bEo10D+Y1+aYy8olJfeDT0bIcV6UoaMJmVJvPgFKWBOuNkZErwBMMJMC7UX6OXHPCKl8QpJ0K1IWL2U5OUxiI2ILcnyaeE809+IUojsULcawFzFU866j/dgCj4zFe4kDLSorJgJkMvNyMNJF4lJRdQF//86kLCQCvgriEbskStO+SvPG9P8xd6/t/WyNwGlSBs6LJ0hv27bL9gczrPpgYWGRBSsp9BJ0MkHdMcMAiD0hkkLwnU8AOPaNb7Hy9HvaHPNvuVLU4Qd9RKxVRttoaojgGt5Bx5QjCDYrPzchb50pSV+WIU3xuQvNyhvZHsjQtrVSGzypwdlgCExKNKG6bGul06oojFd81pMGgo0ZHkbv3H6bYGYcftxEqJVnX2XaeVKJt0w5vmFSZzgijVs2p6yJYaVixG1P4toZY9+9nCFa0tYDI4WtOb14WafHHaywkoKFhUUWrKTQi4g9ITn2LecIj230udkAVNyv4PSOj3ts0l0AnPPKt2RD0PV16LQpnBSpzujrnp7fGt7KmzSreLBJZcrRGaOiG9ZoY+zz7BPJglZ97UTLlsrRfnCRZ3RMR3Um/t+TTrzVPtGqtJ1n3GzOrEOebUE7GekiaCQKLygpWNJCwNC3pZLS/vyRH7dLbdcRhnxxAU65iF1WQugcdlLYC8j7WOrhxE+eCEDw9bm82yIP+rHRtsLauLDEMuf3kRqH8YVF/r7WlOleirMX3dc42CXa6HEzyjaf1Tmi/XTqpGFNciOaoJfM5JVuVIpkfnZ0oR93EMz06yUkJYrSftSkMrNB6yhKZdQdbzJzQ9pnZfZCslUqE5WZ8CYlz9HguBTnG7Vq5ItARs3qDNPGnGC+1YF7IAYk9w6s+mBhYZEFKynsBaTWiTus5nOSA1H6BvzoG1cD8Pp9d3V43NEDVgPwasMYn2gkut6kJxe4PkOyt3qH6gJ+XIIXi+CrAJFMPoRXOyKdysQAJApaGR+j3kHy4RWRSRa6vhShvdyKpCJQIpZItUUkHC9RK1yjSBm6SU+aSRZAsN7EPZhSceGagD8Or3qNR/fmOC7fG/EK0HUJ4bDfXQvAgLqZAAQHD/J/A4vOYSUFCwuLLHQqKSil7gHOAbZqrQ8120qAvwHDgNXARVrralNT8g/ANKAJuEpr/WHvDH3/Q5+HJMJRlZXCK3M7bX/HIAlmGrFkDCrsBTLJvlB9gJxtsprWSawT4VpF0gtk8lbalkzugxdc5JeMj7pEN8kj4JVcixdljJQhr3CsMTSGdwRo6ZdNuaa0Im0klkBOdip3KpYZh2+LcDTKc4k6bY2a6Zibta8g1sIFeXV0BV9fL5WbBvxmZtZ23WAjF3cHXZEU7gPO3GnbTcBrWutK4DXzP0gp+krzdzVwW88M08LCYm+hU0lBa/0vpdSwnTafB5xkvt8PvAncaLY/oLXWwCylVJFSqr/WelNPDXhvY/nvpgKw4uLbATjrrC/hfrx4j/pyW0ThTx99CM4bkqFX8dJXAVh1Zse2haWn3E3la9IuUWwIUJKKtCnz7tVUQCtfd/fqKvreilZ1Ebzw4uD2UKZWg8lbyKo56VG7m6fEaclkaXoIJBROtcnqNBJAwsu4bMW14PEuKFeRyjMn8IlYM3YIj2NBGzuFZ0/oDHPjCVZPzS4GGxxsckn2gj1h5a0ipSy7XNbBMwZM6PVz9hb21NBY7r3oWutNSnmxdwwE1rVqt95s228nhRGPG8vdxfLx4ouPdPsHD73/KQHzwI76d1PcdGPH7R0VYOVpEgE5/PGvA/KSNffLxCCASVX2AgP9eg9eMZZWuQxVGf5DzzDpqQjxPmmiW0zKtKcGmBwM5QZ8dcQzVqIzEY9e7Yh0vmGjrnJ8VcLbFt4W9FWJdJFhQo4EMoxLxdLZ+KEbADpVHTalxJf646MvAHdL1r705q27PLYn4U0GBwJ62vvQHkNpuw5ipdTViIpBlFgPD8PCwmJPsaeTwhZPLVBK9Qe8KXk90JoidxAdrIFa6xnADIAC1U5I3j4C9e5HbbbtbkHSneE2NaHHiXXQqZWV8MgfXcOcn3e+2qy88A4AKp77GqmYzMGRqkxZeC//IFGanZ7sJBTJYq/evHyEdjgZV2F+Ji/Cd0l6JRta0b0lTaqB10alFEEToOQbJLc7bcajPL7HWCaXAa9CVEkSZVyRv5zyJACX5Hdc8g2k7BvAV0+8VLravMbfF6yQ/IbUqjVtD+xhLL1tsvkmz8nx14kkF2P/rRi1py7JZ4Arzfcrgadbbb9CCaYCtfuzPcHC4mCE0nrXi7RS6hHEqFgGbAF+AjwFPAYMAdYCX9Ra7zAuyf9DvBVNwHSt9ZzOBlGgSvQUdWo3LqP3UX2lGJJm/yqzmveEMSl1yiRAQp//bZEYH68rWrerQ3x49oVIlUdakDHYpYaIscCjPgvVOH5GpDZ6OzVhP1S6daZjosizQ2TbLALJjPHRI3iJl6WJrTeSQSR7fF5WY2u4OW6GLMXUi3QiaV4/7v8AGNKFrEeAM88WCUHPW+hv25uGRQ8vb8yWJPdlA+Or+vG5WusjO2vXFe/DlzrY1eYtNl6H6zof3v6H4vslZoBfZba1fqH3FN6x6ZMn8swhEtJx3cauTQqeKnHO0rMAqGnJ4S9jhNF4fFiSDW7cIg/pU88dDaWiKxQVSmRgdTpAIm7o2H1SFuUbDp1EtokoHZEoRcjkMuig9l9+b19LX9NXQqIgvXaARCwaVSGvSPSO9466h7xA55NBrSvtv3z8JehVC7P2OYeMwl29d6MWB83KjPmUK74CQIg9fxb2FdiIRgsLiyx0qj7sDewP6oMHfczh/PPx+7O29YjIqJRfvj44cAAAz3/wQvf7bYXZccmZdowF8cI3r8HZYayDbqaIjE+dZrIjEyVGzG8M+IZDj4exNUt0tMorZpvhVNR9RTpRntoRcDlyyFoAHq54o0vj/lO1GA6fP7yP9JtK+fucQ4Qh280JoecubHtwL6K16rAvqw0euqo+WEnBwsIiCzZLcjehZn5MkytKdywgkXwNLw0n78yV3etYawJRUdRTG8SLe/aUcwB4/v3nute3weRIdh35VWfczSG3SUZhvMQQmcQgaAKUPKkgUyRW+0SvKWMXcJqUH62YMnYGL/uRgCYvTySFgYVS0u2/Kp5qM45d4YzF5xD4roRb6tQif7szbjQA6VwTujm766Qr3cX+JiHsLqykYGFhkQVrU+gG9taK4ZSV8sL813qtf4CJcySOu3pjIQFTQcrPsCzwkiFaHWCEiJwNjl8zwnNlJgbIhrMPW8CP+0k1rL5O7m6NZ8ydIsFU3PoRblM2j0LqlEl+dazQPzv1ePcYVv7a5DdcIW7pyfO+SPHZ+w+9W1dtCnZS6AaqrpaHZO5PezZ2wYNncPTUCYCrl4qa0tV04j3BQ/WlANy55ngAttXLCx2PhwiYQi75uRIHsaMqn+9MfhWA64u7H0F45rkm/mBu2/iDxvH9AYi9u5R0TecVpnsa+1NMQnuwhkYLC4s9gpUUegC/Xf2eT7Y6fa2srhun1vdY/87YStL5xopnDGrJ0ybx+gN399g5PmtMGy+//85FX93jJlA9Ru5t6V3v7fVxeTgQjItWUrCwsNgjWJdkD+A7w472V5J7h7wNwInnXk302dk90n/rWgWpU01odXOaMwbJd3XEGACOvHv+btVD+Kzxk23jAJh1eAgQCUEF5ZFs+LxcW8FrSyl9Z9cZk72Jby3/1P9+9He/AUABsz6r4ewVWPWhh6Aikg300qpMymxvi5lVXxdDZ6hBfsPS9zbj5ouovX2C1IqoO1tISE4cttznfPws8UBdGY9MkhgDt1XVZzVJJoiWfsKtEXn+g70/uFYof09iIx4Y+i9A1MKeVAk/C1j1wcLCYo9gJYUeRtMXpgDw9p/v8LftNcPU5MPYNkky98J1phjrdokuTEcVeSY1GyU+/sU3FnHESHEjPjGya1yIu4PqdBPH3PU9AIb8bGab/cGhwsez+suDGfK8FIx153/apt3exLofHgPAomv/krV9fzUutoaVFCwsLPYIVlLoJSy7bxIrP5ftMvSpup7ce1RdziihfdM5YTYfVyzbEhmG58KVkpsQWSIBUrqxidS4CgCaBoobdOO5EqEYjKS4dKxEEL6/YxgAS+cOYdS9YghML1wi/Rr7io7HcUpLAIhPMH2Wh0hFRVLp84TkMnwWgUjtYe1Pj2Hx1QeehODBRjTuA1j798MAWHzsX7O27+tGq2C/cgB0sUlECotHIN4nRv0QSUD6/+2df2xV5RnHP19ahVE1UGTaiaHUNWNqJiXGUOUPMmeQjWmMZpORjA0TxmbUmWWOhky3/bFF2Sabc7KpjGQSJIJz2Ew75tyPGME5fzAmVIoss0QpbEgyTFwLz/543yP39La03N5z7m33fBJy73nPhfPtcw9Pn/d53/M8U58/BEDv2WfQVxfOKzZx7a0LlZjO3P1vbF8oGJOUt69GrnvtIADLJ+1/f2wsOYMEnz44jlMSHinkwEDJx4TZ3/kyAFPXVH658P+J/3xmDs+tXlM0PhYjhASPFBzHKQmPFCrAnW+8xBUTiv3x3FtCIrJu8+jtGVCtHFkc2v9tW1UcHTRtDnZvvmVs290jBcdxSsIjhUoxLmToO7oHLwk+86GQb5h+p+cbSmHPfSGX88b1xbmc+w5Pp/2iyXlLqii+JDnaGFdzUgeR9G94pSUvQaOLmin13Lw97Jr81MTi5U+3n08fHMcpkSEfnZa0FlgI9JjZxXFsFfBp4L/AXkJ7uHfiuTbgJuAYcKuZdWSkfWxx/FjRcljhk3p3nxOLfBS0623+wxcAaPpccRPcsc6R33wYgG2zNg36maatSwFoXvJSLprGCsOJFNYRekMWshW42Mw+BrwOtAFIuhC4Ebgo/p2fSqopm1rHcTJnOL0k/ySpsd/YbwsOtwE3xPfXAo+a2XvAPkldwGWAZ8pK4EBrKM46n1m8fXt4eu/Vr5/Ym79n3rrwpiB6ePrd8NzBN78bfkvWrx3dpt+/4nK2fuUeABpSzWeLo6OrFn0RgHF/fBmAZjxCKIVhJRqjU2hPpg/9zj0JbDSzRyT9BNhmZo/Ecw8DT5nZ4DEenmgsla57w9r73s8Wr72fjAs2hgpCjU/2jqg57kipbTgXgN13NJ7yz3DJPaEE/Lmrix/JdgambF2nT4aklUAfsD4ZGuBjA3odScuAZQATmDgSGY7jlJGSIwVJS4DlwJVm9m4cawMws+/F4w7gW2Z20hjWI4Uycll4MvPwXWFZ7oWWx8r2T7/ee5QH/zUXgOd7wqPQh49+gLPiEuDMyT0ALKx/FShPb4qmzV8a8zsN8yLTJUlJVwPfAK5JHEJkC3CjpPGSZgDNQHmqlzqOkwtDRgqSNgDzgLOBA8BdhNWG8SQleEMeYXn8/EpgKWFa8VUze2ooER4p5EuSi2i5tItNF/yuYjpmPLEMgDP31tLwA88NZI3vaHTKz7garDVMT96bHIqtnHa0j9o/7wDA+voqJs0ZGt/R6DhOSXgzGGf4HD+Gngv7AyYUDFc+1nTKiUcKjuOkcKfgOE4KdwqO46Rwp+A4Tgp3Co7jpHCn4DhOiqrYvCTpIHAUOFRpLYSdm67jBK4jzWjWMd3Mpg71oapwCgCSXhzObivX4TpcR7Y6fPrgOE4KdwqO46SoJqfw80oLiLiONK4jzZjXUTU5BcdxqoNqihQcx6kCqsIpSLpaUqekLkkrcrrm+ZKelbRL0t8l3RbH6yVtlbQnvubSW0xSjaSXJbXH4xmStkcdGyWdnoOGSZI2Sdod7dJaCXtIuj1+JzslbZA0IS97SForqUfSzoKxAW2gwI/jfbtD0uyMdayK380OSb+SNKngXFvU0Slp/kiuXXGnEPtC3A8sAC4EFsX+EVnTB3zNzD4KzAFujtddATxjZs3AM/E4D24DdhUc3w3cG3UcJjTYyZofAU+b2UzgkqgnV3tIOg+4Fbg01gStIfQSycse6yjuczKYDRYQSg42E4oQP5Cxjnz6rZhZRf8ArUBHwXEb0FYBHb8GrgI6gYY41gB05nDtaYSb7eNAO6Eq9iGgdiAbZaThLGAfMc9UMJ6rPYDzgDeBekK9j3Zgfp72ABqBnUPZAPgZsGigz2Who9+564D18X3q/wzQAbSWet2KRwqcuAkSuuNYbsRq1S3AduAcM3sLIL5+MAcJq4E7gOPxeArwjpkl9c3ysEkTcBD4RZzGPCSpjpztYWb7ge8D/wTeAo4AfyV/exQymA0qee8uBZL6p2XVUQ1OYdi9IjK5uHQGsJlQZHbkNclP/fpJn87CriyVsEktMBt4wMxaCNvO85o6vU+cr18LzAA+BNQRwvT+VMOyWUXu3ZH0WxkO1eAUuoHzC46nkWqElh2STiM4hPVm9ngcPiCpIZ5vAHoylnEFcI2kfwCPEqYQq4FJkpJyeXnYpBvoNrOkycImgpPI2x6fAPaZ2UEz6wUeBy4nf3sUMpgNcr93Y7+VhcBii3OFcuuoBqfwF6A5ZpdPJyRMtmR9UUkCHgZ2mdkPC05tAZbE90sIuYbMMLM2M5tmZo2En/33ZrYYeJYTPTrz0PE28Kakj8ShK4HXyNkehGnDHEkT43eU6MjVHv0YzAZbgM/HVYg5wJFkmpEFufVbyTJpdAoJlU8Ssql7gZU5XXMuIcTaQehW+krUMYWQ9NsTX+tztMM8QicuCHP8F4Au4DFgfA7XnwW8GG3yBDC5EvYAvg3sBnYCvyT0GMnFHsAGQi6jl/Ab+KbBbEAI2++P9+3fCCsmWeroIuQOkvt1TcHnV0YdncCCkVzbdzQ6jpOiGqYPjuNUEe4UHMdJ4U7BcZwU7hQcx0nhTsFxnBTuFBzHSeFOwXGcFO4UHMdJ8T/z+Hm69fOSnwAAAABJRU5ErkJggg==\n",
694
      "text/plain": [
695
       "<Figure size 432x288 with 1 Axes>"
696
      ]
697
     },
698
     "metadata": {
699
      "needs_background": "light"
700
     },
701
     "output_type": "display_data"
702
    }
703
   ],
704
   "source": [
705
    "plt.imshow(\n",
706
    "    _read(path_train_img + 'ID_ffff922b9.dcm', (128, 128))[:, :, 0]\n",
707
    ")"
708
   ]
709
  },
710
  {
711
   "cell_type": "code",
712
   "execution_count": 17,
713
   "metadata": {},
714
   "outputs": [],
715
   "source": [
716
    "# Augmentations\n",
717
    "# Flip Left Right\n",
718
    "# Cropping\n",
719
    "sometimes = lambda aug: iaa.Sometimes(0.25, aug)\n",
720
    "augmentation = iaa.Sequential([  \n",
721
    "                                iaa.Fliplr(0.25),\n",
722
    "                                sometimes(iaa.Crop(px=(0, 25), keep_size = True, \n",
723
    "                                                   sample_independently = False))   \n",
724
    "                            ], random_order = True)"
725
   ]
726
  },
727
  {
728
   "cell_type": "code",
729
   "execution_count": 18,
730
   "metadata": {},
731
   "outputs": [],
732
   "source": [
733
    "# Train Data Generator\n",
734
    "class TrainDataGenerator(keras.utils.Sequence):\n",
735
    "\n",
736
    "    def __init__(self, dataset, labels, batch_size=16, img_size=(512, 512), img_dir = path_train_img, \\\n",
737
    "                 augment = False, *args, **kwargs):\n",
738
    "        self.dataset = dataset\n",
739
    "        self.ids = dataset.index\n",
740
    "        self.labels = labels\n",
741
    "        self.batch_size = batch_size\n",
742
    "        self.img_size = img_size\n",
743
    "        self.img_dir = img_dir\n",
744
    "        self.augment = augment\n",
745
    "        self.on_epoch_end()\n",
746
    "\n",
747
    "    def __len__(self):\n",
748
    "        return int(ceil(len(self.ids) / self.batch_size))\n",
749
    "\n",
750
    "    def __getitem__(self, index):\n",
751
    "        indices = self.indices[index*self.batch_size:(index+1)*self.batch_size]\n",
752
    "        X, Y = self.__data_generation(indices)\n",
753
    "        return X, Y\n",
754
    "\n",
755
    "    def augmentor(self, image):\n",
756
    "        augment_img = augmentation        \n",
757
    "        image_aug = augment_img.augment_image(image)\n",
758
    "        return image_aug\n",
759
    "\n",
760
    "    def on_epoch_end(self):\n",
761
    "        self.indices = np.arange(len(self.ids))\n",
762
    "        np.random.shuffle(self.indices)\n",
763
    "        \n",
764
    "    def __data_generation(self, indices):\n",
765
    "        X = np.empty((self.batch_size, *self.img_size, 3))\n",
766
    "        Y = np.empty((self.batch_size, 6), dtype=np.float32)\n",
767
    "        \n",
768
    "        for i, index in enumerate(indices):\n",
769
    "            ID = self.ids[index]\n",
770
    "            image = _read(self.img_dir + ID, self.img_size)\n",
771
    "            if self.augment:\n",
772
    "                X[i,] = self.augmentor(image)\n",
773
    "            else:\n",
774
    "                X[i,] = image            \n",
775
    "            Y[i,] = self.labels.iloc[index].values        \n",
776
    "        return X, Y\n",
777
    "    \n",
778
    "class TestDataGenerator(keras.utils.Sequence):\n",
779
    "    def __init__(self, ids, labels, batch_size = 5, img_size = (512, 512), img_dir = path_test_img, \\\n",
780
    "                 *args, **kwargs):\n",
781
    "        self.ids = ids\n",
782
    "        self.labels = labels\n",
783
    "        self.batch_size = batch_size\n",
784
    "        self.img_size = img_size\n",
785
    "        self.img_dir = img_dir\n",
786
    "        self.on_epoch_end()\n",
787
    "\n",
788
    "    def __len__(self):\n",
789
    "        return int(ceil(len(self.ids) / self.batch_size))\n",
790
    "\n",
791
    "    def __getitem__(self, index):\n",
792
    "        indices = self.indices[index*self.batch_size:(index+1)*self.batch_size]\n",
793
    "        list_IDs_temp = [self.ids[k] for k in indices]\n",
794
    "        X = self.__data_generation(list_IDs_temp)\n",
795
    "        return X\n",
796
    "\n",
797
    "    def on_epoch_end(self):\n",
798
    "        self.indices = np.arange(len(self.ids))\n",
799
    "\n",
800
    "    def __data_generation(self, list_IDs_temp):\n",
801
    "        X = np.empty((self.batch_size, *self.img_size, 3))\n",
802
    "        for i, ID in enumerate(list_IDs_temp):\n",
803
    "            image = _read(self.img_dir + ID, self.img_size)\n",
804
    "            X[i,] = image            \n",
805
    "        return X"
806
   ]
807
  },
808
  {
809
   "cell_type": "markdown",
810
   "metadata": {},
811
   "source": [
812
    "As we have seen in EDA notebook that we have very few epidural subtypes so we need oversample this sub type"
813
   ]
814
  },
815
  {
816
   "cell_type": "code",
817
   "execution_count": 19,
818
   "metadata": {},
819
   "outputs": [
820
    {
821
     "name": "stdout",
822
     "output_type": "stream",
823
     "text": [
824
      "Train Shape: (677018, 6)\n"
825
     ]
826
    }
827
   ],
828
   "source": [
829
    "# Oversampling\n",
830
    "epidural_df = train_final_df[train_final_df.epidural == 1]\n",
831
    "train_final_df = pd.concat([train_final_df, epidural_df])\n",
832
    "print('Train Shape: {}'.format(train_final_df.shape))"
833
   ]
834
  },
835
  {
836
   "cell_type": "code",
837
   "execution_count": 20,
838
   "metadata": {},
839
   "outputs": [
840
    {
841
     "data": {
842
      "text/html": [
843
       "<div>\n",
844
       "<style scoped>\n",
845
       "    .dataframe tbody tr th:only-of-type {\n",
846
       "        vertical-align: middle;\n",
847
       "    }\n",
848
       "\n",
849
       "    .dataframe tbody tr th {\n",
850
       "        vertical-align: top;\n",
851
       "    }\n",
852
       "\n",
853
       "    .dataframe thead th {\n",
854
       "        text-align: right;\n",
855
       "    }\n",
856
       "</style>\n",
857
       "<table border=\"1\" class=\"dataframe\">\n",
858
       "  <thead>\n",
859
       "    <tr style=\"text-align: right;\">\n",
860
       "      <th></th>\n",
861
       "      <th>ID</th>\n",
862
       "      <th>Label</th>\n",
863
       "    </tr>\n",
864
       "  </thead>\n",
865
       "  <tbody>\n",
866
       "    <tr>\n",
867
       "      <th>0</th>\n",
868
       "      <td>ID_28fbab7eb_epidural</td>\n",
869
       "      <td>0.5</td>\n",
870
       "    </tr>\n",
871
       "    <tr>\n",
872
       "      <th>1</th>\n",
873
       "      <td>ID_28fbab7eb_intraparenchymal</td>\n",
874
       "      <td>0.5</td>\n",
875
       "    </tr>\n",
876
       "    <tr>\n",
877
       "      <th>2</th>\n",
878
       "      <td>ID_28fbab7eb_intraventricular</td>\n",
879
       "      <td>0.5</td>\n",
880
       "    </tr>\n",
881
       "    <tr>\n",
882
       "      <th>3</th>\n",
883
       "      <td>ID_28fbab7eb_subarachnoid</td>\n",
884
       "      <td>0.5</td>\n",
885
       "    </tr>\n",
886
       "    <tr>\n",
887
       "      <th>4</th>\n",
888
       "      <td>ID_28fbab7eb_subdural</td>\n",
889
       "      <td>0.5</td>\n",
890
       "    </tr>\n",
891
       "  </tbody>\n",
892
       "</table>\n",
893
       "</div>"
894
      ],
895
      "text/plain": [
896
       "                              ID  Label\n",
897
       "0          ID_28fbab7eb_epidural    0.5\n",
898
       "1  ID_28fbab7eb_intraparenchymal    0.5\n",
899
       "2  ID_28fbab7eb_intraventricular    0.5\n",
900
       "3      ID_28fbab7eb_subarachnoid    0.5\n",
901
       "4          ID_28fbab7eb_subdural    0.5"
902
      ]
903
     },
904
     "execution_count": 20,
905
     "metadata": {},
906
     "output_type": "execute_result"
907
    }
908
   ],
909
   "source": [
910
    "# load test set\n",
911
    "test_df = pd.read_csv(input_folder + 'stage_1_sample_submission.csv')\n",
912
    "test_df.head()"
913
   ]
914
  },
915
  {
916
   "cell_type": "code",
917
   "execution_count": 21,
918
   "metadata": {},
919
   "outputs": [
920
    {
921
     "data": {
922
      "text/plain": [
923
       "(78545, 6)"
924
      ]
925
     },
926
     "execution_count": 21,
927
     "metadata": {},
928
     "output_type": "execute_result"
929
    }
930
   ],
931
   "source": [
932
    "# extract subtype\n",
933
    "test_df['sub_type'] = test_df['ID'].apply(lambda x: x.split('_')[-1])\n",
934
    "# extract filename\n",
935
    "test_df['file_name'] = test_df['ID'].apply(lambda x: '_'.join(x.split('_')[:2]) + '.dcm')\n",
936
    "\n",
937
    "test_df = pd.pivot_table(test_df.drop(columns='ID'), index=\"file_name\", \\\n",
938
    "                                columns=\"sub_type\", values=\"Label\")\n",
939
    "test_df.head()\n",
940
    "\n",
941
    "test_df.shape"
942
   ]
943
  },
944
  {
945
   "cell_type": "code",
946
   "execution_count": 22,
947
   "metadata": {},
948
   "outputs": [
949
    {
950
     "data": {
951
      "text/html": [
952
       "<div>\n",
953
       "<style scoped>\n",
954
       "    .dataframe tbody tr th:only-of-type {\n",
955
       "        vertical-align: middle;\n",
956
       "    }\n",
957
       "\n",
958
       "    .dataframe tbody tr th {\n",
959
       "        vertical-align: top;\n",
960
       "    }\n",
961
       "\n",
962
       "    .dataframe thead th {\n",
963
       "        text-align: right;\n",
964
       "    }\n",
965
       "</style>\n",
966
       "<table border=\"1\" class=\"dataframe\">\n",
967
       "  <thead>\n",
968
       "    <tr style=\"text-align: right;\">\n",
969
       "      <th>sub_type</th>\n",
970
       "      <th>any</th>\n",
971
       "      <th>epidural</th>\n",
972
       "      <th>intraparenchymal</th>\n",
973
       "      <th>intraventricular</th>\n",
974
       "      <th>subarachnoid</th>\n",
975
       "      <th>subdural</th>\n",
976
       "    </tr>\n",
977
       "    <tr>\n",
978
       "      <th>file_name</th>\n",
979
       "      <th></th>\n",
980
       "      <th></th>\n",
981
       "      <th></th>\n",
982
       "      <th></th>\n",
983
       "      <th></th>\n",
984
       "      <th></th>\n",
985
       "    </tr>\n",
986
       "  </thead>\n",
987
       "  <tbody>\n",
988
       "    <tr>\n",
989
       "      <th>ID_000012eaf.dcm</th>\n",
990
       "      <td>0.5</td>\n",
991
       "      <td>0.5</td>\n",
992
       "      <td>0.5</td>\n",
993
       "      <td>0.5</td>\n",
994
       "      <td>0.5</td>\n",
995
       "      <td>0.5</td>\n",
996
       "    </tr>\n",
997
       "    <tr>\n",
998
       "      <th>ID_0000ca2f6.dcm</th>\n",
999
       "      <td>0.5</td>\n",
1000
       "      <td>0.5</td>\n",
1001
       "      <td>0.5</td>\n",
1002
       "      <td>0.5</td>\n",
1003
       "      <td>0.5</td>\n",
1004
       "      <td>0.5</td>\n",
1005
       "    </tr>\n",
1006
       "    <tr>\n",
1007
       "      <th>ID_000259ccf.dcm</th>\n",
1008
       "      <td>0.5</td>\n",
1009
       "      <td>0.5</td>\n",
1010
       "      <td>0.5</td>\n",
1011
       "      <td>0.5</td>\n",
1012
       "      <td>0.5</td>\n",
1013
       "      <td>0.5</td>\n",
1014
       "    </tr>\n",
1015
       "    <tr>\n",
1016
       "      <th>ID_0002d438a.dcm</th>\n",
1017
       "      <td>0.5</td>\n",
1018
       "      <td>0.5</td>\n",
1019
       "      <td>0.5</td>\n",
1020
       "      <td>0.5</td>\n",
1021
       "      <td>0.5</td>\n",
1022
       "      <td>0.5</td>\n",
1023
       "    </tr>\n",
1024
       "    <tr>\n",
1025
       "      <th>ID_00032d440.dcm</th>\n",
1026
       "      <td>0.5</td>\n",
1027
       "      <td>0.5</td>\n",
1028
       "      <td>0.5</td>\n",
1029
       "      <td>0.5</td>\n",
1030
       "      <td>0.5</td>\n",
1031
       "      <td>0.5</td>\n",
1032
       "    </tr>\n",
1033
       "  </tbody>\n",
1034
       "</table>\n",
1035
       "</div>"
1036
      ],
1037
      "text/plain": [
1038
       "sub_type          any  epidural  intraparenchymal  intraventricular  \\\n",
1039
       "file_name                                                             \n",
1040
       "ID_000012eaf.dcm  0.5       0.5               0.5               0.5   \n",
1041
       "ID_0000ca2f6.dcm  0.5       0.5               0.5               0.5   \n",
1042
       "ID_000259ccf.dcm  0.5       0.5               0.5               0.5   \n",
1043
       "ID_0002d438a.dcm  0.5       0.5               0.5               0.5   \n",
1044
       "ID_00032d440.dcm  0.5       0.5               0.5               0.5   \n",
1045
       "\n",
1046
       "sub_type          subarachnoid  subdural  \n",
1047
       "file_name                                 \n",
1048
       "ID_000012eaf.dcm           0.5       0.5  \n",
1049
       "ID_0000ca2f6.dcm           0.5       0.5  \n",
1050
       "ID_000259ccf.dcm           0.5       0.5  \n",
1051
       "ID_0002d438a.dcm           0.5       0.5  \n",
1052
       "ID_00032d440.dcm           0.5       0.5  "
1053
      ]
1054
     },
1055
     "execution_count": 22,
1056
     "metadata": {},
1057
     "output_type": "execute_result"
1058
    }
1059
   ],
1060
   "source": [
1061
    "test_df.head()"
1062
   ]
1063
  },
1064
  {
1065
   "cell_type": "code",
1066
   "execution_count": 23,
1067
   "metadata": {
1068
    "scrolled": false
1069
   },
1070
   "outputs": [
1071
    {
1072
     "name": "stdout",
1073
     "output_type": "stream",
1074
     "text": [
1075
      "Downloading data from https://github.com/Callidior/keras-applications/releases/download/efficientnet/efficientnet-b0_weights_tf_dim_ordering_tf_kernels_autoaugment_notop.h5\n",
1076
      "16809984/16804768 [==============================] - 1s 0us/step\n",
1077
      "Model: \"model_1\"\n",
1078
      "__________________________________________________________________________________________________\n",
1079
      "Layer (type)                    Output Shape         Param #     Connected to                     \n",
1080
      "==================================================================================================\n",
1081
      "input_1 (InputLayer)            (None, 256, 256, 3)  0                                            \n",
1082
      "__________________________________________________________________________________________________\n",
1083
      "stem_conv (Conv2D)              (None, 128, 128, 32) 864         input_1[0][0]                    \n",
1084
      "__________________________________________________________________________________________________\n",
1085
      "stem_bn (BatchNormalization)    (None, 128, 128, 32) 128         stem_conv[0][0]                  \n",
1086
      "__________________________________________________________________________________________________\n",
1087
      "stem_activation (Activation)    (None, 128, 128, 32) 0           stem_bn[0][0]                    \n",
1088
      "__________________________________________________________________________________________________\n",
1089
      "block1a_dwconv (DepthwiseConv2D (None, 128, 128, 32) 288         stem_activation[0][0]            \n",
1090
      "__________________________________________________________________________________________________\n",
1091
      "block1a_bn (BatchNormalization) (None, 128, 128, 32) 128         block1a_dwconv[0][0]             \n",
1092
      "__________________________________________________________________________________________________\n",
1093
      "block1a_activation (Activation) (None, 128, 128, 32) 0           block1a_bn[0][0]                 \n",
1094
      "__________________________________________________________________________________________________\n",
1095
      "block1a_se_squeeze (GlobalAvera (None, 32)           0           block1a_activation[0][0]         \n",
1096
      "__________________________________________________________________________________________________\n",
1097
      "block1a_se_reshape (Reshape)    (None, 1, 1, 32)     0           block1a_se_squeeze[0][0]         \n",
1098
      "__________________________________________________________________________________________________\n",
1099
      "block1a_se_reduce (Conv2D)      (None, 1, 1, 8)      264         block1a_se_reshape[0][0]         \n",
1100
      "__________________________________________________________________________________________________\n",
1101
      "block1a_se_expand (Conv2D)      (None, 1, 1, 32)     288         block1a_se_reduce[0][0]          \n",
1102
      "__________________________________________________________________________________________________\n",
1103
      "block1a_se_excite (Multiply)    (None, 128, 128, 32) 0           block1a_activation[0][0]         \n",
1104
      "                                                                 block1a_se_expand[0][0]          \n",
1105
      "__________________________________________________________________________________________________\n",
1106
      "block1a_project_conv (Conv2D)   (None, 128, 128, 16) 512         block1a_se_excite[0][0]          \n",
1107
      "__________________________________________________________________________________________________\n",
1108
      "block1a_project_bn (BatchNormal (None, 128, 128, 16) 64          block1a_project_conv[0][0]       \n",
1109
      "__________________________________________________________________________________________________\n",
1110
      "block2a_expand_conv (Conv2D)    (None, 128, 128, 96) 1536        block1a_project_bn[0][0]         \n",
1111
      "__________________________________________________________________________________________________\n",
1112
      "block2a_expand_bn (BatchNormali (None, 128, 128, 96) 384         block2a_expand_conv[0][0]        \n",
1113
      "__________________________________________________________________________________________________\n",
1114
      "block2a_expand_activation (Acti (None, 128, 128, 96) 0           block2a_expand_bn[0][0]          \n",
1115
      "__________________________________________________________________________________________________\n",
1116
      "block2a_dwconv (DepthwiseConv2D (None, 64, 64, 96)   864         block2a_expand_activation[0][0]  \n",
1117
      "__________________________________________________________________________________________________\n",
1118
      "block2a_bn (BatchNormalization) (None, 64, 64, 96)   384         block2a_dwconv[0][0]             \n",
1119
      "__________________________________________________________________________________________________\n",
1120
      "block2a_activation (Activation) (None, 64, 64, 96)   0           block2a_bn[0][0]                 \n",
1121
      "__________________________________________________________________________________________________\n",
1122
      "block2a_se_squeeze (GlobalAvera (None, 96)           0           block2a_activation[0][0]         \n",
1123
      "__________________________________________________________________________________________________\n",
1124
      "block2a_se_reshape (Reshape)    (None, 1, 1, 96)     0           block2a_se_squeeze[0][0]         \n",
1125
      "__________________________________________________________________________________________________\n",
1126
      "block2a_se_reduce (Conv2D)      (None, 1, 1, 4)      388         block2a_se_reshape[0][0]         \n",
1127
      "__________________________________________________________________________________________________\n",
1128
      "block2a_se_expand (Conv2D)      (None, 1, 1, 96)     480         block2a_se_reduce[0][0]          \n",
1129
      "__________________________________________________________________________________________________\n",
1130
      "block2a_se_excite (Multiply)    (None, 64, 64, 96)   0           block2a_activation[0][0]         \n",
1131
      "                                                                 block2a_se_expand[0][0]          \n",
1132
      "__________________________________________________________________________________________________\n",
1133
      "block2a_project_conv (Conv2D)   (None, 64, 64, 24)   2304        block2a_se_excite[0][0]          \n",
1134
      "__________________________________________________________________________________________________\n",
1135
      "block2a_project_bn (BatchNormal (None, 64, 64, 24)   96          block2a_project_conv[0][0]       \n",
1136
      "__________________________________________________________________________________________________\n",
1137
      "block2b_expand_conv (Conv2D)    (None, 64, 64, 144)  3456        block2a_project_bn[0][0]         \n",
1138
      "__________________________________________________________________________________________________\n",
1139
      "block2b_expand_bn (BatchNormali (None, 64, 64, 144)  576         block2b_expand_conv[0][0]        \n",
1140
      "__________________________________________________________________________________________________\n",
1141
      "block2b_expand_activation (Acti (None, 64, 64, 144)  0           block2b_expand_bn[0][0]          \n",
1142
      "__________________________________________________________________________________________________\n",
1143
      "block2b_dwconv (DepthwiseConv2D (None, 64, 64, 144)  1296        block2b_expand_activation[0][0]  \n",
1144
      "__________________________________________________________________________________________________\n",
1145
      "block2b_bn (BatchNormalization) (None, 64, 64, 144)  576         block2b_dwconv[0][0]             \n",
1146
      "__________________________________________________________________________________________________\n",
1147
      "block2b_activation (Activation) (None, 64, 64, 144)  0           block2b_bn[0][0]                 \n",
1148
      "__________________________________________________________________________________________________\n",
1149
      "block2b_se_squeeze (GlobalAvera (None, 144)          0           block2b_activation[0][0]         \n",
1150
      "__________________________________________________________________________________________________\n",
1151
      "block2b_se_reshape (Reshape)    (None, 1, 1, 144)    0           block2b_se_squeeze[0][0]         \n",
1152
      "__________________________________________________________________________________________________\n",
1153
      "block2b_se_reduce (Conv2D)      (None, 1, 1, 6)      870         block2b_se_reshape[0][0]         \n",
1154
      "__________________________________________________________________________________________________\n",
1155
      "block2b_se_expand (Conv2D)      (None, 1, 1, 144)    1008        block2b_se_reduce[0][0]          \n",
1156
      "__________________________________________________________________________________________________\n",
1157
      "block2b_se_excite (Multiply)    (None, 64, 64, 144)  0           block2b_activation[0][0]         \n",
1158
      "                                                                 block2b_se_expand[0][0]          \n",
1159
      "__________________________________________________________________________________________________\n",
1160
      "block2b_project_conv (Conv2D)   (None, 64, 64, 24)   3456        block2b_se_excite[0][0]          \n",
1161
      "__________________________________________________________________________________________________\n",
1162
      "block2b_project_bn (BatchNormal (None, 64, 64, 24)   96          block2b_project_conv[0][0]       \n",
1163
      "__________________________________________________________________________________________________\n",
1164
      "block2b_drop (FixedDropout)     (None, 64, 64, 24)   0           block2b_project_bn[0][0]         \n",
1165
      "__________________________________________________________________________________________________\n",
1166
      "block2b_add (Add)               (None, 64, 64, 24)   0           block2b_drop[0][0]               \n",
1167
      "                                                                 block2a_project_bn[0][0]         \n",
1168
      "__________________________________________________________________________________________________\n",
1169
      "block3a_expand_conv (Conv2D)    (None, 64, 64, 144)  3456        block2b_add[0][0]                \n",
1170
      "__________________________________________________________________________________________________\n",
1171
      "block3a_expand_bn (BatchNormali (None, 64, 64, 144)  576         block3a_expand_conv[0][0]        \n",
1172
      "__________________________________________________________________________________________________\n",
1173
      "block3a_expand_activation (Acti (None, 64, 64, 144)  0           block3a_expand_bn[0][0]          \n",
1174
      "__________________________________________________________________________________________________\n",
1175
      "block3a_dwconv (DepthwiseConv2D (None, 32, 32, 144)  3600        block3a_expand_activation[0][0]  \n",
1176
      "__________________________________________________________________________________________________\n",
1177
      "block3a_bn (BatchNormalization) (None, 32, 32, 144)  576         block3a_dwconv[0][0]             \n",
1178
      "__________________________________________________________________________________________________\n",
1179
      "block3a_activation (Activation) (None, 32, 32, 144)  0           block3a_bn[0][0]                 \n",
1180
      "__________________________________________________________________________________________________\n",
1181
      "block3a_se_squeeze (GlobalAvera (None, 144)          0           block3a_activation[0][0]         \n",
1182
      "__________________________________________________________________________________________________\n",
1183
      "block3a_se_reshape (Reshape)    (None, 1, 1, 144)    0           block3a_se_squeeze[0][0]         \n",
1184
      "__________________________________________________________________________________________________\n",
1185
      "block3a_se_reduce (Conv2D)      (None, 1, 1, 6)      870         block3a_se_reshape[0][0]         \n",
1186
      "__________________________________________________________________________________________________\n",
1187
      "block3a_se_expand (Conv2D)      (None, 1, 1, 144)    1008        block3a_se_reduce[0][0]          \n",
1188
      "__________________________________________________________________________________________________\n",
1189
      "block3a_se_excite (Multiply)    (None, 32, 32, 144)  0           block3a_activation[0][0]         \n",
1190
      "                                                                 block3a_se_expand[0][0]          \n",
1191
      "__________________________________________________________________________________________________\n",
1192
      "block3a_project_conv (Conv2D)   (None, 32, 32, 40)   5760        block3a_se_excite[0][0]          \n",
1193
      "__________________________________________________________________________________________________\n",
1194
      "block3a_project_bn (BatchNormal (None, 32, 32, 40)   160         block3a_project_conv[0][0]       \n",
1195
      "__________________________________________________________________________________________________\n",
1196
      "block3b_expand_conv (Conv2D)    (None, 32, 32, 240)  9600        block3a_project_bn[0][0]         \n",
1197
      "__________________________________________________________________________________________________\n",
1198
      "block3b_expand_bn (BatchNormali (None, 32, 32, 240)  960         block3b_expand_conv[0][0]        \n",
1199
      "__________________________________________________________________________________________________\n",
1200
      "block3b_expand_activation (Acti (None, 32, 32, 240)  0           block3b_expand_bn[0][0]          \n",
1201
      "__________________________________________________________________________________________________\n",
1202
      "block3b_dwconv (DepthwiseConv2D (None, 32, 32, 240)  6000        block3b_expand_activation[0][0]  \n",
1203
      "__________________________________________________________________________________________________\n",
1204
      "block3b_bn (BatchNormalization) (None, 32, 32, 240)  960         block3b_dwconv[0][0]             \n",
1205
      "__________________________________________________________________________________________________\n",
1206
      "block3b_activation (Activation) (None, 32, 32, 240)  0           block3b_bn[0][0]                 \n",
1207
      "__________________________________________________________________________________________________\n",
1208
      "block3b_se_squeeze (GlobalAvera (None, 240)          0           block3b_activation[0][0]         \n",
1209
      "__________________________________________________________________________________________________\n",
1210
      "block3b_se_reshape (Reshape)    (None, 1, 1, 240)    0           block3b_se_squeeze[0][0]         \n",
1211
      "__________________________________________________________________________________________________\n",
1212
      "block3b_se_reduce (Conv2D)      (None, 1, 1, 10)     2410        block3b_se_reshape[0][0]         \n",
1213
      "__________________________________________________________________________________________________\n",
1214
      "block3b_se_expand (Conv2D)      (None, 1, 1, 240)    2640        block3b_se_reduce[0][0]          \n",
1215
      "__________________________________________________________________________________________________\n",
1216
      "block3b_se_excite (Multiply)    (None, 32, 32, 240)  0           block3b_activation[0][0]         \n",
1217
      "                                                                 block3b_se_expand[0][0]          \n",
1218
      "__________________________________________________________________________________________________\n",
1219
      "block3b_project_conv (Conv2D)   (None, 32, 32, 40)   9600        block3b_se_excite[0][0]          \n",
1220
      "__________________________________________________________________________________________________\n",
1221
      "block3b_project_bn (BatchNormal (None, 32, 32, 40)   160         block3b_project_conv[0][0]       \n",
1222
      "__________________________________________________________________________________________________\n",
1223
      "block3b_drop (FixedDropout)     (None, 32, 32, 40)   0           block3b_project_bn[0][0]         \n",
1224
      "__________________________________________________________________________________________________\n",
1225
      "block3b_add (Add)               (None, 32, 32, 40)   0           block3b_drop[0][0]               \n",
1226
      "                                                                 block3a_project_bn[0][0]         \n",
1227
      "__________________________________________________________________________________________________\n",
1228
      "block4a_expand_conv (Conv2D)    (None, 32, 32, 240)  9600        block3b_add[0][0]                \n",
1229
      "__________________________________________________________________________________________________\n",
1230
      "block4a_expand_bn (BatchNormali (None, 32, 32, 240)  960         block4a_expand_conv[0][0]        \n",
1231
      "__________________________________________________________________________________________________\n",
1232
      "block4a_expand_activation (Acti (None, 32, 32, 240)  0           block4a_expand_bn[0][0]          \n",
1233
      "__________________________________________________________________________________________________\n",
1234
      "block4a_dwconv (DepthwiseConv2D (None, 16, 16, 240)  2160        block4a_expand_activation[0][0]  \n",
1235
      "__________________________________________________________________________________________________\n",
1236
      "block4a_bn (BatchNormalization) (None, 16, 16, 240)  960         block4a_dwconv[0][0]             \n",
1237
      "__________________________________________________________________________________________________\n",
1238
      "block4a_activation (Activation) (None, 16, 16, 240)  0           block4a_bn[0][0]                 \n",
1239
      "__________________________________________________________________________________________________\n",
1240
      "block4a_se_squeeze (GlobalAvera (None, 240)          0           block4a_activation[0][0]         \n",
1241
      "__________________________________________________________________________________________________\n",
1242
      "block4a_se_reshape (Reshape)    (None, 1, 1, 240)    0           block4a_se_squeeze[0][0]         \n",
1243
      "__________________________________________________________________________________________________\n",
1244
      "block4a_se_reduce (Conv2D)      (None, 1, 1, 10)     2410        block4a_se_reshape[0][0]         \n",
1245
      "__________________________________________________________________________________________________\n",
1246
      "block4a_se_expand (Conv2D)      (None, 1, 1, 240)    2640        block4a_se_reduce[0][0]          \n",
1247
      "__________________________________________________________________________________________________\n",
1248
      "block4a_se_excite (Multiply)    (None, 16, 16, 240)  0           block4a_activation[0][0]         \n",
1249
      "                                                                 block4a_se_expand[0][0]          \n",
1250
      "__________________________________________________________________________________________________\n",
1251
      "block4a_project_conv (Conv2D)   (None, 16, 16, 80)   19200       block4a_se_excite[0][0]          \n",
1252
      "__________________________________________________________________________________________________\n",
1253
      "block4a_project_bn (BatchNormal (None, 16, 16, 80)   320         block4a_project_conv[0][0]       \n",
1254
      "__________________________________________________________________________________________________\n",
1255
      "block4b_expand_conv (Conv2D)    (None, 16, 16, 480)  38400       block4a_project_bn[0][0]         \n",
1256
      "__________________________________________________________________________________________________\n",
1257
      "block4b_expand_bn (BatchNormali (None, 16, 16, 480)  1920        block4b_expand_conv[0][0]        \n",
1258
      "__________________________________________________________________________________________________\n",
1259
      "block4b_expand_activation (Acti (None, 16, 16, 480)  0           block4b_expand_bn[0][0]          \n",
1260
      "__________________________________________________________________________________________________\n",
1261
      "block4b_dwconv (DepthwiseConv2D (None, 16, 16, 480)  4320        block4b_expand_activation[0][0]  \n",
1262
      "__________________________________________________________________________________________________\n",
1263
      "block4b_bn (BatchNormalization) (None, 16, 16, 480)  1920        block4b_dwconv[0][0]             \n",
1264
      "__________________________________________________________________________________________________\n",
1265
      "block4b_activation (Activation) (None, 16, 16, 480)  0           block4b_bn[0][0]                 \n",
1266
      "__________________________________________________________________________________________________\n",
1267
      "block4b_se_squeeze (GlobalAvera (None, 480)          0           block4b_activation[0][0]         \n",
1268
      "__________________________________________________________________________________________________\n",
1269
      "block4b_se_reshape (Reshape)    (None, 1, 1, 480)    0           block4b_se_squeeze[0][0]         \n",
1270
      "__________________________________________________________________________________________________\n",
1271
      "block4b_se_reduce (Conv2D)      (None, 1, 1, 20)     9620        block4b_se_reshape[0][0]         \n",
1272
      "__________________________________________________________________________________________________\n",
1273
      "block4b_se_expand (Conv2D)      (None, 1, 1, 480)    10080       block4b_se_reduce[0][0]          \n",
1274
      "__________________________________________________________________________________________________\n",
1275
      "block4b_se_excite (Multiply)    (None, 16, 16, 480)  0           block4b_activation[0][0]         \n",
1276
      "                                                                 block4b_se_expand[0][0]          \n",
1277
      "__________________________________________________________________________________________________\n",
1278
      "block4b_project_conv (Conv2D)   (None, 16, 16, 80)   38400       block4b_se_excite[0][0]          \n",
1279
      "__________________________________________________________________________________________________\n",
1280
      "block4b_project_bn (BatchNormal (None, 16, 16, 80)   320         block4b_project_conv[0][0]       \n",
1281
      "__________________________________________________________________________________________________\n",
1282
      "block4b_drop (FixedDropout)     (None, 16, 16, 80)   0           block4b_project_bn[0][0]         \n",
1283
      "__________________________________________________________________________________________________\n",
1284
      "block4b_add (Add)               (None, 16, 16, 80)   0           block4b_drop[0][0]               \n",
1285
      "                                                                 block4a_project_bn[0][0]         \n",
1286
      "__________________________________________________________________________________________________\n",
1287
      "block4c_expand_conv (Conv2D)    (None, 16, 16, 480)  38400       block4b_add[0][0]                \n",
1288
      "__________________________________________________________________________________________________\n",
1289
      "block4c_expand_bn (BatchNormali (None, 16, 16, 480)  1920        block4c_expand_conv[0][0]        \n",
1290
      "__________________________________________________________________________________________________\n",
1291
      "block4c_expand_activation (Acti (None, 16, 16, 480)  0           block4c_expand_bn[0][0]          \n",
1292
      "__________________________________________________________________________________________________\n",
1293
      "block4c_dwconv (DepthwiseConv2D (None, 16, 16, 480)  4320        block4c_expand_activation[0][0]  \n",
1294
      "__________________________________________________________________________________________________\n",
1295
      "block4c_bn (BatchNormalization) (None, 16, 16, 480)  1920        block4c_dwconv[0][0]             \n",
1296
      "__________________________________________________________________________________________________\n",
1297
      "block4c_activation (Activation) (None, 16, 16, 480)  0           block4c_bn[0][0]                 \n",
1298
      "__________________________________________________________________________________________________\n",
1299
      "block4c_se_squeeze (GlobalAvera (None, 480)          0           block4c_activation[0][0]         \n",
1300
      "__________________________________________________________________________________________________\n",
1301
      "block4c_se_reshape (Reshape)    (None, 1, 1, 480)    0           block4c_se_squeeze[0][0]         \n",
1302
      "__________________________________________________________________________________________________\n",
1303
      "block4c_se_reduce (Conv2D)      (None, 1, 1, 20)     9620        block4c_se_reshape[0][0]         \n",
1304
      "__________________________________________________________________________________________________\n",
1305
      "block4c_se_expand (Conv2D)      (None, 1, 1, 480)    10080       block4c_se_reduce[0][0]          \n",
1306
      "__________________________________________________________________________________________________\n",
1307
      "block4c_se_excite (Multiply)    (None, 16, 16, 480)  0           block4c_activation[0][0]         \n",
1308
      "                                                                 block4c_se_expand[0][0]          \n",
1309
      "__________________________________________________________________________________________________\n",
1310
      "block4c_project_conv (Conv2D)   (None, 16, 16, 80)   38400       block4c_se_excite[0][0]          \n",
1311
      "__________________________________________________________________________________________________\n",
1312
      "block4c_project_bn (BatchNormal (None, 16, 16, 80)   320         block4c_project_conv[0][0]       \n",
1313
      "__________________________________________________________________________________________________\n",
1314
      "block4c_drop (FixedDropout)     (None, 16, 16, 80)   0           block4c_project_bn[0][0]         \n",
1315
      "__________________________________________________________________________________________________\n",
1316
      "block4c_add (Add)               (None, 16, 16, 80)   0           block4c_drop[0][0]               \n",
1317
      "                                                                 block4b_add[0][0]                \n",
1318
      "__________________________________________________________________________________________________\n",
1319
      "block5a_expand_conv (Conv2D)    (None, 16, 16, 480)  38400       block4c_add[0][0]                \n",
1320
      "__________________________________________________________________________________________________\n",
1321
      "block5a_expand_bn (BatchNormali (None, 16, 16, 480)  1920        block5a_expand_conv[0][0]        \n",
1322
      "__________________________________________________________________________________________________\n",
1323
      "block5a_expand_activation (Acti (None, 16, 16, 480)  0           block5a_expand_bn[0][0]          \n",
1324
      "__________________________________________________________________________________________________\n",
1325
      "block5a_dwconv (DepthwiseConv2D (None, 16, 16, 480)  12000       block5a_expand_activation[0][0]  \n",
1326
      "__________________________________________________________________________________________________\n",
1327
      "block5a_bn (BatchNormalization) (None, 16, 16, 480)  1920        block5a_dwconv[0][0]             \n",
1328
      "__________________________________________________________________________________________________\n",
1329
      "block5a_activation (Activation) (None, 16, 16, 480)  0           block5a_bn[0][0]                 \n",
1330
      "__________________________________________________________________________________________________\n",
1331
      "block5a_se_squeeze (GlobalAvera (None, 480)          0           block5a_activation[0][0]         \n",
1332
      "__________________________________________________________________________________________________\n",
1333
      "block5a_se_reshape (Reshape)    (None, 1, 1, 480)    0           block5a_se_squeeze[0][0]         \n",
1334
      "__________________________________________________________________________________________________\n",
1335
      "block5a_se_reduce (Conv2D)      (None, 1, 1, 20)     9620        block5a_se_reshape[0][0]         \n",
1336
      "__________________________________________________________________________________________________\n",
1337
      "block5a_se_expand (Conv2D)      (None, 1, 1, 480)    10080       block5a_se_reduce[0][0]          \n",
1338
      "__________________________________________________________________________________________________\n",
1339
      "block5a_se_excite (Multiply)    (None, 16, 16, 480)  0           block5a_activation[0][0]         \n",
1340
      "                                                                 block5a_se_expand[0][0]          \n",
1341
      "__________________________________________________________________________________________________\n",
1342
      "block5a_project_conv (Conv2D)   (None, 16, 16, 112)  53760       block5a_se_excite[0][0]          \n",
1343
      "__________________________________________________________________________________________________\n",
1344
      "block5a_project_bn (BatchNormal (None, 16, 16, 112)  448         block5a_project_conv[0][0]       \n",
1345
      "__________________________________________________________________________________________________\n",
1346
      "block5b_expand_conv (Conv2D)    (None, 16, 16, 672)  75264       block5a_project_bn[0][0]         \n",
1347
      "__________________________________________________________________________________________________\n",
1348
      "block5b_expand_bn (BatchNormali (None, 16, 16, 672)  2688        block5b_expand_conv[0][0]        \n",
1349
      "__________________________________________________________________________________________________\n",
1350
      "block5b_expand_activation (Acti (None, 16, 16, 672)  0           block5b_expand_bn[0][0]          \n",
1351
      "__________________________________________________________________________________________________\n",
1352
      "block5b_dwconv (DepthwiseConv2D (None, 16, 16, 672)  16800       block5b_expand_activation[0][0]  \n",
1353
      "__________________________________________________________________________________________________\n",
1354
      "block5b_bn (BatchNormalization) (None, 16, 16, 672)  2688        block5b_dwconv[0][0]             \n",
1355
      "__________________________________________________________________________________________________\n",
1356
      "block5b_activation (Activation) (None, 16, 16, 672)  0           block5b_bn[0][0]                 \n",
1357
      "__________________________________________________________________________________________________\n",
1358
      "block5b_se_squeeze (GlobalAvera (None, 672)          0           block5b_activation[0][0]         \n",
1359
      "__________________________________________________________________________________________________\n",
1360
      "block5b_se_reshape (Reshape)    (None, 1, 1, 672)    0           block5b_se_squeeze[0][0]         \n",
1361
      "__________________________________________________________________________________________________\n",
1362
      "block5b_se_reduce (Conv2D)      (None, 1, 1, 28)     18844       block5b_se_reshape[0][0]         \n",
1363
      "__________________________________________________________________________________________________\n",
1364
      "block5b_se_expand (Conv2D)      (None, 1, 1, 672)    19488       block5b_se_reduce[0][0]          \n",
1365
      "__________________________________________________________________________________________________\n",
1366
      "block5b_se_excite (Multiply)    (None, 16, 16, 672)  0           block5b_activation[0][0]         \n",
1367
      "                                                                 block5b_se_expand[0][0]          \n",
1368
      "__________________________________________________________________________________________________\n",
1369
      "block5b_project_conv (Conv2D)   (None, 16, 16, 112)  75264       block5b_se_excite[0][0]          \n",
1370
      "__________________________________________________________________________________________________\n",
1371
      "block5b_project_bn (BatchNormal (None, 16, 16, 112)  448         block5b_project_conv[0][0]       \n",
1372
      "__________________________________________________________________________________________________\n",
1373
      "block5b_drop (FixedDropout)     (None, 16, 16, 112)  0           block5b_project_bn[0][0]         \n",
1374
      "__________________________________________________________________________________________________\n",
1375
      "block5b_add (Add)               (None, 16, 16, 112)  0           block5b_drop[0][0]               \n",
1376
      "                                                                 block5a_project_bn[0][0]         \n",
1377
      "__________________________________________________________________________________________________\n",
1378
      "block5c_expand_conv (Conv2D)    (None, 16, 16, 672)  75264       block5b_add[0][0]                \n",
1379
      "__________________________________________________________________________________________________\n",
1380
      "block5c_expand_bn (BatchNormali (None, 16, 16, 672)  2688        block5c_expand_conv[0][0]        \n",
1381
      "__________________________________________________________________________________________________\n",
1382
      "block5c_expand_activation (Acti (None, 16, 16, 672)  0           block5c_expand_bn[0][0]          \n",
1383
      "__________________________________________________________________________________________________\n",
1384
      "block5c_dwconv (DepthwiseConv2D (None, 16, 16, 672)  16800       block5c_expand_activation[0][0]  \n",
1385
      "__________________________________________________________________________________________________\n",
1386
      "block5c_bn (BatchNormalization) (None, 16, 16, 672)  2688        block5c_dwconv[0][0]             \n",
1387
      "__________________________________________________________________________________________________\n",
1388
      "block5c_activation (Activation) (None, 16, 16, 672)  0           block5c_bn[0][0]                 \n",
1389
      "__________________________________________________________________________________________________\n",
1390
      "block5c_se_squeeze (GlobalAvera (None, 672)          0           block5c_activation[0][0]         \n",
1391
      "__________________________________________________________________________________________________\n",
1392
      "block5c_se_reshape (Reshape)    (None, 1, 1, 672)    0           block5c_se_squeeze[0][0]         \n",
1393
      "__________________________________________________________________________________________________\n",
1394
      "block5c_se_reduce (Conv2D)      (None, 1, 1, 28)     18844       block5c_se_reshape[0][0]         \n",
1395
      "__________________________________________________________________________________________________\n",
1396
      "block5c_se_expand (Conv2D)      (None, 1, 1, 672)    19488       block5c_se_reduce[0][0]          \n",
1397
      "__________________________________________________________________________________________________\n",
1398
      "block5c_se_excite (Multiply)    (None, 16, 16, 672)  0           block5c_activation[0][0]         \n",
1399
      "                                                                 block5c_se_expand[0][0]          \n",
1400
      "__________________________________________________________________________________________________\n",
1401
      "block5c_project_conv (Conv2D)   (None, 16, 16, 112)  75264       block5c_se_excite[0][0]          \n",
1402
      "__________________________________________________________________________________________________\n",
1403
      "block5c_project_bn (BatchNormal (None, 16, 16, 112)  448         block5c_project_conv[0][0]       \n",
1404
      "__________________________________________________________________________________________________\n",
1405
      "block5c_drop (FixedDropout)     (None, 16, 16, 112)  0           block5c_project_bn[0][0]         \n",
1406
      "__________________________________________________________________________________________________\n",
1407
      "block5c_add (Add)               (None, 16, 16, 112)  0           block5c_drop[0][0]               \n",
1408
      "                                                                 block5b_add[0][0]                \n",
1409
      "__________________________________________________________________________________________________\n",
1410
      "block6a_expand_conv (Conv2D)    (None, 16, 16, 672)  75264       block5c_add[0][0]                \n",
1411
      "__________________________________________________________________________________________________\n",
1412
      "block6a_expand_bn (BatchNormali (None, 16, 16, 672)  2688        block6a_expand_conv[0][0]        \n",
1413
      "__________________________________________________________________________________________________\n",
1414
      "block6a_expand_activation (Acti (None, 16, 16, 672)  0           block6a_expand_bn[0][0]          \n",
1415
      "__________________________________________________________________________________________________\n",
1416
      "block6a_dwconv (DepthwiseConv2D (None, 8, 8, 672)    16800       block6a_expand_activation[0][0]  \n",
1417
      "__________________________________________________________________________________________________\n",
1418
      "block6a_bn (BatchNormalization) (None, 8, 8, 672)    2688        block6a_dwconv[0][0]             \n",
1419
      "__________________________________________________________________________________________________\n",
1420
      "block6a_activation (Activation) (None, 8, 8, 672)    0           block6a_bn[0][0]                 \n",
1421
      "__________________________________________________________________________________________________\n",
1422
      "block6a_se_squeeze (GlobalAvera (None, 672)          0           block6a_activation[0][0]         \n",
1423
      "__________________________________________________________________________________________________\n",
1424
      "block6a_se_reshape (Reshape)    (None, 1, 1, 672)    0           block6a_se_squeeze[0][0]         \n",
1425
      "__________________________________________________________________________________________________\n",
1426
      "block6a_se_reduce (Conv2D)      (None, 1, 1, 28)     18844       block6a_se_reshape[0][0]         \n",
1427
      "__________________________________________________________________________________________________\n",
1428
      "block6a_se_expand (Conv2D)      (None, 1, 1, 672)    19488       block6a_se_reduce[0][0]          \n",
1429
      "__________________________________________________________________________________________________\n",
1430
      "block6a_se_excite (Multiply)    (None, 8, 8, 672)    0           block6a_activation[0][0]         \n",
1431
      "                                                                 block6a_se_expand[0][0]          \n",
1432
      "__________________________________________________________________________________________________\n",
1433
      "block6a_project_conv (Conv2D)   (None, 8, 8, 192)    129024      block6a_se_excite[0][0]          \n",
1434
      "__________________________________________________________________________________________________\n",
1435
      "block6a_project_bn (BatchNormal (None, 8, 8, 192)    768         block6a_project_conv[0][0]       \n",
1436
      "__________________________________________________________________________________________________\n",
1437
      "block6b_expand_conv (Conv2D)    (None, 8, 8, 1152)   221184      block6a_project_bn[0][0]         \n",
1438
      "__________________________________________________________________________________________________\n",
1439
      "block6b_expand_bn (BatchNormali (None, 8, 8, 1152)   4608        block6b_expand_conv[0][0]        \n",
1440
      "__________________________________________________________________________________________________\n",
1441
      "block6b_expand_activation (Acti (None, 8, 8, 1152)   0           block6b_expand_bn[0][0]          \n",
1442
      "__________________________________________________________________________________________________\n",
1443
      "block6b_dwconv (DepthwiseConv2D (None, 8, 8, 1152)   28800       block6b_expand_activation[0][0]  \n",
1444
      "__________________________________________________________________________________________________\n",
1445
      "block6b_bn (BatchNormalization) (None, 8, 8, 1152)   4608        block6b_dwconv[0][0]             \n",
1446
      "__________________________________________________________________________________________________\n",
1447
      "block6b_activation (Activation) (None, 8, 8, 1152)   0           block6b_bn[0][0]                 \n",
1448
      "__________________________________________________________________________________________________\n",
1449
      "block6b_se_squeeze (GlobalAvera (None, 1152)         0           block6b_activation[0][0]         \n",
1450
      "__________________________________________________________________________________________________\n",
1451
      "block6b_se_reshape (Reshape)    (None, 1, 1, 1152)   0           block6b_se_squeeze[0][0]         \n",
1452
      "__________________________________________________________________________________________________\n",
1453
      "block6b_se_reduce (Conv2D)      (None, 1, 1, 48)     55344       block6b_se_reshape[0][0]         \n",
1454
      "__________________________________________________________________________________________________\n",
1455
      "block6b_se_expand (Conv2D)      (None, 1, 1, 1152)   56448       block6b_se_reduce[0][0]          \n",
1456
      "__________________________________________________________________________________________________\n",
1457
      "block6b_se_excite (Multiply)    (None, 8, 8, 1152)   0           block6b_activation[0][0]         \n",
1458
      "                                                                 block6b_se_expand[0][0]          \n",
1459
      "__________________________________________________________________________________________________\n",
1460
      "block6b_project_conv (Conv2D)   (None, 8, 8, 192)    221184      block6b_se_excite[0][0]          \n",
1461
      "__________________________________________________________________________________________________\n",
1462
      "block6b_project_bn (BatchNormal (None, 8, 8, 192)    768         block6b_project_conv[0][0]       \n",
1463
      "__________________________________________________________________________________________________\n",
1464
      "block6b_drop (FixedDropout)     (None, 8, 8, 192)    0           block6b_project_bn[0][0]         \n",
1465
      "__________________________________________________________________________________________________\n",
1466
      "block6b_add (Add)               (None, 8, 8, 192)    0           block6b_drop[0][0]               \n",
1467
      "                                                                 block6a_project_bn[0][0]         \n",
1468
      "__________________________________________________________________________________________________\n",
1469
      "block6c_expand_conv (Conv2D)    (None, 8, 8, 1152)   221184      block6b_add[0][0]                \n",
1470
      "__________________________________________________________________________________________________\n",
1471
      "block6c_expand_bn (BatchNormali (None, 8, 8, 1152)   4608        block6c_expand_conv[0][0]        \n",
1472
      "__________________________________________________________________________________________________\n",
1473
      "block6c_expand_activation (Acti (None, 8, 8, 1152)   0           block6c_expand_bn[0][0]          \n",
1474
      "__________________________________________________________________________________________________\n",
1475
      "block6c_dwconv (DepthwiseConv2D (None, 8, 8, 1152)   28800       block6c_expand_activation[0][0]  \n",
1476
      "__________________________________________________________________________________________________\n",
1477
      "block6c_bn (BatchNormalization) (None, 8, 8, 1152)   4608        block6c_dwconv[0][0]             \n",
1478
      "__________________________________________________________________________________________________\n",
1479
      "block6c_activation (Activation) (None, 8, 8, 1152)   0           block6c_bn[0][0]                 \n",
1480
      "__________________________________________________________________________________________________\n",
1481
      "block6c_se_squeeze (GlobalAvera (None, 1152)         0           block6c_activation[0][0]         \n",
1482
      "__________________________________________________________________________________________________\n",
1483
      "block6c_se_reshape (Reshape)    (None, 1, 1, 1152)   0           block6c_se_squeeze[0][0]         \n",
1484
      "__________________________________________________________________________________________________\n",
1485
      "block6c_se_reduce (Conv2D)      (None, 1, 1, 48)     55344       block6c_se_reshape[0][0]         \n",
1486
      "__________________________________________________________________________________________________\n",
1487
      "block6c_se_expand (Conv2D)      (None, 1, 1, 1152)   56448       block6c_se_reduce[0][0]          \n",
1488
      "__________________________________________________________________________________________________\n",
1489
      "block6c_se_excite (Multiply)    (None, 8, 8, 1152)   0           block6c_activation[0][0]         \n",
1490
      "                                                                 block6c_se_expand[0][0]          \n",
1491
      "__________________________________________________________________________________________________\n",
1492
      "block6c_project_conv (Conv2D)   (None, 8, 8, 192)    221184      block6c_se_excite[0][0]          \n",
1493
      "__________________________________________________________________________________________________\n",
1494
      "block6c_project_bn (BatchNormal (None, 8, 8, 192)    768         block6c_project_conv[0][0]       \n",
1495
      "__________________________________________________________________________________________________\n",
1496
      "block6c_drop (FixedDropout)     (None, 8, 8, 192)    0           block6c_project_bn[0][0]         \n",
1497
      "__________________________________________________________________________________________________\n",
1498
      "block6c_add (Add)               (None, 8, 8, 192)    0           block6c_drop[0][0]               \n",
1499
      "                                                                 block6b_add[0][0]                \n",
1500
      "__________________________________________________________________________________________________\n",
1501
      "block6d_expand_conv (Conv2D)    (None, 8, 8, 1152)   221184      block6c_add[0][0]                \n",
1502
      "__________________________________________________________________________________________________\n",
1503
      "block6d_expand_bn (BatchNormali (None, 8, 8, 1152)   4608        block6d_expand_conv[0][0]        \n",
1504
      "__________________________________________________________________________________________________\n",
1505
      "block6d_expand_activation (Acti (None, 8, 8, 1152)   0           block6d_expand_bn[0][0]          \n",
1506
      "__________________________________________________________________________________________________\n",
1507
      "block6d_dwconv (DepthwiseConv2D (None, 8, 8, 1152)   28800       block6d_expand_activation[0][0]  \n",
1508
      "__________________________________________________________________________________________________\n",
1509
      "block6d_bn (BatchNormalization) (None, 8, 8, 1152)   4608        block6d_dwconv[0][0]             \n",
1510
      "__________________________________________________________________________________________________\n",
1511
      "block6d_activation (Activation) (None, 8, 8, 1152)   0           block6d_bn[0][0]                 \n",
1512
      "__________________________________________________________________________________________________\n",
1513
      "block6d_se_squeeze (GlobalAvera (None, 1152)         0           block6d_activation[0][0]         \n",
1514
      "__________________________________________________________________________________________________\n",
1515
      "block6d_se_reshape (Reshape)    (None, 1, 1, 1152)   0           block6d_se_squeeze[0][0]         \n",
1516
      "__________________________________________________________________________________________________\n",
1517
      "block6d_se_reduce (Conv2D)      (None, 1, 1, 48)     55344       block6d_se_reshape[0][0]         \n",
1518
      "__________________________________________________________________________________________________\n",
1519
      "block6d_se_expand (Conv2D)      (None, 1, 1, 1152)   56448       block6d_se_reduce[0][0]          \n",
1520
      "__________________________________________________________________________________________________\n",
1521
      "block6d_se_excite (Multiply)    (None, 8, 8, 1152)   0           block6d_activation[0][0]         \n",
1522
      "                                                                 block6d_se_expand[0][0]          \n",
1523
      "__________________________________________________________________________________________________\n",
1524
      "block6d_project_conv (Conv2D)   (None, 8, 8, 192)    221184      block6d_se_excite[0][0]          \n",
1525
      "__________________________________________________________________________________________________\n",
1526
      "block6d_project_bn (BatchNormal (None, 8, 8, 192)    768         block6d_project_conv[0][0]       \n",
1527
      "__________________________________________________________________________________________________\n",
1528
      "block6d_drop (FixedDropout)     (None, 8, 8, 192)    0           block6d_project_bn[0][0]         \n",
1529
      "__________________________________________________________________________________________________\n",
1530
      "block6d_add (Add)               (None, 8, 8, 192)    0           block6d_drop[0][0]               \n",
1531
      "                                                                 block6c_add[0][0]                \n",
1532
      "__________________________________________________________________________________________________\n",
1533
      "block7a_expand_conv (Conv2D)    (None, 8, 8, 1152)   221184      block6d_add[0][0]                \n",
1534
      "__________________________________________________________________________________________________\n",
1535
      "block7a_expand_bn (BatchNormali (None, 8, 8, 1152)   4608        block7a_expand_conv[0][0]        \n",
1536
      "__________________________________________________________________________________________________\n",
1537
      "block7a_expand_activation (Acti (None, 8, 8, 1152)   0           block7a_expand_bn[0][0]          \n",
1538
      "__________________________________________________________________________________________________\n",
1539
      "block7a_dwconv (DepthwiseConv2D (None, 8, 8, 1152)   10368       block7a_expand_activation[0][0]  \n",
1540
      "__________________________________________________________________________________________________\n",
1541
      "block7a_bn (BatchNormalization) (None, 8, 8, 1152)   4608        block7a_dwconv[0][0]             \n",
1542
      "__________________________________________________________________________________________________\n",
1543
      "block7a_activation (Activation) (None, 8, 8, 1152)   0           block7a_bn[0][0]                 \n",
1544
      "__________________________________________________________________________________________________\n",
1545
      "block7a_se_squeeze (GlobalAvera (None, 1152)         0           block7a_activation[0][0]         \n",
1546
      "__________________________________________________________________________________________________\n",
1547
      "block7a_se_reshape (Reshape)    (None, 1, 1, 1152)   0           block7a_se_squeeze[0][0]         \n",
1548
      "__________________________________________________________________________________________________\n",
1549
      "block7a_se_reduce (Conv2D)      (None, 1, 1, 48)     55344       block7a_se_reshape[0][0]         \n",
1550
      "__________________________________________________________________________________________________\n",
1551
      "block7a_se_expand (Conv2D)      (None, 1, 1, 1152)   56448       block7a_se_reduce[0][0]          \n",
1552
      "__________________________________________________________________________________________________\n",
1553
      "block7a_se_excite (Multiply)    (None, 8, 8, 1152)   0           block7a_activation[0][0]         \n",
1554
      "                                                                 block7a_se_expand[0][0]          \n",
1555
      "__________________________________________________________________________________________________\n",
1556
      "block7a_project_conv (Conv2D)   (None, 8, 8, 320)    368640      block7a_se_excite[0][0]          \n",
1557
      "__________________________________________________________________________________________________\n",
1558
      "block7a_project_bn (BatchNormal (None, 8, 8, 320)    1280        block7a_project_conv[0][0]       \n",
1559
      "__________________________________________________________________________________________________\n",
1560
      "top_conv (Conv2D)               (None, 8, 8, 1280)   409600      block7a_project_bn[0][0]         \n",
1561
      "__________________________________________________________________________________________________\n",
1562
      "top_bn (BatchNormalization)     (None, 8, 8, 1280)   5120        top_conv[0][0]                   \n",
1563
      "__________________________________________________________________________________________________\n",
1564
      "top_activation (Activation)     (None, 8, 8, 1280)   0           top_bn[0][0]                     \n",
1565
      "__________________________________________________________________________________________________\n",
1566
      "avg_pool (GlobalAveragePooling2 (None, 1280)         0           top_activation[0][0]             \n",
1567
      "__________________________________________________________________________________________________\n",
1568
      "dropout_1 (Dropout)             (None, 1280)         0           avg_pool[0][0]                   \n",
1569
      "__________________________________________________________________________________________________\n",
1570
      "dense_1 (Dense)                 (None, 6)            7686        dropout_1[0][0]                  \n",
1571
      "==================================================================================================\n",
1572
      "Total params: 4,057,250\n",
1573
      "Trainable params: 4,015,234\n",
1574
      "Non-trainable params: 42,016\n",
1575
      "__________________________________________________________________________________________________\n"
1576
     ]
1577
    }
1578
   ],
1579
   "source": [
1580
    "base_model =  efn.EfficientNetB0(weights = 'imagenet', include_top = False, \\\n",
1581
    "                                 pooling = 'avg', input_shape = (HEIGHT, WIDTH, 3))\n",
1582
    "x = base_model.output\n",
1583
    "x = Dropout(0.125)(x)\n",
1584
    "output_layer = Dense(6, activation = 'sigmoid')(x)\n",
1585
    "model = Model(inputs=base_model.input, outputs=output_layer)\n",
1586
    "model.compile(optimizer = Adam(learning_rate = 0.0001), \n",
1587
    "                  loss = 'binary_crossentropy',\n",
1588
    "                  metrics = ['acc', tf.keras.metrics.AUC()])\n",
1589
    "model.summary()"
1590
   ]
1591
  },
1592
  {
1593
   "cell_type": "code",
1594
   "execution_count": 25,
1595
   "metadata": {},
1596
   "outputs": [
1597
    {
1598
     "data": {
1599
      "text/plain": [
1600
       "(636396, 40622)"
1601
      ]
1602
     },
1603
     "execution_count": 25,
1604
     "metadata": {},
1605
     "output_type": "execute_result"
1606
    }
1607
   ],
1608
   "source": [
1609
    "# https://github.com/trent-b/iterative-stratification\n",
1610
    "# Mutlilabel stratification\n",
1611
    "splits = MultilabelStratifiedShuffleSplit(n_splits = 2, test_size = TEST_SIZE, random_state = SEED)\n",
1612
    "file_names = train_final_df.index\n",
1613
    "labels = train_final_df.values\n",
1614
    "# Lets take only the first split\n",
1615
    "split = next(splits.split(file_names, labels))\n",
1616
    "train_idx = split[0]\n",
1617
    "valid_idx = split[1]\n",
1618
    "submission_predictions = []\n",
1619
    "len(train_idx), len(valid_idx)"
1620
   ]
1621
  },
1622
  {
1623
   "cell_type": "code",
1624
   "execution_count": 26,
1625
   "metadata": {},
1626
   "outputs": [],
1627
   "source": [
1628
    "# train data generator\n",
1629
    "data_generator_train = TrainDataGenerator(train_final_df.iloc[train_idx], \n",
1630
    "                                                train_final_df.iloc[train_idx], \n",
1631
    "                                                TRAIN_BATCH_SIZE, \n",
1632
    "                                                (WIDTH, HEIGHT),\n",
1633
    "                                                augment = True)\n",
1634
    "\n",
1635
    "# validation data generator\n",
1636
    "data_generator_val = TrainDataGenerator(train_final_df.iloc[valid_idx], \n",
1637
    "                                            train_final_df.iloc[valid_idx], \n",
1638
    "                                            VALID_BATCH_SIZE, \n",
1639
    "                                            (WIDTH, HEIGHT),\n",
1640
    "                                            augment = False)"
1641
   ]
1642
  },
1643
  {
1644
   "cell_type": "code",
1645
   "execution_count": 27,
1646
   "metadata": {},
1647
   "outputs": [
1648
    {
1649
     "data": {
1650
      "text/plain": [
1651
       "(19888, 635)"
1652
      ]
1653
     },
1654
     "execution_count": 27,
1655
     "metadata": {},
1656
     "output_type": "execute_result"
1657
    }
1658
   ],
1659
   "source": [
1660
    "len(data_generator_train), len(data_generator_val)"
1661
   ]
1662
  },
1663
  {
1664
   "cell_type": "markdown",
1665
   "metadata": {},
1666
   "source": [
1667
    "Competition evaluation metric is evaluated based on weighted log loss but we haven't given weights for each subtype but as per discussion from this thread https://www.kaggle.com/c/rsna-intracranial-hemorrhage-detection/discussion/109526#latest-630190 any has a wieght of 2 than other types below sample is taken from the discussion threas"
1668
   ]
1669
  },
1670
  {
1671
   "cell_type": "code",
1672
   "execution_count": 28,
1673
   "metadata": {},
1674
   "outputs": [],
1675
   "source": [
1676
    "from keras import backend as K\n",
1677
    "\n",
1678
    "def weighted_log_loss(y_true, y_pred):\n",
1679
    "    \"\"\"\n",
1680
    "    Can be used as the loss function in model.compile()\n",
1681
    "    ---------------------------------------------------\n",
1682
    "    \"\"\"\n",
1683
    "    \n",
1684
    "    class_weights = np.array([2., 1., 1., 1., 1., 1.])\n",
1685
    "    \n",
1686
    "    eps = K.epsilon()\n",
1687
    "    \n",
1688
    "    y_pred = K.clip(y_pred, eps, 1.0-eps)\n",
1689
    "\n",
1690
    "    out = -(         y_true  * K.log(      y_pred) * class_weights\n",
1691
    "            + (1.0 - y_true) * K.log(1.0 - y_pred) * class_weights)\n",
1692
    "    \n",
1693
    "    return K.mean(out, axis=-1)\n",
1694
    "\n",
1695
    "\n",
1696
    "def _normalized_weighted_average(arr, weights=None):\n",
1697
    "    \"\"\"\n",
1698
    "    A simple Keras implementation that mimics that of \n",
1699
    "    numpy.average(), specifically for this competition\n",
1700
    "    \"\"\"\n",
1701
    "    \n",
1702
    "    if weights is not None:\n",
1703
    "        scl = K.sum(weights)\n",
1704
    "        weights = K.expand_dims(weights, axis=1)\n",
1705
    "        return K.sum(K.dot(arr, weights), axis=1) / scl\n",
1706
    "    return K.mean(arr, axis=1)\n",
1707
    "\n",
1708
    "\n",
1709
    "def weighted_loss(y_true, y_pred):\n",
1710
    "    \"\"\"\n",
1711
    "    Will be used as the metric in model.compile()\n",
1712
    "    ---------------------------------------------\n",
1713
    "    \n",
1714
    "    Similar to the custom loss function 'weighted_log_loss()' above\n",
1715
    "    but with normalized weights, which should be very similar \n",
1716
    "    to the official competition metric:\n",
1717
    "        https://www.kaggle.com/kambarakun/lb-probe-weights-n-of-positives-scoring\n",
1718
    "    and hence:\n",
1719
    "        sklearn.metrics.log_loss with sample weights\n",
1720
    "    \"\"\"\n",
1721
    "    \n",
1722
    "    class_weights = K.variable([2., 1., 1., 1., 1., 1.])\n",
1723
    "    \n",
1724
    "    eps = K.epsilon()\n",
1725
    "    \n",
1726
    "    y_pred = K.clip(y_pred, eps, 1.0-eps)\n",
1727
    "\n",
1728
    "    loss = -(        y_true  * K.log(      y_pred)\n",
1729
    "            + (1.0 - y_true) * K.log(1.0 - y_pred))\n",
1730
    "    \n",
1731
    "    loss_samples = _normalized_weighted_average(loss, class_weights)\n",
1732
    "    \n",
1733
    "    return K.mean(loss_samples)\n",
1734
    "\n",
1735
    "\n",
1736
    "def weighted_log_loss_metric(trues, preds):\n",
1737
    "    \"\"\"\n",
1738
    "    Will be used to calculate the log loss \n",
1739
    "    of the validation set in PredictionCheckpoint()\n",
1740
    "    ------------------------------------------\n",
1741
    "    \"\"\"\n",
1742
    "    class_weights = [2., 1., 1., 1., 1., 1.]\n",
1743
    "    \n",
1744
    "    epsilon = 1e-7\n",
1745
    "    \n",
1746
    "    preds = np.clip(preds, epsilon, 1-epsilon)\n",
1747
    "    loss = trues * np.log(preds) + (1 - trues) * np.log(1 - preds)\n",
1748
    "    loss_samples = np.average(loss, axis=1, weights=class_weights)\n",
1749
    "\n",
1750
    "    return - loss_samples.mean()"
1751
   ]
1752
  },
1753
  {
1754
   "cell_type": "code",
1755
   "execution_count": 29,
1756
   "metadata": {},
1757
   "outputs": [],
1758
   "source": [
1759
    "filepath=\"model.h5\"\n",
1760
    "checkpoint = ModelCheckpoint(filepath, monitor='val_loss', verbose=1, \\\n",
1761
    "                             save_best_only=True, mode='min')\n",
1762
    "\n",
1763
    "callbacks_list = [checkpoint]"
1764
   ]
1765
  },
1766
  {
1767
   "cell_type": "markdown",
1768
   "metadata": {},
1769
   "source": [
1770
    "For a single epoch we are going to train only last 5 layers of Efficient. Since we have a large number of images around 600k so its better to train the all the layers on the whole train dataset but due its high computation resources required to train we only goin to train last five layers on whole dataset and for rest of epochs we only train on a sample of dataset but will train all the layers."
1771
   ]
1772
  },
1773
  {
1774
   "cell_type": "code",
1775
   "execution_count": 31,
1776
   "metadata": {},
1777
   "outputs": [],
1778
   "source": [
1779
    "train = False"
1780
   ]
1781
  },
1782
  {
1783
   "cell_type": "code",
1784
   "execution_count": 32,
1785
   "metadata": {},
1786
   "outputs": [],
1787
   "source": [
1788
    "if train:\n",
1789
    "    if not os.path.isfile('../input/orginal-087-eff/model.h5'):\n",
1790
    "        for layer in model.layers[:-5]:\n",
1791
    "            layer.trainable = False\n",
1792
    "        model.compile(optimizer = Adam(learning_rate = 0.0001), \n",
1793
    "                      loss = 'binary_crossentropy',\n",
1794
    "                      metrics = ['acc'])\n",
1795
    "\n",
1796
    "        model.fit_generator(generator = data_generator_train,\n",
1797
    "                            validation_data = data_generator_val,\n",
1798
    "                            epochs = 2,\n",
1799
    "                            callbacks = callbacks_list,\n",
1800
    "                            verbose = 1)"
1801
   ]
1802
  },
1803
  {
1804
   "cell_type": "code",
1805
   "execution_count": 33,
1806
   "metadata": {},
1807
   "outputs": [],
1808
   "source": [
1809
    "if train:\n",
1810
    "    for base_layer in model.layers[:-1]:\n",
1811
    "        base_layer.trainable = True\n",
1812
    "\n",
1813
    "    model.load_weights('model.h5')\n",
1814
    "\n",
1815
    "    model.compile(optimizer = Adam(learning_rate = 0.0004), \n",
1816
    "                      loss = 'binary_crossentropy',\n",
1817
    "                      metrics = ['acc'])\n",
1818
    "    model.fit_generator(generator = data_generator_train,\n",
1819
    "                            validation_data = data_generator_val,\n",
1820
    "                            steps_per_epoch=len(data_generator_train)/6,\n",
1821
    "                            epochs = 10,\n",
1822
    "                            callbacks = callbacks_list,\n",
1823
    "                            verbose = 1)"
1824
   ]
1825
  },
1826
  {
1827
   "cell_type": "code",
1828
   "execution_count": 34,
1829
   "metadata": {},
1830
   "outputs": [
1831
    {
1832
     "name": "stdout",
1833
     "output_type": "stream",
1834
     "text": [
1835
      "Collecting gdown\n",
1836
      "  Downloading https://files.pythonhosted.org/packages/b0/b4/a8e9d0b02bca6aa53087001abf064cc9992bda11bd6840875b8098d93573/gdown-3.8.3.tar.gz\n",
1837
      "Requirement already satisfied: filelock in /opt/conda/lib/python3.6/site-packages (from gdown) (3.0.12)\n",
1838
      "Requirement already satisfied: requests in /opt/conda/lib/python3.6/site-packages (from gdown) (2.22.0)\n",
1839
      "Requirement already satisfied: six in /opt/conda/lib/python3.6/site-packages (from gdown) (1.12.0)\n",
1840
      "Requirement already satisfied: tqdm in /opt/conda/lib/python3.6/site-packages (from gdown) (4.36.1)\n",
1841
      "Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /opt/conda/lib/python3.6/site-packages (from requests->gdown) (1.24.2)\n",
1842
      "Requirement already satisfied: chardet<3.1.0,>=3.0.2 in /opt/conda/lib/python3.6/site-packages (from requests->gdown) (3.0.4)\n",
1843
      "Requirement already satisfied: idna<2.9,>=2.5 in /opt/conda/lib/python3.6/site-packages (from requests->gdown) (2.8)\n",
1844
      "Requirement already satisfied: certifi>=2017.4.17 in /opt/conda/lib/python3.6/site-packages (from requests->gdown) (2019.9.11)\n",
1845
      "Building wheels for collected packages: gdown\n",
1846
      "  Building wheel for gdown (setup.py) ... \u001b[?25ldone\n",
1847
      "\u001b[?25h  Created wheel for gdown: filename=gdown-3.8.3-cp36-none-any.whl size=8850 sha256=ca7bf131547dd1503032ee6ec7567ff06fb7ddad8d44a32f00f874aadbd01a5e\n",
1848
      "  Stored in directory: /tmp/.cache/pip/wheels/a7/9d/16/9e0bda9a327ff2cddaee8de48a27553fb1efce73133593d066\n",
1849
      "Successfully built gdown\n",
1850
      "Installing collected packages: gdown\n",
1851
      "Successfully installed gdown-3.8.3\n"
1852
     ]
1853
    }
1854
   ],
1855
   "source": [
1856
    "!pip install gdown"
1857
   ]
1858
  },
1859
  {
1860
   "cell_type": "code",
1861
   "execution_count": 35,
1862
   "metadata": {},
1863
   "outputs": [
1864
    {
1865
     "name": "stdout",
1866
     "output_type": "stream",
1867
     "text": [
1868
      "Downloading...\n",
1869
      "From: https://drive.google.com/uc?id=1kZmMCCBOWSjCZjz2XWaouDIj5gFn2D-q\n",
1870
      "To: /kaggle/working/model (4).h5\n",
1871
      "49.2MB [00:03, 14.6MB/s]\n"
1872
     ]
1873
    }
1874
   ],
1875
   "source": [
1876
    "!gdown https://drive.google.com/uc?id=1kZmMCCBOWSjCZjz2XWaouDIj5gFn2D-q"
1877
   ]
1878
  },
1879
  {
1880
   "cell_type": "code",
1881
   "execution_count": 36,
1882
   "metadata": {},
1883
   "outputs": [],
1884
   "source": [
1885
    "!cp \"model (4).h5\" model.h5"
1886
   ]
1887
  },
1888
  {
1889
   "cell_type": "code",
1890
   "execution_count": 37,
1891
   "metadata": {},
1892
   "outputs": [
1893
    {
1894
     "name": "stdout",
1895
     "output_type": "stream",
1896
     "text": [
1897
      "1228/1228 [==============================] - 856s 697ms/step\n"
1898
     ]
1899
    },
1900
    {
1901
     "data": {
1902
      "text/plain": [
1903
       "(78592, 6)"
1904
      ]
1905
     },
1906
     "execution_count": 37,
1907
     "metadata": {},
1908
     "output_type": "execute_result"
1909
    }
1910
   ],
1911
   "source": [
1912
    "model.load_weights('model.h5')\n",
1913
    "\n",
1914
    "preds = model.predict_generator(TestDataGenerator(test_df.index, None, VALID_BATCH_SIZE, \\\n",
1915
    "                                                  (WIDTH, HEIGHT), path_test_img), \n",
1916
    "                                verbose=1)\n",
1917
    "preds.shape"
1918
   ]
1919
  },
1920
  {
1921
   "cell_type": "code",
1922
   "execution_count": 38,
1923
   "metadata": {},
1924
   "outputs": [],
1925
   "source": [
1926
    "from tqdm import tqdm"
1927
   ]
1928
  },
1929
  {
1930
   "cell_type": "code",
1931
   "execution_count": 39,
1932
   "metadata": {},
1933
   "outputs": [],
1934
   "source": [
1935
    "cols = list(train_final_df.columns)"
1936
   ]
1937
  },
1938
  {
1939
   "cell_type": "code",
1940
   "execution_count": 40,
1941
   "metadata": {},
1942
   "outputs": [
1943
    {
1944
     "name": "stderr",
1945
     "output_type": "stream",
1946
     "text": [
1947
      "100%|█████████▉| 78545/78592 [00:01<00:00, 51807.96it/s]\n"
1948
     ]
1949
    }
1950
   ],
1951
   "source": [
1952
    "# We have preditions for each of the image\n",
1953
    "# We need to make 6 rows for each of file according to the subtype\n",
1954
    "ids = []\n",
1955
    "values = []\n",
1956
    "for i, j in tqdm(zip(preds, test_df.index.to_list()), total=preds.shape[0]):\n",
1957
    "#     print(i, j)\n",
1958
    "    # i=[any_prob, epidural_prob, intraparenchymal_prob, intraventricular_prob, subarachnoid_prob, subdural_prob]\n",
1959
    "    # j = filename ==> ID_xyz.dcm\n",
1960
    "    for k in range(i.shape[0]):\n",
1961
    "        ids.append([j.replace('.dcm', '_' + cols[k])])\n",
1962
    "        values.append(i[k])      "
1963
   ]
1964
  },
1965
  {
1966
   "cell_type": "code",
1967
   "execution_count": 41,
1968
   "metadata": {},
1969
   "outputs": [
1970
    {
1971
     "data": {
1972
      "text/html": [
1973
       "<div>\n",
1974
       "<style scoped>\n",
1975
       "    .dataframe tbody tr th:only-of-type {\n",
1976
       "        vertical-align: middle;\n",
1977
       "    }\n",
1978
       "\n",
1979
       "    .dataframe tbody tr th {\n",
1980
       "        vertical-align: top;\n",
1981
       "    }\n",
1982
       "\n",
1983
       "    .dataframe thead th {\n",
1984
       "        text-align: right;\n",
1985
       "    }\n",
1986
       "</style>\n",
1987
       "<table border=\"1\" class=\"dataframe\">\n",
1988
       "  <thead>\n",
1989
       "    <tr style=\"text-align: right;\">\n",
1990
       "      <th></th>\n",
1991
       "      <th>0</th>\n",
1992
       "    </tr>\n",
1993
       "  </thead>\n",
1994
       "  <tbody>\n",
1995
       "    <tr>\n",
1996
       "      <th>0</th>\n",
1997
       "      <td>ID_000012eaf_any</td>\n",
1998
       "    </tr>\n",
1999
       "    <tr>\n",
2000
       "      <th>1</th>\n",
2001
       "      <td>ID_000012eaf_epidural</td>\n",
2002
       "    </tr>\n",
2003
       "    <tr>\n",
2004
       "      <th>2</th>\n",
2005
       "      <td>ID_000012eaf_intraparenchymal</td>\n",
2006
       "    </tr>\n",
2007
       "    <tr>\n",
2008
       "      <th>3</th>\n",
2009
       "      <td>ID_000012eaf_intraventricular</td>\n",
2010
       "    </tr>\n",
2011
       "    <tr>\n",
2012
       "      <th>4</th>\n",
2013
       "      <td>ID_000012eaf_subarachnoid</td>\n",
2014
       "    </tr>\n",
2015
       "  </tbody>\n",
2016
       "</table>\n",
2017
       "</div>"
2018
      ],
2019
      "text/plain": [
2020
       "                               0\n",
2021
       "0               ID_000012eaf_any\n",
2022
       "1          ID_000012eaf_epidural\n",
2023
       "2  ID_000012eaf_intraparenchymal\n",
2024
       "3  ID_000012eaf_intraventricular\n",
2025
       "4      ID_000012eaf_subarachnoid"
2026
      ]
2027
     },
2028
     "execution_count": 41,
2029
     "metadata": {},
2030
     "output_type": "execute_result"
2031
    }
2032
   ],
2033
   "source": [
2034
    "df = pd.DataFrame(data=ids)\n",
2035
    "df.head()"
2036
   ]
2037
  },
2038
  {
2039
   "cell_type": "code",
2040
   "execution_count": 42,
2041
   "metadata": {},
2042
   "outputs": [
2043
    {
2044
     "data": {
2045
      "text/html": [
2046
       "<div>\n",
2047
       "<style scoped>\n",
2048
       "    .dataframe tbody tr th:only-of-type {\n",
2049
       "        vertical-align: middle;\n",
2050
       "    }\n",
2051
       "\n",
2052
       "    .dataframe tbody tr th {\n",
2053
       "        vertical-align: top;\n",
2054
       "    }\n",
2055
       "\n",
2056
       "    .dataframe thead th {\n",
2057
       "        text-align: right;\n",
2058
       "    }\n",
2059
       "</style>\n",
2060
       "<table border=\"1\" class=\"dataframe\">\n",
2061
       "  <thead>\n",
2062
       "    <tr style=\"text-align: right;\">\n",
2063
       "      <th></th>\n",
2064
       "      <th>ID</th>\n",
2065
       "      <th>Label</th>\n",
2066
       "    </tr>\n",
2067
       "  </thead>\n",
2068
       "  <tbody>\n",
2069
       "    <tr>\n",
2070
       "      <th>0</th>\n",
2071
       "      <td>ID_28fbab7eb_epidural</td>\n",
2072
       "      <td>0.5</td>\n",
2073
       "    </tr>\n",
2074
       "    <tr>\n",
2075
       "      <th>1</th>\n",
2076
       "      <td>ID_28fbab7eb_intraparenchymal</td>\n",
2077
       "      <td>0.5</td>\n",
2078
       "    </tr>\n",
2079
       "    <tr>\n",
2080
       "      <th>2</th>\n",
2081
       "      <td>ID_28fbab7eb_intraventricular</td>\n",
2082
       "      <td>0.5</td>\n",
2083
       "    </tr>\n",
2084
       "    <tr>\n",
2085
       "      <th>3</th>\n",
2086
       "      <td>ID_28fbab7eb_subarachnoid</td>\n",
2087
       "      <td>0.5</td>\n",
2088
       "    </tr>\n",
2089
       "    <tr>\n",
2090
       "      <th>4</th>\n",
2091
       "      <td>ID_28fbab7eb_subdural</td>\n",
2092
       "      <td>0.5</td>\n",
2093
       "    </tr>\n",
2094
       "  </tbody>\n",
2095
       "</table>\n",
2096
       "</div>"
2097
      ],
2098
      "text/plain": [
2099
       "                              ID  Label\n",
2100
       "0          ID_28fbab7eb_epidural    0.5\n",
2101
       "1  ID_28fbab7eb_intraparenchymal    0.5\n",
2102
       "2  ID_28fbab7eb_intraventricular    0.5\n",
2103
       "3      ID_28fbab7eb_subarachnoid    0.5\n",
2104
       "4          ID_28fbab7eb_subdural    0.5"
2105
      ]
2106
     },
2107
     "execution_count": 42,
2108
     "metadata": {},
2109
     "output_type": "execute_result"
2110
    }
2111
   ],
2112
   "source": [
2113
    "sample_df = pd.read_csv(input_folder + 'stage_1_sample_submission.csv')\n",
2114
    "sample_df.head()"
2115
   ]
2116
  },
2117
  {
2118
   "cell_type": "code",
2119
   "execution_count": 43,
2120
   "metadata": {},
2121
   "outputs": [
2122
    {
2123
     "data": {
2124
      "text/html": [
2125
       "<div>\n",
2126
       "<style scoped>\n",
2127
       "    .dataframe tbody tr th:only-of-type {\n",
2128
       "        vertical-align: middle;\n",
2129
       "    }\n",
2130
       "\n",
2131
       "    .dataframe tbody tr th {\n",
2132
       "        vertical-align: top;\n",
2133
       "    }\n",
2134
       "\n",
2135
       "    .dataframe thead th {\n",
2136
       "        text-align: right;\n",
2137
       "    }\n",
2138
       "</style>\n",
2139
       "<table border=\"1\" class=\"dataframe\">\n",
2140
       "  <thead>\n",
2141
       "    <tr style=\"text-align: right;\">\n",
2142
       "      <th></th>\n",
2143
       "      <th>ID</th>\n",
2144
       "      <th>Label</th>\n",
2145
       "    </tr>\n",
2146
       "  </thead>\n",
2147
       "  <tbody>\n",
2148
       "    <tr>\n",
2149
       "      <th>0</th>\n",
2150
       "      <td>ID_000012eaf_any</td>\n",
2151
       "      <td>0.008506</td>\n",
2152
       "    </tr>\n",
2153
       "    <tr>\n",
2154
       "      <th>1</th>\n",
2155
       "      <td>ID_000012eaf_epidural</td>\n",
2156
       "      <td>0.000114</td>\n",
2157
       "    </tr>\n",
2158
       "    <tr>\n",
2159
       "      <th>2</th>\n",
2160
       "      <td>ID_000012eaf_intraparenchymal</td>\n",
2161
       "      <td>0.001682</td>\n",
2162
       "    </tr>\n",
2163
       "    <tr>\n",
2164
       "      <th>3</th>\n",
2165
       "      <td>ID_000012eaf_intraventricular</td>\n",
2166
       "      <td>0.000329</td>\n",
2167
       "    </tr>\n",
2168
       "    <tr>\n",
2169
       "      <th>4</th>\n",
2170
       "      <td>ID_000012eaf_subarachnoid</td>\n",
2171
       "      <td>0.000926</td>\n",
2172
       "    </tr>\n",
2173
       "  </tbody>\n",
2174
       "</table>\n",
2175
       "</div>"
2176
      ],
2177
      "text/plain": [
2178
       "                              ID     Label\n",
2179
       "0               ID_000012eaf_any  0.008506\n",
2180
       "1          ID_000012eaf_epidural  0.000114\n",
2181
       "2  ID_000012eaf_intraparenchymal  0.001682\n",
2182
       "3  ID_000012eaf_intraventricular  0.000329\n",
2183
       "4      ID_000012eaf_subarachnoid  0.000926"
2184
      ]
2185
     },
2186
     "execution_count": 43,
2187
     "metadata": {},
2188
     "output_type": "execute_result"
2189
    }
2190
   ],
2191
   "source": [
2192
    "df['Label'] = values\n",
2193
    "df.columns = sample_df.columns\n",
2194
    "df.head()"
2195
   ]
2196
  },
2197
  {
2198
   "cell_type": "code",
2199
   "execution_count": 44,
2200
   "metadata": {},
2201
   "outputs": [],
2202
   "source": [
2203
    "df.to_csv('submission.csv', index=False)"
2204
   ]
2205
  },
2206
  {
2207
   "cell_type": "code",
2208
   "execution_count": 45,
2209
   "metadata": {},
2210
   "outputs": [
2211
    {
2212
     "data": {
2213
      "text/html": [
2214
       "<a href=submission.csv>Download CSV file</a>"
2215
      ],
2216
      "text/plain": [
2217
       "<IPython.core.display.HTML object>"
2218
      ]
2219
     },
2220
     "execution_count": 45,
2221
     "metadata": {},
2222
     "output_type": "execute_result"
2223
    }
2224
   ],
2225
   "source": [
2226
    "create_download_link(filename='submission.csv')"
2227
   ]
2228
  }
2229
 ],
2230
 "metadata": {
2231
  "kernelspec": {
2232
   "display_name": "Python 3",
2233
   "language": "python",
2234
   "name": "python3"
2235
  },
2236
  "language_info": {
2237
   "codemirror_mode": {
2238
    "name": "ipython",
2239
    "version": 3
2240
   },
2241
   "file_extension": ".py",
2242
   "mimetype": "text/x-python",
2243
   "name": "python",
2244
   "nbconvert_exporter": "python",
2245
   "pygments_lexer": "ipython3",
2246
   "version": "3.6.5"
2247
  }
2248
 },
2249
 "nbformat": 4,
2250
 "nbformat_minor": 1
2251
}