--- a +++ b/notebooks/.ipynb_checkpoints/Effnet-B0 Windowed Image-checkpoint.ipynb @@ -0,0 +1,2251 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# RSNA Intracranial Hemorrhage Detection " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "<b>Competition Overview</b><br/><br/>\n", + "Intracranial hemorrhage, bleeding that occurs inside the cranium, is a serious health problem requiring rapid and often intensive medical treatment. For example, intracranial hemorrhages account for approximately 10% of strokes in the U.S., where stroke is the fifth-leading cause of death. Identifying the location and type of any hemorrhage present is a critical step in treating the patient.\n", + "\n", + "Diagnosis requires an urgent procedure. When a patient shows acute neurological symptoms such as severe headache or loss of consciousness, highly trained specialists review medical images of the patient’s cranium to look for the presence, location and type of hemorrhage. The process is complicated and often time consuming." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "<b>What am i predicting?</b><br/><br/>\n", + "In this competition our goal is to predict intracranial hemorrhage and its subtypes. Given an image the we need to predict probablity of each subtype. This indicates its a multilabel classification problem." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "<b>Competition Evaluation Metric</b><br/><br/>\n", + "Evaluation metric is weighted multi-label logarithmic loss. So for given image we need to predict probality for each subtype. There is also an any label, which indicates that a hemorrhage of ANY kind exists in the image. The any label is weighted more highly than specific hemorrhage sub-types.\n", + "\n", + "<b>Note:</b>The weights for each subtype for calculating weighted multi-label logarithmic loss is **not** given as part of the competition. We will be using binary cross entropy loss as weights are not available" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "<b>Dataset Description</b>\n", + "\n", + "The dataset is divided into two parts\n", + "\n", + "1. Train\n", + "2. Test\n", + "\n", + "**1. Train**\n", + "Number of rows: 40,45,548 records.\n", + "Number of columns: 2\n", + "\n", + "Columns:\n", + "\n", + "**Id**: An image Id. Each Id corresponds to a unique image, and will contain an underscore.\n", + "\n", + "Example: ID_28fbab7eb_epidural. So the Id consists of two parts one is image file id ID_28fbab7eb and the other is sub type name\n", + "\n", + "**Label**: The target label whether that sub-type of hemorrhage (or any hemorrhage in the case of any) exists in the indicated image. 1 --> Exists and 0 --> Doesn't exist.\n", + "\n", + "**2. Test**\n", + "Number of rows: 4,71,270 records.\n", + "\n", + "Columns:\n", + "\n", + "**Id**: An image Id. Each Id corresponds to a unique image, and will contain an underscore.\n", + "\n", + "Example: ID_28fbab7eb_epidural. So the Id consists of two parts one is image file id ID_28fbab7eb and the other is sub type name" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Using TensorFlow backend.\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "import pandas as pd\n", + "import pydicom\n", + "import os\n", + "import glob\n", + "import random\n", + "import cv2\n", + "import tensorflow as tf\n", + "from math import ceil, floor\n", + "from tqdm import tqdm\n", + "from imgaug import augmenters as iaa\n", + "import matplotlib.pyplot as plt\n", + "from math import ceil, floor\n", + "import keras\n", + "import keras.backend as K\n", + "from keras.callbacks import Callback, ModelCheckpoint\n", + "from keras.layers import Dense, Flatten, Dropout\n", + "from keras.models import Model, load_model\n", + "from keras.utils import Sequence\n", + "from keras.losses import binary_crossentropy\n", + "from keras.optimizers import Adam" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "# Random Seed\n", + "SEED = 42\n", + "np.random.seed(SEED)\n", + "\n", + "# some constants\n", + "TEST_SIZE = 0.06\n", + "HEIGHT = 256\n", + "WIDTH = 256\n", + "TRAIN_BATCH_SIZE = 32\n", + "VALID_BATCH_SIZE = 64\n", + "\n", + "# Train and Test folders\n", + "input_folder = '../input/rsna-intracranial-hemorrhage-detection/'\n", + "path_train_img = input_folder + 'stage_1_train_images/'\n", + "path_test_img = input_folder + 'stage_1_test_images/'" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "<div>\n", + "<style scoped>\n", + " .dataframe tbody tr th:only-of-type {\n", + " vertical-align: middle;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th></th>\n", + " <th>ID</th>\n", + " <th>Label</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <th>0</th>\n", + " <td>ID_63eb1e259_epidural</td>\n", + " <td>0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1</th>\n", + " <td>ID_63eb1e259_intraparenchymal</td>\n", + " <td>0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2</th>\n", + " <td>ID_63eb1e259_intraventricular</td>\n", + " <td>0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>3</th>\n", + " <td>ID_63eb1e259_subarachnoid</td>\n", + " <td>0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>4</th>\n", + " <td>ID_63eb1e259_subdural</td>\n", + " <td>0</td>\n", + " </tr>\n", + " </tbody>\n", + "</table>\n", + "</div>" + ], + "text/plain": [ + " ID Label\n", + "0 ID_63eb1e259_epidural 0\n", + "1 ID_63eb1e259_intraparenchymal 0\n", + "2 ID_63eb1e259_intraventricular 0\n", + "3 ID_63eb1e259_subarachnoid 0\n", + "4 ID_63eb1e259_subdural 0" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "train_df = pd.read_csv(input_folder + 'stage_1_train.csv')\n", + "train_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "<div>\n", + "<style scoped>\n", + " .dataframe tbody tr th:only-of-type {\n", + " vertical-align: middle;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th></th>\n", + " <th>ID</th>\n", + " <th>Label</th>\n", + " <th>sub_type</th>\n", + " <th>file_name</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <th>0</th>\n", + " <td>ID_63eb1e259_epidural</td>\n", + " <td>0</td>\n", + " <td>epidural</td>\n", + " <td>ID_63eb1e259.dcm</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1</th>\n", + " <td>ID_63eb1e259_intraparenchymal</td>\n", + " <td>0</td>\n", + " <td>intraparenchymal</td>\n", + " <td>ID_63eb1e259.dcm</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2</th>\n", + " <td>ID_63eb1e259_intraventricular</td>\n", + " <td>0</td>\n", + " <td>intraventricular</td>\n", + " <td>ID_63eb1e259.dcm</td>\n", + " </tr>\n", + " <tr>\n", + " <th>3</th>\n", + " <td>ID_63eb1e259_subarachnoid</td>\n", + " <td>0</td>\n", + " <td>subarachnoid</td>\n", + " <td>ID_63eb1e259.dcm</td>\n", + " </tr>\n", + " <tr>\n", + " <th>4</th>\n", + " <td>ID_63eb1e259_subdural</td>\n", + " <td>0</td>\n", + " <td>subdural</td>\n", + " <td>ID_63eb1e259.dcm</td>\n", + " </tr>\n", + " </tbody>\n", + "</table>\n", + "</div>" + ], + "text/plain": [ + " ID Label sub_type file_name\n", + "0 ID_63eb1e259_epidural 0 epidural ID_63eb1e259.dcm\n", + "1 ID_63eb1e259_intraparenchymal 0 intraparenchymal ID_63eb1e259.dcm\n", + "2 ID_63eb1e259_intraventricular 0 intraventricular ID_63eb1e259.dcm\n", + "3 ID_63eb1e259_subarachnoid 0 subarachnoid ID_63eb1e259.dcm\n", + "4 ID_63eb1e259_subdural 0 subdural ID_63eb1e259.dcm" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# extract subtype\n", + "train_df['sub_type'] = train_df['ID'].apply(lambda x: x.split('_')[-1])\n", + "# extract filename\n", + "train_df['file_name'] = train_df['ID'].apply(lambda x: '_'.join(x.split('_')[:2]) + '.dcm')\n", + "train_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(4045572, 4)" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "train_df.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(4045548, 4)" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# remove duplicates\n", + "train_df.drop_duplicates(['Label', 'sub_type', 'file_name'], inplace=True)\n", + "train_df.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of train images availabe: 674258\n" + ] + } + ], + "source": [ + "print(\"Number of train images availabe:\", len(os.listdir(path_train_img)))" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "<div>\n", + "<style scoped>\n", + " .dataframe tbody tr th:only-of-type {\n", + " vertical-align: middle;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th>sub_type</th>\n", + " <th>any</th>\n", + " <th>epidural</th>\n", + " <th>intraparenchymal</th>\n", + " <th>intraventricular</th>\n", + " <th>subarachnoid</th>\n", + " <th>subdural</th>\n", + " </tr>\n", + " <tr>\n", + " <th>file_name</th>\n", + " <th></th>\n", + " <th></th>\n", + " <th></th>\n", + " <th></th>\n", + " <th></th>\n", + " <th></th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <th>ID_000039fa0.dcm</th>\n", + " <td>0</td>\n", + " <td>0</td>\n", + " <td>0</td>\n", + " <td>0</td>\n", + " <td>0</td>\n", + " <td>0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>ID_00005679d.dcm</th>\n", + " <td>0</td>\n", + " <td>0</td>\n", + " <td>0</td>\n", + " <td>0</td>\n", + " <td>0</td>\n", + " <td>0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>ID_00008ce3c.dcm</th>\n", + " <td>0</td>\n", + " <td>0</td>\n", + " <td>0</td>\n", + " <td>0</td>\n", + " <td>0</td>\n", + " <td>0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>ID_0000950d7.dcm</th>\n", + " <td>0</td>\n", + " <td>0</td>\n", + " <td>0</td>\n", + " <td>0</td>\n", + " <td>0</td>\n", + " <td>0</td>\n", + " </tr>\n", + " <tr>\n", + " <th>ID_0000aee4b.dcm</th>\n", + " <td>0</td>\n", + " <td>0</td>\n", + " <td>0</td>\n", + " <td>0</td>\n", + " <td>0</td>\n", + " <td>0</td>\n", + " </tr>\n", + " </tbody>\n", + "</table>\n", + "</div>" + ], + "text/plain": [ + "sub_type any epidural intraparenchymal intraventricular \\\n", + "file_name \n", + "ID_000039fa0.dcm 0 0 0 0 \n", + "ID_00005679d.dcm 0 0 0 0 \n", + "ID_00008ce3c.dcm 0 0 0 0 \n", + "ID_0000950d7.dcm 0 0 0 0 \n", + "ID_0000aee4b.dcm 0 0 0 0 \n", + "\n", + "sub_type subarachnoid subdural \n", + "file_name \n", + "ID_000039fa0.dcm 0 0 \n", + "ID_00005679d.dcm 0 0 \n", + "ID_00008ce3c.dcm 0 0 \n", + "ID_0000950d7.dcm 0 0 \n", + "ID_0000aee4b.dcm 0 0 " + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "train_final_df = pd.pivot_table(train_df.drop(columns='ID'), index=\"file_name\", \\\n", + " columns=\"sub_type\", values=\"Label\")\n", + "train_final_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(674258, 6)" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "train_final_df.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "# Invalid image ID_6431af929.dcm\n", + "train_final_df.drop('ID_6431af929.dcm', inplace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Collecting efficientnet\n", + " Downloading https://files.pythonhosted.org/packages/97/82/f3ae07316f0461417dc54affab6e86ab188a5a22f33176d35271628b96e0/efficientnet-1.0.0-py3-none-any.whl\n", + "Requirement already satisfied: keras-applications<=1.0.8,>=1.0.7 in /opt/conda/lib/python3.6/site-packages (from efficientnet) (1.0.8)\n", + "Requirement already satisfied: scikit-image in /opt/conda/lib/python3.6/site-packages (from efficientnet) (0.16.1)\n", + "Requirement already satisfied: numpy>=1.9.1 in /opt/conda/lib/python3.6/site-packages (from keras-applications<=1.0.8,>=1.0.7->efficientnet) (1.16.4)\n", + "Requirement already satisfied: h5py in /opt/conda/lib/python3.6/site-packages (from keras-applications<=1.0.8,>=1.0.7->efficientnet) (2.9.0)\n", + "Requirement already satisfied: PyWavelets>=0.4.0 in /opt/conda/lib/python3.6/site-packages (from scikit-image->efficientnet) (1.0.3)\n", + "Requirement already satisfied: scipy>=0.19.0 in /opt/conda/lib/python3.6/site-packages (from scikit-image->efficientnet) (1.2.1)\n", + "Requirement already satisfied: networkx>=2.0 in /opt/conda/lib/python3.6/site-packages (from scikit-image->efficientnet) (2.4)\n", + "Requirement already satisfied: imageio>=2.3.0 in /opt/conda/lib/python3.6/site-packages (from scikit-image->efficientnet) (2.6.0)\n", + "Requirement already satisfied: pillow>=4.3.0 in /opt/conda/lib/python3.6/site-packages (from scikit-image->efficientnet) (5.4.1)\n", + "Requirement already satisfied: matplotlib!=3.0.0,>=2.0.0 in /opt/conda/lib/python3.6/site-packages (from scikit-image->efficientnet) (3.0.3)\n", + "Requirement already satisfied: six in /opt/conda/lib/python3.6/site-packages (from h5py->keras-applications<=1.0.8,>=1.0.7->efficientnet) (1.12.0)\n", + "Requirement already satisfied: decorator>=4.3.0 in /opt/conda/lib/python3.6/site-packages (from networkx>=2.0->scikit-image->efficientnet) (4.4.0)\n", + "Requirement already satisfied: cycler>=0.10 in /opt/conda/lib/python3.6/site-packages (from matplotlib!=3.0.0,>=2.0.0->scikit-image->efficientnet) (0.10.0)\n", + "Requirement already satisfied: kiwisolver>=1.0.1 in /opt/conda/lib/python3.6/site-packages (from matplotlib!=3.0.0,>=2.0.0->scikit-image->efficientnet) (1.1.0)\n", + "Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /opt/conda/lib/python3.6/site-packages (from matplotlib!=3.0.0,>=2.0.0->scikit-image->efficientnet) (2.4.2)\n", + "Requirement already satisfied: python-dateutil>=2.1 in /opt/conda/lib/python3.6/site-packages (from matplotlib!=3.0.0,>=2.0.0->scikit-image->efficientnet) (2.8.0)\n", + "Requirement already satisfied: setuptools in /opt/conda/lib/python3.6/site-packages (from kiwisolver>=1.0.1->matplotlib!=3.0.0,>=2.0.0->scikit-image->efficientnet) (41.4.0)\n", + "Installing collected packages: efficientnet\n", + "Successfully installed efficientnet-1.0.0\n", + "Collecting iterative-stratification\n", + " Downloading https://files.pythonhosted.org/packages/9d/79/9ba64c8c07b07b8b45d80725b2ebd7b7884701c1da34f70d4749f7b45f9a/iterative_stratification-0.1.6-py3-none-any.whl\n", + "Requirement already satisfied: scikit-learn in /opt/conda/lib/python3.6/site-packages (from iterative-stratification) (0.21.3)\n", + "Requirement already satisfied: scipy in /opt/conda/lib/python3.6/site-packages (from iterative-stratification) (1.2.1)\n", + "Requirement already satisfied: numpy in /opt/conda/lib/python3.6/site-packages (from iterative-stratification) (1.16.4)\n", + "Requirement already satisfied: joblib>=0.11 in /opt/conda/lib/python3.6/site-packages (from scikit-learn->iterative-stratification) (0.13.2)\n", + "Installing collected packages: iterative-stratification\n", + "Successfully installed iterative-stratification-0.1.6\n" + ] + } + ], + "source": [ + "# Install Efficient Net as it is not part of Keras\n", + "!pip install efficientnet\n", + "!pip install iterative-stratification" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "import efficientnet.keras as efn \n", + "from iterstrat.ml_stratifiers import MultilabelStratifiedShuffleSplit" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "from IPython.display import HTML\n", + "\n", + "def create_download_link(title = \"Download CSV file\", filename = \"data.csv\"): \n", + " \"\"\"\n", + " Helper function to generate download link to files in kaggle kernel \n", + " \"\"\"\n", + " html = '<a href={filename}>{title}</a>'\n", + " html = html.format(title=title,filename=filename)\n", + " return HTML(html)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "def get_dicom_field_value(val):\n", + " \"\"\"\n", + " Helper function to get value of dicom field in dicom file\n", + " \"\"\"\n", + " if type(val) == pydicom.multival.MultiValue:\n", + " return int(val[0])\n", + " else:\n", + " return int(val)\n", + "\n", + "def get_windowing(data):\n", + " \"\"\"\n", + " Helper function to extract meta data features in dicom file\n", + " return: window center, window width, slope, intercept\n", + " \"\"\"\n", + " dicom_fields = [data.WindowCenter, data.WindowWidth, data.RescaleSlope, data.RescaleIntercept]\n", + " return [get_dicom_field_value(x) for x in dicom_fields]\n", + "\n", + "\n", + "def get_windowed_image(image, wc, ww, slope, intercept):\n", + " \"\"\"\n", + " Helper function to construct windowed image from meta data features\n", + " return: windowed image\n", + " \"\"\"\n", + " img = (image*slope +intercept)\n", + " img_min = wc - ww//2\n", + " img_max = wc + ww//2\n", + " img[img<img_min] = img_min\n", + " img[img>img_max] = img_max\n", + " return img \n", + "\n", + "\n", + "def _normalize(img):\n", + " if img.max() == img.min():\n", + " return np.zeros(img.shape)\n", + " return 2 * (img - img.min())/(img.max() - img.min()) - 1\n", + "\n", + "def _read(path, desired_size=(224, 224)):\n", + " \"\"\"\n", + " Helper function to generate windowed image \n", + " \"\"\"\n", + " # 1. read dicom file\n", + " dcm = pydicom.dcmread(path)\n", + " \n", + " # 2. Extract meta data features\n", + " # window center, window width, slope, intercept\n", + " window_params = get_windowing(dcm)\n", + "\n", + " try:\n", + " # 3. Generate windowed image\n", + " img = get_windowed_image(dcm.pixel_array, *window_params)\n", + " except:\n", + " img = np.zeros(desired_size)\n", + "\n", + " img = _normalize(img)\n", + "\n", + " if desired_size != (512, 512):\n", + " # resize image\n", + " img = cv2.resize(img, desired_size, interpolation = cv2.INTER_LINEAR)\n", + " return img[:,:,np.newaxis]" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(128, 128, 1)" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "_read(path_train_img + 'ID_ffff922b9.dcm', (128, 128)).shape" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "<matplotlib.image.AxesImage at 0x7f821e7b95c0>" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzsnXeYVdW5/z/r7NPmTC8wdBhgKKKIoIC9R0W9JmrUxMpNYqLG+Eu50XhTb0zx5t7Um6jYjS3G2GvsURERREFAeu8D08tpe/3+eNfeZw4zwwzMDFLW93nmOWf2XnvttffZe623fl+ltcbCwsLCQ+CzHoCFhcW+BTspWFhYZMFOChYWFlmwk4KFhUUW7KRgYWGRBTspWFhYZMFOChYWFlnotUlBKXWmUmqJUmq5Uuqm3jqPhYVFz0L1RvCSUsoBlgKnA+uBD4Avaa0X9fjJLCwsehTBXup3MrBca70SQCn1KHAe0O6kEFYRHSW3l4ZisbeRLpHfcuygbSxbWgyAbol/lkOyAOqprtJa9+msXW9NCgOBda3+Xw9Mad1AKXU1cDVAlBhT1Km9NBSLvY3aaVMBmPWb25l22kUApBct/SyHZAG8qh9f05V2vTUpqHa2ZekpWusZwAyAAlViEzAOADR9Qeb9bUfK/2cMmEDTF0RSiFnFcb9Bb00K64HBrf4fBGzspXNZ7COIPfk+ACOfbLvNYv9Bb3kfPgAqlVIVSqkwcAnwTC+dy8LCogfRK5KC1jqllPom8DLgAPdorRf2xrksLCx6Fr2lPqC1fgF4obf6t7Cw6B3YiEYLC4ss2EnBwsIiC3ZSsLCwyIKdFCwsLLJgJwULC4ss2EnBwsIiC3ZSsLCwyIKdFCwsLLJgJwULC4ss2EnBwsIiC70W5mxx8CGQnw+AW18vG5Ri5UOHA5Cf1wxA/281s+aSQQAM/PXMvT9Ii05hJQULC4ssWEnBottwRo0AoGlkCQD1g+WxKrvjPYZ/+SMA4v8cBoC7tYorL5OE2TvKTgdgxPdm7c3hWnSCXiFu3V0UqBJt6dj2fQTGj+EfLzwAwKFPXQ9A5TczJCoqEgEgedyhAGy6Js7gCz8BoPm8yQCsP02Rs9EB4OVr/huArww5bi+M3uJV/fhcrfWRnbWz6oOFhUUWrPpg0SmO+igNwC19HwXCAKw8/w7ZeT4Mf/LrAFReJ1JD8LW5APSNHoVTVgpAztOzpc3T8PJGUSlmxyN7ZfwWuwcrKVhYWGTBSgoWHeKCxVsBKHUadtlu5RdEarjocLELLX5mNAAD/nsmadNm3Q+PAWDwLTM5Y8AEAP605t2eHrJFD8BKChYWFlmw3geLLFRdfTRzf3rbXj3n9LXHs3FqfaftLlq8GYDHxvbr9jk3PnkIg69cD0C6rq7b/e0P6Kr3waoPBwkC+fkwQkpxuB8vlm15eaQmjgRg+ZdCAIwdvYbbawYC8I2iDXtlbPcOeduvClL5wDUADL/pPX9/+qSJAHyl8B4AHmPPJ4XgULkHZw5dzMsPjAFgSJGUuXOvySO9eNke932gwKoPFhYWWbCSwkECt74ePlrUZltzmbgYrz3uVQAuzP+YIcGYadHza8b0tceLZNABll0hqsvx74ubs6G/Q9nC5qw2KhJBx/esYG1qjZQ4Pb1gIb+ZPC9r37RNJ+5RnwcarKRgYWGRBWtoPMgR7C/6+af/3R+Arxw+k1AgBcC82iEAnFm6AIB+wVqOizYCEAuEO+37whWn8fgIkUAWJ5oA+H/DjvGDl7oKz4XpYemdR6Ei4uysvOLD3errYEavGxqVUoOBB4B+gAvM0Fr/QSlVAvwNGAasBi7SWlfv6Xks9gyBXGM8a2zcZbvUJrHol75WAcB9oSm4G0R96PeeLBiPLu4LgGps5n9Xr23TR+QtmVieqXwpa7s3IQAMD4khM3HmUcDuTQo7Y9XZd/rfz2DCLlp2DcF+5QCkNm/pdl8HArqjPqSA72qtxwJTgeuUUocANwGvaa0rgdfM/xYWFvsJ9lhS0FpvAjaZ7/VKqcXAQOA84CTT7H7gTeDGbo3SoktYf/MxlM9JABD655wuHeOUixSw4zCRCsJBF7dRAbD9EFkz6i+Tz4uHL6E8VAvAH5acDED+QwUErpNttS+JQbAwkNPmPBElksIfbv8TEO3yNY2+9xqGIe7JAbPyu3zc7sBKCNnoEUOjUmoYcATwPlBuJgxv4ujbwTFXK6XmKKXmJNkzS7KFhUXPo9suSaVUHvAP4P9preuUUl06Tms9A5gBYmjs7jgOZpy1sAaAP73iEqxP7tax7vYdAKRzhwGQSARJ9xUj3kVTJLNxSGQ7ALc9cC7Nh4o0UHG3/M7OG+/z6d1iuzri6f8HwLvn/i8ASeCMu74PgBYKBX795QcYH951LkVrLJl+G0xvu33UfRLkVMF7bXdadAvd8j4opULAc8DLWuvfmm1LgJO01puUUv2BN7XWo3fVj/U+7BkmGDf7P16fCsDImz5EJxO71YczTn6a1edLinPRMhfMI7HpNJkccleI6D/0sY3oRvEipLdIslSwfz+Wf1OMlKUL5MCmPiKADrtwBc0nthXNd9f70BU81ZjHbZUje7zfAwm9TrKiRCS4G1jsTQgGzwBXmu9XAk/v6TksLCz2PvZYUlBKHQe8DSxAXJIANyN2hceAIcBa4Ita6x276stKCruPwndKWfSsrPIDb90zVuRgxVBWXi55DsEWs9GF4PHyc9XVicFw8MOiZeZ+upXkgGIA0hHRB5r7hth8jDxDw58Q1SU0+1PpqqkJAkZvcL0kalj25ykAlMyTNWnOf/VMAtbWtLhfLx98bI/0d6Ch1+MUtNbvAB0ZEOwbbmGxn8LmPuxnCL0pkYcr7x3GwLv3UEIYLHUXEkNKyN0oq3xsm6zkdUOCxOcIK/PgObLya0fm/vrx5cQLZeWPF8q2ouVJ8taIzcFpESOk29SUOVkrCQFABYM+bVvq1En+9vkJEVX+Y5jYR5q+INLE23++w2/jRTYGDh9L/p/FpvHY8Nf8/RtT8jjHpx0FQOSFD7pyOyx2gs19sLCwyIKVFPYTDJqVB8Dch8XSX74HUoIX+tx4mEgbOWvraTxR7AaxbaZNSuO0iBTQVC6PR0up/J/Mh3RYJIuyj8WMFFtdQ7DFBBXNmt/pGHQq5X9f+UWROuYnWvh+5Qlmq3hPYk+KNDHttRNwDQ8ESL0I9+PFVN8kUkPF9K8CsOqsu5hgKOZrvy6ELbXTRNpoTUNv0TnspLAfYNkDE1k2W0T0yj/uucqgjVgfSMgLnSqKUrZAxPu85RKVWHVYKcl8efEbKozonyOfOcsjlH0q+4rmiqtR50YJzpSXVUUlUtFt8ayW7eOYj+XFf7nPDACOveEG8pLy4k5fsgaAS/IlXeaMARNgnvS//HeiWoTqFUN/LPEJo96RPk8892oe+rM4wWqqZAKNbpNJZ/MNx9DvD7ZEXVdh1QcLC4ssWElhH4ZzyCgABvStoeCbVQCkd3XALpBatx6nWNyJDQMl7blhiCJmDI2hgaICxMtcwjtkrQg2yuMRbJLP0sVJUjmyr3FMHwBir85HhaU/v7DsLrDy10dzX/FvABj50H8AMOLv7xEcJK7RS/KzA5taE6pUPij9v/TsQ5zx4+zsyOizs7mq/lvSr5a7FNooGaCLby7uBoHbwQcrKVhYWGTBSgr7MMb+dTkA8248gnTdym73lxorpCkNQ0x4iYbipaL/uyFZH7SjiZvch6JPZFufDyVXQaVd3KjYNtS7sqK7AMaGsPbHUtth0IlCeRY4dR11XxI7QO0F0kfwE8X0EacAMCKZyVt4fvbz7Y556Z3jfCIVPXehv92rPJWu2p7Z9mY24YoeL8SsJbPCfmj1zoQtFm1hJ4V9EA0XyYv0rgkeL3y1+1WZ3eOPYONx4mkIGSk/tsUlUSQveXOJiTxULqFamQz6vSUqi14vYjjpNKp1DALi0fDUh9hmUUWak9Knfmk41e9LX2WPGNKXkMuGG0xQnZFTQ8dtpyPilZWn3dOGSOWWqjHseEBUofxbZaJz3l2Q5dkAcOdLZGXDxUdzS5VMEP+5Us7zi+F2cugIVn2wsLDIgpUU9kFsOU8Ma2Uv7F4B1q3XHkPDUFmtR/5EUig99+CKi8OopLgiC5bJWpCOKJztJt5gmxxX8lGQ3M3GnOnKNt0skYo6lSJw+Fj5/qmoM25jIxjKNy+eob5ajJYVX/qYPKSdF6FYPSbAkOOF0u3lsc916bo80X/E374BwICmhcya8LjsfEQ+1qYauGzx5QAk/ir0aoUPioQ17D/f477oSQD88EsiPfyiS2c+OGElBQsLiyxYSWEfgueCHHGprPLO2Eqgczfk5hvEwFc3NkWwRmwDKlfIVzdfI9WVFn/hD/x4q+QEvPbJ0QCEG1yiq0wCa0geBeUWEt4h0kXNhDLp9/NCnlX+QZwdN4hU0Pe8tmxZQ/5gjI+t7A5q0jgZx1RZf0L18O2hr3RyRe1jxcW3d7hvSDCPe8f8FYDrv3KRbJwnWaTphUuo/LEwUscvkXyOZfdPpPJKywTdHuyksA9h2RViUR/5czHKdVbCbNWv5eV2TK2Ufv8KUPyxvOQNxwvhyMf/8RfTOsSt5fLSji+SSaRgTYqWocVZfW49IkSoQQyFKVMTxjNMPnL/H3edljxqGAAe+9bGUwqJbRH1xCNgqR+suPbdSwF48+Q/AvJCp7W0c9TuCa+bUuLVmNkygJsfEzamoS/KDVG5menUY7WedrmoICsfvLtHmKAPRFj1wcLCIgtWUtiH4BVVrb1EXJL5j7Z1Raqg/GQb/t9k0hHDbWM+tILF3xYj36ppMzo8z6HnS4HZjWcUsmaFqAY56436oMEVQYEhM6Rd6pChQMfkJZu+I5LH4MckbyFdXiT/P7ySdJVILk6ZpGPnj+rP2jzJkWjRGTqO3ZUQPPQPSp5Dn2Adsc3SX3CHSAXpT5e3aR98fS4gLNEjxhl+yoVL9ujcByqspGBhYZEFWzZuH0HqlEn+KubVYvDIUQFUSAKElv23GA4jgxuIhCRYp3ZdoTQqSLLytHs6Pdfpi88FYGzhZt7/gwQSlb0uq3x8VD+cNzo2wHkRigWPzPLHWv606PAbp2bnPgRiMZKTJWho+6EiHTQO0lwx7Q0Aflj2aZv+z/z0bLnOjXIPht8JrzxyLwBnjT4ekByLbdeIPeXDH2Wo3JYmRUI445/CKj36m5LK3W4xWqVY/oDYFEZePq/t/gMQvU7camFhcWDC2hT2EQRfn0vA8BG0lhA8rPqpUJdFh9QBkEo51MclbLmsQnTj2Uf8fZfnmBsXHoNfD/8HAN+5/psUPSd2jPhJIoGEtzR06AJ9eeNHnDEge9v6y0aSnto+V0Fi6liSBeIira0Uw4fOT1EREUaXxxpEwrn5g/O54BBZrZv+INmSBYPk0Vw9TXP2lHMAcOvX+333uc3kTfwoc76hQZGmfnb8kwA8Mvo02bFoeZsQaLQmtqBtJSsLOynsU+hIlXNKS0jlmOjCpQUABCvrGdtPiE5+NORZ0zJTCdpz1XmGOIBJEdk/5s5rARj63Ey2fEuMhLmbZCpoKi8hf1H2+b2IwjPPuxwh786g//92TF4SXbaFTVeY3IS4jN+pCfPLT84EoHmDjC1ns8NTq0UdGBCXl7fxOFEF3jj2z5xRKwVlBv0yMyl4mLZkGgAvjH6BGTXihr39QVFBmq6TmIRBL00i9pQUtqHVPQ6acIrVfxsPwLCLO2eOOhhg1QcLC4ssWElhH0K7BjGA0mJytsr8nThcVtCCWAsb6kX89iQAgLtrhU7k0Y0SvfjK2GfZGYPekIjF2sumMuCFTQBsPUmOaxgChYeKcdD9RAyBFU9dDcCoD2bv1vWk1q0nf53wK9YZRuiC1ZqWGhl3362iUlT/WwMsl4CtmhHiD71xgox7UDCPlrHNHZ/kPFOC7lP4yyLheRzyK5FenMrhch0FOaRPMEzQb2WMiv0fEpfrBdfJ5+PRYZ1SyR0MsJKChYVFFnqiwKwDzAE2aK3PUUpVAI8CJcCHwOVa690rcHgQQoXCHdaBXH5VX5Kloh8HNotxbEtjiFXT7mrT9u9XnA7AK0//tc2+kY9IiG/wWpE2+t/jsOQnEmjkNokuP+rrH/jlvuq+LO7H0ffIaqwR+wZAevsui375CNcbktiYrD+1IyEs9XBRRr2PRJKkmkSSKDtfCFqigUyh3L5ldR32n66TfUuTjRQ8IzaK9MliNMW4Vp2CAlRabCbNZ5maEC9+QLpayGF/8ep5AHz3wxd45pDSLl3XgYyeUB9uABYDBeb/W4Hfaa0fVUrdDnwF6Jm6YAcwAhWDSS9dkbXNi1dwEopUi1jxJx0l+RCra0va7eeldiYDD8cfK8xFn1QJxftTd83gqAe/A8BIE03pFBez/VxRHwpWiSjdUi4TUTQS6fJkABA/+yiSMXnZY5vks3h5Ejco3zecLBNFwT+LibQYQ6SSSeTdOkkGuzR/O5s3y8RVQMe44dAzqblJvpe9Kd6bTSaWod9jS3DN5BFslskhEI36qsKIx2Qydk51/YK7B3OUY7fUB6XUIOBs4C7zvwJOAUyyO/cDn+/OOSwsLPYuuisp/B74PmCqgVAK1GitPafwemBgN89xUGBnKQGg+QjJOUgUuKhSMULOe0fSq5dd0TXhq9YVI93FSy/khDLJBfjzBCm1dsx/f5cR94qLccflsqqWvrScogdEalh/s7gr+8wTUd6dNAbnY+lD5UhMhW5qRhvRXCdkxd1yvfQ18Mm1pKbIz1+4Rh6JnDcW+qnV0XHSf797PmTVzUcAUP+OuDDXJuTaP/rKW1TeuVOMQTtw6+tRKZFAUuvEdVl3vKR+3/79l/nxRf8OgPOvj2WsocyjH3hbjI+//fg0ZjwjktavRozv9JwHKrpTiv4cYKvWem7rze00bdf5rpS6Wik1Ryk1J0kHVncLC4u9ju5ICscC/6aUmgZEEZXv90CRUipopIVBwMb2DtZazwBmgOQ+dGMcBxycInHZbZ5imJPTGmeNrMxLpmckhOlrJRfg3iFvt+ljvQleOv61GwD4n2P/zt+3Sdj7BZfJqhw7xGX1tw8DYNDrsnqnt21j/Q9kBdeGyzW6Vfa50RB1Z0v76HaRHoKvf4jTV2pAqKjQxwWb5Odcf/4QkkaGzFsn23JHDsFJid1g6NPCxLzjwgmkTHBhuELyJ9KL5cCLZ3+NyNHiruzfSZGnin+IvSMwTKSNI4cK7dvkSIill0kflR8YqSbeNm5z+G9djn1KrksdJdepP1jQpt2Bjj2WFLTWP9BaD9JaDwMuAV7XWl8KvAFcaJpdCTzd7VFaWFjsNfRG8NKNwKNKqVuAecDdvXCOAxpbLjoEgFRMVtfIDkX+OrdNO09COPFqCS4KNaTo+4tVALy3QKz3r54lPPGnvfgdxnxXvA9rvi2ei+YhSfqbSu6BdySUOTB+DMYBQOEy+VI1ocCMRzHgQQn08dx5gfx84odKgNKmqSIp5G2QcYdPr6J+hZwrkJL1p/j+T2n+/GQANh4rosghk1fxZIXYpr2w7N+PHQZAVCX53fJ/6/ymAS++9CgAw5/4umxYLqv+Zeok5p4v9+FL930NAD1vYZvj9QcLmL5GsnVvevQh4OC0LfTIpKC1fhN403xfCUzuiX4PZLSXHt14oTAehxrlpQo2y4s05MUaXnzh4TZ9VLwgFZf7FUi7rROjrFo1DIAHPyd8hpf8TEqzjX12OWsekH2JuKgDFfc4hF6bI+MpkBc/WZxDwRqZDJI5YiIKN5jScs3anwy8aMH44GK2j5PJoHipiOR1FfKyP3bofYydKJxu126QmIcVv4YNFxoRfbOMe/m2MkpGSh9b0xJD8dVCiabMC0T5fWVD+zexFbz4CYCV598BwLj3hPZtRzxGwFDEbf+5nLv088FMubtWnJKL7xO26pN++iYAv+r0zAcebESjhYVFFmzuw2eFMkOYaiSFwPgxbD1S5mjHRPeVfyCr2pLvRNvtYuyNUlNh+Xcl4KbvxM1MKN0AwM8uFxdcaYsE7Qx+voFlb0oW4fAnZWUMVlXjmtXSiwx0Zi2iyEgNnuEwNVBWYWfVZpInipHSmScu1Eg4RN9mcRmmY/I41YwUSWFsOOaP9S8DDbXcRvCqQd24RfIRltX3YeocqdkwtkwyPx+ueMM/1nEMqasZV7qujqAxJq47fxAA87/3F3bG/KniXjxq7pf40WbJi/hg4mMAVN5yjU9/54yskH6Xr6L0E7k3HtlL7aWiGhU+1P0qXfsLrKRgYWGRBSspfEZQjdmZf9snFuMaF2CqXHTz7WPFJfnrqY+1Of6ZxhirrxljOhOdf/PCviy/SQJ36r8o0sX2c019x58fxvBn38vqoz0yFR2P43pGxFFiNwg0SVBS4+Rh5L4nEoInWbCwzg9O8R6mQcZ4ecavJnDGJ9LuOyUi1TxaX8wtC4UDIb5MVv5QnUKbg5tOkXOvSoodoV4H6Vcobsod54oBtvChWaTXi6d7/veeaecqBHWuhDGn3AALqoUd5qUikX6mT3udd34nAVLuasm3CA4ehN4q4128UkLBQ+c0m3N2eJoDDnZS+IyQWi0+9GA/KXEWL1Y4CXmBXaMtNE2QB/KivNo2x39n9sWkB4nYPuhlk1/w5Ptw5KEARGrklR/xa3mh9cKF7UeRtQOPpUjViyitXCO+98vLqvLcFfz5lc8BcI8xKhasdolPlPEqMyvpEJR+Iv/MLxsGgCsffNA8jB2NooZEWzlg2jAptYOLll4MwP8c+jhff3U6AP8bkPFcP+Q13u4jqpA2Klxq3Xr00YfLwQkZb9INc7DBqg8WFhZZsJLCZ4xtZ4qInsiHRKmsliFT+m34/WJoPL3/uT5Zys+2iQjtrIwy6q+ywnl5E2rSOPh4KQARk4btLa5bvnUMpZ9IOLnHGg0Z450qlE8dDUOdSZWOiPpSN0Hcp+GaFASMjuN2VsxOMPLb2Qa62sum+sHw/WZn+oiYCMlR4+Sa/lYrnJSbEwW4pj5EzrYkO+OXVWJkvbmsbVbjmvfFCFlQ0ULAuHdXrJNr+c68KwheJP0O/SRzTP0wL7TSSCJue5H7BzaspGBhYZEFKyl8BggOHQwpL9DH4xvQBFvk5+g3U3T5TcfL6j3wmmZOGimReGunyTxe+ZPZYAJ2vApNA/40p0OilgF/XcyOs2VVLR0qbja3OJ/NUyXPIs+Unw/XpHCWiVFw85el37z1si+6qYH4yeJGDL7WOg+uc+hjRFcvWNlM7XDJQ1h/urEtJBRjfisMzzUJMQQmTeLF2sYS6qrFplBQIPcn1Krfv8+QCMSbb17CcfPPB+Cd8U8AULJQrCj/teZcKg8XY+LKWeLKTEc18X7GdnKEFMHVHy0iWi3XevRYkb7mbRy0W9d5IMBOCp8FHAd3h9APxTYb85+CsvkiHq89S0TY5EAR99ercvrOE0t65Tc/AGDNfx1NvL9hS/qaZAq1NiR6EZO6yRRbLSqgdOZmAFLrxHLfNOlISj+R/Y0DxboZSWufuchLbMJEA1YdWUKiQL73q+s8YUgddRjOZvEmrJ8iE0H57CbShpk6vN3wTha5frrzxtUSDLutVBKiNtQXEo7JfYkXiNEvE/0Aff/PZEndDC8d6kV9yrU095H+P104mKlHiFq1JpExcrr9pN/Vn5eJceg8TVMfeSWWVUuS17WH/AuA58guxHsgw6oPFhYWWbCSwl6EX+xl7XoC+bISNhoKmr4futRWyM+RKDYGuCYRofvPbMBZtBqAxbfLSqpicQ75vkQves65QH4+LceIihCqk1WwpVzE8di6RvhYjHGBw4SopW6oQzxfpJL89cYwGQpQdZgc48oH9eLOxw1r34246jxJXEpeP5HAFmnYd65IANsmyGqsHQg1yHV6lIvrTo1RsFLa1UrOFsGmAIGYrP+lH8g1zxsmN6ZqUyE40j5vo3TiFBf7ORgeDnv/yyyYkp0f8vH3Jcrx8P++lsTh0m/hZDFkVi0qQ63NMec34xg8iKCpT7GtXvaVhwyhpJUULCwsDlZYSWEvouVECSyKvr2ILRdJNGKexDCxY4xDzhZDXlooK2Ll12RlT0+oZPmMYQCohMgFRTMjpDZLnoBXbNWJQ6JQVulQnZjjgoYQNQbUXiQkK8lcaRMv1n5GZMMA0de3HpcCDHN0o6yupaMlYGnbhiKCeYZcZYGs7DqUJmpIWdMmzmfs0ZK+3fDzgaz6oqw7sTUynkSJS6hRtumAnFu5iqZT5N70nWWIYZ+RKMZCt4b6E0WkCP3zfTlPO/d20KWroW3leQCa+ms+XCUGxtIScbeGawOETUyY9pZGrSlcINc68Fsyjie2TTI7u05Yu7/DSgoWFhZZsJLCXsSGk4wz7apKlFnVItWyyuZu0FSdIt6GMT8RPbbpJHGVbTw+SHqTWfG3yDze5/aZ/Ga1BAaND0vWYeWD1/i1EgOGXiB/rfTfPCCXdEi+950pq15xSYwtk41efaKskGptEcE6OYc7TDwTJTmidIeGpLlxxEsA3Foi9SBr3+hHyWKRHmoq5fo+3WSCnSZFUIb2LFFgQrgjrm9HcfMMNVqDw5bJIpWURYXOPd94PJb8R4xQVMZR8bwxcqTTbcKcA31KOWvalwHacE+kypIUfCj2nBFfXA3AokkOweflXOUvrjXjaGDDF8WAktws55o4oG39ygMddlLYC1j9cxHvh0+Rh2/JigFETKRcbIvJK0hoSt6WB3Hdb+RFbTBiebRPA+UPi7gee1JccDueG+VPBhXPSwxD4TpFyvjrUrnyEibzjDvxsCD9Z4pbUzvK//RYluKzpAiKKnNJG8ankeVVALw05vk213TaocJydNi2r1NXKy9c7XgxVqotMgj38CYwjEs0mRc65EJctnmqiNvo4LQYJuaIfAaqTZ2GcARt7lVgsCQ16Y1bcAZKwpLnLk2tXgtr248+DOclKF4q+96fL+njueWNvg83vU2uM5CXi2veiGBQJqzyiIxjW7s9H5iw6oOFhUUWrKTQi/Ai5RJ9ZNVZVy3iKmlFjll6St8Rt+K6Cwdz1XQRzZ/fLEa38yokMOj5O48nWmVSrSdL0NAHEzP/JiZ1AAAgAElEQVSVoEZfI3UL3MnjWH+KBAklik25NmNUDNcE2HRM1GyTVfvwE5dyTrFE7jlm2VzdUsoP+gr3Y5mT2+G1zU+IuH9C5XLeSouLM5wjK38ibapBFTRRbySEeJE8atHCOC0ml6EgVySX+nSUfGPw3HKa9FH4kARYVd4cYvmvJbgo2U8+A8tXoRpMgNJRIwDIaWhk5bdGmdFlisgCRGfmETKp6gVLRQpL9YWGwWYcx8v9Dr+1gESR3IcLhgqH4/oW85vRcem6Aw1WUrCwsMiClRR6AMGKoWw/VnTcwgczWYEbTpWVLbxdVp+WXBOmuyZI/0fF3bjkB+Ju+8G0J/jzshMBuGmMSAw3vnWRdDQuRV2lrLjvnP8n03uef56WzwkvwI6xIVr6yIobbJD53rMZtJSnCW+X1f3Kc18H2s8shDVAtoQwq0UknZfrD+OvCyV46rzR8wGIp4P07Su+vaqFEhqcO0JW1eraXM/uiYpKH47jEi4Qg2ptrXFrFqRp7itGypx8UxjIsxWsWoMzX3IwksZVm1sxlNSqNXKOSnHt5qwoZMC/TN7HV7OvSJ9czbpSWfEHvyYSw7qjA4w8UVynOxaJcTGUTPhVpgKGuGZUrgQ7baF9SrwDEXZS6AHocIgqyRMiXiAPcMMwTdp7EcrkQS94V16C/q9uZcnNMhmMPFys239YcjL5UWnnkaqccubvAfgkkc/IkLxoHgV6a2z7ingHkokggQ0mb8KLigyZWIAmh/hgeWn+o3QRAA/UlXNFgRjZbq8Rl8A3ijawyRSSOecWYYIuNwVbf/zSY4yetAmAASGJKHy25gifTn7Ya+IRqBkl526qDlOwRCaiOrMtUpokYOITEtXyoqlomsZBsi32nikjqzOZHPmmkEx0q6gbzZV9CJlJwSs2s+34cj9OYmfMn/wII1ZJxe3qUabc3RKIDRAVZfUwmUDzgX6zZOIpv1Du98QcmTjeZmL7nR+AsOqDhYVFFqyk0AOonlhGmbFtefH8eaOrUUYEDT7hFUQxov2MBoanTAbkqxJpd+Elb/GzPtkFSjxD30k5Lq3VhZ1x3GBJdX5l9ngCxisXLRUxuWWbSA45Gx36nSqr/DHzvgTApRWzecDYzxY1ibuv4s2zGfyybOs3V1yojeNl36VPXceLF/wvAKNCMrbnlYagqRORJ1JB80dyvZE0NA4296CsxR+vY+5L6Rxp31IWJF4s25oGmHs0WFKWU+vWU7BKjk1HpH2wMYUytHOFK6V9c2mA+C7SE3IrRPpKr5BGxUtcPh4l0tGA08TYG/z7MALvfJp13PZ0x/f9QIWVFCwsLLLQLUlBKVUE3AUcioSC/DuwBPgbMAxYDVykta7uoIv9GumTRM/M3Zwg+LYY3gpbRdp59QTW3CrLcdgExKx4aTiuCW5cfH2mXsEZAyZk9f/yxo92ef43DcXY9ris2ocetoatjbKyVdXIpzLuwdSEBtZsNfUbVor0cO9r0yibLxJL6C0p0a7uSvOv23ZV6S/bCHlr+UfcOk3GefsxsvL+/nEp8+aGIVUs9yNm6M1KYs2smiftBm0090oFSUyQylDBxTLu+kkinUSHlBHaJBGe6eWi3wcHDUQXSruECc7KqXKJntNxiNH8yY8AcNi71wJQsMYlUS9GiPMOlWt/etTpRAzXxF8WSZ2IOyb9deeuDnh0V334A/CS1vpCpVQYybu5GXhNa/1rpdRNwE1IfckDB4anMPyhxCqn6+raZUpedal4JPKj8rA2zBTrfKpQs/SK27LaDn/i61Ty/m4NQ9QKOGnEqwA8VF/Kj2fLC6lrjNXNDMxxXL44WnScJyNSH7FpRQFNn5MX7r2/zjG9ep+7j28UiRj+ja/KtVWnm5j09LflXHVi4Nsc0PQZJ/djXUDuR58PNclmmSXTRXJN28fKoxkYFaTPR4ZxyUwKqfUbwEQflxQKo1Pd8Bz+OOZRM5LW3EzZaDxMVJH+76SJrpUJbuYYiXVY/XnFMC33Rs2X+1czIdZOLwc29lh9UEoVACdgCshqrRNa6xrgPOB+0+x+4PPdHaSFhcXeQ3ckheFISPi9SqnDgbnADUC51noTgNZ6k1Kqb/eHuW/BqRS1QBtRsyMMv0OiBdc1yEqULJdlO39M2zTcym+2lRKO+IWIuvP+s21JtPZwaf52fhkTt2NzWub7MUPFuLiproBb+kqEpPfJ0V3q1se1G6byxnOiMnkRk8F6xbcvkIIsnqTgodiJ+cVevcKxx9/3PbaNECPojPPuBOBPk05jgAmo+Gi18EcGK6RNcayZmjqRuPq0M6bGQaIK1Q8JMDnSsYTg4akT5F5eWXgVOS+KFDB3tRh7oxuDuEbNyV8jv9VND1wFwGBmdtr3gYLuGBqDwETgNq31EUAjoip0CUqpq5VSc5RSc5LEuzEMCwuLnkR3JIX1wHqttbfEPY5MCluUUv2NlNAf2NrewVrrGcAMgAJV0tXiRZ85ggMH4Oa0LWHeHuqOGQZAygTDlb8vq+E7l/2tS+c68d9nA1Dx1NWs+vwMAL67SVbqJxdOYOVp97Q55oMp9wJw/LzLAFjxrkkFLnbhqC6d1sehs6SUe2KpBBRFtypM9jVhk14drtHM+KPYMe45VwKhZh/xd78PLxpyalT099nTf8sRr18HwJwmqXmRF4pz99BXABg773oAThsnxsuJeWu49MeS1v2n6+VanhuX8T2Ga2Vl/8X0R+kKvr/yAgB+dsgz3JQU9uexZdK/O1CxoXYYAH0/EkmldK78xl2rcnFgYI8lBa31ZmCdUmq02XQqsAh4BrjSbLsSeLpbI7SwsNir6K734XrgIeN5WAlMRyaax5RSXwHWAl/s5jn2KejCPNyPF3exsXwMfEdWHS/4BuDkfxcOhA0nyE9QQXbxV4DFkwyFO7M541rPXSnSRiUfmrLu2XijRVb1ukXCj+AZ4vOXOYy+9xoAlky/re2BrTD2DrFlxAyxS2GNfCZyM3RvOdtkHIE0BEy+QPrJMrmWzZJ8sOqsu5jbMgyATxOiIl5VsJWfT5F1osgRO0Oh08SDdWJL8Ahe02a9WhXvA/mykl9fLKHN129c47tvw6+IR+U3Kz7H5029h/bwbouMt+ohsR9s/G4xxw4Wb8bKerlXU0pXU3uWiHXuApFG9Io1u7xXByK6NSlorT8Cjmxn16nd6XefhEnQSS9a2qXm1VcdTZ+X5aFrnCAP/N23/87szSP8ktRvqHgpc8x/rhSR+YSdcm8uXHEaEwulmMlb43N2ed4f/v7fAQj0M5GETTLuZJ6wK3eGU674CoOSMoltnpJ9rmiNJhXz+BiNHpHQfr/RGnnx+r5pZqKz4LoiGbdXqOWq8U/whVwxfq4yBXHu3XQcjxu36tNHrQbwq0RHnBQrCsVNOiKUiS70YjhO+qpMrqmHgzwzQgyHlSFRYwYHZWI57JlvMXas+DDL5ktex21LT+Cew8VJdt12YWyauW04J5aLm/mDtMfNePDBRjRaWFhkweY+dBHBQYZYMOj4abvtwSNWKX5gNtq4LtfIItnuSjf875K9N/BNzQnR9iMYvVUU4OZde0GZ9YM/ADDpjzcAkDZSh3Y0eWbYR30oKdmHlm3izU/EJFR5j8jtdePCpHIMXZsRBgIm8LBuaIBwnUgg8RJDULLaJRHMbl87si0t2vcNt+P8RAvjwzKoceG217e92WSS5ta12tdx/sGbd4lb85dVo7nxwauATB2Hpv4iuRzyx40k7hZxJlUq525Y6ZAcb2pBRCSgafmCQTySI47PIaYSViB+8HnGrKRgYWGRBaX1Z+8NLFAleorat80Qy/8qRCYjL5/XScsMvDLvzf8Qo9Ub4zKOGM9QNmCWEALcO+RtLlt9EgDvrRAJo3KgeHNbE6d6XAfXr/k8XyoXl+UFeRmqsEtWnQLA+5+Kuy+01ej3WqpQAbQUy1pQvLgZDIlrw0AhccnZmqSp3NRoyJd9jlksEwWKiDE6erUjkgUQNSQyxYvFFrH1SFnt68YnWHXmXZ3fqFbX1R5fxJ5i6kcXypeHythm3LEeQWzZR5qf3iI5Hq/UScblk29MgX5ysSVFMp6iX8i1qJkf99i4Piu8qh+fq7VuzwaYBTsptELTF6YAEHsyE1244mF5eaMfy8Mx8NauRbYFBw8i1V8mg5efaptUM+ot8douPVGMXSNen47bKNqcSmULcE5xnHDEMB8vKPS3Bw6TdOCmWjEIhraECJgCqm5EftdQbaaEm+dN+P6NQoH+uxWnoR8UcTlSJxOGG1TsGCNidaLQ0MV7TnoXcrZlF35pGuiSsyWb5Sluwk7yV8LAS8XY+kxlK4vqTjh/+ek8MfKVDvd3Fyd98nmiP5A4iYZfGK7GS2tYfa2wNk2/WHLFH15xFK7RgS4bKRNuVInu9PAvzqLg4Vnsz+jqpGDVBwsLiyxYSYG2KcqtU5iDA8U1ltrQiYVvJzSfN5l4gay479/acVzAn2vEXXnn7edSV2no20xZtVSR/F+4MEjSSNUpU5MhNawFt96UhmuQ82iVcUGGjUbR3EfalyyCxv6yb9TZywA4oXQZt//jLABi5vLSOcqPwPQMdg1DRQTI2RrwjYmeGzJR5BLZEcgaW8GKTJv6Yea7MWmrikafxbnuI4kPuPzf3uCHZdnkJj2JMyumoLtiMAw4BE09iaqT5XdpPl+ySMvzG9j6nGzr97v9Mw/CSgoWFhZ7BOuSbIXpa4833+r9bbsrIXiIFzpUn7Xr3AjIBPcMvv4+bviXBNHouCzHJR/Kctw4SPsGMt/FmA6gTOWktOFVCDYG0EFZrZtNSqH3f93wAIb7lU/elSpJH+UNh6GyguZsNZF8IfzaB66p1oQnHajM95ZykWKCDQGS+dLeK1MfajbnHBbIuAdHSvZmYFOMqhwxagaHi35/RGx1p/epO+iSlADgpkmtkyCnoge8T9nljKwgb6KJ4jx8rDTvamTrfgYrKVhYWGTBSgrAUf8pOQEl97bNP9hdpE82fAMFiqvGdd1a/Xb9aIJVpvbBFlmOqw+VpTe20fELtKZLxAsR3hAmUSL7Pcq1QAI/QKnRVD+KbpXPYIumTmgdCNUbd2KhxjGSRNw4NUKNmfM3jJD+o5uNzSIAqTzjkWgxRWhDmTDnyHZTI9JkRjb3hemnvQnAqKiENj++9Ug+rRKKjcZ6kU5yVaLD+7I13cjlF0iAV3tenK6g6QtTsjxKe4L08lXkGeYnt1s97fuwkwI9Mxl42HKkPOiBBDy4VJzj7Rddycazzx5N3hb5Xlcpj13uennbVBpSA+TFcbaZtG0nMxmopHyWfqLZdJy8tEWL5AXVht65qVxhWOFoKTMvdjxAzkfizvQ4I5v7aUJ1ZpJpkj5KFstLnooqakZlRysqV5GOeBVfzPgHy2PlFseZUy3pzoea6s0Bpf3JwCscm0Zx8xahQftl+fys/vs6udSMESvrlBtl8r7mP//BVQUSw/GQSWa6NH97G47LSfPkPr795zuo+qMkX10++nQZ6uABpJcsx6ItrPpgYWGRBeuS7GHUXzwVgIZBAepHSuDLqvNmdHrcEbdc65eR91bcvA2y0tUOD/guPdcxRj2dyTWIVJsApSB+una41hgLg5nIQ29bfYVpU62IlxojpXFlukH8UvRRE5QUNnbXYJMmUivtt04ybshcjSnjQLBB+kgMNOqAVuSXyApdv0OCh5TjgiGV1TGRQKYcsoI5aySl+ZVj/w+AitCuIxtfMoVrfzdy7C7bAdS+MJJZEx7P2laVbmTqY98FYNQ9QjaeXti5RLc/w7okLSws9gjWptDDKH5XXIyFRfl8WlnQaft/NEib+grtG/hyN8pqXGdqHOogBGXBJWEqo4dqlC9ZeMQkiRzIX+vlJmS3DzZCS5mxFSQ9l6O4MSETeBRIgQ6Z/SaUuXGACZluUOwYn23AdBKKhKFlz19t2o8WSSG5Npd6LQMJhEUqcJuDqIDHOy+f4UCKdJM8ip97VOpXVk4Wi+kLo19o976dGRM34+/a3ZuNwmnLOQOxN3iBamVOLuk8U4fjEqmHMexHXejsIICdFHoYqfWG0XijQ7Bmcqftb1k8DQAnAaFGU526RF7UtEjIRLdDkyFN8TwHbghy18u26sNMQtIC5ccxuIZM0ctHcMPQPFDUmbzlQb8Pz3PgGIk/UZr2VRC/ZkQ8kxodqg343wHcoCZcY8brFXj9RJK8Ajkaqs0jpsWSGejfAo3mwky5uR3xXPIXmYNNv0s+EnVixPrpXHioJKHdWt42tdx7yXc2MnYFoe0ytlSuXKhTVEi6pna3+znQYNUHCwuLLFhJoZegJo6lYNz2Tts1LJFMytg25ec3eO7BkGTvkiiEgHE7eqtatEpRZ4rZegbBSL1L/eDsVduLKGzpo8lZLz+3J4FoJ5NNGa0yRsK+mui67PoJ8b6mjPxWh4CRKJImgzLdL47aISfz4hTccCbCMdyYMUgCpLdGfCboeFjOs66mqA1VnGtEe1qCbGgWHWjSXCGHmTvpMY76obgn7/vxbwGoe3EEBWetoCMEckWN8SSKlzd+xNKrJCfliA8uAaDqvEMovr/n3NP7K6ykYGFhkQUrKfQSWspzaO5CyL1jKrSnYmRyCAz9WcCQo4Zr8I2KfsHYnEyuQU6VHNcwIOAbGD03omcsVGnlGySTJjoy2KDQhmSlfpiJ629wfKOjJz2w1VCZ5Wifmi1VKF9CoTSYvIwmY5CMbDf/D8rE/gUbjS3EgXRU2mljU9BkuBv88Ubk4sLRJOsbRFJoahERp+LZr7HqFi/zVIKv3jv8Hz679X11EjH5yJgB/vndRrHUusd5toeMfaJmi9hAYgMUu6hmf9DATgq9hNjM5ThjjQ/9mI7b+UQmOcKjCBA21aQ9oxtK4gcAgualbO7rUrBC2rWI8RztZDwRUTNRVAtlJJEditRORNCBNDgmSSreT17CUFWQcI15gc0L6nkXgo3KV21Ui0wUyXSEfEO84nEieolaKpVRhTyrpdOSSaMOFYgukkgE/YnCbx2X/mNFjT7xSWGuJFCFZuVz8sLzgGw2Kw9etONVG+WztREy8E5bY+XIEZsBWNEygODgQQB+YtTBCKs+WFhYZMFKCr2EdHU1has7LzamSkXHCKyL+rkGXkShJ3JLQ/loHGqSlDY5OHFp19RP9mkHctdJw8aBJo7AqCcqDcl8WcnD1XKeRH4mGlElZVsgrnwVoaU0exxOs/JTsX11IOT4pCyeazJhkqvSJSmiq02uhjFoagfSOeakhnbO1QrXbPPyOJyYDKJ6YyF9KkUv2FglakQkDNXPGnbtcW1u6S5Rf8lU8y0jMRSGRQLRUZeao0VSyLOSgoWFhYWgW5KCUurbwFcRhXEBUjauP/AoUAJ8CFyute44N/YARu7azklW3GbzE0S1r1d7OQSeITHVyt7gSRPBZmg2EYpetGMyX5PMN/0aF59KZvoIGVegR8Qa2qF8qrWwoVRL52i0kQJ8OcUs7DoEEWN8bBxm0rYTipRxpXq2CA+hLSFfKvCuJR3TvrRRWCArdM2OXH+/Z2RN14oxQsXSbGsU66mbzKxhhauk4T+bpN3nYkk6wrI/T6HyOkmdLnzKSAi/zexftEVErYJFIZqk8h2R06RCVOjVuR32e6BijyUFpdRA4FvAkVrrQwEHuAS4Ffid1roSqAa+0hMDtbCw2Dvork0hCOQopZJADNgEnAJ82ey/H/gpsOuKpgcotNP5nHvsOCFRfXdBJeFt8nME0h7/mXy4YUgUeyu6sfrntqoNaQwDwWblByYFjS3B81okCjTR7V7ug+leQWxD9hgjOzSNRl33ApW8PtIhjdOcLQ1EqwI0l8vYvBBsb1yBhPJtFp4HQ6UlNBqgMEcGWZPIR+d63g+xQYSHNfjnqN4oRoqA8coEmyBUL5LCC7WHA/C52Bw6wrzzfs+UKsmI/PRrf2mzv2+BnKu+KZ/6U0TsGvCihDunOuz1wMUeTwpa6w1Kqf9BKks3A/8E5gI1WmvvXq4HBnZ7lPspUvmhTtucUCwFa9/Vo0j0kdsWrDWTg3m50lExAEImQjGZr9HmffZyE1Qa4mWmfkNT9gsabFJ+lGOoXl7KxkEZVSUokjwtZcoX5Z2EV5zWI2XJTAj+C9rYSjUw6o/nhpRzerqHOS6hSBvGqKoGUQuc/CRqvfhLk4Uy/nSdsV6mFZiYBdcPewj4KeGvPyT5JUtveItRoVzaQ2Egp93JwMP6bRKdkD4izeeGyyS9elVzh+0PdHRHfSgGzgMqgAFALnBWO03bJWxQSl2tlJqjlJqT5OCr12dhsa+iO+rDacAqrfU2AKXUE0iYTpFSKmikhUH4cWbZ0FrPAGaAkKwALP3LZMbeLEQX+3u2WiA3l+iG+k7bDQlJfkS4uIXUJglbdENedSeTN5DnEqky+QKt3IRejoFHh6YDyl/dfSuhv0JngpG8DMpAEsLmNicyhaf8duHt2fu0q4mbQCmPlCUVa+We9PItPLKVVjUhEmWeezZAXpGswomEycWoC0OBYYeu2ykJQmlImLUrmFlfQg2iA6VyRV/68i3f8w2vxSdKMNI745+gKxj9wx0A1E7sx+wBQh9XHlop15w8+Gzk3XFJrgWmKqViSikFnAosAt4ATBE/rgTahpxZWFjss+iOTeF9pdTjiNsxBcxDVv7ngUeVUreYbXd3tc9R186m83Cf/QM6HocVHZes9zAxIqtUKuHgRo0xzgTwePYBp1n5rj3PSOeGMiuyx7Ccimk/WMmDx2eSzsnUjmgYkgli8vR/7zNR7Porv1c7wpM6kvnalxA8F2kyH5Ieq3TKC2/2aksqPzvSC312oy6NpvZlaZlIUtubQ2gTNu2TwLa0CvWOmLyM2qC/LZVrXJbmgdFKmKgB6k2ORGfw3JmpVfI75a5aQ+4/ZF+g2NgZqg8+SaFb3get9U+An+y0eSXQObvIAQ6dSqFTnduu6115CWJ5cRpMvD+ewc68KCrl+Fb8UL0Rx0vTBJKZRCUQI56XV9CacxHk5fEIVzzjoxvRuK2MlN6nZ7j01RIzKTjNyo+K9FSbdI72JzFv8vDzHdxMvIQ2F+A0BXBKZOaqbciwOquER1Nvzm36cBoc0t5EmONdQIDGfoa0xbyzTiv1qHajBGs0ubIzFvDYX7Lx9TelyO8o2nou0tXV7R4DsP1rRwNQPwSG/ejAS7W2EY0WFhZZsLkPewE/3HoYALf0XdBm3wjDWlwca6ahWgyNykspVmY1LkwRaDRSgSEfia0L+mqDt0IHWzIruW7JXu0JgDaqRcZImIk78PIttEMmPsJb8b2wiQASooYfGoETVyS9FVx5PI8y7mSR28rQafIcIpqwY8ZoRJBkPFMCz+s3kC+GRJ0IEMw13zeKZBEv1eRUSbu0yfxM5KtM3IZZ6p5slGKxl+a3T3ZT+p4p0NtfIhpTmza3267NcXeKdFAKqCMk+UJ/bArkuvu/AmwlBQsLiyxYSaG3oBSYmhoP/0sIFW65sK2k4MEJuJT1FXKDHTUmCMdzK7rKN+yFakxEY6H2bQnaGOISGgLG2OcFNnkrb3SLon6MrLixlRkjnWcI9NqH6gJ+9KS/zSszl6+JbJPzJwpMm5DGMZRrfnl6Y3h0GgO+29QNG2NhIkDAWD+9YCSnIEm63ozJ2EncRvk/1KRItshjqjwuBzfDDeFfZzpzrYSk44HBju0Cae0SMUFcXZUQdgU99VAZx8yPu93XZw07KfQWWhXZ6feuebsv7KAtcHjJBj7YJgzGfpKUebhJBfyn3zMkBuLgmFkjbdiT3JiLYyaNVK73EmYiG50aw+JsjPOhBuW/VN5L5rTgJzh5qoXXxi1M4RqLvUcDH4hn4iW8RCfPC5EuSvlkLB5jlBt1/VuTMmpGuj6UUTO86EgTxZjKUwRCaXMNxkMR1aRyso2bicLMd49O/qQcPwSyDcbPupy+dd0T9bdedwy1o6WPym91r1blvgSrPlhYWGTBSgp7AfmrGjttUxxsojgqkX6bzErneJLClnCb6MV0TKONSO6YKEAvUhEy7M+eUbGpn+uToHhIxVqlVhvJQgcVOZulnUev5rkoSalW9GoC7bRyI8a8Fd3Ld8iQsng1HlST46sPQc+gWudkpI2db4xWuKZQjC9tBLX/3cutUCnlu1xPGbV0517aoM/dMXaMlovp91KnzdtF8tRaRv/U5GXsWRf7JKykYGFhkQUrKewNBFSnTS4qnMM/VkkacH6hSAwNpmS7W5wiVO1VdTJGOgeCno3AW40DWtyAtJdD0DZ4SaUzKdle+bh4n5QfceRTtRnVO9DQakXPMRvjDoEGOTa0TVbeZB8RP4LbM7YCN2rWHw3RkAR1Ve2QknlB3coeYdyUqi7kjyGQJ+3TZp9LoE2QViqmiRiSlzsHv0tnyF2wicZ+gztttysM+qXyRQQVMkVz0+a+7MeuSSspWFhYZMFKCr0JZUhIF60GIKkNkYhy2jQdGYrQJ09sD9VN2VzsgWbHpylzPS9BK3efZ3VXKeWHHHtuxBZT3SlUG/D5Djy3ZTJP+56CeH9jXEgrP6Mx0OJlaXpuS03Q0MF5K3+wVb/RKq/OpKzybiSTK0HCy6TUNDQb94dHFpsCbfgZvLBsT0zRClwjNXjjcSMu6UhG8gBxrUbGdp5Ze/OW8dLH9h2Uzi9q3cVuQ8/5ZI+P3ZdhJ4VehFMiSTWp0SKmXr5abvejFa+3aRtSDuOKNgHwRr3Ug3ONf95JqsyLaYyLNDtoMyl4cQKBVjSFnkHSM8gFkpmkqnhh2u8rXCXnyFkjL1681M3kRuRli8BOreMbJkPVxrgZybwWYVNDwkuWiJdpP8LSj4SMK1ImFsF7ycO1iniRicMwSV4tfYw7NKT96tQ+yYsO4BgKjniJuc6SOAumPExneP6B4wDo1zQTZ7Xc7/1X0O8dWPXBwsIiC1ZS6CUEolHS2yUtOrhNxN1Hj4MAABV9SURBVNTZc0bJznYkBYB+ZqltaRajledqRGl0IDswKNis0MFsLketaEXBLPDciV7kIkimIoCbyhjKvIKxys24GF0jMnjnDtVlVAVPmgjVBvy+E2I39MvOaQdfmvHo29yoi9tgjIhe9qOTCZDyIyyDGckoaIysrbkfPeIXb6y3HfMAXcGAOwybc24u6arOCwAfjLCSgoWFRRaspNBLSE0ZS+CteQCklwm1V9/ZUviUL7Z/zEd1po5hnSntblx9yQLX18lDJgApHdG+wdDLgYhtCvjkrN6q6pGuNPdP47R45CdmX2siVt8eoXySlRZjLwgb+4EnAQCkoxluAy9YyZMUgl54dMj1JRs/R8FV6IA5tpWU4tk7Ag1erLI5kaN9N6wfCBUAN2IMqqaWxak5u7YMnL74XDm0aZ1026cPNHYeVHYwwk4KvQRn5kKcfuUApDZvASBvo5B+bEo10D+Y1+aYy8olJfeDT0bIcV6UoaMJmVJvPgFKWBOuNkZErwBMMJMC7UX6OXHPCKl8QpJ0K1IWL2U5OUxiI2ILcnyaeE809+IUojsULcawFzFU866j/dgCj4zFe4kDLSorJgJkMvNyMNJF4lJRdQF//86kLCQCvgriEbskStO+SvPG9P8xd6/t/WyNwGlSBs6LJ0hv27bL9gczrPpgYWGRBSsp9BJ0MkHdMcMAiD0hkkLwnU8AOPaNb7Hy9HvaHPNvuVLU4Qd9RKxVRttoaojgGt5Bx5QjCDYrPzchb50pSV+WIU3xuQvNyhvZHsjQtrVSGzypwdlgCExKNKG6bGul06oojFd81pMGgo0ZHkbv3H6bYGYcftxEqJVnX2XaeVKJt0w5vmFSZzgijVs2p6yJYaVixG1P4toZY9+9nCFa0tYDI4WtOb14WafHHaywkoKFhUUWrKTQi4g9ITn2LecIj230udkAVNyv4PSOj3ts0l0AnPPKt2RD0PV16LQpnBSpzujrnp7fGt7KmzSreLBJZcrRGaOiG9ZoY+zz7BPJglZ97UTLlsrRfnCRZ3RMR3Um/t+TTrzVPtGqtJ1n3GzOrEOebUE7GekiaCQKLygpWNJCwNC3pZLS/vyRH7dLbdcRhnxxAU65iF1WQugcdlLYC8j7WOrhxE+eCEDw9bm82yIP+rHRtsLauLDEMuf3kRqH8YVF/r7WlOleirMX3dc42CXa6HEzyjaf1Tmi/XTqpGFNciOaoJfM5JVuVIpkfnZ0oR93EMz06yUkJYrSftSkMrNB6yhKZdQdbzJzQ9pnZfZCslUqE5WZ8CYlz9HguBTnG7Vq5ItARs3qDNPGnGC+1YF7IAYk9w6s+mBhYZEFKynsBaTWiTus5nOSA1H6BvzoG1cD8Pp9d3V43NEDVgPwasMYn2gkut6kJxe4PkOyt3qH6gJ+XIIXi+CrAJFMPoRXOyKdysQAJApaGR+j3kHy4RWRSRa6vhShvdyKpCJQIpZItUUkHC9RK1yjSBm6SU+aSRZAsN7EPZhSceGagD8Or3qNR/fmOC7fG/EK0HUJ4bDfXQvAgLqZAAQHD/J/A4vOYSUFCwuLLHQqKSil7gHOAbZqrQ8120qAvwHDgNXARVrralNT8g/ANKAJuEpr/WHvDH3/Q5+HJMJRlZXCK3M7bX/HIAlmGrFkDCrsBTLJvlB9gJxtsprWSawT4VpF0gtk8lbalkzugxdc5JeMj7pEN8kj4JVcixdljJQhr3CsMTSGdwRo6ZdNuaa0Im0klkBOdip3KpYZh2+LcDTKc4k6bY2a6Zibta8g1sIFeXV0BV9fL5WbBvxmZtZ23WAjF3cHXZEU7gPO3GnbTcBrWutK4DXzP0gp+krzdzVwW88M08LCYm+hU0lBa/0vpdSwnTafB5xkvt8PvAncaLY/oLXWwCylVJFSqr/WelNPDXhvY/nvpgKw4uLbATjrrC/hfrx4j/pyW0ThTx99CM4bkqFX8dJXAVh1Zse2haWn3E3la9IuUWwIUJKKtCnz7tVUQCtfd/fqKvreilZ1Ebzw4uD2UKZWg8lbyKo56VG7m6fEaclkaXoIJBROtcnqNBJAwsu4bMW14PEuKFeRyjMn8IlYM3YIj2NBGzuFZ0/oDHPjCVZPzS4GGxxsckn2gj1h5a0ipSy7XNbBMwZM6PVz9hb21NBY7r3oWutNSnmxdwwE1rVqt95s228nhRGPG8vdxfLx4ouPdPsHD73/KQHzwI76d1PcdGPH7R0VYOVpEgE5/PGvA/KSNffLxCCASVX2AgP9eg9eMZZWuQxVGf5DzzDpqQjxPmmiW0zKtKcGmBwM5QZ8dcQzVqIzEY9e7Yh0vmGjrnJ8VcLbFt4W9FWJdJFhQo4EMoxLxdLZ+KEbADpVHTalxJf646MvAHdL1r705q27PLYn4U0GBwJ62vvQHkNpuw5ipdTViIpBlFgPD8PCwmJPsaeTwhZPLVBK9Qe8KXk90JoidxAdrIFa6xnADIAC1U5I3j4C9e5HbbbtbkHSneE2NaHHiXXQqZWV8MgfXcOcn3e+2qy88A4AKp77GqmYzMGRqkxZeC//IFGanZ7sJBTJYq/evHyEdjgZV2F+Ji/Cd0l6JRta0b0lTaqB10alFEEToOQbJLc7bcajPL7HWCaXAa9CVEkSZVyRv5zyJACX5Hdc8g2k7BvAV0+8VLravMbfF6yQ/IbUqjVtD+xhLL1tsvkmz8nx14kkF2P/rRi1py7JZ4Arzfcrgadbbb9CCaYCtfuzPcHC4mCE0nrXi7RS6hHEqFgGbAF+AjwFPAYMAdYCX9Ra7zAuyf9DvBVNwHSt9ZzOBlGgSvQUdWo3LqP3UX2lGJJm/yqzmveEMSl1yiRAQp//bZEYH68rWrerQ3x49oVIlUdakDHYpYaIscCjPgvVOH5GpDZ6OzVhP1S6daZjosizQ2TbLALJjPHRI3iJl6WJrTeSQSR7fF5WY2u4OW6GLMXUi3QiaV4/7v8AGNKFrEeAM88WCUHPW+hv25uGRQ8vb8yWJPdlA+Or+vG5WusjO2vXFe/DlzrY1eYtNl6H6zof3v6H4vslZoBfZba1fqH3FN6x6ZMn8swhEtJx3cauTQqeKnHO0rMAqGnJ4S9jhNF4fFiSDW7cIg/pU88dDaWiKxQVSmRgdTpAIm7o2H1SFuUbDp1EtokoHZEoRcjkMuig9l9+b19LX9NXQqIgvXaARCwaVSGvSPSO9466h7xA55NBrSvtv3z8JehVC7P2OYeMwl29d6MWB83KjPmUK74CQIg9fxb2FdiIRgsLiyx0qj7sDewP6oMHfczh/PPx+7O29YjIqJRfvj44cAAAz3/wQvf7bYXZccmZdowF8cI3r8HZYayDbqaIjE+dZrIjEyVGzG8M+IZDj4exNUt0tMorZpvhVNR9RTpRntoRcDlyyFoAHq54o0vj/lO1GA6fP7yP9JtK+fucQ4Qh280JoecubHtwL6K16rAvqw0euqo+WEnBwsIiCzZLcjehZn5MkytKdywgkXwNLw0n78yV3etYawJRUdRTG8SLe/aUcwB4/v3nute3weRIdh35VWfczSG3SUZhvMQQmcQgaAKUPKkgUyRW+0SvKWMXcJqUH62YMnYGL/uRgCYvTySFgYVS0u2/Kp5qM45d4YzF5xD4roRb6tQif7szbjQA6VwTujm766Qr3cX+JiHsLqykYGFhkQVrU+gG9taK4ZSV8sL813qtf4CJcySOu3pjIQFTQcrPsCzwkiFaHWCEiJwNjl8zwnNlJgbIhrMPW8CP+0k1rL5O7m6NZ8ydIsFU3PoRblM2j0LqlEl+dazQPzv1ePcYVv7a5DdcIW7pyfO+SPHZ+w+9W1dtCnZS6AaqrpaHZO5PezZ2wYNncPTUCYCrl4qa0tV04j3BQ/WlANy55ngAttXLCx2PhwiYQi75uRIHsaMqn+9MfhWA64u7H0F45rkm/mBu2/iDxvH9AYi9u5R0TecVpnsa+1NMQnuwhkYLC4s9gpUUegC/Xf2eT7Y6fa2srhun1vdY/87YStL5xopnDGrJ0ybx+gN399g5PmtMGy+//85FX93jJlA9Ru5t6V3v7fVxeTgQjItWUrCwsNgjWJdkD+A7w472V5J7h7wNwInnXk302dk90n/rWgWpU01odXOaMwbJd3XEGACOvHv+btVD+Kzxk23jAJh1eAgQCUEF5ZFs+LxcW8FrSyl9Z9cZk72Jby3/1P9+9He/AUABsz6r4ewVWPWhh6Aikg300qpMymxvi5lVXxdDZ6hBfsPS9zbj5ouovX2C1IqoO1tISE4cttznfPws8UBdGY9MkhgDt1XVZzVJJoiWfsKtEXn+g70/uFYof09iIx4Y+i9A1MKeVAk/C1j1wcLCYo9gJYUeRtMXpgDw9p/v8LftNcPU5MPYNkky98J1phjrdokuTEcVeSY1GyU+/sU3FnHESHEjPjGya1yIu4PqdBPH3PU9AIb8bGab/cGhwsez+suDGfK8FIx153/apt3exLofHgPAomv/krV9fzUutoaVFCwsLPYIVlLoJSy7bxIrP5ftMvSpup7ce1RdziihfdM5YTYfVyzbEhmG58KVkpsQWSIBUrqxidS4CgCaBoobdOO5EqEYjKS4dKxEEL6/YxgAS+cOYdS9YghML1wi/Rr7io7HcUpLAIhPMH2Wh0hFRVLp84TkMnwWgUjtYe1Pj2Hx1QeehODBRjTuA1j798MAWHzsX7O27+tGq2C/cgB0sUlECotHIN4nRv0QSUD6/+2df2xV5RnHP19ahVE1UGTaiaHUNWNqJiXGUOUPMmeQjWmMZpORjA0TxmbUmWWOhky3/bFF2Sabc7KpjGQSJIJz2Ew75tyPGME5fzAmVIoss0QpbEgyTFwLz/543yP39La03N5z7m33fBJy73nPhfPtcw9Pn/d53/M8U58/BEDv2WfQVxfOKzZx7a0LlZjO3P1vbF8oGJOUt69GrnvtIADLJ+1/f2wsOYMEnz44jlMSHinkwEDJx4TZ3/kyAFPXVH658P+J/3xmDs+tXlM0PhYjhASPFBzHKQmPFCrAnW+8xBUTiv3x3FtCIrJu8+jtGVCtHFkc2v9tW1UcHTRtDnZvvmVs290jBcdxSsIjhUoxLmToO7oHLwk+86GQb5h+p+cbSmHPfSGX88b1xbmc+w5Pp/2iyXlLqii+JDnaGFdzUgeR9G94pSUvQaOLmin13Lw97Jr81MTi5U+3n08fHMcpkSEfnZa0FlgI9JjZxXFsFfBp4L/AXkJ7uHfiuTbgJuAYcKuZdWSkfWxx/FjRcljhk3p3nxOLfBS0623+wxcAaPpccRPcsc6R33wYgG2zNg36maatSwFoXvJSLprGCsOJFNYRekMWshW42Mw+BrwOtAFIuhC4Ebgo/p2fSqopm1rHcTJnOL0k/ySpsd/YbwsOtwE3xPfXAo+a2XvAPkldwGWAZ8pK4EBrKM46n1m8fXt4eu/Vr5/Ym79n3rrwpiB6ePrd8NzBN78bfkvWrx3dpt+/4nK2fuUeABpSzWeLo6OrFn0RgHF/fBmAZjxCKIVhJRqjU2hPpg/9zj0JbDSzRyT9BNhmZo/Ecw8DT5nZ4DEenmgsla57w9r73s8Wr72fjAs2hgpCjU/2jqg57kipbTgXgN13NJ7yz3DJPaEE/Lmrix/JdgambF2nT4aklUAfsD4ZGuBjA3odScuAZQATmDgSGY7jlJGSIwVJS4DlwJVm9m4cawMws+/F4w7gW2Z20hjWI4Uycll4MvPwXWFZ7oWWx8r2T7/ee5QH/zUXgOd7wqPQh49+gLPiEuDMyT0ALKx/FShPb4qmzV8a8zsN8yLTJUlJVwPfAK5JHEJkC3CjpPGSZgDNQHmqlzqOkwtDRgqSNgDzgLOBA8BdhNWG8SQleEMeYXn8/EpgKWFa8VUze2ooER4p5EuSi2i5tItNF/yuYjpmPLEMgDP31tLwA88NZI3vaHTKz7garDVMT96bHIqtnHa0j9o/7wDA+voqJs0ZGt/R6DhOSXgzGGf4HD+Gngv7AyYUDFc+1nTKiUcKjuOkcKfgOE4KdwqO46Rwp+A4Tgp3Co7jpHCn4DhOiqrYvCTpIHAUOFRpLYSdm67jBK4jzWjWMd3Mpg71oapwCgCSXhzObivX4TpcR7Y6fPrgOE4KdwqO46SoJqfw80oLiLiONK4jzZjXUTU5BcdxqoNqihQcx6kCqsIpSLpaUqekLkkrcrrm+ZKelbRL0t8l3RbH6yVtlbQnvubSW0xSjaSXJbXH4xmStkcdGyWdnoOGSZI2Sdod7dJaCXtIuj1+JzslbZA0IS97SForqUfSzoKxAW2gwI/jfbtD0uyMdayK380OSb+SNKngXFvU0Slp/kiuXXGnEPtC3A8sAC4EFsX+EVnTB3zNzD4KzAFujtddATxjZs3AM/E4D24DdhUc3w3cG3UcJjTYyZofAU+b2UzgkqgnV3tIOg+4Fbg01gStIfQSycse6yjuczKYDRYQSg42E4oQP5Cxjnz6rZhZRf8ArUBHwXEb0FYBHb8GrgI6gYY41gB05nDtaYSb7eNAO6Eq9iGgdiAbZaThLGAfMc9UMJ6rPYDzgDeBekK9j3Zgfp72ABqBnUPZAPgZsGigz2Who9+564D18X3q/wzQAbSWet2KRwqcuAkSuuNYbsRq1S3AduAcM3sLIL5+MAcJq4E7gOPxeArwjpkl9c3ysEkTcBD4RZzGPCSpjpztYWb7ge8D/wTeAo4AfyV/exQymA0qee8uBZL6p2XVUQ1OYdi9IjK5uHQGsJlQZHbkNclP/fpJn87CriyVsEktMBt4wMxaCNvO85o6vU+cr18LzAA+BNQRwvT+VMOyWUXu3ZH0WxkO1eAUuoHzC46nkWqElh2STiM4hPVm9ngcPiCpIZ5vAHoylnEFcI2kfwCPEqYQq4FJkpJyeXnYpBvoNrOkycImgpPI2x6fAPaZ2UEz6wUeBy4nf3sUMpgNcr93Y7+VhcBii3OFcuuoBqfwF6A5ZpdPJyRMtmR9UUkCHgZ2mdkPC05tAZbE90sIuYbMMLM2M5tmZo2En/33ZrYYeJYTPTrz0PE28Kakj8ShK4HXyNkehGnDHEkT43eU6MjVHv0YzAZbgM/HVYg5wJFkmpEFufVbyTJpdAoJlU8Ssql7gZU5XXMuIcTaQehW+krUMYWQ9NsTX+tztMM8QicuCHP8F4Au4DFgfA7XnwW8GG3yBDC5EvYAvg3sBnYCvyT0GMnFHsAGQi6jl/Ab+KbBbEAI2++P9+3fCCsmWeroIuQOkvt1TcHnV0YdncCCkVzbdzQ6jpOiGqYPjuNUEe4UHMdJ4U7BcZwU7hQcx0nhTsFxnBTuFBzHSeFOwXGcFO4UHMdJ8T/z+Hm69fOSnwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "<Figure size 432x288 with 1 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.imshow(\n", + " _read(path_train_img + 'ID_ffff922b9.dcm', (128, 128))[:, :, 0]\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "# Augmentations\n", + "# Flip Left Right\n", + "# Cropping\n", + "sometimes = lambda aug: iaa.Sometimes(0.25, aug)\n", + "augmentation = iaa.Sequential([ \n", + " iaa.Fliplr(0.25),\n", + " sometimes(iaa.Crop(px=(0, 25), keep_size = True, \n", + " sample_independently = False)) \n", + " ], random_order = True)" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [], + "source": [ + "# Train Data Generator\n", + "class TrainDataGenerator(keras.utils.Sequence):\n", + "\n", + " def __init__(self, dataset, labels, batch_size=16, img_size=(512, 512), img_dir = path_train_img, \\\n", + " augment = False, *args, **kwargs):\n", + " self.dataset = dataset\n", + " self.ids = dataset.index\n", + " self.labels = labels\n", + " self.batch_size = batch_size\n", + " self.img_size = img_size\n", + " self.img_dir = img_dir\n", + " self.augment = augment\n", + " self.on_epoch_end()\n", + "\n", + " def __len__(self):\n", + " return int(ceil(len(self.ids) / self.batch_size))\n", + "\n", + " def __getitem__(self, index):\n", + " indices = self.indices[index*self.batch_size:(index+1)*self.batch_size]\n", + " X, Y = self.__data_generation(indices)\n", + " return X, Y\n", + "\n", + " def augmentor(self, image):\n", + " augment_img = augmentation \n", + " image_aug = augment_img.augment_image(image)\n", + " return image_aug\n", + "\n", + " def on_epoch_end(self):\n", + " self.indices = np.arange(len(self.ids))\n", + " np.random.shuffle(self.indices)\n", + " \n", + " def __data_generation(self, indices):\n", + " X = np.empty((self.batch_size, *self.img_size, 3))\n", + " Y = np.empty((self.batch_size, 6), dtype=np.float32)\n", + " \n", + " for i, index in enumerate(indices):\n", + " ID = self.ids[index]\n", + " image = _read(self.img_dir + ID, self.img_size)\n", + " if self.augment:\n", + " X[i,] = self.augmentor(image)\n", + " else:\n", + " X[i,] = image \n", + " Y[i,] = self.labels.iloc[index].values \n", + " return X, Y\n", + " \n", + "class TestDataGenerator(keras.utils.Sequence):\n", + " def __init__(self, ids, labels, batch_size = 5, img_size = (512, 512), img_dir = path_test_img, \\\n", + " *args, **kwargs):\n", + " self.ids = ids\n", + " self.labels = labels\n", + " self.batch_size = batch_size\n", + " self.img_size = img_size\n", + " self.img_dir = img_dir\n", + " self.on_epoch_end()\n", + "\n", + " def __len__(self):\n", + " return int(ceil(len(self.ids) / self.batch_size))\n", + "\n", + " def __getitem__(self, index):\n", + " indices = self.indices[index*self.batch_size:(index+1)*self.batch_size]\n", + " list_IDs_temp = [self.ids[k] for k in indices]\n", + " X = self.__data_generation(list_IDs_temp)\n", + " return X\n", + "\n", + " def on_epoch_end(self):\n", + " self.indices = np.arange(len(self.ids))\n", + "\n", + " def __data_generation(self, list_IDs_temp):\n", + " X = np.empty((self.batch_size, *self.img_size, 3))\n", + " for i, ID in enumerate(list_IDs_temp):\n", + " image = _read(self.img_dir + ID, self.img_size)\n", + " X[i,] = image \n", + " return X" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As we have seen in EDA notebook that we have very few epidural subtypes so we need oversample this sub type" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Train Shape: (677018, 6)\n" + ] + } + ], + "source": [ + "# Oversampling\n", + "epidural_df = train_final_df[train_final_df.epidural == 1]\n", + "train_final_df = pd.concat([train_final_df, epidural_df])\n", + "print('Train Shape: {}'.format(train_final_df.shape))" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "<div>\n", + "<style scoped>\n", + " .dataframe tbody tr th:only-of-type {\n", + " vertical-align: middle;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th></th>\n", + " <th>ID</th>\n", + " <th>Label</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <th>0</th>\n", + " <td>ID_28fbab7eb_epidural</td>\n", + " <td>0.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1</th>\n", + " <td>ID_28fbab7eb_intraparenchymal</td>\n", + " <td>0.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2</th>\n", + " <td>ID_28fbab7eb_intraventricular</td>\n", + " <td>0.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>3</th>\n", + " <td>ID_28fbab7eb_subarachnoid</td>\n", + " <td>0.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>4</th>\n", + " <td>ID_28fbab7eb_subdural</td>\n", + " <td>0.5</td>\n", + " </tr>\n", + " </tbody>\n", + "</table>\n", + "</div>" + ], + "text/plain": [ + " ID Label\n", + "0 ID_28fbab7eb_epidural 0.5\n", + "1 ID_28fbab7eb_intraparenchymal 0.5\n", + "2 ID_28fbab7eb_intraventricular 0.5\n", + "3 ID_28fbab7eb_subarachnoid 0.5\n", + "4 ID_28fbab7eb_subdural 0.5" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# load test set\n", + "test_df = pd.read_csv(input_folder + 'stage_1_sample_submission.csv')\n", + "test_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(78545, 6)" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# extract subtype\n", + "test_df['sub_type'] = test_df['ID'].apply(lambda x: x.split('_')[-1])\n", + "# extract filename\n", + "test_df['file_name'] = test_df['ID'].apply(lambda x: '_'.join(x.split('_')[:2]) + '.dcm')\n", + "\n", + "test_df = pd.pivot_table(test_df.drop(columns='ID'), index=\"file_name\", \\\n", + " columns=\"sub_type\", values=\"Label\")\n", + "test_df.head()\n", + "\n", + "test_df.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "<div>\n", + "<style scoped>\n", + " .dataframe tbody tr th:only-of-type {\n", + " vertical-align: middle;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th>sub_type</th>\n", + " <th>any</th>\n", + " <th>epidural</th>\n", + " <th>intraparenchymal</th>\n", + " <th>intraventricular</th>\n", + " <th>subarachnoid</th>\n", + " <th>subdural</th>\n", + " </tr>\n", + " <tr>\n", + " <th>file_name</th>\n", + " <th></th>\n", + " <th></th>\n", + " <th></th>\n", + " <th></th>\n", + " <th></th>\n", + " <th></th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <th>ID_000012eaf.dcm</th>\n", + " <td>0.5</td>\n", + " <td>0.5</td>\n", + " <td>0.5</td>\n", + " <td>0.5</td>\n", + " <td>0.5</td>\n", + " <td>0.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>ID_0000ca2f6.dcm</th>\n", + " <td>0.5</td>\n", + " <td>0.5</td>\n", + " <td>0.5</td>\n", + " <td>0.5</td>\n", + " <td>0.5</td>\n", + " <td>0.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>ID_000259ccf.dcm</th>\n", + " <td>0.5</td>\n", + " <td>0.5</td>\n", + " <td>0.5</td>\n", + " <td>0.5</td>\n", + " <td>0.5</td>\n", + " <td>0.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>ID_0002d438a.dcm</th>\n", + " <td>0.5</td>\n", + " <td>0.5</td>\n", + " <td>0.5</td>\n", + " <td>0.5</td>\n", + " <td>0.5</td>\n", + " <td>0.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>ID_00032d440.dcm</th>\n", + " <td>0.5</td>\n", + " <td>0.5</td>\n", + " <td>0.5</td>\n", + " <td>0.5</td>\n", + " <td>0.5</td>\n", + " <td>0.5</td>\n", + " </tr>\n", + " </tbody>\n", + "</table>\n", + "</div>" + ], + "text/plain": [ + "sub_type any epidural intraparenchymal intraventricular \\\n", + "file_name \n", + "ID_000012eaf.dcm 0.5 0.5 0.5 0.5 \n", + "ID_0000ca2f6.dcm 0.5 0.5 0.5 0.5 \n", + "ID_000259ccf.dcm 0.5 0.5 0.5 0.5 \n", + "ID_0002d438a.dcm 0.5 0.5 0.5 0.5 \n", + "ID_00032d440.dcm 0.5 0.5 0.5 0.5 \n", + "\n", + "sub_type subarachnoid subdural \n", + "file_name \n", + "ID_000012eaf.dcm 0.5 0.5 \n", + "ID_0000ca2f6.dcm 0.5 0.5 \n", + "ID_000259ccf.dcm 0.5 0.5 \n", + "ID_0002d438a.dcm 0.5 0.5 \n", + "ID_00032d440.dcm 0.5 0.5 " + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "test_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Downloading data from https://github.com/Callidior/keras-applications/releases/download/efficientnet/efficientnet-b0_weights_tf_dim_ordering_tf_kernels_autoaugment_notop.h5\n", + "16809984/16804768 [==============================] - 1s 0us/step\n", + "Model: \"model_1\"\n", + "__________________________________________________________________________________________________\n", + "Layer (type) Output Shape Param # Connected to \n", + "==================================================================================================\n", + "input_1 (InputLayer) (None, 256, 256, 3) 0 \n", + "__________________________________________________________________________________________________\n", + "stem_conv (Conv2D) (None, 128, 128, 32) 864 input_1[0][0] \n", + "__________________________________________________________________________________________________\n", + "stem_bn (BatchNormalization) (None, 128, 128, 32) 128 stem_conv[0][0] \n", + "__________________________________________________________________________________________________\n", + "stem_activation (Activation) (None, 128, 128, 32) 0 stem_bn[0][0] \n", + "__________________________________________________________________________________________________\n", + "block1a_dwconv (DepthwiseConv2D (None, 128, 128, 32) 288 stem_activation[0][0] \n", + "__________________________________________________________________________________________________\n", + "block1a_bn (BatchNormalization) (None, 128, 128, 32) 128 block1a_dwconv[0][0] \n", + "__________________________________________________________________________________________________\n", + "block1a_activation (Activation) (None, 128, 128, 32) 0 block1a_bn[0][0] \n", + "__________________________________________________________________________________________________\n", + "block1a_se_squeeze (GlobalAvera (None, 32) 0 block1a_activation[0][0] \n", + "__________________________________________________________________________________________________\n", + "block1a_se_reshape (Reshape) (None, 1, 1, 32) 0 block1a_se_squeeze[0][0] \n", + "__________________________________________________________________________________________________\n", + "block1a_se_reduce (Conv2D) (None, 1, 1, 8) 264 block1a_se_reshape[0][0] \n", + "__________________________________________________________________________________________________\n", + "block1a_se_expand (Conv2D) (None, 1, 1, 32) 288 block1a_se_reduce[0][0] \n", + "__________________________________________________________________________________________________\n", + "block1a_se_excite (Multiply) (None, 128, 128, 32) 0 block1a_activation[0][0] \n", + " block1a_se_expand[0][0] \n", + "__________________________________________________________________________________________________\n", + "block1a_project_conv (Conv2D) (None, 128, 128, 16) 512 block1a_se_excite[0][0] \n", + "__________________________________________________________________________________________________\n", + "block1a_project_bn (BatchNormal (None, 128, 128, 16) 64 block1a_project_conv[0][0] \n", + "__________________________________________________________________________________________________\n", + "block2a_expand_conv (Conv2D) (None, 128, 128, 96) 1536 block1a_project_bn[0][0] \n", + "__________________________________________________________________________________________________\n", + "block2a_expand_bn (BatchNormali (None, 128, 128, 96) 384 block2a_expand_conv[0][0] \n", + "__________________________________________________________________________________________________\n", + "block2a_expand_activation (Acti (None, 128, 128, 96) 0 block2a_expand_bn[0][0] \n", + "__________________________________________________________________________________________________\n", + "block2a_dwconv (DepthwiseConv2D (None, 64, 64, 96) 864 block2a_expand_activation[0][0] \n", + "__________________________________________________________________________________________________\n", + "block2a_bn (BatchNormalization) (None, 64, 64, 96) 384 block2a_dwconv[0][0] \n", + "__________________________________________________________________________________________________\n", + "block2a_activation (Activation) (None, 64, 64, 96) 0 block2a_bn[0][0] \n", + "__________________________________________________________________________________________________\n", + "block2a_se_squeeze (GlobalAvera (None, 96) 0 block2a_activation[0][0] \n", + "__________________________________________________________________________________________________\n", + "block2a_se_reshape (Reshape) (None, 1, 1, 96) 0 block2a_se_squeeze[0][0] \n", + "__________________________________________________________________________________________________\n", + "block2a_se_reduce (Conv2D) (None, 1, 1, 4) 388 block2a_se_reshape[0][0] \n", + "__________________________________________________________________________________________________\n", + "block2a_se_expand (Conv2D) (None, 1, 1, 96) 480 block2a_se_reduce[0][0] \n", + "__________________________________________________________________________________________________\n", + "block2a_se_excite (Multiply) (None, 64, 64, 96) 0 block2a_activation[0][0] \n", + " block2a_se_expand[0][0] \n", + "__________________________________________________________________________________________________\n", + "block2a_project_conv (Conv2D) (None, 64, 64, 24) 2304 block2a_se_excite[0][0] \n", + "__________________________________________________________________________________________________\n", + "block2a_project_bn (BatchNormal (None, 64, 64, 24) 96 block2a_project_conv[0][0] \n", + "__________________________________________________________________________________________________\n", + "block2b_expand_conv (Conv2D) (None, 64, 64, 144) 3456 block2a_project_bn[0][0] \n", + "__________________________________________________________________________________________________\n", + "block2b_expand_bn (BatchNormali (None, 64, 64, 144) 576 block2b_expand_conv[0][0] \n", + "__________________________________________________________________________________________________\n", + "block2b_expand_activation (Acti (None, 64, 64, 144) 0 block2b_expand_bn[0][0] \n", + "__________________________________________________________________________________________________\n", + "block2b_dwconv (DepthwiseConv2D (None, 64, 64, 144) 1296 block2b_expand_activation[0][0] \n", + "__________________________________________________________________________________________________\n", + "block2b_bn (BatchNormalization) (None, 64, 64, 144) 576 block2b_dwconv[0][0] \n", + "__________________________________________________________________________________________________\n", + "block2b_activation (Activation) (None, 64, 64, 144) 0 block2b_bn[0][0] \n", + "__________________________________________________________________________________________________\n", + "block2b_se_squeeze (GlobalAvera (None, 144) 0 block2b_activation[0][0] \n", + "__________________________________________________________________________________________________\n", + "block2b_se_reshape (Reshape) (None, 1, 1, 144) 0 block2b_se_squeeze[0][0] \n", + "__________________________________________________________________________________________________\n", + "block2b_se_reduce (Conv2D) (None, 1, 1, 6) 870 block2b_se_reshape[0][0] \n", + "__________________________________________________________________________________________________\n", + "block2b_se_expand (Conv2D) (None, 1, 1, 144) 1008 block2b_se_reduce[0][0] \n", + "__________________________________________________________________________________________________\n", + "block2b_se_excite (Multiply) (None, 64, 64, 144) 0 block2b_activation[0][0] \n", + " block2b_se_expand[0][0] \n", + "__________________________________________________________________________________________________\n", + "block2b_project_conv (Conv2D) (None, 64, 64, 24) 3456 block2b_se_excite[0][0] \n", + "__________________________________________________________________________________________________\n", + "block2b_project_bn (BatchNormal (None, 64, 64, 24) 96 block2b_project_conv[0][0] \n", + "__________________________________________________________________________________________________\n", + "block2b_drop (FixedDropout) (None, 64, 64, 24) 0 block2b_project_bn[0][0] \n", + "__________________________________________________________________________________________________\n", + "block2b_add (Add) (None, 64, 64, 24) 0 block2b_drop[0][0] \n", + " block2a_project_bn[0][0] \n", + "__________________________________________________________________________________________________\n", + "block3a_expand_conv (Conv2D) (None, 64, 64, 144) 3456 block2b_add[0][0] \n", + "__________________________________________________________________________________________________\n", + "block3a_expand_bn (BatchNormali (None, 64, 64, 144) 576 block3a_expand_conv[0][0] \n", + "__________________________________________________________________________________________________\n", + "block3a_expand_activation (Acti (None, 64, 64, 144) 0 block3a_expand_bn[0][0] \n", + "__________________________________________________________________________________________________\n", + "block3a_dwconv (DepthwiseConv2D (None, 32, 32, 144) 3600 block3a_expand_activation[0][0] \n", + "__________________________________________________________________________________________________\n", + "block3a_bn (BatchNormalization) (None, 32, 32, 144) 576 block3a_dwconv[0][0] \n", + "__________________________________________________________________________________________________\n", + "block3a_activation (Activation) (None, 32, 32, 144) 0 block3a_bn[0][0] \n", + "__________________________________________________________________________________________________\n", + "block3a_se_squeeze (GlobalAvera (None, 144) 0 block3a_activation[0][0] \n", + "__________________________________________________________________________________________________\n", + "block3a_se_reshape (Reshape) (None, 1, 1, 144) 0 block3a_se_squeeze[0][0] \n", + "__________________________________________________________________________________________________\n", + "block3a_se_reduce (Conv2D) (None, 1, 1, 6) 870 block3a_se_reshape[0][0] \n", + "__________________________________________________________________________________________________\n", + "block3a_se_expand (Conv2D) (None, 1, 1, 144) 1008 block3a_se_reduce[0][0] \n", + "__________________________________________________________________________________________________\n", + "block3a_se_excite (Multiply) (None, 32, 32, 144) 0 block3a_activation[0][0] \n", + " block3a_se_expand[0][0] \n", + "__________________________________________________________________________________________________\n", + "block3a_project_conv (Conv2D) (None, 32, 32, 40) 5760 block3a_se_excite[0][0] \n", + "__________________________________________________________________________________________________\n", + "block3a_project_bn (BatchNormal (None, 32, 32, 40) 160 block3a_project_conv[0][0] \n", + "__________________________________________________________________________________________________\n", + "block3b_expand_conv (Conv2D) (None, 32, 32, 240) 9600 block3a_project_bn[0][0] \n", + "__________________________________________________________________________________________________\n", + "block3b_expand_bn (BatchNormali (None, 32, 32, 240) 960 block3b_expand_conv[0][0] \n", + "__________________________________________________________________________________________________\n", + "block3b_expand_activation (Acti (None, 32, 32, 240) 0 block3b_expand_bn[0][0] \n", + "__________________________________________________________________________________________________\n", + "block3b_dwconv (DepthwiseConv2D (None, 32, 32, 240) 6000 block3b_expand_activation[0][0] \n", + "__________________________________________________________________________________________________\n", + "block3b_bn (BatchNormalization) (None, 32, 32, 240) 960 block3b_dwconv[0][0] \n", + "__________________________________________________________________________________________________\n", + "block3b_activation (Activation) (None, 32, 32, 240) 0 block3b_bn[0][0] \n", + "__________________________________________________________________________________________________\n", + "block3b_se_squeeze (GlobalAvera (None, 240) 0 block3b_activation[0][0] \n", + "__________________________________________________________________________________________________\n", + "block3b_se_reshape (Reshape) (None, 1, 1, 240) 0 block3b_se_squeeze[0][0] \n", + "__________________________________________________________________________________________________\n", + "block3b_se_reduce (Conv2D) (None, 1, 1, 10) 2410 block3b_se_reshape[0][0] \n", + "__________________________________________________________________________________________________\n", + "block3b_se_expand (Conv2D) (None, 1, 1, 240) 2640 block3b_se_reduce[0][0] \n", + "__________________________________________________________________________________________________\n", + "block3b_se_excite (Multiply) (None, 32, 32, 240) 0 block3b_activation[0][0] \n", + " block3b_se_expand[0][0] \n", + "__________________________________________________________________________________________________\n", + "block3b_project_conv (Conv2D) (None, 32, 32, 40) 9600 block3b_se_excite[0][0] \n", + "__________________________________________________________________________________________________\n", + "block3b_project_bn (BatchNormal (None, 32, 32, 40) 160 block3b_project_conv[0][0] \n", + "__________________________________________________________________________________________________\n", + "block3b_drop (FixedDropout) (None, 32, 32, 40) 0 block3b_project_bn[0][0] \n", + "__________________________________________________________________________________________________\n", + "block3b_add (Add) (None, 32, 32, 40) 0 block3b_drop[0][0] \n", + " block3a_project_bn[0][0] \n", + "__________________________________________________________________________________________________\n", + "block4a_expand_conv (Conv2D) (None, 32, 32, 240) 9600 block3b_add[0][0] \n", + "__________________________________________________________________________________________________\n", + "block4a_expand_bn (BatchNormali (None, 32, 32, 240) 960 block4a_expand_conv[0][0] \n", + "__________________________________________________________________________________________________\n", + "block4a_expand_activation (Acti (None, 32, 32, 240) 0 block4a_expand_bn[0][0] \n", + "__________________________________________________________________________________________________\n", + "block4a_dwconv (DepthwiseConv2D (None, 16, 16, 240) 2160 block4a_expand_activation[0][0] \n", + "__________________________________________________________________________________________________\n", + "block4a_bn (BatchNormalization) (None, 16, 16, 240) 960 block4a_dwconv[0][0] \n", + "__________________________________________________________________________________________________\n", + "block4a_activation (Activation) (None, 16, 16, 240) 0 block4a_bn[0][0] \n", + "__________________________________________________________________________________________________\n", + "block4a_se_squeeze (GlobalAvera (None, 240) 0 block4a_activation[0][0] \n", + "__________________________________________________________________________________________________\n", + "block4a_se_reshape (Reshape) (None, 1, 1, 240) 0 block4a_se_squeeze[0][0] \n", + "__________________________________________________________________________________________________\n", + "block4a_se_reduce (Conv2D) (None, 1, 1, 10) 2410 block4a_se_reshape[0][0] \n", + "__________________________________________________________________________________________________\n", + "block4a_se_expand (Conv2D) (None, 1, 1, 240) 2640 block4a_se_reduce[0][0] \n", + "__________________________________________________________________________________________________\n", + "block4a_se_excite (Multiply) (None, 16, 16, 240) 0 block4a_activation[0][0] \n", + " block4a_se_expand[0][0] \n", + "__________________________________________________________________________________________________\n", + "block4a_project_conv (Conv2D) (None, 16, 16, 80) 19200 block4a_se_excite[0][0] \n", + "__________________________________________________________________________________________________\n", + "block4a_project_bn (BatchNormal (None, 16, 16, 80) 320 block4a_project_conv[0][0] \n", + "__________________________________________________________________________________________________\n", + "block4b_expand_conv (Conv2D) (None, 16, 16, 480) 38400 block4a_project_bn[0][0] \n", + "__________________________________________________________________________________________________\n", + "block4b_expand_bn (BatchNormali (None, 16, 16, 480) 1920 block4b_expand_conv[0][0] \n", + "__________________________________________________________________________________________________\n", + "block4b_expand_activation (Acti (None, 16, 16, 480) 0 block4b_expand_bn[0][0] \n", + "__________________________________________________________________________________________________\n", + "block4b_dwconv (DepthwiseConv2D (None, 16, 16, 480) 4320 block4b_expand_activation[0][0] \n", + "__________________________________________________________________________________________________\n", + "block4b_bn (BatchNormalization) (None, 16, 16, 480) 1920 block4b_dwconv[0][0] \n", + "__________________________________________________________________________________________________\n", + "block4b_activation (Activation) (None, 16, 16, 480) 0 block4b_bn[0][0] \n", + "__________________________________________________________________________________________________\n", + "block4b_se_squeeze (GlobalAvera (None, 480) 0 block4b_activation[0][0] \n", + "__________________________________________________________________________________________________\n", + "block4b_se_reshape (Reshape) (None, 1, 1, 480) 0 block4b_se_squeeze[0][0] \n", + "__________________________________________________________________________________________________\n", + "block4b_se_reduce (Conv2D) (None, 1, 1, 20) 9620 block4b_se_reshape[0][0] \n", + "__________________________________________________________________________________________________\n", + "block4b_se_expand (Conv2D) (None, 1, 1, 480) 10080 block4b_se_reduce[0][0] \n", + "__________________________________________________________________________________________________\n", + "block4b_se_excite (Multiply) (None, 16, 16, 480) 0 block4b_activation[0][0] \n", + " block4b_se_expand[0][0] \n", + "__________________________________________________________________________________________________\n", + "block4b_project_conv (Conv2D) (None, 16, 16, 80) 38400 block4b_se_excite[0][0] \n", + "__________________________________________________________________________________________________\n", + "block4b_project_bn (BatchNormal (None, 16, 16, 80) 320 block4b_project_conv[0][0] \n", + "__________________________________________________________________________________________________\n", + "block4b_drop (FixedDropout) (None, 16, 16, 80) 0 block4b_project_bn[0][0] \n", + "__________________________________________________________________________________________________\n", + "block4b_add (Add) (None, 16, 16, 80) 0 block4b_drop[0][0] \n", + " block4a_project_bn[0][0] \n", + "__________________________________________________________________________________________________\n", + "block4c_expand_conv (Conv2D) (None, 16, 16, 480) 38400 block4b_add[0][0] \n", + "__________________________________________________________________________________________________\n", + "block4c_expand_bn (BatchNormali (None, 16, 16, 480) 1920 block4c_expand_conv[0][0] \n", + "__________________________________________________________________________________________________\n", + "block4c_expand_activation (Acti (None, 16, 16, 480) 0 block4c_expand_bn[0][0] \n", + "__________________________________________________________________________________________________\n", + "block4c_dwconv (DepthwiseConv2D (None, 16, 16, 480) 4320 block4c_expand_activation[0][0] \n", + "__________________________________________________________________________________________________\n", + "block4c_bn (BatchNormalization) (None, 16, 16, 480) 1920 block4c_dwconv[0][0] \n", + "__________________________________________________________________________________________________\n", + "block4c_activation (Activation) (None, 16, 16, 480) 0 block4c_bn[0][0] \n", + "__________________________________________________________________________________________________\n", + "block4c_se_squeeze (GlobalAvera (None, 480) 0 block4c_activation[0][0] \n", + "__________________________________________________________________________________________________\n", + "block4c_se_reshape (Reshape) (None, 1, 1, 480) 0 block4c_se_squeeze[0][0] \n", + "__________________________________________________________________________________________________\n", + "block4c_se_reduce (Conv2D) (None, 1, 1, 20) 9620 block4c_se_reshape[0][0] \n", + "__________________________________________________________________________________________________\n", + "block4c_se_expand (Conv2D) (None, 1, 1, 480) 10080 block4c_se_reduce[0][0] \n", + "__________________________________________________________________________________________________\n", + "block4c_se_excite (Multiply) (None, 16, 16, 480) 0 block4c_activation[0][0] \n", + " block4c_se_expand[0][0] \n", + "__________________________________________________________________________________________________\n", + "block4c_project_conv (Conv2D) (None, 16, 16, 80) 38400 block4c_se_excite[0][0] \n", + "__________________________________________________________________________________________________\n", + "block4c_project_bn (BatchNormal (None, 16, 16, 80) 320 block4c_project_conv[0][0] \n", + "__________________________________________________________________________________________________\n", + "block4c_drop (FixedDropout) (None, 16, 16, 80) 0 block4c_project_bn[0][0] \n", + "__________________________________________________________________________________________________\n", + "block4c_add (Add) (None, 16, 16, 80) 0 block4c_drop[0][0] \n", + " block4b_add[0][0] \n", + "__________________________________________________________________________________________________\n", + "block5a_expand_conv (Conv2D) (None, 16, 16, 480) 38400 block4c_add[0][0] \n", + "__________________________________________________________________________________________________\n", + "block5a_expand_bn (BatchNormali (None, 16, 16, 480) 1920 block5a_expand_conv[0][0] \n", + "__________________________________________________________________________________________________\n", + "block5a_expand_activation (Acti (None, 16, 16, 480) 0 block5a_expand_bn[0][0] \n", + "__________________________________________________________________________________________________\n", + "block5a_dwconv (DepthwiseConv2D (None, 16, 16, 480) 12000 block5a_expand_activation[0][0] \n", + "__________________________________________________________________________________________________\n", + "block5a_bn (BatchNormalization) (None, 16, 16, 480) 1920 block5a_dwconv[0][0] \n", + "__________________________________________________________________________________________________\n", + "block5a_activation (Activation) (None, 16, 16, 480) 0 block5a_bn[0][0] \n", + "__________________________________________________________________________________________________\n", + "block5a_se_squeeze (GlobalAvera (None, 480) 0 block5a_activation[0][0] \n", + "__________________________________________________________________________________________________\n", + "block5a_se_reshape (Reshape) (None, 1, 1, 480) 0 block5a_se_squeeze[0][0] \n", + "__________________________________________________________________________________________________\n", + "block5a_se_reduce (Conv2D) (None, 1, 1, 20) 9620 block5a_se_reshape[0][0] \n", + "__________________________________________________________________________________________________\n", + "block5a_se_expand (Conv2D) (None, 1, 1, 480) 10080 block5a_se_reduce[0][0] \n", + "__________________________________________________________________________________________________\n", + "block5a_se_excite (Multiply) (None, 16, 16, 480) 0 block5a_activation[0][0] \n", + " block5a_se_expand[0][0] \n", + "__________________________________________________________________________________________________\n", + "block5a_project_conv (Conv2D) (None, 16, 16, 112) 53760 block5a_se_excite[0][0] \n", + "__________________________________________________________________________________________________\n", + "block5a_project_bn (BatchNormal (None, 16, 16, 112) 448 block5a_project_conv[0][0] \n", + "__________________________________________________________________________________________________\n", + "block5b_expand_conv (Conv2D) (None, 16, 16, 672) 75264 block5a_project_bn[0][0] \n", + "__________________________________________________________________________________________________\n", + "block5b_expand_bn (BatchNormali (None, 16, 16, 672) 2688 block5b_expand_conv[0][0] \n", + "__________________________________________________________________________________________________\n", + "block5b_expand_activation (Acti (None, 16, 16, 672) 0 block5b_expand_bn[0][0] \n", + "__________________________________________________________________________________________________\n", + "block5b_dwconv (DepthwiseConv2D (None, 16, 16, 672) 16800 block5b_expand_activation[0][0] \n", + "__________________________________________________________________________________________________\n", + "block5b_bn (BatchNormalization) (None, 16, 16, 672) 2688 block5b_dwconv[0][0] \n", + "__________________________________________________________________________________________________\n", + "block5b_activation (Activation) (None, 16, 16, 672) 0 block5b_bn[0][0] \n", + "__________________________________________________________________________________________________\n", + "block5b_se_squeeze (GlobalAvera (None, 672) 0 block5b_activation[0][0] \n", + "__________________________________________________________________________________________________\n", + "block5b_se_reshape (Reshape) (None, 1, 1, 672) 0 block5b_se_squeeze[0][0] \n", + "__________________________________________________________________________________________________\n", + "block5b_se_reduce (Conv2D) (None, 1, 1, 28) 18844 block5b_se_reshape[0][0] \n", + "__________________________________________________________________________________________________\n", + "block5b_se_expand (Conv2D) (None, 1, 1, 672) 19488 block5b_se_reduce[0][0] \n", + "__________________________________________________________________________________________________\n", + "block5b_se_excite (Multiply) (None, 16, 16, 672) 0 block5b_activation[0][0] \n", + " block5b_se_expand[0][0] \n", + "__________________________________________________________________________________________________\n", + "block5b_project_conv (Conv2D) (None, 16, 16, 112) 75264 block5b_se_excite[0][0] \n", + "__________________________________________________________________________________________________\n", + "block5b_project_bn (BatchNormal (None, 16, 16, 112) 448 block5b_project_conv[0][0] \n", + "__________________________________________________________________________________________________\n", + "block5b_drop (FixedDropout) (None, 16, 16, 112) 0 block5b_project_bn[0][0] \n", + "__________________________________________________________________________________________________\n", + "block5b_add (Add) (None, 16, 16, 112) 0 block5b_drop[0][0] \n", + " block5a_project_bn[0][0] \n", + "__________________________________________________________________________________________________\n", + "block5c_expand_conv (Conv2D) (None, 16, 16, 672) 75264 block5b_add[0][0] \n", + "__________________________________________________________________________________________________\n", + "block5c_expand_bn (BatchNormali (None, 16, 16, 672) 2688 block5c_expand_conv[0][0] \n", + "__________________________________________________________________________________________________\n", + "block5c_expand_activation (Acti (None, 16, 16, 672) 0 block5c_expand_bn[0][0] \n", + "__________________________________________________________________________________________________\n", + "block5c_dwconv (DepthwiseConv2D (None, 16, 16, 672) 16800 block5c_expand_activation[0][0] \n", + "__________________________________________________________________________________________________\n", + "block5c_bn (BatchNormalization) (None, 16, 16, 672) 2688 block5c_dwconv[0][0] \n", + "__________________________________________________________________________________________________\n", + "block5c_activation (Activation) (None, 16, 16, 672) 0 block5c_bn[0][0] \n", + "__________________________________________________________________________________________________\n", + "block5c_se_squeeze (GlobalAvera (None, 672) 0 block5c_activation[0][0] \n", + "__________________________________________________________________________________________________\n", + "block5c_se_reshape (Reshape) (None, 1, 1, 672) 0 block5c_se_squeeze[0][0] \n", + "__________________________________________________________________________________________________\n", + "block5c_se_reduce (Conv2D) (None, 1, 1, 28) 18844 block5c_se_reshape[0][0] \n", + "__________________________________________________________________________________________________\n", + "block5c_se_expand (Conv2D) (None, 1, 1, 672) 19488 block5c_se_reduce[0][0] \n", + "__________________________________________________________________________________________________\n", + "block5c_se_excite (Multiply) (None, 16, 16, 672) 0 block5c_activation[0][0] \n", + " block5c_se_expand[0][0] \n", + "__________________________________________________________________________________________________\n", + "block5c_project_conv (Conv2D) (None, 16, 16, 112) 75264 block5c_se_excite[0][0] \n", + "__________________________________________________________________________________________________\n", + "block5c_project_bn (BatchNormal (None, 16, 16, 112) 448 block5c_project_conv[0][0] \n", + "__________________________________________________________________________________________________\n", + "block5c_drop (FixedDropout) (None, 16, 16, 112) 0 block5c_project_bn[0][0] \n", + "__________________________________________________________________________________________________\n", + "block5c_add (Add) (None, 16, 16, 112) 0 block5c_drop[0][0] \n", + " block5b_add[0][0] \n", + "__________________________________________________________________________________________________\n", + "block6a_expand_conv (Conv2D) (None, 16, 16, 672) 75264 block5c_add[0][0] \n", + "__________________________________________________________________________________________________\n", + "block6a_expand_bn (BatchNormali (None, 16, 16, 672) 2688 block6a_expand_conv[0][0] \n", + "__________________________________________________________________________________________________\n", + "block6a_expand_activation (Acti (None, 16, 16, 672) 0 block6a_expand_bn[0][0] \n", + "__________________________________________________________________________________________________\n", + "block6a_dwconv (DepthwiseConv2D (None, 8, 8, 672) 16800 block6a_expand_activation[0][0] \n", + "__________________________________________________________________________________________________\n", + "block6a_bn (BatchNormalization) (None, 8, 8, 672) 2688 block6a_dwconv[0][0] \n", + "__________________________________________________________________________________________________\n", + "block6a_activation (Activation) (None, 8, 8, 672) 0 block6a_bn[0][0] \n", + "__________________________________________________________________________________________________\n", + "block6a_se_squeeze (GlobalAvera (None, 672) 0 block6a_activation[0][0] \n", + "__________________________________________________________________________________________________\n", + "block6a_se_reshape (Reshape) (None, 1, 1, 672) 0 block6a_se_squeeze[0][0] \n", + "__________________________________________________________________________________________________\n", + "block6a_se_reduce (Conv2D) (None, 1, 1, 28) 18844 block6a_se_reshape[0][0] \n", + "__________________________________________________________________________________________________\n", + "block6a_se_expand (Conv2D) (None, 1, 1, 672) 19488 block6a_se_reduce[0][0] \n", + "__________________________________________________________________________________________________\n", + "block6a_se_excite (Multiply) (None, 8, 8, 672) 0 block6a_activation[0][0] \n", + " block6a_se_expand[0][0] \n", + "__________________________________________________________________________________________________\n", + "block6a_project_conv (Conv2D) (None, 8, 8, 192) 129024 block6a_se_excite[0][0] \n", + "__________________________________________________________________________________________________\n", + "block6a_project_bn (BatchNormal (None, 8, 8, 192) 768 block6a_project_conv[0][0] \n", + "__________________________________________________________________________________________________\n", + "block6b_expand_conv (Conv2D) (None, 8, 8, 1152) 221184 block6a_project_bn[0][0] \n", + "__________________________________________________________________________________________________\n", + "block6b_expand_bn (BatchNormali (None, 8, 8, 1152) 4608 block6b_expand_conv[0][0] \n", + "__________________________________________________________________________________________________\n", + "block6b_expand_activation (Acti (None, 8, 8, 1152) 0 block6b_expand_bn[0][0] \n", + "__________________________________________________________________________________________________\n", + "block6b_dwconv (DepthwiseConv2D (None, 8, 8, 1152) 28800 block6b_expand_activation[0][0] \n", + "__________________________________________________________________________________________________\n", + "block6b_bn (BatchNormalization) (None, 8, 8, 1152) 4608 block6b_dwconv[0][0] \n", + "__________________________________________________________________________________________________\n", + "block6b_activation (Activation) (None, 8, 8, 1152) 0 block6b_bn[0][0] \n", + "__________________________________________________________________________________________________\n", + "block6b_se_squeeze (GlobalAvera (None, 1152) 0 block6b_activation[0][0] \n", + "__________________________________________________________________________________________________\n", + "block6b_se_reshape (Reshape) (None, 1, 1, 1152) 0 block6b_se_squeeze[0][0] \n", + "__________________________________________________________________________________________________\n", + "block6b_se_reduce (Conv2D) (None, 1, 1, 48) 55344 block6b_se_reshape[0][0] \n", + "__________________________________________________________________________________________________\n", + "block6b_se_expand (Conv2D) (None, 1, 1, 1152) 56448 block6b_se_reduce[0][0] \n", + "__________________________________________________________________________________________________\n", + "block6b_se_excite (Multiply) (None, 8, 8, 1152) 0 block6b_activation[0][0] \n", + " block6b_se_expand[0][0] \n", + "__________________________________________________________________________________________________\n", + "block6b_project_conv (Conv2D) (None, 8, 8, 192) 221184 block6b_se_excite[0][0] \n", + "__________________________________________________________________________________________________\n", + "block6b_project_bn (BatchNormal (None, 8, 8, 192) 768 block6b_project_conv[0][0] \n", + "__________________________________________________________________________________________________\n", + "block6b_drop (FixedDropout) (None, 8, 8, 192) 0 block6b_project_bn[0][0] \n", + "__________________________________________________________________________________________________\n", + "block6b_add (Add) (None, 8, 8, 192) 0 block6b_drop[0][0] \n", + " block6a_project_bn[0][0] \n", + "__________________________________________________________________________________________________\n", + "block6c_expand_conv (Conv2D) (None, 8, 8, 1152) 221184 block6b_add[0][0] \n", + "__________________________________________________________________________________________________\n", + "block6c_expand_bn (BatchNormali (None, 8, 8, 1152) 4608 block6c_expand_conv[0][0] \n", + "__________________________________________________________________________________________________\n", + "block6c_expand_activation (Acti (None, 8, 8, 1152) 0 block6c_expand_bn[0][0] \n", + "__________________________________________________________________________________________________\n", + "block6c_dwconv (DepthwiseConv2D (None, 8, 8, 1152) 28800 block6c_expand_activation[0][0] \n", + "__________________________________________________________________________________________________\n", + "block6c_bn (BatchNormalization) (None, 8, 8, 1152) 4608 block6c_dwconv[0][0] \n", + "__________________________________________________________________________________________________\n", + "block6c_activation (Activation) (None, 8, 8, 1152) 0 block6c_bn[0][0] \n", + "__________________________________________________________________________________________________\n", + "block6c_se_squeeze (GlobalAvera (None, 1152) 0 block6c_activation[0][0] \n", + "__________________________________________________________________________________________________\n", + "block6c_se_reshape (Reshape) (None, 1, 1, 1152) 0 block6c_se_squeeze[0][0] \n", + "__________________________________________________________________________________________________\n", + "block6c_se_reduce (Conv2D) (None, 1, 1, 48) 55344 block6c_se_reshape[0][0] \n", + "__________________________________________________________________________________________________\n", + "block6c_se_expand (Conv2D) (None, 1, 1, 1152) 56448 block6c_se_reduce[0][0] \n", + "__________________________________________________________________________________________________\n", + "block6c_se_excite (Multiply) (None, 8, 8, 1152) 0 block6c_activation[0][0] \n", + " block6c_se_expand[0][0] \n", + "__________________________________________________________________________________________________\n", + "block6c_project_conv (Conv2D) (None, 8, 8, 192) 221184 block6c_se_excite[0][0] \n", + "__________________________________________________________________________________________________\n", + "block6c_project_bn (BatchNormal (None, 8, 8, 192) 768 block6c_project_conv[0][0] \n", + "__________________________________________________________________________________________________\n", + "block6c_drop (FixedDropout) (None, 8, 8, 192) 0 block6c_project_bn[0][0] \n", + "__________________________________________________________________________________________________\n", + "block6c_add (Add) (None, 8, 8, 192) 0 block6c_drop[0][0] \n", + " block6b_add[0][0] \n", + "__________________________________________________________________________________________________\n", + "block6d_expand_conv (Conv2D) (None, 8, 8, 1152) 221184 block6c_add[0][0] \n", + "__________________________________________________________________________________________________\n", + "block6d_expand_bn (BatchNormali (None, 8, 8, 1152) 4608 block6d_expand_conv[0][0] \n", + "__________________________________________________________________________________________________\n", + "block6d_expand_activation (Acti (None, 8, 8, 1152) 0 block6d_expand_bn[0][0] \n", + "__________________________________________________________________________________________________\n", + "block6d_dwconv (DepthwiseConv2D (None, 8, 8, 1152) 28800 block6d_expand_activation[0][0] \n", + "__________________________________________________________________________________________________\n", + "block6d_bn (BatchNormalization) (None, 8, 8, 1152) 4608 block6d_dwconv[0][0] \n", + "__________________________________________________________________________________________________\n", + "block6d_activation (Activation) (None, 8, 8, 1152) 0 block6d_bn[0][0] \n", + "__________________________________________________________________________________________________\n", + "block6d_se_squeeze (GlobalAvera (None, 1152) 0 block6d_activation[0][0] \n", + "__________________________________________________________________________________________________\n", + "block6d_se_reshape (Reshape) (None, 1, 1, 1152) 0 block6d_se_squeeze[0][0] \n", + "__________________________________________________________________________________________________\n", + "block6d_se_reduce (Conv2D) (None, 1, 1, 48) 55344 block6d_se_reshape[0][0] \n", + "__________________________________________________________________________________________________\n", + "block6d_se_expand (Conv2D) (None, 1, 1, 1152) 56448 block6d_se_reduce[0][0] \n", + "__________________________________________________________________________________________________\n", + "block6d_se_excite (Multiply) (None, 8, 8, 1152) 0 block6d_activation[0][0] \n", + " block6d_se_expand[0][0] \n", + "__________________________________________________________________________________________________\n", + "block6d_project_conv (Conv2D) (None, 8, 8, 192) 221184 block6d_se_excite[0][0] \n", + "__________________________________________________________________________________________________\n", + "block6d_project_bn (BatchNormal (None, 8, 8, 192) 768 block6d_project_conv[0][0] \n", + "__________________________________________________________________________________________________\n", + "block6d_drop (FixedDropout) (None, 8, 8, 192) 0 block6d_project_bn[0][0] \n", + "__________________________________________________________________________________________________\n", + "block6d_add (Add) (None, 8, 8, 192) 0 block6d_drop[0][0] \n", + " block6c_add[0][0] \n", + "__________________________________________________________________________________________________\n", + "block7a_expand_conv (Conv2D) (None, 8, 8, 1152) 221184 block6d_add[0][0] \n", + "__________________________________________________________________________________________________\n", + "block7a_expand_bn (BatchNormali (None, 8, 8, 1152) 4608 block7a_expand_conv[0][0] \n", + "__________________________________________________________________________________________________\n", + "block7a_expand_activation (Acti (None, 8, 8, 1152) 0 block7a_expand_bn[0][0] \n", + "__________________________________________________________________________________________________\n", + "block7a_dwconv (DepthwiseConv2D (None, 8, 8, 1152) 10368 block7a_expand_activation[0][0] \n", + "__________________________________________________________________________________________________\n", + "block7a_bn (BatchNormalization) (None, 8, 8, 1152) 4608 block7a_dwconv[0][0] \n", + "__________________________________________________________________________________________________\n", + "block7a_activation (Activation) (None, 8, 8, 1152) 0 block7a_bn[0][0] \n", + "__________________________________________________________________________________________________\n", + "block7a_se_squeeze (GlobalAvera (None, 1152) 0 block7a_activation[0][0] \n", + "__________________________________________________________________________________________________\n", + "block7a_se_reshape (Reshape) (None, 1, 1, 1152) 0 block7a_se_squeeze[0][0] \n", + "__________________________________________________________________________________________________\n", + "block7a_se_reduce (Conv2D) (None, 1, 1, 48) 55344 block7a_se_reshape[0][0] \n", + "__________________________________________________________________________________________________\n", + "block7a_se_expand (Conv2D) (None, 1, 1, 1152) 56448 block7a_se_reduce[0][0] \n", + "__________________________________________________________________________________________________\n", + "block7a_se_excite (Multiply) (None, 8, 8, 1152) 0 block7a_activation[0][0] \n", + " block7a_se_expand[0][0] \n", + "__________________________________________________________________________________________________\n", + "block7a_project_conv (Conv2D) (None, 8, 8, 320) 368640 block7a_se_excite[0][0] \n", + "__________________________________________________________________________________________________\n", + "block7a_project_bn (BatchNormal (None, 8, 8, 320) 1280 block7a_project_conv[0][0] \n", + "__________________________________________________________________________________________________\n", + "top_conv (Conv2D) (None, 8, 8, 1280) 409600 block7a_project_bn[0][0] \n", + "__________________________________________________________________________________________________\n", + "top_bn (BatchNormalization) (None, 8, 8, 1280) 5120 top_conv[0][0] \n", + "__________________________________________________________________________________________________\n", + "top_activation (Activation) (None, 8, 8, 1280) 0 top_bn[0][0] \n", + "__________________________________________________________________________________________________\n", + "avg_pool (GlobalAveragePooling2 (None, 1280) 0 top_activation[0][0] \n", + "__________________________________________________________________________________________________\n", + "dropout_1 (Dropout) (None, 1280) 0 avg_pool[0][0] \n", + "__________________________________________________________________________________________________\n", + "dense_1 (Dense) (None, 6) 7686 dropout_1[0][0] \n", + "==================================================================================================\n", + "Total params: 4,057,250\n", + "Trainable params: 4,015,234\n", + "Non-trainable params: 42,016\n", + "__________________________________________________________________________________________________\n" + ] + } + ], + "source": [ + "base_model = efn.EfficientNetB0(weights = 'imagenet', include_top = False, \\\n", + " pooling = 'avg', input_shape = (HEIGHT, WIDTH, 3))\n", + "x = base_model.output\n", + "x = Dropout(0.125)(x)\n", + "output_layer = Dense(6, activation = 'sigmoid')(x)\n", + "model = Model(inputs=base_model.input, outputs=output_layer)\n", + "model.compile(optimizer = Adam(learning_rate = 0.0001), \n", + " loss = 'binary_crossentropy',\n", + " metrics = ['acc', tf.keras.metrics.AUC()])\n", + "model.summary()" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(636396, 40622)" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# https://github.com/trent-b/iterative-stratification\n", + "# Mutlilabel stratification\n", + "splits = MultilabelStratifiedShuffleSplit(n_splits = 2, test_size = TEST_SIZE, random_state = SEED)\n", + "file_names = train_final_df.index\n", + "labels = train_final_df.values\n", + "# Lets take only the first split\n", + "split = next(splits.split(file_names, labels))\n", + "train_idx = split[0]\n", + "valid_idx = split[1]\n", + "submission_predictions = []\n", + "len(train_idx), len(valid_idx)" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [], + "source": [ + "# train data generator\n", + "data_generator_train = TrainDataGenerator(train_final_df.iloc[train_idx], \n", + " train_final_df.iloc[train_idx], \n", + " TRAIN_BATCH_SIZE, \n", + " (WIDTH, HEIGHT),\n", + " augment = True)\n", + "\n", + "# validation data generator\n", + "data_generator_val = TrainDataGenerator(train_final_df.iloc[valid_idx], \n", + " train_final_df.iloc[valid_idx], \n", + " VALID_BATCH_SIZE, \n", + " (WIDTH, HEIGHT),\n", + " augment = False)" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(19888, 635)" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "len(data_generator_train), len(data_generator_val)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Competition evaluation metric is evaluated based on weighted log loss but we haven't given weights for each subtype but as per discussion from this thread https://www.kaggle.com/c/rsna-intracranial-hemorrhage-detection/discussion/109526#latest-630190 any has a wieght of 2 than other types below sample is taken from the discussion threas" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [], + "source": [ + "from keras import backend as K\n", + "\n", + "def weighted_log_loss(y_true, y_pred):\n", + " \"\"\"\n", + " Can be used as the loss function in model.compile()\n", + " ---------------------------------------------------\n", + " \"\"\"\n", + " \n", + " class_weights = np.array([2., 1., 1., 1., 1., 1.])\n", + " \n", + " eps = K.epsilon()\n", + " \n", + " y_pred = K.clip(y_pred, eps, 1.0-eps)\n", + "\n", + " out = -( y_true * K.log( y_pred) * class_weights\n", + " + (1.0 - y_true) * K.log(1.0 - y_pred) * class_weights)\n", + " \n", + " return K.mean(out, axis=-1)\n", + "\n", + "\n", + "def _normalized_weighted_average(arr, weights=None):\n", + " \"\"\"\n", + " A simple Keras implementation that mimics that of \n", + " numpy.average(), specifically for this competition\n", + " \"\"\"\n", + " \n", + " if weights is not None:\n", + " scl = K.sum(weights)\n", + " weights = K.expand_dims(weights, axis=1)\n", + " return K.sum(K.dot(arr, weights), axis=1) / scl\n", + " return K.mean(arr, axis=1)\n", + "\n", + "\n", + "def weighted_loss(y_true, y_pred):\n", + " \"\"\"\n", + " Will be used as the metric in model.compile()\n", + " ---------------------------------------------\n", + " \n", + " Similar to the custom loss function 'weighted_log_loss()' above\n", + " but with normalized weights, which should be very similar \n", + " to the official competition metric:\n", + " https://www.kaggle.com/kambarakun/lb-probe-weights-n-of-positives-scoring\n", + " and hence:\n", + " sklearn.metrics.log_loss with sample weights\n", + " \"\"\"\n", + " \n", + " class_weights = K.variable([2., 1., 1., 1., 1., 1.])\n", + " \n", + " eps = K.epsilon()\n", + " \n", + " y_pred = K.clip(y_pred, eps, 1.0-eps)\n", + "\n", + " loss = -( y_true * K.log( y_pred)\n", + " + (1.0 - y_true) * K.log(1.0 - y_pred))\n", + " \n", + " loss_samples = _normalized_weighted_average(loss, class_weights)\n", + " \n", + " return K.mean(loss_samples)\n", + "\n", + "\n", + "def weighted_log_loss_metric(trues, preds):\n", + " \"\"\"\n", + " Will be used to calculate the log loss \n", + " of the validation set in PredictionCheckpoint()\n", + " ------------------------------------------\n", + " \"\"\"\n", + " class_weights = [2., 1., 1., 1., 1., 1.]\n", + " \n", + " epsilon = 1e-7\n", + " \n", + " preds = np.clip(preds, epsilon, 1-epsilon)\n", + " loss = trues * np.log(preds) + (1 - trues) * np.log(1 - preds)\n", + " loss_samples = np.average(loss, axis=1, weights=class_weights)\n", + "\n", + " return - loss_samples.mean()" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [], + "source": [ + "filepath=\"model.h5\"\n", + "checkpoint = ModelCheckpoint(filepath, monitor='val_loss', verbose=1, \\\n", + " save_best_only=True, mode='min')\n", + "\n", + "callbacks_list = [checkpoint]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For a single epoch we are going to train only last 5 layers of Efficient. Since we have a large number of images around 600k so its better to train the all the layers on the whole train dataset but due its high computation resources required to train we only goin to train last five layers on whole dataset and for rest of epochs we only train on a sample of dataset but will train all the layers." + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [], + "source": [ + "train = False" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [], + "source": [ + "if train:\n", + " if not os.path.isfile('../input/orginal-087-eff/model.h5'):\n", + " for layer in model.layers[:-5]:\n", + " layer.trainable = False\n", + " model.compile(optimizer = Adam(learning_rate = 0.0001), \n", + " loss = 'binary_crossentropy',\n", + " metrics = ['acc'])\n", + "\n", + " model.fit_generator(generator = data_generator_train,\n", + " validation_data = data_generator_val,\n", + " epochs = 2,\n", + " callbacks = callbacks_list,\n", + " verbose = 1)" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [], + "source": [ + "if train:\n", + " for base_layer in model.layers[:-1]:\n", + " base_layer.trainable = True\n", + "\n", + " model.load_weights('model.h5')\n", + "\n", + " model.compile(optimizer = Adam(learning_rate = 0.0004), \n", + " loss = 'binary_crossentropy',\n", + " metrics = ['acc'])\n", + " model.fit_generator(generator = data_generator_train,\n", + " validation_data = data_generator_val,\n", + " steps_per_epoch=len(data_generator_train)/6,\n", + " epochs = 10,\n", + " callbacks = callbacks_list,\n", + " verbose = 1)" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Collecting gdown\n", + " Downloading https://files.pythonhosted.org/packages/b0/b4/a8e9d0b02bca6aa53087001abf064cc9992bda11bd6840875b8098d93573/gdown-3.8.3.tar.gz\n", + "Requirement already satisfied: filelock in /opt/conda/lib/python3.6/site-packages (from gdown) (3.0.12)\n", + "Requirement already satisfied: requests in /opt/conda/lib/python3.6/site-packages (from gdown) (2.22.0)\n", + "Requirement already satisfied: six in /opt/conda/lib/python3.6/site-packages (from gdown) (1.12.0)\n", + "Requirement already satisfied: tqdm in /opt/conda/lib/python3.6/site-packages (from gdown) (4.36.1)\n", + "Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /opt/conda/lib/python3.6/site-packages (from requests->gdown) (1.24.2)\n", + "Requirement already satisfied: chardet<3.1.0,>=3.0.2 in /opt/conda/lib/python3.6/site-packages (from requests->gdown) (3.0.4)\n", + "Requirement already satisfied: idna<2.9,>=2.5 in /opt/conda/lib/python3.6/site-packages (from requests->gdown) (2.8)\n", + "Requirement already satisfied: certifi>=2017.4.17 in /opt/conda/lib/python3.6/site-packages (from requests->gdown) (2019.9.11)\n", + "Building wheels for collected packages: gdown\n", + " Building wheel for gdown (setup.py) ... \u001b[?25ldone\n", + "\u001b[?25h Created wheel for gdown: filename=gdown-3.8.3-cp36-none-any.whl size=8850 sha256=ca7bf131547dd1503032ee6ec7567ff06fb7ddad8d44a32f00f874aadbd01a5e\n", + " Stored in directory: /tmp/.cache/pip/wheels/a7/9d/16/9e0bda9a327ff2cddaee8de48a27553fb1efce73133593d066\n", + "Successfully built gdown\n", + "Installing collected packages: gdown\n", + "Successfully installed gdown-3.8.3\n" + ] + } + ], + "source": [ + "!pip install gdown" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Downloading...\n", + "From: https://drive.google.com/uc?id=1kZmMCCBOWSjCZjz2XWaouDIj5gFn2D-q\n", + "To: /kaggle/working/model (4).h5\n", + "49.2MB [00:03, 14.6MB/s]\n" + ] + } + ], + "source": [ + "!gdown https://drive.google.com/uc?id=1kZmMCCBOWSjCZjz2XWaouDIj5gFn2D-q" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [], + "source": [ + "!cp \"model (4).h5\" model.h5" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1228/1228 [==============================] - 856s 697ms/step\n" + ] + }, + { + "data": { + "text/plain": [ + "(78592, 6)" + ] + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "model.load_weights('model.h5')\n", + "\n", + "preds = model.predict_generator(TestDataGenerator(test_df.index, None, VALID_BATCH_SIZE, \\\n", + " (WIDTH, HEIGHT), path_test_img), \n", + " verbose=1)\n", + "preds.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [], + "source": [ + "from tqdm import tqdm" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [], + "source": [ + "cols = list(train_final_df.columns)" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|█████████▉| 78545/78592 [00:01<00:00, 51807.96it/s]\n" + ] + } + ], + "source": [ + "# We have preditions for each of the image\n", + "# We need to make 6 rows for each of file according to the subtype\n", + "ids = []\n", + "values = []\n", + "for i, j in tqdm(zip(preds, test_df.index.to_list()), total=preds.shape[0]):\n", + "# print(i, j)\n", + " # i=[any_prob, epidural_prob, intraparenchymal_prob, intraventricular_prob, subarachnoid_prob, subdural_prob]\n", + " # j = filename ==> ID_xyz.dcm\n", + " for k in range(i.shape[0]):\n", + " ids.append([j.replace('.dcm', '_' + cols[k])])\n", + " values.append(i[k]) " + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "<div>\n", + "<style scoped>\n", + " .dataframe tbody tr th:only-of-type {\n", + " vertical-align: middle;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th></th>\n", + " <th>0</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <th>0</th>\n", + " <td>ID_000012eaf_any</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1</th>\n", + " <td>ID_000012eaf_epidural</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2</th>\n", + " <td>ID_000012eaf_intraparenchymal</td>\n", + " </tr>\n", + " <tr>\n", + " <th>3</th>\n", + " <td>ID_000012eaf_intraventricular</td>\n", + " </tr>\n", + " <tr>\n", + " <th>4</th>\n", + " <td>ID_000012eaf_subarachnoid</td>\n", + " </tr>\n", + " </tbody>\n", + "</table>\n", + "</div>" + ], + "text/plain": [ + " 0\n", + "0 ID_000012eaf_any\n", + "1 ID_000012eaf_epidural\n", + "2 ID_000012eaf_intraparenchymal\n", + "3 ID_000012eaf_intraventricular\n", + "4 ID_000012eaf_subarachnoid" + ] + }, + "execution_count": 41, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df = pd.DataFrame(data=ids)\n", + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "<div>\n", + "<style scoped>\n", + " .dataframe tbody tr th:only-of-type {\n", + " vertical-align: middle;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th></th>\n", + " <th>ID</th>\n", + " <th>Label</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <th>0</th>\n", + " <td>ID_28fbab7eb_epidural</td>\n", + " <td>0.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1</th>\n", + " <td>ID_28fbab7eb_intraparenchymal</td>\n", + " <td>0.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2</th>\n", + " <td>ID_28fbab7eb_intraventricular</td>\n", + " <td>0.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>3</th>\n", + " <td>ID_28fbab7eb_subarachnoid</td>\n", + " <td>0.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>4</th>\n", + " <td>ID_28fbab7eb_subdural</td>\n", + " <td>0.5</td>\n", + " </tr>\n", + " </tbody>\n", + "</table>\n", + "</div>" + ], + "text/plain": [ + " ID Label\n", + "0 ID_28fbab7eb_epidural 0.5\n", + "1 ID_28fbab7eb_intraparenchymal 0.5\n", + "2 ID_28fbab7eb_intraventricular 0.5\n", + "3 ID_28fbab7eb_subarachnoid 0.5\n", + "4 ID_28fbab7eb_subdural 0.5" + ] + }, + "execution_count": 42, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sample_df = pd.read_csv(input_folder + 'stage_1_sample_submission.csv')\n", + "sample_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "<div>\n", + "<style scoped>\n", + " .dataframe tbody tr th:only-of-type {\n", + " vertical-align: middle;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th></th>\n", + " <th>ID</th>\n", + " <th>Label</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <th>0</th>\n", + " <td>ID_000012eaf_any</td>\n", + " <td>0.008506</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1</th>\n", + " <td>ID_000012eaf_epidural</td>\n", + " <td>0.000114</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2</th>\n", + " <td>ID_000012eaf_intraparenchymal</td>\n", + " <td>0.001682</td>\n", + " </tr>\n", + " <tr>\n", + " <th>3</th>\n", + " <td>ID_000012eaf_intraventricular</td>\n", + " <td>0.000329</td>\n", + " </tr>\n", + " <tr>\n", + " <th>4</th>\n", + " <td>ID_000012eaf_subarachnoid</td>\n", + " <td>0.000926</td>\n", + " </tr>\n", + " </tbody>\n", + "</table>\n", + "</div>" + ], + "text/plain": [ + " ID Label\n", + "0 ID_000012eaf_any 0.008506\n", + "1 ID_000012eaf_epidural 0.000114\n", + "2 ID_000012eaf_intraparenchymal 0.001682\n", + "3 ID_000012eaf_intraventricular 0.000329\n", + "4 ID_000012eaf_subarachnoid 0.000926" + ] + }, + "execution_count": 43, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df['Label'] = values\n", + "df.columns = sample_df.columns\n", + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": {}, + "outputs": [], + "source": [ + "df.to_csv('submission.csv', index=False)" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "<a href=submission.csv>Download CSV file</a>" + ], + "text/plain": [ + "<IPython.core.display.HTML object>" + ] + }, + "execution_count": 45, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "create_download_link(filename='submission.csv')" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.5" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +}