--- a +++ b/notebooks/Ensembling.ipynb @@ -0,0 +1,13000 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "VERSION = 33\n", + "\n", + "FOCAL_LOSS = 0\n", + "CLOUD_SINGLE = True\n", + "MIXUP = False\n", + "NO_BLACK_LOSS = True\n", + "DATA_SMALL = False" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "if VERSION in [31,32]:\n", + " TRAIN_ON_STAGE_1 = False\n", + "else:\n", + " TRAIN_ON_STAGE_1 = True\n", + "\n", + "if VERSION in [32,34,36]:\n", + " WEIGHTED = True\n", + "else:\n", + " WEIGHTED = False" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "%run ./Code.ipynb" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "if VERSION in [31,32]:\n", + " # old features, no stage2 training\n", + " train_md, test_md = loadMetadata()\n", + "elif VERSION in [33,34]:\n", + " # old features, with stage2 training\n", + " train_md, test_md = loadMetadata3()\n", + "elif VERSION in [35,36]:\n", + " # new features\n", + " train_md, test_md = loadMetadata2()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# OOF" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "completed epochs: 3 iters starting now: 32\n", + "adding dummy serieses 14\n", + "DataSet 7 valid size 7232 fold 0\n", + "dataset valid: 7232 loader valid: 226\n", + "loading model model.b3.f0.d7.v34\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.039 time per batch: 0.221\n", + "Batch 100 device: cuda time passed: 19.674 time per batch: 0.197\n", + "Batch 150 device: cuda time passed: 28.256 time per batch: 0.188\n", + "Batch 200 device: cuda time passed: 36.735 time per batch: 0.184\n", + "ver 34, iter 0, fold 0, val ll: 0.0629, cor: 0.8425, auc: 0.9882\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.369 time per batch: 0.227\n", + "Batch 100 device: cuda time passed: 19.874 time per batch: 0.199\n", + "Batch 150 device: cuda time passed: 28.322 time per batch: 0.189\n", + "Batch 200 device: cuda time passed: 36.820 time per batch: 0.184\n", + "ver 34, iter 1, fold 0, val ll: 0.0633, cor: 0.8416, auc: 0.9880\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.085 time per batch: 0.222\n", + "Batch 100 device: cuda time passed: 19.790 time per batch: 0.198\n", + "Batch 150 device: cuda time passed: 28.354 time per batch: 0.189\n", + "Batch 200 device: cuda time passed: 36.403 time per batch: 0.182\n", + "ver 34, iter 2, fold 0, val ll: 0.0630, cor: 0.8423, auc: 0.9881\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.630 time per batch: 0.233\n", + "Batch 100 device: cuda time passed: 20.129 time per batch: 0.201\n", + "Batch 150 device: cuda time passed: 28.720 time per batch: 0.191\n", + "Batch 200 device: cuda time passed: 36.561 time per batch: 0.183\n", + "ver 34, iter 3, fold 0, val ll: 0.0631, cor: 0.8421, auc: 0.9881\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 10.798 time per batch: 0.216\n", + "Batch 100 device: cuda time passed: 20.275 time per batch: 0.203\n", + "Batch 150 device: cuda time passed: 28.541 time per batch: 0.190\n", + "Batch 200 device: cuda time passed: 36.693 time per batch: 0.183\n", + "ver 34, iter 4, fold 0, val ll: 0.0630, cor: 0.8427, auc: 0.9880\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.537 time per batch: 0.231\n", + "Batch 100 device: cuda time passed: 20.034 time per batch: 0.200\n", + "Batch 150 device: cuda time passed: 29.120 time per batch: 0.194\n", + "Batch 200 device: cuda time passed: 37.470 time per batch: 0.187\n", + "ver 34, iter 5, fold 0, val ll: 0.0631, cor: 0.8419, auc: 0.9881\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.616 time per batch: 0.232\n", + "Batch 100 device: cuda time passed: 20.549 time per batch: 0.205\n", + "Batch 150 device: cuda time passed: 28.847 time per batch: 0.192\n", + "Batch 200 device: cuda time passed: 37.005 time per batch: 0.185\n", + "ver 34, iter 6, fold 0, val ll: 0.0632, cor: 0.8420, auc: 0.9881\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.390 time per batch: 0.228\n", + "Batch 100 device: cuda time passed: 19.692 time per batch: 0.197\n", + "Batch 150 device: cuda time passed: 28.482 time per batch: 0.190\n", + "Batch 200 device: cuda time passed: 37.211 time per batch: 0.186\n", + "ver 34, iter 7, fold 0, val ll: 0.0632, cor: 0.8418, auc: 0.9880\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.109 time per batch: 0.222\n", + "Batch 100 device: cuda time passed: 19.665 time per batch: 0.197\n", + "Batch 150 device: cuda time passed: 27.973 time per batch: 0.186\n", + "Batch 200 device: cuda time passed: 36.279 time per batch: 0.181\n", + "ver 34, iter 8, fold 0, val ll: 0.0631, cor: 0.8422, auc: 0.9881\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.182 time per batch: 0.224\n", + "Batch 100 device: cuda time passed: 20.280 time per batch: 0.203\n", + "Batch 150 device: cuda time passed: 28.800 time per batch: 0.192\n", + "Batch 200 device: cuda time passed: 37.683 time per batch: 0.188\n", + "ver 34, iter 9, fold 0, val ll: 0.0632, cor: 0.8418, auc: 0.9880\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.546 time per batch: 0.231\n", + "Batch 100 device: cuda time passed: 19.935 time per batch: 0.199\n", + "Batch 150 device: cuda time passed: 28.393 time per batch: 0.189\n", + "Batch 200 device: cuda time passed: 37.353 time per batch: 0.187\n", + "ver 34, iter 10, fold 0, val ll: 0.0631, cor: 0.8419, auc: 0.9881\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.706 time per batch: 0.234\n", + "Batch 100 device: cuda time passed: 20.097 time per batch: 0.201\n", + "Batch 150 device: cuda time passed: 28.629 time per batch: 0.191\n", + "Batch 200 device: cuda time passed: 36.971 time per batch: 0.185\n", + "ver 34, iter 11, fold 0, val ll: 0.0632, cor: 0.8416, auc: 0.9880\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.344 time per batch: 0.227\n", + "Batch 100 device: cuda time passed: 20.333 time per batch: 0.203\n", + "Batch 150 device: cuda time passed: 28.633 time per batch: 0.191\n", + "Batch 200 device: cuda time passed: 36.853 time per batch: 0.184\n", + "ver 34, iter 12, fold 0, val ll: 0.0632, cor: 0.8418, auc: 0.9880\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 10.884 time per batch: 0.218\n", + "Batch 100 device: cuda time passed: 19.948 time per batch: 0.199\n", + "Batch 150 device: cuda time passed: 28.653 time per batch: 0.191\n", + "Batch 200 device: cuda time passed: 37.139 time per batch: 0.186\n", + "ver 34, iter 13, fold 0, val ll: 0.0632, cor: 0.8422, auc: 0.9880\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.232 time per batch: 0.225\n", + "Batch 100 device: cuda time passed: 19.680 time per batch: 0.197\n", + "Batch 150 device: cuda time passed: 28.180 time per batch: 0.188\n", + "Batch 200 device: cuda time passed: 36.829 time per batch: 0.184\n", + "ver 34, iter 14, fold 0, val ll: 0.0631, cor: 0.8422, auc: 0.9881\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.134 time per batch: 0.223\n", + "Batch 100 device: cuda time passed: 19.750 time per batch: 0.197\n", + "Batch 150 device: cuda time passed: 28.254 time per batch: 0.188\n", + "Batch 200 device: cuda time passed: 37.052 time per batch: 0.185\n", + "ver 34, iter 15, fold 0, val ll: 0.0632, cor: 0.8419, auc: 0.9880\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.076 time per batch: 0.222\n", + "Batch 100 device: cuda time passed: 19.921 time per batch: 0.199\n", + "Batch 150 device: cuda time passed: 28.521 time per batch: 0.190\n", + "Batch 200 device: cuda time passed: 36.744 time per batch: 0.184\n", + "ver 34, iter 16, fold 0, val ll: 0.0633, cor: 0.8417, auc: 0.9880\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 10.846 time per batch: 0.217\n", + "Batch 100 device: cuda time passed: 20.198 time per batch: 0.202\n", + "Batch 150 device: cuda time passed: 28.638 time per batch: 0.191\n", + "Batch 200 device: cuda time passed: 36.762 time per batch: 0.184\n", + "ver 34, iter 17, fold 0, val ll: 0.0631, cor: 0.8423, auc: 0.9880\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.145 time per batch: 0.223\n", + "Batch 100 device: cuda time passed: 19.770 time per batch: 0.198\n", + "Batch 150 device: cuda time passed: 28.000 time per batch: 0.187\n", + "Batch 200 device: cuda time passed: 36.639 time per batch: 0.183\n", + "ver 34, iter 18, fold 0, val ll: 0.0631, cor: 0.8418, auc: 0.9881\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 10.940 time per batch: 0.219\n", + "Batch 100 device: cuda time passed: 19.199 time per batch: 0.192\n", + "Batch 150 device: cuda time passed: 27.382 time per batch: 0.183\n", + "Batch 200 device: cuda time passed: 35.991 time per batch: 0.180\n", + "ver 34, iter 19, fold 0, val ll: 0.0633, cor: 0.8418, auc: 0.9880\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.303 time per batch: 0.226\n", + "Batch 100 device: cuda time passed: 20.052 time per batch: 0.201\n", + "Batch 150 device: cuda time passed: 28.800 time per batch: 0.192\n", + "Batch 200 device: cuda time passed: 37.209 time per batch: 0.186\n", + "ver 34, iter 20, fold 0, val ll: 0.0631, cor: 0.8419, auc: 0.9881\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.012 time per batch: 0.220\n", + "Batch 100 device: cuda time passed: 19.801 time per batch: 0.198\n", + "Batch 150 device: cuda time passed: 28.285 time per batch: 0.189\n", + "Batch 200 device: cuda time passed: 36.655 time per batch: 0.183\n", + "ver 34, iter 21, fold 0, val ll: 0.0631, cor: 0.8419, auc: 0.9881\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.588 time per batch: 0.232\n", + "Batch 100 device: cuda time passed: 19.972 time per batch: 0.200\n", + "Batch 150 device: cuda time passed: 28.349 time per batch: 0.189\n", + "Batch 200 device: cuda time passed: 36.708 time per batch: 0.184\n", + "ver 34, iter 22, fold 0, val ll: 0.0632, cor: 0.8421, auc: 0.9880\n", + "setFeats, augmentation -1\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Batch 50 device: cuda time passed: 11.373 time per batch: 0.227\n", + "Batch 100 device: cuda time passed: 19.848 time per batch: 0.198\n", + "Batch 150 device: cuda time passed: 28.645 time per batch: 0.191\n", + "Batch 200 device: cuda time passed: 37.166 time per batch: 0.186\n", + "ver 34, iter 23, fold 0, val ll: 0.0631, cor: 0.8424, auc: 0.9881\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.732 time per batch: 0.235\n", + "Batch 100 device: cuda time passed: 20.379 time per batch: 0.204\n", + "Batch 150 device: cuda time passed: 28.964 time per batch: 0.193\n", + "Batch 200 device: cuda time passed: 37.185 time per batch: 0.186\n", + "ver 34, iter 24, fold 0, val ll: 0.0632, cor: 0.8421, auc: 0.9880\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 10.942 time per batch: 0.219\n", + "Batch 100 device: cuda time passed: 19.584 time per batch: 0.196\n", + "Batch 150 device: cuda time passed: 27.962 time per batch: 0.186\n", + "Batch 200 device: cuda time passed: 36.295 time per batch: 0.181\n", + "ver 34, iter 25, fold 0, val ll: 0.0631, cor: 0.8421, auc: 0.9880\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.547 time per batch: 0.231\n", + "Batch 100 device: cuda time passed: 19.793 time per batch: 0.198\n", + "Batch 150 device: cuda time passed: 28.204 time per batch: 0.188\n", + "Batch 200 device: cuda time passed: 36.624 time per batch: 0.183\n", + "ver 34, iter 26, fold 0, val ll: 0.0630, cor: 0.8426, auc: 0.9881\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 10.957 time per batch: 0.219\n", + "Batch 100 device: cuda time passed: 18.892 time per batch: 0.189\n", + "Batch 150 device: cuda time passed: 27.679 time per batch: 0.185\n", + "Batch 200 device: cuda time passed: 36.440 time per batch: 0.182\n", + "ver 34, iter 27, fold 0, val ll: 0.0630, cor: 0.8422, auc: 0.9881\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 10.715 time per batch: 0.214\n", + "Batch 100 device: cuda time passed: 19.980 time per batch: 0.200\n", + "Batch 150 device: cuda time passed: 28.835 time per batch: 0.192\n", + "Batch 200 device: cuda time passed: 37.150 time per batch: 0.186\n", + "ver 34, iter 28, fold 0, val ll: 0.0633, cor: 0.8417, auc: 0.9880\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.384 time per batch: 0.228\n", + "Batch 100 device: cuda time passed: 19.805 time per batch: 0.198\n", + "Batch 150 device: cuda time passed: 28.613 time per batch: 0.191\n", + "Batch 200 device: cuda time passed: 37.061 time per batch: 0.185\n", + "ver 34, iter 29, fold 0, val ll: 0.0631, cor: 0.8421, auc: 0.9881\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.388 time per batch: 0.228\n", + "Batch 100 device: cuda time passed: 19.790 time per batch: 0.198\n", + "Batch 150 device: cuda time passed: 28.816 time per batch: 0.192\n", + "Batch 200 device: cuda time passed: 36.974 time per batch: 0.185\n", + "ver 34, iter 30, fold 0, val ll: 0.0633, cor: 0.8417, auc: 0.9880\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 10.891 time per batch: 0.218\n", + "Batch 100 device: cuda time passed: 19.773 time per batch: 0.198\n", + "Batch 150 device: cuda time passed: 28.208 time per batch: 0.188\n", + "Batch 200 device: cuda time passed: 36.513 time per batch: 0.183\n", + "ver 34, iter 31, fold 0, val ll: 0.0632, cor: 0.8419, auc: 0.9880\n", + "total running time 1743.487956047058\n", + "total time 1744.0221991539001\n", + "completed epochs: 3 iters starting now: 32\n", + "adding dummy serieses 30\n", + "DataSet 7 valid size 7328 fold 1\n", + "dataset valid: 7328 loader valid: 229\n", + "loading model model.b3.f1.d7.v34\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.726 time per batch: 0.235\n", + "Batch 100 device: cuda time passed: 20.041 time per batch: 0.200\n", + "Batch 150 device: cuda time passed: 28.446 time per batch: 0.190\n", + "Batch 200 device: cuda time passed: 37.606 time per batch: 0.188\n", + "ver 34, iter 0, fold 1, val ll: 0.0641, cor: 0.8352, auc: 0.9876\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.401 time per batch: 0.228\n", + "Batch 100 device: cuda time passed: 19.701 time per batch: 0.197\n", + "Batch 150 device: cuda time passed: 28.377 time per batch: 0.189\n", + "Batch 200 device: cuda time passed: 37.516 time per batch: 0.188\n", + "ver 34, iter 1, fold 1, val ll: 0.0644, cor: 0.8346, auc: 0.9875\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.045 time per batch: 0.221\n", + "Batch 100 device: cuda time passed: 19.526 time per batch: 0.195\n", + "Batch 150 device: cuda time passed: 28.070 time per batch: 0.187\n", + "Batch 200 device: cuda time passed: 36.553 time per batch: 0.183\n", + "ver 34, iter 2, fold 1, val ll: 0.0645, cor: 0.8347, auc: 0.9875\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.522 time per batch: 0.230\n", + "Batch 100 device: cuda time passed: 20.039 time per batch: 0.200\n", + "Batch 150 device: cuda time passed: 28.182 time per batch: 0.188\n", + "Batch 200 device: cuda time passed: 36.515 time per batch: 0.183\n", + "ver 34, iter 3, fold 1, val ll: 0.0643, cor: 0.8352, auc: 0.9875\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.412 time per batch: 0.228\n", + "Batch 100 device: cuda time passed: 19.794 time per batch: 0.198\n", + "Batch 150 device: cuda time passed: 27.859 time per batch: 0.186\n", + "Batch 200 device: cuda time passed: 35.826 time per batch: 0.179\n", + "ver 34, iter 4, fold 1, val ll: 0.0644, cor: 0.8346, auc: 0.9875\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.184 time per batch: 0.224\n", + "Batch 100 device: cuda time passed: 19.415 time per batch: 0.194\n", + "Batch 150 device: cuda time passed: 27.791 time per batch: 0.185\n", + "Batch 200 device: cuda time passed: 36.132 time per batch: 0.181\n", + "ver 34, iter 5, fold 1, val ll: 0.0642, cor: 0.8355, auc: 0.9876\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 10.913 time per batch: 0.218\n", + "Batch 100 device: cuda time passed: 20.135 time per batch: 0.201\n", + "Batch 150 device: cuda time passed: 28.498 time per batch: 0.190\n", + "Batch 200 device: cuda time passed: 36.584 time per batch: 0.183\n", + "ver 34, iter 6, fold 1, val ll: 0.0644, cor: 0.8350, auc: 0.9875\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.169 time per batch: 0.223\n", + "Batch 100 device: cuda time passed: 19.419 time per batch: 0.194\n", + "Batch 150 device: cuda time passed: 27.835 time per batch: 0.186\n", + "Batch 200 device: cuda time passed: 36.749 time per batch: 0.184\n", + "ver 34, iter 7, fold 1, val ll: 0.0644, cor: 0.8346, auc: 0.9876\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.093 time per batch: 0.222\n", + "Batch 100 device: cuda time passed: 19.735 time per batch: 0.197\n", + "Batch 150 device: cuda time passed: 27.976 time per batch: 0.187\n", + "Batch 200 device: cuda time passed: 36.522 time per batch: 0.183\n", + "ver 34, iter 8, fold 1, val ll: 0.0643, cor: 0.8351, auc: 0.9875\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 10.886 time per batch: 0.218\n", + "Batch 100 device: cuda time passed: 19.310 time per batch: 0.193\n", + "Batch 150 device: cuda time passed: 27.555 time per batch: 0.184\n", + "Batch 200 device: cuda time passed: 35.897 time per batch: 0.179\n", + "ver 34, iter 9, fold 1, val ll: 0.0640, cor: 0.8360, auc: 0.9876\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.190 time per batch: 0.224\n", + "Batch 100 device: cuda time passed: 19.659 time per batch: 0.197\n", + "Batch 150 device: cuda time passed: 28.059 time per batch: 0.187\n", + "Batch 200 device: cuda time passed: 36.597 time per batch: 0.183\n", + "ver 34, iter 10, fold 1, val ll: 0.0645, cor: 0.8345, auc: 0.9875\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.462 time per batch: 0.229\n", + "Batch 100 device: cuda time passed: 19.851 time per batch: 0.199\n", + "Batch 150 device: cuda time passed: 28.426 time per batch: 0.190\n", + "Batch 200 device: cuda time passed: 37.003 time per batch: 0.185\n", + "ver 34, iter 11, fold 1, val ll: 0.0643, cor: 0.8353, auc: 0.9876\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.183 time per batch: 0.224\n", + "Batch 100 device: cuda time passed: 19.891 time per batch: 0.199\n", + "Batch 150 device: cuda time passed: 28.179 time per batch: 0.188\n", + "Batch 200 device: cuda time passed: 36.768 time per batch: 0.184\n", + "ver 34, iter 12, fold 1, val ll: 0.0644, cor: 0.8347, auc: 0.9875\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.197 time per batch: 0.224\n", + "Batch 100 device: cuda time passed: 19.529 time per batch: 0.195\n", + "Batch 150 device: cuda time passed: 27.817 time per batch: 0.185\n", + "Batch 200 device: cuda time passed: 36.686 time per batch: 0.183\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ver 34, iter 13, fold 1, val ll: 0.0642, cor: 0.8353, auc: 0.9876\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 10.934 time per batch: 0.219\n", + "Batch 100 device: cuda time passed: 19.565 time per batch: 0.196\n", + "Batch 150 device: cuda time passed: 28.726 time per batch: 0.192\n", + "Batch 200 device: cuda time passed: 37.472 time per batch: 0.187\n", + "ver 34, iter 14, fold 1, val ll: 0.0644, cor: 0.8351, auc: 0.9875\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.664 time per batch: 0.233\n", + "Batch 100 device: cuda time passed: 20.181 time per batch: 0.202\n", + "Batch 150 device: cuda time passed: 28.592 time per batch: 0.191\n", + "Batch 200 device: cuda time passed: 37.140 time per batch: 0.186\n", + "ver 34, iter 15, fold 1, val ll: 0.0642, cor: 0.8355, auc: 0.9876\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.248 time per batch: 0.225\n", + "Batch 100 device: cuda time passed: 19.746 time per batch: 0.197\n", + "Batch 150 device: cuda time passed: 28.334 time per batch: 0.189\n", + "Batch 200 device: cuda time passed: 36.783 time per batch: 0.184\n", + "ver 34, iter 16, fold 1, val ll: 0.0643, cor: 0.8352, auc: 0.9875\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 10.833 time per batch: 0.217\n", + "Batch 100 device: cuda time passed: 19.927 time per batch: 0.199\n", + "Batch 150 device: cuda time passed: 28.267 time per batch: 0.188\n", + "Batch 200 device: cuda time passed: 37.130 time per batch: 0.186\n", + "ver 34, iter 17, fold 1, val ll: 0.0644, cor: 0.8349, auc: 0.9876\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 10.842 time per batch: 0.217\n", + "Batch 100 device: cuda time passed: 19.668 time per batch: 0.197\n", + "Batch 150 device: cuda time passed: 28.168 time per batch: 0.188\n", + "Batch 200 device: cuda time passed: 36.418 time per batch: 0.182\n", + "ver 34, iter 18, fold 1, val ll: 0.0642, cor: 0.8350, auc: 0.9877\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.130 time per batch: 0.223\n", + "Batch 100 device: cuda time passed: 19.641 time per batch: 0.196\n", + "Batch 150 device: cuda time passed: 28.136 time per batch: 0.188\n", + "Batch 200 device: cuda time passed: 36.331 time per batch: 0.182\n", + "ver 34, iter 19, fold 1, val ll: 0.0643, cor: 0.8350, auc: 0.9875\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.647 time per batch: 0.233\n", + "Batch 100 device: cuda time passed: 20.391 time per batch: 0.204\n", + "Batch 150 device: cuda time passed: 29.397 time per batch: 0.196\n", + "Batch 200 device: cuda time passed: 37.997 time per batch: 0.190\n", + "ver 34, iter 20, fold 1, val ll: 0.0643, cor: 0.8348, auc: 0.9876\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.382 time per batch: 0.228\n", + "Batch 100 device: cuda time passed: 19.777 time per batch: 0.198\n", + "Batch 150 device: cuda time passed: 27.840 time per batch: 0.186\n", + "Batch 200 device: cuda time passed: 36.301 time per batch: 0.182\n", + "ver 34, iter 21, fold 1, val ll: 0.0644, cor: 0.8347, auc: 0.9876\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.454 time per batch: 0.229\n", + "Batch 100 device: cuda time passed: 19.967 time per batch: 0.200\n", + "Batch 150 device: cuda time passed: 28.448 time per batch: 0.190\n", + "Batch 200 device: cuda time passed: 36.952 time per batch: 0.185\n", + "ver 34, iter 22, fold 1, val ll: 0.0644, cor: 0.8347, auc: 0.9875\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 10.610 time per batch: 0.212\n", + "Batch 100 device: cuda time passed: 19.496 time per batch: 0.195\n", + "Batch 150 device: cuda time passed: 27.773 time per batch: 0.185\n", + "Batch 200 device: cuda time passed: 36.058 time per batch: 0.180\n", + "ver 34, iter 23, fold 1, val ll: 0.0644, cor: 0.8350, auc: 0.9875\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.206 time per batch: 0.224\n", + "Batch 100 device: cuda time passed: 20.066 time per batch: 0.201\n", + "Batch 150 device: cuda time passed: 28.779 time per batch: 0.192\n", + "Batch 200 device: cuda time passed: 36.978 time per batch: 0.185\n", + "ver 34, iter 24, fold 1, val ll: 0.0645, cor: 0.8345, auc: 0.9875\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.366 time per batch: 0.227\n", + "Batch 100 device: cuda time passed: 20.158 time per batch: 0.202\n", + "Batch 150 device: cuda time passed: 28.539 time per batch: 0.190\n", + "Batch 200 device: cuda time passed: 37.137 time per batch: 0.186\n", + "ver 34, iter 25, fold 1, val ll: 0.0643, cor: 0.8351, auc: 0.9876\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 10.986 time per batch: 0.220\n", + "Batch 100 device: cuda time passed: 19.900 time per batch: 0.199\n", + "Batch 150 device: cuda time passed: 28.512 time per batch: 0.190\n", + "Batch 200 device: cuda time passed: 37.649 time per batch: 0.188\n", + "ver 34, iter 26, fold 1, val ll: 0.0644, cor: 0.8349, auc: 0.9875\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.681 time per batch: 0.234\n", + "Batch 100 device: cuda time passed: 20.007 time per batch: 0.200\n", + "Batch 150 device: cuda time passed: 28.371 time per batch: 0.189\n", + "Batch 200 device: cuda time passed: 36.712 time per batch: 0.184\n", + "ver 34, iter 27, fold 1, val ll: 0.0644, cor: 0.8346, auc: 0.9875\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.369 time per batch: 0.227\n", + "Batch 100 device: cuda time passed: 20.216 time per batch: 0.202\n", + "Batch 150 device: cuda time passed: 28.675 time per batch: 0.191\n", + "Batch 200 device: cuda time passed: 36.999 time per batch: 0.185\n", + "ver 34, iter 28, fold 1, val ll: 0.0645, cor: 0.8348, auc: 0.9875\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.430 time per batch: 0.229\n", + "Batch 100 device: cuda time passed: 20.356 time per batch: 0.204\n", + "Batch 150 device: cuda time passed: 28.426 time per batch: 0.190\n", + "Batch 200 device: cuda time passed: 36.924 time per batch: 0.185\n", + "ver 34, iter 29, fold 1, val ll: 0.0643, cor: 0.8351, auc: 0.9876\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.285 time per batch: 0.226\n", + "Batch 100 device: cuda time passed: 19.941 time per batch: 0.199\n", + "Batch 150 device: cuda time passed: 28.387 time per batch: 0.189\n", + "Batch 200 device: cuda time passed: 36.743 time per batch: 0.184\n", + "ver 34, iter 30, fold 1, val ll: 0.0643, cor: 0.8351, auc: 0.9876\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 10.907 time per batch: 0.218\n", + "Batch 100 device: cuda time passed: 19.032 time per batch: 0.190\n", + "Batch 150 device: cuda time passed: 27.424 time per batch: 0.183\n", + "Batch 200 device: cuda time passed: 35.915 time per batch: 0.180\n", + "ver 34, iter 31, fold 1, val ll: 0.0645, cor: 0.8347, auc: 0.9875\n", + "total running time 1752.2469551563263\n", + "total time 3496.7637753486633\n", + "completed epochs: 3 iters starting now: 32\n", + "adding dummy serieses 4\n", + "DataSet 7 valid size 7232 fold 2\n", + "dataset valid: 7232 loader valid: 226\n", + "loading model model.b3.f2.d7.v34\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.025 time per batch: 0.221\n", + "Batch 100 device: cuda time passed: 20.043 time per batch: 0.200\n", + "Batch 150 device: cuda time passed: 28.567 time per batch: 0.190\n", + "Batch 200 device: cuda time passed: 36.567 time per batch: 0.183\n", + "ver 34, iter 0, fold 2, val ll: 0.0603, cor: 0.8423, auc: 0.9893\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.200 time per batch: 0.224\n", + "Batch 100 device: cuda time passed: 19.679 time per batch: 0.197\n", + "Batch 150 device: cuda time passed: 28.501 time per batch: 0.190\n", + "Batch 200 device: cuda time passed: 37.321 time per batch: 0.187\n", + "ver 34, iter 1, fold 2, val ll: 0.0601, cor: 0.8425, auc: 0.9894\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.278 time per batch: 0.226\n", + "Batch 100 device: cuda time passed: 19.971 time per batch: 0.200\n", + "Batch 150 device: cuda time passed: 28.258 time per batch: 0.188\n", + "Batch 200 device: cuda time passed: 36.470 time per batch: 0.182\n", + "ver 34, iter 2, fold 2, val ll: 0.0603, cor: 0.8422, auc: 0.9893\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 10.465 time per batch: 0.209\n", + "Batch 100 device: cuda time passed: 19.259 time per batch: 0.193\n", + "Batch 150 device: cuda time passed: 27.605 time per batch: 0.184\n", + "Batch 200 device: cuda time passed: 35.631 time per batch: 0.178\n", + "ver 34, iter 3, fold 2, val ll: 0.0602, cor: 0.8424, auc: 0.9893\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.061 time per batch: 0.221\n", + "Batch 100 device: cuda time passed: 19.044 time per batch: 0.190\n", + "Batch 150 device: cuda time passed: 27.745 time per batch: 0.185\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Batch 200 device: cuda time passed: 35.943 time per batch: 0.180\n", + "ver 34, iter 4, fold 2, val ll: 0.0602, cor: 0.8425, auc: 0.9893\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.082 time per batch: 0.222\n", + "Batch 100 device: cuda time passed: 19.942 time per batch: 0.199\n", + "Batch 150 device: cuda time passed: 28.129 time per batch: 0.188\n", + "Batch 200 device: cuda time passed: 36.673 time per batch: 0.183\n", + "ver 34, iter 5, fold 2, val ll: 0.0602, cor: 0.8423, auc: 0.9894\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.475 time per batch: 0.229\n", + "Batch 100 device: cuda time passed: 19.975 time per batch: 0.200\n", + "Batch 150 device: cuda time passed: 28.403 time per batch: 0.189\n", + "Batch 200 device: cuda time passed: 36.868 time per batch: 0.184\n", + "ver 34, iter 6, fold 2, val ll: 0.0603, cor: 0.8420, auc: 0.9893\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.274 time per batch: 0.225\n", + "Batch 100 device: cuda time passed: 19.953 time per batch: 0.200\n", + "Batch 150 device: cuda time passed: 28.659 time per batch: 0.191\n", + "Batch 200 device: cuda time passed: 37.063 time per batch: 0.185\n", + "ver 34, iter 7, fold 2, val ll: 0.0601, cor: 0.8425, auc: 0.9894\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.211 time per batch: 0.224\n", + "Batch 100 device: cuda time passed: 19.499 time per batch: 0.195\n", + "Batch 150 device: cuda time passed: 28.098 time per batch: 0.187\n", + "Batch 200 device: cuda time passed: 36.855 time per batch: 0.184\n", + "ver 34, iter 8, fold 2, val ll: 0.0601, cor: 0.8427, auc: 0.9894\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 10.738 time per batch: 0.215\n", + "Batch 100 device: cuda time passed: 19.813 time per batch: 0.198\n", + "Batch 150 device: cuda time passed: 28.172 time per batch: 0.188\n", + "Batch 200 device: cuda time passed: 36.748 time per batch: 0.184\n", + "ver 34, iter 9, fold 2, val ll: 0.0603, cor: 0.8423, auc: 0.9893\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.731 time per batch: 0.235\n", + "Batch 100 device: cuda time passed: 19.783 time per batch: 0.198\n", + "Batch 150 device: cuda time passed: 28.264 time per batch: 0.188\n", + "Batch 200 device: cuda time passed: 36.257 time per batch: 0.181\n", + "ver 34, iter 10, fold 2, val ll: 0.0602, cor: 0.8427, auc: 0.9893\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.122 time per batch: 0.222\n", + "Batch 100 device: cuda time passed: 19.324 time per batch: 0.193\n", + "Batch 150 device: cuda time passed: 28.046 time per batch: 0.187\n", + "Batch 200 device: cuda time passed: 36.710 time per batch: 0.184\n", + "ver 34, iter 11, fold 2, val ll: 0.0601, cor: 0.8426, auc: 0.9894\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 10.910 time per batch: 0.218\n", + "Batch 100 device: cuda time passed: 19.134 time per batch: 0.191\n", + "Batch 150 device: cuda time passed: 27.419 time per batch: 0.183\n", + "Batch 200 device: cuda time passed: 36.119 time per batch: 0.181\n", + "ver 34, iter 12, fold 2, val ll: 0.0599, cor: 0.8431, auc: 0.9894\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 10.974 time per batch: 0.219\n", + "Batch 100 device: cuda time passed: 19.467 time per batch: 0.195\n", + "Batch 150 device: cuda time passed: 28.024 time per batch: 0.187\n", + "Batch 200 device: cuda time passed: 36.578 time per batch: 0.183\n", + "ver 34, iter 13, fold 2, val ll: 0.0600, cor: 0.8427, auc: 0.9894\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 10.671 time per batch: 0.213\n", + "Batch 100 device: cuda time passed: 19.080 time per batch: 0.191\n", + "Batch 150 device: cuda time passed: 27.685 time per batch: 0.185\n", + "Batch 200 device: cuda time passed: 37.040 time per batch: 0.185\n", + "ver 34, iter 14, fold 2, val ll: 0.0602, cor: 0.8424, auc: 0.9894\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.339 time per batch: 0.227\n", + "Batch 100 device: cuda time passed: 19.898 time per batch: 0.199\n", + "Batch 150 device: cuda time passed: 28.227 time per batch: 0.188\n", + "Batch 200 device: cuda time passed: 36.515 time per batch: 0.183\n", + "ver 34, iter 15, fold 2, val ll: 0.0603, cor: 0.8422, auc: 0.9893\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 10.809 time per batch: 0.216\n", + "Batch 100 device: cuda time passed: 19.102 time per batch: 0.191\n", + "Batch 150 device: cuda time passed: 27.781 time per batch: 0.185\n", + "Batch 200 device: cuda time passed: 36.265 time per batch: 0.181\n", + "ver 34, iter 16, fold 2, val ll: 0.0602, cor: 0.8423, auc: 0.9893\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.536 time per batch: 0.231\n", + "Batch 100 device: cuda time passed: 20.097 time per batch: 0.201\n", + "Batch 150 device: cuda time passed: 28.499 time per batch: 0.190\n", + "Batch 200 device: cuda time passed: 37.109 time per batch: 0.186\n", + "ver 34, iter 17, fold 2, val ll: 0.0602, cor: 0.8424, auc: 0.9893\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 10.864 time per batch: 0.217\n", + "Batch 100 device: cuda time passed: 20.060 time per batch: 0.201\n", + "Batch 150 device: cuda time passed: 28.733 time per batch: 0.192\n", + "Batch 200 device: cuda time passed: 36.855 time per batch: 0.184\n", + "ver 34, iter 18, fold 2, val ll: 0.0601, cor: 0.8426, auc: 0.9894\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.085 time per batch: 0.222\n", + "Batch 100 device: cuda time passed: 19.551 time per batch: 0.196\n", + "Batch 150 device: cuda time passed: 28.034 time per batch: 0.187\n", + "Batch 200 device: cuda time passed: 36.621 time per batch: 0.183\n", + "ver 34, iter 19, fold 2, val ll: 0.0602, cor: 0.8424, auc: 0.9894\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 10.940 time per batch: 0.219\n", + "Batch 100 device: cuda time passed: 19.591 time per batch: 0.196\n", + "Batch 150 device: cuda time passed: 28.376 time per batch: 0.189\n", + "Batch 200 device: cuda time passed: 36.995 time per batch: 0.185\n", + "ver 34, iter 20, fold 2, val ll: 0.0602, cor: 0.8424, auc: 0.9894\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.425 time per batch: 0.229\n", + "Batch 100 device: cuda time passed: 20.048 time per batch: 0.200\n", + "Batch 150 device: cuda time passed: 28.301 time per batch: 0.189\n", + "Batch 200 device: cuda time passed: 36.405 time per batch: 0.182\n", + "ver 34, iter 21, fold 2, val ll: 0.0602, cor: 0.8420, auc: 0.9894\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 10.892 time per batch: 0.218\n", + "Batch 100 device: cuda time passed: 19.780 time per batch: 0.198\n", + "Batch 150 device: cuda time passed: 28.309 time per batch: 0.189\n", + "Batch 200 device: cuda time passed: 37.377 time per batch: 0.187\n", + "ver 34, iter 22, fold 2, val ll: 0.0601, cor: 0.8427, auc: 0.9894\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.127 time per batch: 0.223\n", + "Batch 100 device: cuda time passed: 19.509 time per batch: 0.195\n", + "Batch 150 device: cuda time passed: 27.842 time per batch: 0.186\n", + "Batch 200 device: cuda time passed: 36.450 time per batch: 0.182\n", + "ver 34, iter 23, fold 2, val ll: 0.0600, cor: 0.8429, auc: 0.9894\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.696 time per batch: 0.234\n", + "Batch 100 device: cuda time passed: 20.296 time per batch: 0.203\n", + "Batch 150 device: cuda time passed: 28.493 time per batch: 0.190\n", + "Batch 200 device: cuda time passed: 37.014 time per batch: 0.185\n", + "ver 34, iter 24, fold 2, val ll: 0.0600, cor: 0.8429, auc: 0.9894\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.370 time per batch: 0.227\n", + "Batch 100 device: cuda time passed: 19.776 time per batch: 0.198\n", + "Batch 150 device: cuda time passed: 28.208 time per batch: 0.188\n", + "Batch 200 device: cuda time passed: 36.551 time per batch: 0.183\n", + "ver 34, iter 25, fold 2, val ll: 0.0603, cor: 0.8421, auc: 0.9893\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.212 time per batch: 0.224\n", + "Batch 100 device: cuda time passed: 19.791 time per batch: 0.198\n", + "Batch 150 device: cuda time passed: 28.275 time per batch: 0.188\n", + "Batch 200 device: cuda time passed: 36.567 time per batch: 0.183\n", + "ver 34, iter 26, fold 2, val ll: 0.0601, cor: 0.8425, auc: 0.9894\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.755 time per batch: 0.235\n", + "Batch 100 device: cuda time passed: 20.286 time per batch: 0.203\n", + "Batch 150 device: cuda time passed: 29.146 time per batch: 0.194\n", + "Batch 200 device: cuda time passed: 37.236 time per batch: 0.186\n", + "ver 34, iter 27, fold 2, val ll: 0.0602, cor: 0.8426, auc: 0.9893\n", + "setFeats, augmentation -1\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Batch 50 device: cuda time passed: 10.998 time per batch: 0.220\n", + "Batch 100 device: cuda time passed: 19.483 time per batch: 0.195\n", + "Batch 150 device: cuda time passed: 27.915 time per batch: 0.186\n", + "Batch 200 device: cuda time passed: 36.732 time per batch: 0.184\n", + "ver 34, iter 28, fold 2, val ll: 0.0602, cor: 0.8424, auc: 0.9894\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.019 time per batch: 0.220\n", + "Batch 100 device: cuda time passed: 19.728 time per batch: 0.197\n", + "Batch 150 device: cuda time passed: 28.105 time per batch: 0.187\n", + "Batch 200 device: cuda time passed: 36.333 time per batch: 0.182\n", + "ver 34, iter 29, fold 2, val ll: 0.0603, cor: 0.8420, auc: 0.9893\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.334 time per batch: 0.227\n", + "Batch 100 device: cuda time passed: 19.885 time per batch: 0.199\n", + "Batch 150 device: cuda time passed: 28.419 time per batch: 0.189\n", + "Batch 200 device: cuda time passed: 36.882 time per batch: 0.184\n", + "ver 34, iter 30, fold 2, val ll: 0.0602, cor: 0.8424, auc: 0.9894\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.443 time per batch: 0.229\n", + "Batch 100 device: cuda time passed: 19.957 time per batch: 0.200\n", + "Batch 150 device: cuda time passed: 28.389 time per batch: 0.189\n", + "Batch 200 device: cuda time passed: 36.956 time per batch: 0.185\n", + "ver 34, iter 31, fold 2, val ll: 0.0600, cor: 0.8430, auc: 0.9894\n", + "total running time 1731.3292746543884\n", + "total time 5228.603754520416\n", + "completed epochs: 3 iters starting now: 32\n", + "adding dummy serieses 14\n", + "DataSet 9 valid size 7232 fold 0\n", + "dataset valid: 7232 loader valid: 226\n", + "loading model model.b3.f0.d9.v34\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.536 time per batch: 0.231\n", + "Batch 100 device: cuda time passed: 19.442 time per batch: 0.194\n", + "Batch 150 device: cuda time passed: 28.012 time per batch: 0.187\n", + "Batch 200 device: cuda time passed: 36.039 time per batch: 0.180\n", + "ver 34, iter 0, fold 0, val ll: 0.0632, cor: 0.8416, auc: 0.9881\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 10.857 time per batch: 0.217\n", + "Batch 100 device: cuda time passed: 19.517 time per batch: 0.195\n", + "Batch 150 device: cuda time passed: 27.749 time per batch: 0.185\n", + "Batch 200 device: cuda time passed: 36.496 time per batch: 0.182\n", + "ver 34, iter 1, fold 0, val ll: 0.0629, cor: 0.8419, auc: 0.9883\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.265 time per batch: 0.225\n", + "Batch 100 device: cuda time passed: 19.730 time per batch: 0.197\n", + "Batch 150 device: cuda time passed: 28.009 time per batch: 0.187\n", + "Batch 200 device: cuda time passed: 36.751 time per batch: 0.184\n", + "ver 34, iter 2, fold 0, val ll: 0.0633, cor: 0.8414, auc: 0.9880\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.156 time per batch: 0.223\n", + "Batch 100 device: cuda time passed: 19.573 time per batch: 0.196\n", + "Batch 150 device: cuda time passed: 27.689 time per batch: 0.185\n", + "Batch 200 device: cuda time passed: 36.021 time per batch: 0.180\n", + "ver 34, iter 3, fold 0, val ll: 0.0631, cor: 0.8417, auc: 0.9881\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.289 time per batch: 0.226\n", + "Batch 100 device: cuda time passed: 19.345 time per batch: 0.193\n", + "Batch 150 device: cuda time passed: 27.990 time per batch: 0.187\n", + "Batch 200 device: cuda time passed: 36.361 time per batch: 0.182\n", + "ver 34, iter 4, fold 0, val ll: 0.0634, cor: 0.8412, auc: 0.9880\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 10.799 time per batch: 0.216\n", + "Batch 100 device: cuda time passed: 19.307 time per batch: 0.193\n", + "Batch 150 device: cuda time passed: 27.358 time per batch: 0.182\n", + "Batch 200 device: cuda time passed: 36.510 time per batch: 0.183\n", + "ver 34, iter 5, fold 0, val ll: 0.0632, cor: 0.8414, auc: 0.9881\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.144 time per batch: 0.223\n", + "Batch 100 device: cuda time passed: 19.781 time per batch: 0.198\n", + "Batch 150 device: cuda time passed: 28.281 time per batch: 0.189\n", + "Batch 200 device: cuda time passed: 36.541 time per batch: 0.183\n", + "ver 34, iter 6, fold 0, val ll: 0.0634, cor: 0.8411, auc: 0.9881\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 10.809 time per batch: 0.216\n", + "Batch 100 device: cuda time passed: 19.659 time per batch: 0.197\n", + "Batch 150 device: cuda time passed: 27.493 time per batch: 0.183\n", + "Batch 200 device: cuda time passed: 36.342 time per batch: 0.182\n", + "ver 34, iter 7, fold 0, val ll: 0.0631, cor: 0.8418, auc: 0.9882\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 10.565 time per batch: 0.211\n", + "Batch 100 device: cuda time passed: 19.150 time per batch: 0.191\n", + "Batch 150 device: cuda time passed: 27.338 time per batch: 0.182\n", + "Batch 200 device: cuda time passed: 35.715 time per batch: 0.179\n", + "ver 34, iter 8, fold 0, val ll: 0.0631, cor: 0.8417, auc: 0.9881\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.067 time per batch: 0.221\n", + "Batch 100 device: cuda time passed: 19.201 time per batch: 0.192\n", + "Batch 150 device: cuda time passed: 27.660 time per batch: 0.184\n", + "Batch 200 device: cuda time passed: 35.980 time per batch: 0.180\n", + "ver 34, iter 9, fold 0, val ll: 0.0632, cor: 0.8414, auc: 0.9880\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 10.775 time per batch: 0.216\n", + "Batch 100 device: cuda time passed: 19.030 time per batch: 0.190\n", + "Batch 150 device: cuda time passed: 27.434 time per batch: 0.183\n", + "Batch 200 device: cuda time passed: 35.997 time per batch: 0.180\n", + "ver 34, iter 10, fold 0, val ll: 0.0632, cor: 0.8418, auc: 0.9881\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.414 time per batch: 0.228\n", + "Batch 100 device: cuda time passed: 19.585 time per batch: 0.196\n", + "Batch 150 device: cuda time passed: 28.034 time per batch: 0.187\n", + "Batch 200 device: cuda time passed: 36.464 time per batch: 0.182\n", + "ver 34, iter 11, fold 0, val ll: 0.0631, cor: 0.8417, auc: 0.9882\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.071 time per batch: 0.221\n", + "Batch 100 device: cuda time passed: 19.928 time per batch: 0.199\n", + "Batch 150 device: cuda time passed: 28.159 time per batch: 0.188\n", + "Batch 200 device: cuda time passed: 37.234 time per batch: 0.186\n", + "ver 34, iter 12, fold 0, val ll: 0.0634, cor: 0.8411, auc: 0.9881\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 10.507 time per batch: 0.210\n", + "Batch 100 device: cuda time passed: 19.527 time per batch: 0.195\n", + "Batch 150 device: cuda time passed: 27.786 time per batch: 0.185\n", + "Batch 200 device: cuda time passed: 36.570 time per batch: 0.183\n", + "ver 34, iter 13, fold 0, val ll: 0.0633, cor: 0.8414, auc: 0.9880\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 10.787 time per batch: 0.216\n", + "Batch 100 device: cuda time passed: 19.426 time per batch: 0.194\n", + "Batch 150 device: cuda time passed: 28.053 time per batch: 0.187\n", + "Batch 200 device: cuda time passed: 36.304 time per batch: 0.182\n", + "ver 34, iter 14, fold 0, val ll: 0.0633, cor: 0.8416, auc: 0.9880\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 10.934 time per batch: 0.219\n", + "Batch 100 device: cuda time passed: 19.786 time per batch: 0.198\n", + "Batch 150 device: cuda time passed: 28.130 time per batch: 0.188\n", + "Batch 200 device: cuda time passed: 36.253 time per batch: 0.181\n", + "ver 34, iter 15, fold 0, val ll: 0.0632, cor: 0.8415, auc: 0.9881\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.365 time per batch: 0.227\n", + "Batch 100 device: cuda time passed: 19.577 time per batch: 0.196\n", + "Batch 150 device: cuda time passed: 27.828 time per batch: 0.186\n", + "Batch 200 device: cuda time passed: 36.337 time per batch: 0.182\n", + "ver 34, iter 16, fold 0, val ll: 0.0631, cor: 0.8418, auc: 0.9882\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.483 time per batch: 0.230\n", + "Batch 100 device: cuda time passed: 19.916 time per batch: 0.199\n", + "Batch 150 device: cuda time passed: 28.381 time per batch: 0.189\n", + "Batch 200 device: cuda time passed: 36.431 time per batch: 0.182\n", + "ver 34, iter 17, fold 0, val ll: 0.0631, cor: 0.8416, auc: 0.9882\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.026 time per batch: 0.221\n", + "Batch 100 device: cuda time passed: 19.578 time per batch: 0.196\n", + "Batch 150 device: cuda time passed: 28.720 time per batch: 0.191\n", + "Batch 200 device: cuda time passed: 36.864 time per batch: 0.184\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ver 34, iter 18, fold 0, val ll: 0.0632, cor: 0.8414, auc: 0.9882\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 10.382 time per batch: 0.208\n", + "Batch 100 device: cuda time passed: 18.828 time per batch: 0.188\n", + "Batch 150 device: cuda time passed: 28.774 time per batch: 0.192\n", + "Batch 200 device: cuda time passed: 36.504 time per batch: 0.183\n", + "ver 34, iter 19, fold 0, val ll: 0.0632, cor: 0.8415, auc: 0.9882\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.459 time per batch: 0.229\n", + "Batch 100 device: cuda time passed: 19.702 time per batch: 0.197\n", + "Batch 150 device: cuda time passed: 27.777 time per batch: 0.185\n", + "Batch 200 device: cuda time passed: 36.381 time per batch: 0.182\n", + "ver 34, iter 20, fold 0, val ll: 0.0634, cor: 0.8413, auc: 0.9880\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.382 time per batch: 0.228\n", + "Batch 100 device: cuda time passed: 19.343 time per batch: 0.193\n", + "Batch 150 device: cuda time passed: 27.549 time per batch: 0.184\n", + "Batch 200 device: cuda time passed: 35.777 time per batch: 0.179\n", + "ver 34, iter 21, fold 0, val ll: 0.0630, cor: 0.8421, auc: 0.9881\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.823 time per batch: 0.236\n", + "Batch 100 device: cuda time passed: 19.865 time per batch: 0.199\n", + "Batch 150 device: cuda time passed: 28.305 time per batch: 0.189\n", + "Batch 200 device: cuda time passed: 36.592 time per batch: 0.183\n", + "ver 34, iter 22, fold 0, val ll: 0.0632, cor: 0.8415, auc: 0.9882\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.087 time per batch: 0.222\n", + "Batch 100 device: cuda time passed: 19.745 time per batch: 0.197\n", + "Batch 150 device: cuda time passed: 28.129 time per batch: 0.188\n", + "Batch 200 device: cuda time passed: 36.259 time per batch: 0.181\n", + "ver 34, iter 23, fold 0, val ll: 0.0631, cor: 0.8415, auc: 0.9882\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.263 time per batch: 0.225\n", + "Batch 100 device: cuda time passed: 19.197 time per batch: 0.192\n", + "Batch 150 device: cuda time passed: 27.765 time per batch: 0.185\n", + "Batch 200 device: cuda time passed: 36.010 time per batch: 0.180\n", + "ver 34, iter 24, fold 0, val ll: 0.0634, cor: 0.8412, auc: 0.9880\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.063 time per batch: 0.221\n", + "Batch 100 device: cuda time passed: 19.637 time per batch: 0.196\n", + "Batch 150 device: cuda time passed: 27.441 time per batch: 0.183\n", + "Batch 200 device: cuda time passed: 35.823 time per batch: 0.179\n", + "ver 34, iter 25, fold 0, val ll: 0.0633, cor: 0.8415, auc: 0.9881\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 10.825 time per batch: 0.216\n", + "Batch 100 device: cuda time passed: 19.368 time per batch: 0.194\n", + "Batch 150 device: cuda time passed: 27.689 time per batch: 0.185\n", + "Batch 200 device: cuda time passed: 37.222 time per batch: 0.186\n", + "ver 34, iter 26, fold 0, val ll: 0.0634, cor: 0.8414, auc: 0.9880\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 10.720 time per batch: 0.214\n", + "Batch 100 device: cuda time passed: 19.278 time per batch: 0.193\n", + "Batch 150 device: cuda time passed: 27.638 time per batch: 0.184\n", + "Batch 200 device: cuda time passed: 36.025 time per batch: 0.180\n", + "ver 34, iter 27, fold 0, val ll: 0.0630, cor: 0.8420, auc: 0.9882\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 10.807 time per batch: 0.216\n", + "Batch 100 device: cuda time passed: 19.534 time per batch: 0.195\n", + "Batch 150 device: cuda time passed: 27.797 time per batch: 0.185\n", + "Batch 200 device: cuda time passed: 36.143 time per batch: 0.181\n", + "ver 34, iter 28, fold 0, val ll: 0.0631, cor: 0.8417, auc: 0.9882\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.228 time per batch: 0.225\n", + "Batch 100 device: cuda time passed: 19.919 time per batch: 0.199\n", + "Batch 150 device: cuda time passed: 28.348 time per batch: 0.189\n", + "Batch 200 device: cuda time passed: 37.116 time per batch: 0.186\n", + "ver 34, iter 29, fold 0, val ll: 0.0630, cor: 0.8420, auc: 0.9881\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.326 time per batch: 0.227\n", + "Batch 100 device: cuda time passed: 19.509 time per batch: 0.195\n", + "Batch 150 device: cuda time passed: 27.800 time per batch: 0.185\n", + "Batch 200 device: cuda time passed: 36.166 time per batch: 0.181\n", + "ver 34, iter 30, fold 0, val ll: 0.0632, cor: 0.8416, auc: 0.9881\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 10.800 time per batch: 0.216\n", + "Batch 100 device: cuda time passed: 19.610 time per batch: 0.196\n", + "Batch 150 device: cuda time passed: 28.093 time per batch: 0.187\n", + "Batch 200 device: cuda time passed: 36.552 time per batch: 0.183\n", + "ver 34, iter 31, fold 0, val ll: 0.0631, cor: 0.8417, auc: 0.9881\n", + "total running time 1487.4923713207245\n", + "total time 6716.580273866653\n", + "completed epochs: 3 iters starting now: 32\n", + "adding dummy serieses 30\n", + "DataSet 9 valid size 7328 fold 1\n", + "dataset valid: 7328 loader valid: 229\n", + "loading model model.b3.f1.d9.v34\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.601 time per batch: 0.232\n", + "Batch 100 device: cuda time passed: 18.900 time per batch: 0.189\n", + "Batch 150 device: cuda time passed: 26.936 time per batch: 0.180\n", + "Batch 200 device: cuda time passed: 36.698 time per batch: 0.183\n", + "ver 34, iter 0, fold 1, val ll: 0.0633, cor: 0.8388, auc: 0.9879\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.225 time per batch: 0.224\n", + "Batch 100 device: cuda time passed: 19.727 time per batch: 0.197\n", + "Batch 150 device: cuda time passed: 27.782 time per batch: 0.185\n", + "Batch 200 device: cuda time passed: 36.099 time per batch: 0.180\n", + "ver 34, iter 1, fold 1, val ll: 0.0634, cor: 0.8387, auc: 0.9879\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.501 time per batch: 0.230\n", + "Batch 100 device: cuda time passed: 19.581 time per batch: 0.196\n", + "Batch 150 device: cuda time passed: 27.804 time per batch: 0.185\n", + "Batch 200 device: cuda time passed: 36.041 time per batch: 0.180\n", + "ver 34, iter 2, fold 1, val ll: 0.0634, cor: 0.8388, auc: 0.9879\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 10.828 time per batch: 0.217\n", + "Batch 100 device: cuda time passed: 19.901 time per batch: 0.199\n", + "Batch 150 device: cuda time passed: 28.421 time per batch: 0.189\n", + "Batch 200 device: cuda time passed: 36.320 time per batch: 0.182\n", + "ver 34, iter 3, fold 1, val ll: 0.0634, cor: 0.8386, auc: 0.9879\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 10.654 time per batch: 0.213\n", + "Batch 100 device: cuda time passed: 19.474 time per batch: 0.195\n", + "Batch 150 device: cuda time passed: 27.773 time per batch: 0.185\n", + "Batch 200 device: cuda time passed: 35.790 time per batch: 0.179\n", + "ver 34, iter 4, fold 1, val ll: 0.0632, cor: 0.8390, auc: 0.9879\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.220 time per batch: 0.224\n", + "Batch 100 device: cuda time passed: 19.963 time per batch: 0.200\n", + "Batch 150 device: cuda time passed: 27.894 time per batch: 0.186\n", + "Batch 200 device: cuda time passed: 36.716 time per batch: 0.184\n", + "ver 34, iter 5, fold 1, val ll: 0.0632, cor: 0.8389, auc: 0.9879\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 10.849 time per batch: 0.217\n", + "Batch 100 device: cuda time passed: 20.349 time per batch: 0.203\n", + "Batch 150 device: cuda time passed: 27.875 time per batch: 0.186\n", + "Batch 200 device: cuda time passed: 36.373 time per batch: 0.182\n", + "ver 34, iter 6, fold 1, val ll: 0.0631, cor: 0.8393, auc: 0.9880\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.577 time per batch: 0.232\n", + "Batch 100 device: cuda time passed: 19.637 time per batch: 0.196\n", + "Batch 150 device: cuda time passed: 28.061 time per batch: 0.187\n", + "Batch 200 device: cuda time passed: 36.134 time per batch: 0.181\n", + "ver 34, iter 7, fold 1, val ll: 0.0634, cor: 0.8385, auc: 0.9879\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.124 time per batch: 0.222\n", + "Batch 100 device: cuda time passed: 19.560 time per batch: 0.196\n", + "Batch 150 device: cuda time passed: 28.370 time per batch: 0.189\n", + "Batch 200 device: cuda time passed: 36.781 time per batch: 0.184\n", + "ver 34, iter 8, fold 1, val ll: 0.0633, cor: 0.8388, auc: 0.9879\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.238 time per batch: 0.225\n", + "Batch 100 device: cuda time passed: 19.463 time per batch: 0.195\n", + "Batch 150 device: cuda time passed: 28.507 time per batch: 0.190\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Batch 200 device: cuda time passed: 36.950 time per batch: 0.185\n", + "ver 34, iter 9, fold 1, val ll: 0.0630, cor: 0.8392, auc: 0.9880\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 10.309 time per batch: 0.206\n", + "Batch 100 device: cuda time passed: 19.247 time per batch: 0.192\n", + "Batch 150 device: cuda time passed: 27.463 time per batch: 0.183\n", + "Batch 200 device: cuda time passed: 36.078 time per batch: 0.180\n", + "ver 34, iter 10, fold 1, val ll: 0.0634, cor: 0.8387, auc: 0.9878\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 10.580 time per batch: 0.212\n", + "Batch 100 device: cuda time passed: 18.971 time per batch: 0.190\n", + "Batch 150 device: cuda time passed: 27.962 time per batch: 0.186\n", + "Batch 200 device: cuda time passed: 35.981 time per batch: 0.180\n", + "ver 34, iter 11, fold 1, val ll: 0.0632, cor: 0.8391, auc: 0.9880\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.003 time per batch: 0.220\n", + "Batch 100 device: cuda time passed: 19.562 time per batch: 0.196\n", + "Batch 150 device: cuda time passed: 27.887 time per batch: 0.186\n", + "Batch 200 device: cuda time passed: 36.433 time per batch: 0.182\n", + "ver 34, iter 12, fold 1, val ll: 0.0632, cor: 0.8392, auc: 0.9879\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.487 time per batch: 0.230\n", + "Batch 100 device: cuda time passed: 19.255 time per batch: 0.193\n", + "Batch 150 device: cuda time passed: 28.115 time per batch: 0.187\n", + "Batch 200 device: cuda time passed: 36.623 time per batch: 0.183\n", + "ver 34, iter 13, fold 1, val ll: 0.0633, cor: 0.8387, auc: 0.9879\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 10.321 time per batch: 0.206\n", + "Batch 100 device: cuda time passed: 19.255 time per batch: 0.193\n", + "Batch 150 device: cuda time passed: 28.486 time per batch: 0.190\n", + "Batch 200 device: cuda time passed: 36.377 time per batch: 0.182\n", + "ver 34, iter 14, fold 1, val ll: 0.0633, cor: 0.8388, auc: 0.9880\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 10.919 time per batch: 0.218\n", + "Batch 100 device: cuda time passed: 19.488 time per batch: 0.195\n", + "Batch 150 device: cuda time passed: 27.954 time per batch: 0.186\n", + "Batch 200 device: cuda time passed: 36.277 time per batch: 0.181\n", + "ver 34, iter 15, fold 1, val ll: 0.0634, cor: 0.8385, auc: 0.9879\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.244 time per batch: 0.225\n", + "Batch 100 device: cuda time passed: 19.801 time per batch: 0.198\n", + "Batch 150 device: cuda time passed: 28.208 time per batch: 0.188\n", + "Batch 200 device: cuda time passed: 36.477 time per batch: 0.182\n", + "ver 34, iter 16, fold 1, val ll: 0.0632, cor: 0.8391, auc: 0.9879\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.143 time per batch: 0.223\n", + "Batch 100 device: cuda time passed: 19.614 time per batch: 0.196\n", + "Batch 150 device: cuda time passed: 28.227 time per batch: 0.188\n", + "Batch 200 device: cuda time passed: 36.469 time per batch: 0.182\n", + "ver 34, iter 17, fold 1, val ll: 0.0632, cor: 0.8392, auc: 0.9879\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.002 time per batch: 0.220\n", + "Batch 100 device: cuda time passed: 19.268 time per batch: 0.193\n", + "Batch 150 device: cuda time passed: 27.492 time per batch: 0.183\n", + "Batch 200 device: cuda time passed: 36.499 time per batch: 0.182\n", + "ver 34, iter 18, fold 1, val ll: 0.0632, cor: 0.8389, auc: 0.9880\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 10.935 time per batch: 0.219\n", + "Batch 100 device: cuda time passed: 19.428 time per batch: 0.194\n", + "Batch 150 device: cuda time passed: 27.915 time per batch: 0.186\n", + "Batch 200 device: cuda time passed: 36.213 time per batch: 0.181\n", + "ver 34, iter 19, fold 1, val ll: 0.0633, cor: 0.8390, auc: 0.9879\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.107 time per batch: 0.222\n", + "Batch 100 device: cuda time passed: 19.694 time per batch: 0.197\n", + "Batch 150 device: cuda time passed: 27.799 time per batch: 0.185\n", + "Batch 200 device: cuda time passed: 35.827 time per batch: 0.179\n", + "ver 34, iter 20, fold 1, val ll: 0.0630, cor: 0.8396, auc: 0.9881\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.432 time per batch: 0.229\n", + "Batch 100 device: cuda time passed: 20.032 time per batch: 0.200\n", + "Batch 150 device: cuda time passed: 28.095 time per batch: 0.187\n", + "Batch 200 device: cuda time passed: 36.735 time per batch: 0.184\n", + "ver 34, iter 21, fold 1, val ll: 0.0632, cor: 0.8390, auc: 0.9879\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 10.436 time per batch: 0.209\n", + "Batch 100 device: cuda time passed: 19.425 time per batch: 0.194\n", + "Batch 150 device: cuda time passed: 27.705 time per batch: 0.185\n", + "Batch 200 device: cuda time passed: 36.119 time per batch: 0.181\n", + "ver 34, iter 22, fold 1, val ll: 0.0633, cor: 0.8390, auc: 0.9879\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.294 time per batch: 0.226\n", + "Batch 100 device: cuda time passed: 19.698 time per batch: 0.197\n", + "Batch 150 device: cuda time passed: 28.636 time per batch: 0.191\n", + "Batch 200 device: cuda time passed: 36.945 time per batch: 0.185\n", + "ver 34, iter 23, fold 1, val ll: 0.0633, cor: 0.8387, auc: 0.9879\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 10.781 time per batch: 0.216\n", + "Batch 100 device: cuda time passed: 19.957 time per batch: 0.200\n", + "Batch 150 device: cuda time passed: 28.300 time per batch: 0.189\n", + "Batch 200 device: cuda time passed: 36.615 time per batch: 0.183\n", + "ver 34, iter 24, fold 1, val ll: 0.0635, cor: 0.8386, auc: 0.9878\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.301 time per batch: 0.226\n", + "Batch 100 device: cuda time passed: 19.520 time per batch: 0.195\n", + "Batch 150 device: cuda time passed: 27.442 time per batch: 0.183\n", + "Batch 200 device: cuda time passed: 36.188 time per batch: 0.181\n", + "ver 34, iter 25, fold 1, val ll: 0.0632, cor: 0.8391, auc: 0.9879\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 10.992 time per batch: 0.220\n", + "Batch 100 device: cuda time passed: 19.148 time per batch: 0.191\n", + "Batch 150 device: cuda time passed: 27.658 time per batch: 0.184\n", + "Batch 200 device: cuda time passed: 36.310 time per batch: 0.182\n", + "ver 34, iter 26, fold 1, val ll: 0.0632, cor: 0.8391, auc: 0.9880\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 10.614 time per batch: 0.212\n", + "Batch 100 device: cuda time passed: 19.507 time per batch: 0.195\n", + "Batch 150 device: cuda time passed: 28.187 time per batch: 0.188\n", + "Batch 200 device: cuda time passed: 36.693 time per batch: 0.183\n", + "ver 34, iter 27, fold 1, val ll: 0.0633, cor: 0.8389, auc: 0.9879\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 10.404 time per batch: 0.208\n", + "Batch 100 device: cuda time passed: 18.785 time per batch: 0.188\n", + "Batch 150 device: cuda time passed: 27.808 time per batch: 0.185\n", + "Batch 200 device: cuda time passed: 36.485 time per batch: 0.182\n", + "ver 34, iter 28, fold 1, val ll: 0.0632, cor: 0.8392, auc: 0.9879\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.517 time per batch: 0.230\n", + "Batch 100 device: cuda time passed: 19.947 time per batch: 0.199\n", + "Batch 150 device: cuda time passed: 28.191 time per batch: 0.188\n", + "Batch 200 device: cuda time passed: 36.732 time per batch: 0.184\n", + "ver 34, iter 29, fold 1, val ll: 0.0632, cor: 0.8390, auc: 0.9879\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.320 time per batch: 0.226\n", + "Batch 100 device: cuda time passed: 19.965 time per batch: 0.200\n", + "Batch 150 device: cuda time passed: 28.118 time per batch: 0.187\n", + "Batch 200 device: cuda time passed: 36.174 time per batch: 0.181\n", + "ver 34, iter 30, fold 1, val ll: 0.0633, cor: 0.8389, auc: 0.9879\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.090 time per batch: 0.222\n", + "Batch 100 device: cuda time passed: 19.595 time per batch: 0.196\n", + "Batch 150 device: cuda time passed: 27.997 time per batch: 0.187\n", + "Batch 200 device: cuda time passed: 36.218 time per batch: 0.181\n", + "ver 34, iter 31, fold 1, val ll: 0.0633, cor: 0.8388, auc: 0.9879\n", + "total running time 1502.9731421470642\n", + "total time 8220.030895471573\n", + "completed epochs: 3 iters starting now: 32\n", + "adding dummy serieses 4\n", + "DataSet 9 valid size 7232 fold 2\n", + "dataset valid: 7232 loader valid: 226\n", + "loading model model.b3.f2.d9.v34\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.523 time per batch: 0.230\n", + "Batch 100 device: cuda time passed: 19.846 time per batch: 0.198\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Batch 150 device: cuda time passed: 28.448 time per batch: 0.190\n", + "Batch 200 device: cuda time passed: 36.151 time per batch: 0.181\n", + "ver 34, iter 0, fold 2, val ll: 0.0604, cor: 0.8411, auc: 0.9892\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.055 time per batch: 0.221\n", + "Batch 100 device: cuda time passed: 19.589 time per batch: 0.196\n", + "Batch 150 device: cuda time passed: 27.452 time per batch: 0.183\n", + "Batch 200 device: cuda time passed: 35.844 time per batch: 0.179\n", + "ver 34, iter 1, fold 2, val ll: 0.0603, cor: 0.8412, auc: 0.9893\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 10.997 time per batch: 0.220\n", + "Batch 100 device: cuda time passed: 19.403 time per batch: 0.194\n", + "Batch 150 device: cuda time passed: 27.832 time per batch: 0.186\n", + "Batch 200 device: cuda time passed: 36.258 time per batch: 0.181\n", + "ver 34, iter 2, fold 2, val ll: 0.0603, cor: 0.8413, auc: 0.9892\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.043 time per batch: 0.221\n", + "Batch 100 device: cuda time passed: 19.303 time per batch: 0.193\n", + "Batch 150 device: cuda time passed: 27.651 time per batch: 0.184\n", + "Batch 200 device: cuda time passed: 36.037 time per batch: 0.180\n", + "ver 34, iter 3, fold 2, val ll: 0.0605, cor: 0.8407, auc: 0.9892\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.119 time per batch: 0.222\n", + "Batch 100 device: cuda time passed: 19.489 time per batch: 0.195\n", + "Batch 150 device: cuda time passed: 28.105 time per batch: 0.187\n", + "Batch 200 device: cuda time passed: 36.335 time per batch: 0.182\n", + "ver 34, iter 4, fold 2, val ll: 0.0604, cor: 0.8411, auc: 0.9891\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.144 time per batch: 0.223\n", + "Batch 100 device: cuda time passed: 19.627 time per batch: 0.196\n", + "Batch 150 device: cuda time passed: 27.430 time per batch: 0.183\n", + "Batch 200 device: cuda time passed: 37.224 time per batch: 0.186\n", + "ver 34, iter 5, fold 2, val ll: 0.0606, cor: 0.8406, auc: 0.9891\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 10.761 time per batch: 0.215\n", + "Batch 100 device: cuda time passed: 18.991 time per batch: 0.190\n", + "Batch 150 device: cuda time passed: 27.854 time per batch: 0.186\n", + "Batch 200 device: cuda time passed: 36.054 time per batch: 0.180\n", + "ver 34, iter 6, fold 2, val ll: 0.0603, cor: 0.8413, auc: 0.9893\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 10.947 time per batch: 0.219\n", + "Batch 100 device: cuda time passed: 19.358 time per batch: 0.194\n", + "Batch 150 device: cuda time passed: 27.685 time per batch: 0.185\n", + "Batch 200 device: cuda time passed: 36.458 time per batch: 0.182\n", + "ver 34, iter 7, fold 2, val ll: 0.0604, cor: 0.8411, auc: 0.9892\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.975 time per batch: 0.240\n", + "Batch 100 device: cuda time passed: 20.457 time per batch: 0.205\n", + "Batch 150 device: cuda time passed: 28.962 time per batch: 0.193\n", + "Batch 200 device: cuda time passed: 37.452 time per batch: 0.187\n", + "ver 34, iter 8, fold 2, val ll: 0.0602, cor: 0.8415, auc: 0.9892\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.492 time per batch: 0.230\n", + "Batch 100 device: cuda time passed: 19.598 time per batch: 0.196\n", + "Batch 150 device: cuda time passed: 27.863 time per batch: 0.186\n", + "Batch 200 device: cuda time passed: 36.893 time per batch: 0.184\n", + "ver 34, iter 9, fold 2, val ll: 0.0604, cor: 0.8412, auc: 0.9892\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 10.704 time per batch: 0.214\n", + "Batch 100 device: cuda time passed: 19.476 time per batch: 0.195\n", + "Batch 150 device: cuda time passed: 27.911 time per batch: 0.186\n", + "Batch 200 device: cuda time passed: 36.416 time per batch: 0.182\n", + "ver 34, iter 10, fold 2, val ll: 0.0603, cor: 0.8414, auc: 0.9892\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 10.454 time per batch: 0.209\n", + "Batch 100 device: cuda time passed: 19.591 time per batch: 0.196\n", + "Batch 150 device: cuda time passed: 27.687 time per batch: 0.185\n", + "Batch 200 device: cuda time passed: 36.437 time per batch: 0.182\n", + "ver 34, iter 11, fold 2, val ll: 0.0602, cor: 0.8416, auc: 0.9892\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.138 time per batch: 0.223\n", + "Batch 100 device: cuda time passed: 19.714 time per batch: 0.197\n", + "Batch 150 device: cuda time passed: 28.012 time per batch: 0.187\n", + "Batch 200 device: cuda time passed: 36.721 time per batch: 0.184\n", + "ver 34, iter 12, fold 2, val ll: 0.0604, cor: 0.8413, auc: 0.9892\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.125 time per batch: 0.223\n", + "Batch 100 device: cuda time passed: 19.883 time per batch: 0.199\n", + "Batch 150 device: cuda time passed: 27.985 time per batch: 0.187\n", + "Batch 200 device: cuda time passed: 36.442 time per batch: 0.182\n", + "ver 34, iter 13, fold 2, val ll: 0.0603, cor: 0.8411, auc: 0.9893\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.080 time per batch: 0.222\n", + "Batch 100 device: cuda time passed: 19.109 time per batch: 0.191\n", + "Batch 150 device: cuda time passed: 27.470 time per batch: 0.183\n", + "Batch 200 device: cuda time passed: 35.903 time per batch: 0.180\n", + "ver 34, iter 14, fold 2, val ll: 0.0604, cor: 0.8411, auc: 0.9892\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.237 time per batch: 0.225\n", + "Batch 100 device: cuda time passed: 19.461 time per batch: 0.195\n", + "Batch 150 device: cuda time passed: 27.905 time per batch: 0.186\n", + "Batch 200 device: cuda time passed: 36.584 time per batch: 0.183\n", + "ver 34, iter 15, fold 2, val ll: 0.0603, cor: 0.8413, auc: 0.9893\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 10.728 time per batch: 0.215\n", + "Batch 100 device: cuda time passed: 19.503 time per batch: 0.195\n", + "Batch 150 device: cuda time passed: 27.680 time per batch: 0.185\n", + "Batch 200 device: cuda time passed: 36.592 time per batch: 0.183\n", + "ver 34, iter 16, fold 2, val ll: 0.0604, cor: 0.8410, auc: 0.9892\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.169 time per batch: 0.223\n", + "Batch 100 device: cuda time passed: 19.308 time per batch: 0.193\n", + "Batch 150 device: cuda time passed: 27.280 time per batch: 0.182\n", + "Batch 200 device: cuda time passed: 36.004 time per batch: 0.180\n", + "ver 34, iter 17, fold 2, val ll: 0.0604, cor: 0.8410, auc: 0.9892\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 10.856 time per batch: 0.217\n", + "Batch 100 device: cuda time passed: 19.630 time per batch: 0.196\n", + "Batch 150 device: cuda time passed: 28.026 time per batch: 0.187\n", + "Batch 200 device: cuda time passed: 36.941 time per batch: 0.185\n", + "ver 34, iter 18, fold 2, val ll: 0.0602, cor: 0.8414, auc: 0.9893\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.190 time per batch: 0.224\n", + "Batch 100 device: cuda time passed: 19.526 time per batch: 0.195\n", + "Batch 150 device: cuda time passed: 27.649 time per batch: 0.184\n", + "Batch 200 device: cuda time passed: 36.064 time per batch: 0.180\n", + "ver 34, iter 19, fold 2, val ll: 0.0603, cor: 0.8415, auc: 0.9892\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.066 time per batch: 0.221\n", + "Batch 100 device: cuda time passed: 19.706 time per batch: 0.197\n", + "Batch 150 device: cuda time passed: 27.965 time per batch: 0.186\n", + "Batch 200 device: cuda time passed: 36.090 time per batch: 0.180\n", + "ver 34, iter 20, fold 2, val ll: 0.0603, cor: 0.8413, auc: 0.9893\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.246 time per batch: 0.225\n", + "Batch 100 device: cuda time passed: 19.657 time per batch: 0.197\n", + "Batch 150 device: cuda time passed: 28.063 time per batch: 0.187\n", + "Batch 200 device: cuda time passed: 37.087 time per batch: 0.185\n", + "ver 34, iter 21, fold 2, val ll: 0.0603, cor: 0.8412, auc: 0.9892\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.059 time per batch: 0.221\n", + "Batch 100 device: cuda time passed: 19.357 time per batch: 0.194\n", + "Batch 150 device: cuda time passed: 27.762 time per batch: 0.185\n", + "Batch 200 device: cuda time passed: 36.632 time per batch: 0.183\n", + "ver 34, iter 22, fold 2, val ll: 0.0603, cor: 0.8413, auc: 0.9892\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.570 time per batch: 0.231\n", + "Batch 100 device: cuda time passed: 20.007 time per batch: 0.200\n", + "Batch 150 device: cuda time passed: 28.008 time per batch: 0.187\n", + "Batch 200 device: cuda time passed: 36.203 time per batch: 0.181\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ver 34, iter 23, fold 2, val ll: 0.0603, cor: 0.8414, auc: 0.9892\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 10.914 time per batch: 0.218\n", + "Batch 100 device: cuda time passed: 19.576 time per batch: 0.196\n", + "Batch 150 device: cuda time passed: 27.771 time per batch: 0.185\n", + "Batch 200 device: cuda time passed: 35.991 time per batch: 0.180\n", + "ver 34, iter 24, fold 2, val ll: 0.0605, cor: 0.8410, auc: 0.9891\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.077 time per batch: 0.222\n", + "Batch 100 device: cuda time passed: 19.416 time per batch: 0.194\n", + "Batch 150 device: cuda time passed: 27.528 time per batch: 0.184\n", + "Batch 200 device: cuda time passed: 35.811 time per batch: 0.179\n", + "ver 34, iter 25, fold 2, val ll: 0.0603, cor: 0.8415, auc: 0.9893\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 10.948 time per batch: 0.219\n", + "Batch 100 device: cuda time passed: 19.157 time per batch: 0.192\n", + "Batch 150 device: cuda time passed: 27.678 time per batch: 0.185\n", + "Batch 200 device: cuda time passed: 35.593 time per batch: 0.178\n", + "ver 34, iter 26, fold 2, val ll: 0.0605, cor: 0.8408, auc: 0.9891\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 10.699 time per batch: 0.214\n", + "Batch 100 device: cuda time passed: 18.743 time per batch: 0.187\n", + "Batch 150 device: cuda time passed: 27.111 time per batch: 0.181\n", + "Batch 200 device: cuda time passed: 35.546 time per batch: 0.178\n", + "ver 34, iter 27, fold 2, val ll: 0.0604, cor: 0.8410, auc: 0.9892\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 10.825 time per batch: 0.216\n", + "Batch 100 device: cuda time passed: 18.607 time per batch: 0.186\n", + "Batch 150 device: cuda time passed: 26.901 time per batch: 0.179\n", + "Batch 200 device: cuda time passed: 35.283 time per batch: 0.176\n", + "ver 34, iter 28, fold 2, val ll: 0.0604, cor: 0.8409, auc: 0.9892\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 10.969 time per batch: 0.219\n", + "Batch 100 device: cuda time passed: 19.424 time per batch: 0.194\n", + "Batch 150 device: cuda time passed: 27.878 time per batch: 0.186\n", + "Batch 200 device: cuda time passed: 36.051 time per batch: 0.180\n", + "ver 34, iter 29, fold 2, val ll: 0.0602, cor: 0.8415, auc: 0.9893\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.252 time per batch: 0.225\n", + "Batch 100 device: cuda time passed: 19.632 time per batch: 0.196\n", + "Batch 150 device: cuda time passed: 28.146 time per batch: 0.188\n", + "Batch 200 device: cuda time passed: 36.296 time per batch: 0.181\n", + "ver 34, iter 30, fold 2, val ll: 0.0603, cor: 0.8411, auc: 0.9893\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 11.159 time per batch: 0.223\n", + "Batch 100 device: cuda time passed: 19.845 time per batch: 0.198\n", + "Batch 150 device: cuda time passed: 27.672 time per batch: 0.184\n", + "Batch 200 device: cuda time passed: 36.092 time per batch: 0.180\n", + "ver 34, iter 31, fold 2, val ll: 0.0603, cor: 0.8414, auc: 0.9893\n", + "total running time 1486.592945575714\n", + "total time 9707.101170063019\n", + "completed epochs: 3 iters starting now: 32\n", + "adding dummy serieses 9\n", + "DataSet 11 valid size 4384 fold 0\n", + "dataset valid: 4384 loader valid: 137\n", + "loading model model.b3.f0.d11.v34\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.940 time per batch: 0.159\n", + "Batch 100 device: cuda time passed: 14.756 time per batch: 0.148\n", + "ver 34, iter 0, fold 0, val ll: 0.0609, cor: 0.8452, auc: 0.9888\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.554 time per batch: 0.171\n", + "Batch 100 device: cuda time passed: 14.739 time per batch: 0.147\n", + "ver 34, iter 1, fold 0, val ll: 0.0607, cor: 0.8453, auc: 0.9889\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.235 time per batch: 0.165\n", + "Batch 100 device: cuda time passed: 14.917 time per batch: 0.149\n", + "ver 34, iter 2, fold 0, val ll: 0.0608, cor: 0.8452, auc: 0.9889\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.603 time per batch: 0.152\n", + "Batch 100 device: cuda time passed: 14.007 time per batch: 0.140\n", + "ver 34, iter 3, fold 0, val ll: 0.0609, cor: 0.8449, auc: 0.9889\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.003 time per batch: 0.160\n", + "Batch 100 device: cuda time passed: 14.445 time per batch: 0.144\n", + "ver 34, iter 4, fold 0, val ll: 0.0608, cor: 0.8455, auc: 0.9889\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.444 time per batch: 0.169\n", + "Batch 100 device: cuda time passed: 14.775 time per batch: 0.148\n", + "ver 34, iter 5, fold 0, val ll: 0.0608, cor: 0.8449, auc: 0.9889\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.487 time per batch: 0.170\n", + "Batch 100 device: cuda time passed: 14.919 time per batch: 0.149\n", + "ver 34, iter 6, fold 0, val ll: 0.0609, cor: 0.8451, auc: 0.9887\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.645 time per batch: 0.173\n", + "Batch 100 device: cuda time passed: 14.933 time per batch: 0.149\n", + "ver 34, iter 7, fold 0, val ll: 0.0607, cor: 0.8455, auc: 0.9889\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.537 time per batch: 0.171\n", + "Batch 100 device: cuda time passed: 14.497 time per batch: 0.145\n", + "ver 34, iter 8, fold 0, val ll: 0.0608, cor: 0.8456, auc: 0.9888\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.195 time per batch: 0.164\n", + "Batch 100 device: cuda time passed: 14.452 time per batch: 0.145\n", + "ver 34, iter 9, fold 0, val ll: 0.0608, cor: 0.8453, auc: 0.9889\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.251 time per batch: 0.165\n", + "Batch 100 device: cuda time passed: 14.323 time per batch: 0.143\n", + "ver 34, iter 10, fold 0, val ll: 0.0610, cor: 0.8450, auc: 0.9887\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.191 time per batch: 0.144\n", + "Batch 100 device: cuda time passed: 13.764 time per batch: 0.138\n", + "ver 34, iter 11, fold 0, val ll: 0.0608, cor: 0.8451, auc: 0.9889\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.054 time per batch: 0.161\n", + "Batch 100 device: cuda time passed: 14.529 time per batch: 0.145\n", + "ver 34, iter 12, fold 0, val ll: 0.0609, cor: 0.8449, auc: 0.9888\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.674 time per batch: 0.153\n", + "Batch 100 device: cuda time passed: 14.194 time per batch: 0.142\n", + "ver 34, iter 13, fold 0, val ll: 0.0610, cor: 0.8450, auc: 0.9888\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.067 time per batch: 0.161\n", + "Batch 100 device: cuda time passed: 14.660 time per batch: 0.147\n", + "ver 34, iter 14, fold 0, val ll: 0.0609, cor: 0.8451, auc: 0.9888\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.751 time per batch: 0.155\n", + "Batch 100 device: cuda time passed: 14.356 time per batch: 0.144\n", + "ver 34, iter 15, fold 0, val ll: 0.0610, cor: 0.8448, auc: 0.9888\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.262 time per batch: 0.165\n", + "Batch 100 device: cuda time passed: 14.690 time per batch: 0.147\n", + "ver 34, iter 16, fold 0, val ll: 0.0608, cor: 0.8450, auc: 0.9888\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.771 time per batch: 0.155\n", + "Batch 100 device: cuda time passed: 14.489 time per batch: 0.145\n", + "ver 34, iter 17, fold 0, val ll: 0.0608, cor: 0.8455, auc: 0.9887\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.139 time per batch: 0.163\n", + "Batch 100 device: cuda time passed: 14.767 time per batch: 0.148\n", + "ver 34, iter 18, fold 0, val ll: 0.0609, cor: 0.8449, auc: 0.9889\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.670 time per batch: 0.153\n", + "Batch 100 device: cuda time passed: 14.955 time per batch: 0.150\n", + "ver 34, iter 19, fold 0, val ll: 0.0606, cor: 0.8454, auc: 0.9890\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.039 time per batch: 0.161\n", + "Batch 100 device: cuda time passed: 14.878 time per batch: 0.149\n", + "ver 34, iter 20, fold 0, val ll: 0.0608, cor: 0.8449, auc: 0.9889\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.962 time per batch: 0.159\n", + "Batch 100 device: cuda time passed: 14.352 time per batch: 0.144\n", + "ver 34, iter 21, fold 0, val ll: 0.0608, cor: 0.8451, auc: 0.9888\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.997 time per batch: 0.160\n", + "Batch 100 device: cuda time passed: 14.132 time per batch: 0.141\n", + "ver 34, iter 22, fold 0, val ll: 0.0606, cor: 0.8459, auc: 0.9889\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.943 time per batch: 0.159\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Batch 100 device: cuda time passed: 14.021 time per batch: 0.140\n", + "ver 34, iter 23, fold 0, val ll: 0.0608, cor: 0.8453, auc: 0.9889\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.490 time per batch: 0.150\n", + "Batch 100 device: cuda time passed: 13.991 time per batch: 0.140\n", + "ver 34, iter 24, fold 0, val ll: 0.0609, cor: 0.8450, auc: 0.9888\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.355 time per batch: 0.167\n", + "Batch 100 device: cuda time passed: 14.456 time per batch: 0.145\n", + "ver 34, iter 25, fold 0, val ll: 0.0608, cor: 0.8452, auc: 0.9889\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.871 time per batch: 0.177\n", + "Batch 100 device: cuda time passed: 15.260 time per batch: 0.153\n", + "ver 34, iter 26, fold 0, val ll: 0.0608, cor: 0.8451, auc: 0.9889\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.760 time per batch: 0.155\n", + "Batch 100 device: cuda time passed: 14.599 time per batch: 0.146\n", + "ver 34, iter 27, fold 0, val ll: 0.0609, cor: 0.8450, auc: 0.9888\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.498 time per batch: 0.170\n", + "Batch 100 device: cuda time passed: 14.639 time per batch: 0.146\n", + "ver 34, iter 28, fold 0, val ll: 0.0610, cor: 0.8450, auc: 0.9887\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.980 time per batch: 0.160\n", + "Batch 100 device: cuda time passed: 14.528 time per batch: 0.145\n", + "ver 34, iter 29, fold 0, val ll: 0.0609, cor: 0.8450, auc: 0.9889\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.133 time per batch: 0.163\n", + "Batch 100 device: cuda time passed: 14.503 time per batch: 0.145\n", + "ver 34, iter 30, fold 0, val ll: 0.0607, cor: 0.8453, auc: 0.9889\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.069 time per batch: 0.161\n", + "Batch 100 device: cuda time passed: 14.106 time per batch: 0.141\n", + "ver 34, iter 31, fold 0, val ll: 0.0609, cor: 0.8450, auc: 0.9888\n", + "total running time 741.6375591754913\n", + "total time 10448.977521657944\n", + "completed epochs: 3 iters starting now: 32\n", + "adding dummy serieses 12\n", + "DataSet 11 valid size 4288 fold 1\n", + "dataset valid: 4288 loader valid: 134\n", + "loading model model.b3.f1.d11.v34\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.855 time per batch: 0.157\n", + "Batch 100 device: cuda time passed: 13.890 time per batch: 0.139\n", + "ver 34, iter 0, fold 1, val ll: 0.0597, cor: 0.8468, auc: 0.9897\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.194 time per batch: 0.144\n", + "Batch 100 device: cuda time passed: 14.411 time per batch: 0.144\n", + "ver 34, iter 1, fold 1, val ll: 0.0598, cor: 0.8465, auc: 0.9896\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.180 time per batch: 0.164\n", + "Batch 100 device: cuda time passed: 14.126 time per batch: 0.141\n", + "ver 34, iter 2, fold 1, val ll: 0.0597, cor: 0.8467, auc: 0.9898\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.618 time per batch: 0.152\n", + "Batch 100 device: cuda time passed: 14.407 time per batch: 0.144\n", + "ver 34, iter 3, fold 1, val ll: 0.0596, cor: 0.8468, auc: 0.9899\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.547 time per batch: 0.171\n", + "Batch 100 device: cuda time passed: 14.485 time per batch: 0.145\n", + "ver 34, iter 4, fold 1, val ll: 0.0597, cor: 0.8469, auc: 0.9898\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.303 time per batch: 0.166\n", + "Batch 100 device: cuda time passed: 14.678 time per batch: 0.147\n", + "ver 34, iter 5, fold 1, val ll: 0.0597, cor: 0.8468, auc: 0.9897\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.365 time per batch: 0.167\n", + "Batch 100 device: cuda time passed: 13.899 time per batch: 0.139\n", + "ver 34, iter 6, fold 1, val ll: 0.0598, cor: 0.8463, auc: 0.9896\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.115 time per batch: 0.162\n", + "Batch 100 device: cuda time passed: 14.203 time per batch: 0.142\n", + "ver 34, iter 7, fold 1, val ll: 0.0596, cor: 0.8469, auc: 0.9898\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.933 time per batch: 0.159\n", + "Batch 100 device: cuda time passed: 14.748 time per batch: 0.147\n", + "ver 34, iter 8, fold 1, val ll: 0.0599, cor: 0.8462, auc: 0.9897\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.972 time per batch: 0.159\n", + "Batch 100 device: cuda time passed: 14.605 time per batch: 0.146\n", + "ver 34, iter 9, fold 1, val ll: 0.0594, cor: 0.8476, auc: 0.9898\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.555 time per batch: 0.151\n", + "Batch 100 device: cuda time passed: 14.077 time per batch: 0.141\n", + "ver 34, iter 10, fold 1, val ll: 0.0597, cor: 0.8466, auc: 0.9898\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.297 time per batch: 0.166\n", + "Batch 100 device: cuda time passed: 14.186 time per batch: 0.142\n", + "ver 34, iter 11, fold 1, val ll: 0.0594, cor: 0.8472, auc: 0.9898\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.592 time per batch: 0.152\n", + "Batch 100 device: cuda time passed: 13.891 time per batch: 0.139\n", + "ver 34, iter 12, fold 1, val ll: 0.0598, cor: 0.8465, auc: 0.9897\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.432 time per batch: 0.149\n", + "Batch 100 device: cuda time passed: 13.820 time per batch: 0.138\n", + "ver 34, iter 13, fold 1, val ll: 0.0597, cor: 0.8471, auc: 0.9896\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.365 time per batch: 0.167\n", + "Batch 100 device: cuda time passed: 14.299 time per batch: 0.143\n", + "ver 34, iter 14, fold 1, val ll: 0.0598, cor: 0.8466, auc: 0.9896\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.044 time per batch: 0.161\n", + "Batch 100 device: cuda time passed: 14.697 time per batch: 0.147\n", + "ver 34, iter 15, fold 1, val ll: 0.0596, cor: 0.8473, auc: 0.9898\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.451 time per batch: 0.169\n", + "Batch 100 device: cuda time passed: 14.529 time per batch: 0.145\n", + "ver 34, iter 16, fold 1, val ll: 0.0599, cor: 0.8465, auc: 0.9897\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.849 time per batch: 0.157\n", + "Batch 100 device: cuda time passed: 13.789 time per batch: 0.138\n", + "ver 34, iter 17, fold 1, val ll: 0.0599, cor: 0.8463, auc: 0.9897\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.653 time per batch: 0.153\n", + "Batch 100 device: cuda time passed: 14.070 time per batch: 0.141\n", + "ver 34, iter 18, fold 1, val ll: 0.0597, cor: 0.8469, auc: 0.9897\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.706 time per batch: 0.174\n", + "Batch 100 device: cuda time passed: 14.003 time per batch: 0.140\n", + "ver 34, iter 19, fold 1, val ll: 0.0596, cor: 0.8471, auc: 0.9897\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.402 time per batch: 0.168\n", + "Batch 100 device: cuda time passed: 14.393 time per batch: 0.144\n", + "ver 34, iter 20, fold 1, val ll: 0.0598, cor: 0.8462, auc: 0.9897\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.810 time per batch: 0.156\n", + "Batch 100 device: cuda time passed: 14.209 time per batch: 0.142\n", + "ver 34, iter 21, fold 1, val ll: 0.0598, cor: 0.8464, auc: 0.9897\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.650 time per batch: 0.173\n", + "Batch 100 device: cuda time passed: 14.641 time per batch: 0.146\n", + "ver 34, iter 22, fold 1, val ll: 0.0597, cor: 0.8468, auc: 0.9898\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.703 time per batch: 0.154\n", + "Batch 100 device: cuda time passed: 14.439 time per batch: 0.144\n", + "ver 34, iter 23, fold 1, val ll: 0.0597, cor: 0.8470, auc: 0.9897\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.274 time per batch: 0.165\n", + "Batch 100 device: cuda time passed: 14.597 time per batch: 0.146\n", + "ver 34, iter 24, fold 1, val ll: 0.0595, cor: 0.8471, auc: 0.9899\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.443 time per batch: 0.149\n", + "Batch 100 device: cuda time passed: 13.518 time per batch: 0.135\n", + "ver 34, iter 25, fold 1, val ll: 0.0597, cor: 0.8466, auc: 0.9898\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.435 time per batch: 0.149\n", + "Batch 100 device: cuda time passed: 13.988 time per batch: 0.140\n", + "ver 34, iter 26, fold 1, val ll: 0.0596, cor: 0.8471, auc: 0.9898\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.661 time per batch: 0.153\n", + "Batch 100 device: cuda time passed: 14.249 time per batch: 0.142\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ver 34, iter 27, fold 1, val ll: 0.0599, cor: 0.8462, auc: 0.9897\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.806 time per batch: 0.156\n", + "Batch 100 device: cuda time passed: 14.135 time per batch: 0.141\n", + "ver 34, iter 28, fold 1, val ll: 0.0598, cor: 0.8464, auc: 0.9897\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.158 time per batch: 0.163\n", + "Batch 100 device: cuda time passed: 14.689 time per batch: 0.147\n", + "ver 34, iter 29, fold 1, val ll: 0.0598, cor: 0.8465, auc: 0.9897\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.615 time per batch: 0.172\n", + "Batch 100 device: cuda time passed: 14.820 time per batch: 0.148\n", + "ver 34, iter 30, fold 1, val ll: 0.0594, cor: 0.8474, auc: 0.9898\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.738 time per batch: 0.175\n", + "Batch 100 device: cuda time passed: 15.174 time per batch: 0.152\n", + "ver 34, iter 31, fold 1, val ll: 0.0595, cor: 0.8472, auc: 0.9898\n", + "total running time 721.0183691978455\n", + "total time 11170.231662034988\n", + "completed epochs: 3 iters starting now: 32\n", + "adding dummy serieses 27\n", + "DataSet 11 valid size 4416 fold 2\n", + "dataset valid: 4416 loader valid: 138\n", + "loading model model.b3.f2.d11.v34\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.321 time per batch: 0.166\n", + "Batch 100 device: cuda time passed: 14.535 time per batch: 0.145\n", + "ver 34, iter 0, fold 2, val ll: 0.0598, cor: 0.8435, auc: 0.9894\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.470 time per batch: 0.169\n", + "Batch 100 device: cuda time passed: 14.441 time per batch: 0.144\n", + "ver 34, iter 1, fold 2, val ll: 0.0597, cor: 0.8432, auc: 0.9895\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.828 time per batch: 0.157\n", + "Batch 100 device: cuda time passed: 14.318 time per batch: 0.143\n", + "ver 34, iter 2, fold 2, val ll: 0.0596, cor: 0.8440, auc: 0.9895\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.636 time per batch: 0.153\n", + "Batch 100 device: cuda time passed: 14.246 time per batch: 0.142\n", + "ver 34, iter 3, fold 2, val ll: 0.0597, cor: 0.8434, auc: 0.9895\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.601 time per batch: 0.152\n", + "Batch 100 device: cuda time passed: 14.000 time per batch: 0.140\n", + "ver 34, iter 4, fold 2, val ll: 0.0595, cor: 0.8441, auc: 0.9895\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.245 time per batch: 0.145\n", + "Batch 100 device: cuda time passed: 14.561 time per batch: 0.146\n", + "ver 34, iter 5, fold 2, val ll: 0.0596, cor: 0.8439, auc: 0.9895\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.083 time per batch: 0.162\n", + "Batch 100 device: cuda time passed: 14.816 time per batch: 0.148\n", + "ver 34, iter 6, fold 2, val ll: 0.0597, cor: 0.8438, auc: 0.9895\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.189 time per batch: 0.164\n", + "Batch 100 device: cuda time passed: 14.019 time per batch: 0.140\n", + "ver 34, iter 7, fold 2, val ll: 0.0595, cor: 0.8439, auc: 0.9896\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.470 time per batch: 0.149\n", + "Batch 100 device: cuda time passed: 14.477 time per batch: 0.145\n", + "ver 34, iter 8, fold 2, val ll: 0.0599, cor: 0.8433, auc: 0.9894\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.395 time per batch: 0.168\n", + "Batch 100 device: cuda time passed: 15.214 time per batch: 0.152\n", + "ver 34, iter 9, fold 2, val ll: 0.0596, cor: 0.8438, auc: 0.9895\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.550 time per batch: 0.171\n", + "Batch 100 device: cuda time passed: 14.843 time per batch: 0.148\n", + "ver 34, iter 10, fold 2, val ll: 0.0598, cor: 0.8433, auc: 0.9895\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.069 time per batch: 0.161\n", + "Batch 100 device: cuda time passed: 15.071 time per batch: 0.151\n", + "ver 34, iter 11, fold 2, val ll: 0.0598, cor: 0.8435, auc: 0.9894\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.822 time per batch: 0.156\n", + "Batch 100 device: cuda time passed: 14.030 time per batch: 0.140\n", + "ver 34, iter 12, fold 2, val ll: 0.0599, cor: 0.8429, auc: 0.9895\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.770 time per batch: 0.155\n", + "Batch 100 device: cuda time passed: 14.464 time per batch: 0.145\n", + "ver 34, iter 13, fold 2, val ll: 0.0599, cor: 0.8434, auc: 0.9893\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.993 time per batch: 0.160\n", + "Batch 100 device: cuda time passed: 14.393 time per batch: 0.144\n", + "ver 34, iter 14, fold 2, val ll: 0.0598, cor: 0.8434, auc: 0.9895\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.532 time per batch: 0.151\n", + "Batch 100 device: cuda time passed: 14.834 time per batch: 0.148\n", + "ver 34, iter 15, fold 2, val ll: 0.0599, cor: 0.8434, auc: 0.9894\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.617 time per batch: 0.152\n", + "Batch 100 device: cuda time passed: 14.796 time per batch: 0.148\n", + "ver 34, iter 16, fold 2, val ll: 0.0599, cor: 0.8430, auc: 0.9895\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.682 time per batch: 0.174\n", + "Batch 100 device: cuda time passed: 14.858 time per batch: 0.149\n", + "ver 34, iter 17, fold 2, val ll: 0.0600, cor: 0.8431, auc: 0.9894\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.982 time per batch: 0.160\n", + "Batch 100 device: cuda time passed: 14.452 time per batch: 0.145\n", + "ver 34, iter 18, fold 2, val ll: 0.0596, cor: 0.8440, auc: 0.9895\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.125 time per batch: 0.162\n", + "Batch 100 device: cuda time passed: 14.476 time per batch: 0.145\n", + "ver 34, iter 19, fold 2, val ll: 0.0600, cor: 0.8430, auc: 0.9894\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.754 time per batch: 0.175\n", + "Batch 100 device: cuda time passed: 15.201 time per batch: 0.152\n", + "ver 34, iter 20, fold 2, val ll: 0.0600, cor: 0.8430, auc: 0.9894\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.643 time per batch: 0.173\n", + "Batch 100 device: cuda time passed: 15.414 time per batch: 0.154\n", + "ver 34, iter 21, fold 2, val ll: 0.0598, cor: 0.8435, auc: 0.9894\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.911 time per batch: 0.158\n", + "Batch 100 device: cuda time passed: 14.572 time per batch: 0.146\n", + "ver 34, iter 22, fold 2, val ll: 0.0597, cor: 0.8437, auc: 0.9894\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.263 time per batch: 0.165\n", + "Batch 100 device: cuda time passed: 14.524 time per batch: 0.145\n", + "ver 34, iter 23, fold 2, val ll: 0.0597, cor: 0.8435, auc: 0.9895\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.294 time per batch: 0.166\n", + "Batch 100 device: cuda time passed: 14.922 time per batch: 0.149\n", + "ver 34, iter 24, fold 2, val ll: 0.0599, cor: 0.8435, auc: 0.9894\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.698 time per batch: 0.174\n", + "Batch 100 device: cuda time passed: 15.055 time per batch: 0.151\n", + "ver 34, iter 25, fold 2, val ll: 0.0599, cor: 0.8433, auc: 0.9894\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.893 time per batch: 0.158\n", + "Batch 100 device: cuda time passed: 14.455 time per batch: 0.145\n", + "ver 34, iter 26, fold 2, val ll: 0.0595, cor: 0.8439, auc: 0.9896\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.170 time per batch: 0.163\n", + "Batch 100 device: cuda time passed: 14.426 time per batch: 0.144\n", + "ver 34, iter 27, fold 2, val ll: 0.0599, cor: 0.8433, auc: 0.9893\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.228 time per batch: 0.165\n", + "Batch 100 device: cuda time passed: 14.495 time per batch: 0.145\n", + "ver 34, iter 28, fold 2, val ll: 0.0597, cor: 0.8437, auc: 0.9894\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.403 time per batch: 0.168\n", + "Batch 100 device: cuda time passed: 14.746 time per batch: 0.147\n", + "ver 34, iter 29, fold 2, val ll: 0.0598, cor: 0.8434, auc: 0.9895\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.353 time per batch: 0.167\n", + "Batch 100 device: cuda time passed: 14.725 time per batch: 0.147\n", + "ver 34, iter 30, fold 2, val ll: 0.0599, cor: 0.8429, auc: 0.9894\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.921 time per batch: 0.158\n", + "Batch 100 device: cuda time passed: 14.335 time per batch: 0.143\n", + "ver 34, iter 31, fold 2, val ll: 0.0599, cor: 0.8432, auc: 0.9894\n", + "total running time 752.1568894386292\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "total time 11922.615085601807\n", + "completed epochs: 3 iters starting now: 32\n", + "adding dummy serieses 16\n", + "DataSet 11 valid size 4352 fold 3\n", + "dataset valid: 4352 loader valid: 136\n", + "loading model model.b3.f3.d11.v34\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.425 time per batch: 0.168\n", + "Batch 100 device: cuda time passed: 14.529 time per batch: 0.145\n", + "ver 34, iter 0, fold 3, val ll: 0.0630, cor: 0.8408, auc: 0.9887\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.520 time per batch: 0.170\n", + "Batch 100 device: cuda time passed: 14.945 time per batch: 0.149\n", + "ver 34, iter 1, fold 3, val ll: 0.0631, cor: 0.8410, auc: 0.9886\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.122 time per batch: 0.162\n", + "Batch 100 device: cuda time passed: 14.718 time per batch: 0.147\n", + "ver 34, iter 2, fold 3, val ll: 0.0632, cor: 0.8404, auc: 0.9887\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.313 time per batch: 0.166\n", + "Batch 100 device: cuda time passed: 14.583 time per batch: 0.146\n", + "ver 34, iter 3, fold 3, val ll: 0.0629, cor: 0.8410, auc: 0.9887\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.467 time per batch: 0.149\n", + "Batch 100 device: cuda time passed: 14.490 time per batch: 0.145\n", + "ver 34, iter 4, fold 3, val ll: 0.0629, cor: 0.8410, auc: 0.9888\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.773 time per batch: 0.155\n", + "Batch 100 device: cuda time passed: 14.122 time per batch: 0.141\n", + "ver 34, iter 5, fold 3, val ll: 0.0627, cor: 0.8414, auc: 0.9888\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.125 time per batch: 0.163\n", + "Batch 100 device: cuda time passed: 14.389 time per batch: 0.144\n", + "ver 34, iter 6, fold 3, val ll: 0.0631, cor: 0.8411, auc: 0.9887\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.044 time per batch: 0.161\n", + "Batch 100 device: cuda time passed: 13.814 time per batch: 0.138\n", + "ver 34, iter 7, fold 3, val ll: 0.0627, cor: 0.8417, auc: 0.9888\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.442 time per batch: 0.169\n", + "Batch 100 device: cuda time passed: 14.809 time per batch: 0.148\n", + "ver 34, iter 8, fold 3, val ll: 0.0631, cor: 0.8408, auc: 0.9886\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.894 time per batch: 0.158\n", + "Batch 100 device: cuda time passed: 14.364 time per batch: 0.144\n", + "ver 34, iter 9, fold 3, val ll: 0.0630, cor: 0.8409, auc: 0.9886\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.779 time per batch: 0.156\n", + "Batch 100 device: cuda time passed: 14.097 time per batch: 0.141\n", + "ver 34, iter 10, fold 3, val ll: 0.0631, cor: 0.8406, auc: 0.9886\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.392 time per batch: 0.168\n", + "Batch 100 device: cuda time passed: 14.809 time per batch: 0.148\n", + "ver 34, iter 11, fold 3, val ll: 0.0628, cor: 0.8411, auc: 0.9888\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.458 time per batch: 0.149\n", + "Batch 100 device: cuda time passed: 14.714 time per batch: 0.147\n", + "ver 34, iter 12, fold 3, val ll: 0.0630, cor: 0.8406, auc: 0.9886\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.365 time per batch: 0.167\n", + "Batch 100 device: cuda time passed: 14.288 time per batch: 0.143\n", + "ver 34, iter 13, fold 3, val ll: 0.0630, cor: 0.8407, auc: 0.9887\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.378 time per batch: 0.168\n", + "Batch 100 device: cuda time passed: 14.711 time per batch: 0.147\n", + "ver 34, iter 14, fold 3, val ll: 0.0629, cor: 0.8410, auc: 0.9888\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.608 time per batch: 0.172\n", + "Batch 100 device: cuda time passed: 14.700 time per batch: 0.147\n", + "ver 34, iter 15, fold 3, val ll: 0.0632, cor: 0.8404, auc: 0.9886\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.907 time per batch: 0.158\n", + "Batch 100 device: cuda time passed: 14.268 time per batch: 0.143\n", + "ver 34, iter 16, fold 3, val ll: 0.0630, cor: 0.8410, auc: 0.9886\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.337 time per batch: 0.167\n", + "Batch 100 device: cuda time passed: 14.435 time per batch: 0.144\n", + "ver 34, iter 17, fold 3, val ll: 0.0631, cor: 0.8408, auc: 0.9886\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.253 time per batch: 0.145\n", + "Batch 100 device: cuda time passed: 13.893 time per batch: 0.139\n", + "ver 34, iter 18, fold 3, val ll: 0.0630, cor: 0.8410, auc: 0.9886\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.474 time per batch: 0.169\n", + "Batch 100 device: cuda time passed: 15.130 time per batch: 0.151\n", + "ver 34, iter 19, fold 3, val ll: 0.0632, cor: 0.8405, auc: 0.9886\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.107 time per batch: 0.162\n", + "Batch 100 device: cuda time passed: 14.488 time per batch: 0.145\n", + "ver 34, iter 20, fold 3, val ll: 0.0630, cor: 0.8410, auc: 0.9887\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.328 time per batch: 0.167\n", + "Batch 100 device: cuda time passed: 14.122 time per batch: 0.141\n", + "ver 34, iter 21, fold 3, val ll: 0.0630, cor: 0.8411, auc: 0.9887\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.747 time per batch: 0.155\n", + "Batch 100 device: cuda time passed: 14.564 time per batch: 0.146\n", + "ver 34, iter 22, fold 3, val ll: 0.0629, cor: 0.8414, auc: 0.9888\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.608 time per batch: 0.152\n", + "Batch 100 device: cuda time passed: 14.575 time per batch: 0.146\n", + "ver 34, iter 23, fold 3, val ll: 0.0631, cor: 0.8409, auc: 0.9885\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.066 time per batch: 0.161\n", + "Batch 100 device: cuda time passed: 14.204 time per batch: 0.142\n", + "ver 34, iter 24, fold 3, val ll: 0.0630, cor: 0.8413, auc: 0.9886\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.599 time per batch: 0.152\n", + "Batch 100 device: cuda time passed: 14.531 time per batch: 0.145\n", + "ver 34, iter 25, fold 3, val ll: 0.0630, cor: 0.8410, auc: 0.9887\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.369 time per batch: 0.167\n", + "Batch 100 device: cuda time passed: 14.646 time per batch: 0.146\n", + "ver 34, iter 26, fold 3, val ll: 0.0629, cor: 0.8409, auc: 0.9887\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.989 time per batch: 0.160\n", + "Batch 100 device: cuda time passed: 14.261 time per batch: 0.143\n", + "ver 34, iter 27, fold 3, val ll: 0.0631, cor: 0.8409, auc: 0.9886\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.613 time per batch: 0.152\n", + "Batch 100 device: cuda time passed: 13.975 time per batch: 0.140\n", + "ver 34, iter 28, fold 3, val ll: 0.0629, cor: 0.8409, auc: 0.9888\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.974 time per batch: 0.159\n", + "Batch 100 device: cuda time passed: 14.795 time per batch: 0.148\n", + "ver 34, iter 29, fold 3, val ll: 0.0630, cor: 0.8409, auc: 0.9887\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.833 time per batch: 0.157\n", + "Batch 100 device: cuda time passed: 13.972 time per batch: 0.140\n", + "ver 34, iter 30, fold 3, val ll: 0.0632, cor: 0.8405, auc: 0.9886\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.679 time per batch: 0.174\n", + "Batch 100 device: cuda time passed: 14.658 time per batch: 0.147\n", + "ver 34, iter 31, fold 3, val ll: 0.0629, cor: 0.8412, auc: 0.9887\n", + "total running time 734.1475803852081\n", + "total time 12656.995476007462\n", + "completed epochs: 3 iters starting now: 32\n", + "adding dummy serieses 16\n", + "DataSet 11 valid size 4384 fold 4\n", + "dataset valid: 4384 loader valid: 137\n", + "loading model model.b3.f4.d11.v34\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.537 time per batch: 0.151\n", + "Batch 100 device: cuda time passed: 14.791 time per batch: 0.148\n", + "ver 34, iter 0, fold 4, val ll: 0.0621, cor: 0.8422, auc: 0.9883\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.658 time per batch: 0.153\n", + "Batch 100 device: cuda time passed: 14.894 time per batch: 0.149\n", + "ver 34, iter 1, fold 4, val ll: 0.0621, cor: 0.8425, auc: 0.9881\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.153 time per batch: 0.163\n", + "Batch 100 device: cuda time passed: 15.152 time per batch: 0.152\n", + "ver 34, iter 2, fold 4, val ll: 0.0621, cor: 0.8424, auc: 0.9882\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.949 time per batch: 0.159\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Batch 100 device: cuda time passed: 14.614 time per batch: 0.146\n", + "ver 34, iter 3, fold 4, val ll: 0.0621, cor: 0.8423, auc: 0.9882\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.994 time per batch: 0.160\n", + "Batch 100 device: cuda time passed: 14.679 time per batch: 0.147\n", + "ver 34, iter 4, fold 4, val ll: 0.0621, cor: 0.8424, auc: 0.9883\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.531 time per batch: 0.151\n", + "Batch 100 device: cuda time passed: 14.144 time per batch: 0.141\n", + "ver 34, iter 5, fold 4, val ll: 0.0622, cor: 0.8423, auc: 0.9881\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.704 time per batch: 0.154\n", + "Batch 100 device: cuda time passed: 14.333 time per batch: 0.143\n", + "ver 34, iter 6, fold 4, val ll: 0.0621, cor: 0.8422, auc: 0.9882\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.156 time per batch: 0.163\n", + "Batch 100 device: cuda time passed: 14.257 time per batch: 0.143\n", + "ver 34, iter 7, fold 4, val ll: 0.0620, cor: 0.8423, auc: 0.9883\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.861 time per batch: 0.177\n", + "Batch 100 device: cuda time passed: 15.148 time per batch: 0.151\n", + "ver 34, iter 8, fold 4, val ll: 0.0622, cor: 0.8420, auc: 0.9882\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.667 time per batch: 0.153\n", + "Batch 100 device: cuda time passed: 14.239 time per batch: 0.142\n", + "ver 34, iter 9, fold 4, val ll: 0.0623, cor: 0.8420, auc: 0.9881\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.540 time per batch: 0.151\n", + "Batch 100 device: cuda time passed: 14.616 time per batch: 0.146\n", + "ver 34, iter 10, fold 4, val ll: 0.0621, cor: 0.8422, auc: 0.9883\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.561 time per batch: 0.171\n", + "Batch 100 device: cuda time passed: 14.683 time per batch: 0.147\n", + "ver 34, iter 11, fold 4, val ll: 0.0621, cor: 0.8424, auc: 0.9882\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.547 time per batch: 0.151\n", + "Batch 100 device: cuda time passed: 14.696 time per batch: 0.147\n", + "ver 34, iter 12, fold 4, val ll: 0.0621, cor: 0.8427, auc: 0.9882\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.117 time per batch: 0.162\n", + "Batch 100 device: cuda time passed: 14.203 time per batch: 0.142\n", + "ver 34, iter 13, fold 4, val ll: 0.0621, cor: 0.8421, auc: 0.9882\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.766 time per batch: 0.155\n", + "Batch 100 device: cuda time passed: 14.236 time per batch: 0.142\n", + "ver 34, iter 14, fold 4, val ll: 0.0620, cor: 0.8421, auc: 0.9884\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.059 time per batch: 0.161\n", + "Batch 100 device: cuda time passed: 14.706 time per batch: 0.147\n", + "ver 34, iter 15, fold 4, val ll: 0.0620, cor: 0.8429, auc: 0.9882\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.840 time per batch: 0.157\n", + "Batch 100 device: cuda time passed: 14.664 time per batch: 0.147\n", + "ver 34, iter 16, fold 4, val ll: 0.0624, cor: 0.8417, auc: 0.9882\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.848 time per batch: 0.157\n", + "Batch 100 device: cuda time passed: 14.174 time per batch: 0.142\n", + "ver 34, iter 17, fold 4, val ll: 0.0619, cor: 0.8430, auc: 0.9882\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.310 time per batch: 0.166\n", + "Batch 100 device: cuda time passed: 14.376 time per batch: 0.144\n", + "ver 34, iter 18, fold 4, val ll: 0.0619, cor: 0.8422, auc: 0.9883\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.770 time per batch: 0.155\n", + "Batch 100 device: cuda time passed: 14.641 time per batch: 0.146\n", + "ver 34, iter 19, fold 4, val ll: 0.0619, cor: 0.8430, auc: 0.9882\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.277 time per batch: 0.166\n", + "Batch 100 device: cuda time passed: 14.477 time per batch: 0.145\n", + "ver 34, iter 20, fold 4, val ll: 0.0621, cor: 0.8423, auc: 0.9882\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.529 time per batch: 0.151\n", + "Batch 100 device: cuda time passed: 14.157 time per batch: 0.142\n", + "ver 34, iter 21, fold 4, val ll: 0.0622, cor: 0.8422, auc: 0.9882\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.420 time per batch: 0.168\n", + "Batch 100 device: cuda time passed: 14.098 time per batch: 0.141\n", + "ver 34, iter 22, fold 4, val ll: 0.0620, cor: 0.8427, auc: 0.9882\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.731 time per batch: 0.155\n", + "Batch 100 device: cuda time passed: 14.621 time per batch: 0.146\n", + "ver 34, iter 23, fold 4, val ll: 0.0622, cor: 0.8424, auc: 0.9881\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.574 time per batch: 0.151\n", + "Batch 100 device: cuda time passed: 14.133 time per batch: 0.141\n", + "ver 34, iter 24, fold 4, val ll: 0.0621, cor: 0.8421, auc: 0.9883\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.682 time per batch: 0.154\n", + "Batch 100 device: cuda time passed: 14.033 time per batch: 0.140\n", + "ver 34, iter 25, fold 4, val ll: 0.0621, cor: 0.8424, auc: 0.9882\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.161 time per batch: 0.163\n", + "Batch 100 device: cuda time passed: 14.308 time per batch: 0.143\n", + "ver 34, iter 26, fold 4, val ll: 0.0621, cor: 0.8422, auc: 0.9882\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.618 time per batch: 0.152\n", + "Batch 100 device: cuda time passed: 13.931 time per batch: 0.139\n", + "ver 34, iter 27, fold 4, val ll: 0.0620, cor: 0.8426, auc: 0.9883\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.213 time per batch: 0.164\n", + "Batch 100 device: cuda time passed: 14.428 time per batch: 0.144\n", + "ver 34, iter 28, fold 4, val ll: 0.0621, cor: 0.8424, auc: 0.9881\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.041 time per batch: 0.161\n", + "Batch 100 device: cuda time passed: 14.991 time per batch: 0.150\n", + "ver 34, iter 29, fold 4, val ll: 0.0620, cor: 0.8427, auc: 0.9882\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.222 time per batch: 0.164\n", + "Batch 100 device: cuda time passed: 14.845 time per batch: 0.148\n", + "ver 34, iter 30, fold 4, val ll: 0.0620, cor: 0.8426, auc: 0.9881\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.285 time per batch: 0.166\n", + "Batch 100 device: cuda time passed: 14.113 time per batch: 0.141\n", + "ver 34, iter 31, fold 4, val ll: 0.0621, cor: 0.8423, auc: 0.9882\n", + "total running time 742.8772552013397\n", + "total time 13400.111248254776\n", + "completed epochs: 3 iters starting now: 32\n", + "adding dummy serieses 9\n", + "DataSet 12 valid size 4384 fold 0\n", + "dataset valid: 4384 loader valid: 137\n", + "loading model model.b3.f0.d12.v34\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.200 time per batch: 0.164\n", + "Batch 100 device: cuda time passed: 14.845 time per batch: 0.148\n", + "ver 34, iter 0, fold 0, val ll: 0.0608, cor: 0.8451, auc: 0.9887\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.747 time per batch: 0.155\n", + "Batch 100 device: cuda time passed: 15.452 time per batch: 0.155\n", + "ver 34, iter 1, fold 0, val ll: 0.0610, cor: 0.8443, auc: 0.9888\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.907 time per batch: 0.158\n", + "Batch 100 device: cuda time passed: 14.721 time per batch: 0.147\n", + "ver 34, iter 2, fold 0, val ll: 0.0609, cor: 0.8442, auc: 0.9888\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.093 time per batch: 0.162\n", + "Batch 100 device: cuda time passed: 14.886 time per batch: 0.149\n", + "ver 34, iter 3, fold 0, val ll: 0.0608, cor: 0.8449, auc: 0.9888\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.963 time per batch: 0.159\n", + "Batch 100 device: cuda time passed: 14.266 time per batch: 0.143\n", + "ver 34, iter 4, fold 0, val ll: 0.0608, cor: 0.8444, auc: 0.9888\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.064 time per batch: 0.161\n", + "Batch 100 device: cuda time passed: 14.130 time per batch: 0.141\n", + "ver 34, iter 5, fold 0, val ll: 0.0608, cor: 0.8446, auc: 0.9888\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.710 time per batch: 0.174\n", + "Batch 100 device: cuda time passed: 14.791 time per batch: 0.148\n", + "ver 34, iter 6, fold 0, val ll: 0.0611, cor: 0.8444, auc: 0.9887\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.206 time per batch: 0.164\n", + "Batch 100 device: cuda time passed: 14.944 time per batch: 0.149\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ver 34, iter 7, fold 0, val ll: 0.0609, cor: 0.8444, auc: 0.9889\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.895 time per batch: 0.158\n", + "Batch 100 device: cuda time passed: 14.094 time per batch: 0.141\n", + "ver 34, iter 8, fold 0, val ll: 0.0611, cor: 0.8444, auc: 0.9886\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.393 time per batch: 0.168\n", + "Batch 100 device: cuda time passed: 14.507 time per batch: 0.145\n", + "ver 34, iter 9, fold 0, val ll: 0.0610, cor: 0.8446, auc: 0.9888\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.617 time per batch: 0.172\n", + "Batch 100 device: cuda time passed: 14.751 time per batch: 0.148\n", + "ver 34, iter 10, fold 0, val ll: 0.0610, cor: 0.8447, auc: 0.9887\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.839 time per batch: 0.157\n", + "Batch 100 device: cuda time passed: 14.319 time per batch: 0.143\n", + "ver 34, iter 11, fold 0, val ll: 0.0611, cor: 0.8444, auc: 0.9887\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.572 time per batch: 0.151\n", + "Batch 100 device: cuda time passed: 14.793 time per batch: 0.148\n", + "ver 34, iter 12, fold 0, val ll: 0.0609, cor: 0.8446, auc: 0.9888\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.295 time per batch: 0.166\n", + "Batch 100 device: cuda time passed: 14.345 time per batch: 0.143\n", + "ver 34, iter 13, fold 0, val ll: 0.0608, cor: 0.8447, auc: 0.9888\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.880 time per batch: 0.158\n", + "Batch 100 device: cuda time passed: 14.614 time per batch: 0.146\n", + "ver 34, iter 14, fold 0, val ll: 0.0609, cor: 0.8445, auc: 0.9888\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.390 time per batch: 0.168\n", + "Batch 100 device: cuda time passed: 14.339 time per batch: 0.143\n", + "ver 34, iter 15, fold 0, val ll: 0.0610, cor: 0.8446, auc: 0.9887\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.170 time per batch: 0.163\n", + "Batch 100 device: cuda time passed: 14.692 time per batch: 0.147\n", + "ver 34, iter 16, fold 0, val ll: 0.0609, cor: 0.8448, auc: 0.9887\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.665 time per batch: 0.173\n", + "Batch 100 device: cuda time passed: 14.827 time per batch: 0.148\n", + "ver 34, iter 17, fold 0, val ll: 0.0610, cor: 0.8442, auc: 0.9887\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.021 time per batch: 0.160\n", + "Batch 100 device: cuda time passed: 14.415 time per batch: 0.144\n", + "ver 34, iter 18, fold 0, val ll: 0.0608, cor: 0.8448, auc: 0.9888\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.678 time per batch: 0.174\n", + "Batch 100 device: cuda time passed: 14.637 time per batch: 0.146\n", + "ver 34, iter 19, fold 0, val ll: 0.0609, cor: 0.8445, auc: 0.9888\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.078 time per batch: 0.162\n", + "Batch 100 device: cuda time passed: 14.884 time per batch: 0.149\n", + "ver 34, iter 20, fold 0, val ll: 0.0611, cor: 0.8443, auc: 0.9886\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.296 time per batch: 0.166\n", + "Batch 100 device: cuda time passed: 14.547 time per batch: 0.145\n", + "ver 34, iter 21, fold 0, val ll: 0.0609, cor: 0.8446, auc: 0.9888\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.769 time per batch: 0.155\n", + "Batch 100 device: cuda time passed: 14.252 time per batch: 0.143\n", + "ver 34, iter 22, fold 0, val ll: 0.0610, cor: 0.8447, auc: 0.9886\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.987 time per batch: 0.160\n", + "Batch 100 device: cuda time passed: 14.371 time per batch: 0.144\n", + "ver 34, iter 23, fold 0, val ll: 0.0610, cor: 0.8445, auc: 0.9888\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.220 time per batch: 0.164\n", + "Batch 100 device: cuda time passed: 14.524 time per batch: 0.145\n", + "ver 34, iter 24, fold 0, val ll: 0.0612, cor: 0.8440, auc: 0.9887\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.965 time per batch: 0.159\n", + "Batch 100 device: cuda time passed: 14.629 time per batch: 0.146\n", + "ver 34, iter 25, fold 0, val ll: 0.0608, cor: 0.8451, auc: 0.9888\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.405 time per batch: 0.168\n", + "Batch 100 device: cuda time passed: 14.582 time per batch: 0.146\n", + "ver 34, iter 26, fold 0, val ll: 0.0608, cor: 0.8449, auc: 0.9888\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.919 time per batch: 0.158\n", + "Batch 100 device: cuda time passed: 14.240 time per batch: 0.142\n", + "ver 34, iter 27, fold 0, val ll: 0.0607, cor: 0.8450, auc: 0.9889\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.292 time per batch: 0.146\n", + "Batch 100 device: cuda time passed: 14.701 time per batch: 0.147\n", + "ver 34, iter 28, fold 0, val ll: 0.0608, cor: 0.8449, auc: 0.9888\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.592 time per batch: 0.152\n", + "Batch 100 device: cuda time passed: 13.886 time per batch: 0.139\n", + "ver 34, iter 29, fold 0, val ll: 0.0609, cor: 0.8444, auc: 0.9888\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.837 time per batch: 0.157\n", + "Batch 100 device: cuda time passed: 14.618 time per batch: 0.146\n", + "ver 34, iter 30, fold 0, val ll: 0.0609, cor: 0.8448, auc: 0.9887\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.908 time per batch: 0.158\n", + "Batch 100 device: cuda time passed: 14.168 time per batch: 0.142\n", + "ver 34, iter 31, fold 0, val ll: 0.0609, cor: 0.8445, auc: 0.9888\n", + "total running time 743.3103971481323\n", + "total time 14143.665662765503\n", + "completed epochs: 3 iters starting now: 32\n", + "adding dummy serieses 12\n", + "DataSet 12 valid size 4288 fold 1\n", + "dataset valid: 4288 loader valid: 134\n", + "loading model model.b3.f1.d12.v34\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.167 time per batch: 0.163\n", + "Batch 100 device: cuda time passed: 14.378 time per batch: 0.144\n", + "ver 34, iter 0, fold 1, val ll: 0.0597, cor: 0.8453, auc: 0.9897\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.083 time per batch: 0.162\n", + "Batch 100 device: cuda time passed: 14.542 time per batch: 0.145\n", + "ver 34, iter 1, fold 1, val ll: 0.0594, cor: 0.8461, auc: 0.9898\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.404 time per batch: 0.148\n", + "Batch 100 device: cuda time passed: 13.462 time per batch: 0.135\n", + "ver 34, iter 2, fold 1, val ll: 0.0597, cor: 0.8455, auc: 0.9897\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.099 time per batch: 0.162\n", + "Batch 100 device: cuda time passed: 14.128 time per batch: 0.141\n", + "ver 34, iter 3, fold 1, val ll: 0.0595, cor: 0.8458, auc: 0.9897\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.284 time per batch: 0.166\n", + "Batch 100 device: cuda time passed: 14.410 time per batch: 0.144\n", + "ver 34, iter 4, fold 1, val ll: 0.0597, cor: 0.8456, auc: 0.9897\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.496 time per batch: 0.150\n", + "Batch 100 device: cuda time passed: 14.514 time per batch: 0.145\n", + "ver 34, iter 5, fold 1, val ll: 0.0597, cor: 0.8454, auc: 0.9898\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.689 time per batch: 0.174\n", + "Batch 100 device: cuda time passed: 14.776 time per batch: 0.148\n", + "ver 34, iter 6, fold 1, val ll: 0.0596, cor: 0.8457, auc: 0.9897\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.608 time per batch: 0.152\n", + "Batch 100 device: cuda time passed: 14.817 time per batch: 0.148\n", + "ver 34, iter 7, fold 1, val ll: 0.0597, cor: 0.8454, auc: 0.9897\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.919 time per batch: 0.158\n", + "Batch 100 device: cuda time passed: 13.820 time per batch: 0.138\n", + "ver 34, iter 8, fold 1, val ll: 0.0597, cor: 0.8454, auc: 0.9897\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.601 time per batch: 0.152\n", + "Batch 100 device: cuda time passed: 14.223 time per batch: 0.142\n", + "ver 34, iter 9, fold 1, val ll: 0.0598, cor: 0.8453, auc: 0.9897\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.007 time per batch: 0.160\n", + "Batch 100 device: cuda time passed: 14.392 time per batch: 0.144\n", + "ver 34, iter 10, fold 1, val ll: 0.0596, cor: 0.8456, auc: 0.9897\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.733 time per batch: 0.155\n", + "Batch 100 device: cuda time passed: 14.334 time per batch: 0.143\n", + "ver 34, iter 11, fold 1, val ll: 0.0595, cor: 0.8461, auc: 0.9898\n", + "setFeats, augmentation -1\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Batch 50 device: cuda time passed: 8.393 time per batch: 0.168\n", + "Batch 100 device: cuda time passed: 14.742 time per batch: 0.147\n", + "ver 34, iter 12, fold 1, val ll: 0.0595, cor: 0.8458, auc: 0.9898\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.863 time per batch: 0.157\n", + "Batch 100 device: cuda time passed: 13.937 time per batch: 0.139\n", + "ver 34, iter 13, fold 1, val ll: 0.0597, cor: 0.8454, auc: 0.9898\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.618 time per batch: 0.152\n", + "Batch 100 device: cuda time passed: 14.623 time per batch: 0.146\n", + "ver 34, iter 14, fold 1, val ll: 0.0594, cor: 0.8458, auc: 0.9898\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.221 time per batch: 0.164\n", + "Batch 100 device: cuda time passed: 14.541 time per batch: 0.145\n", + "ver 34, iter 15, fold 1, val ll: 0.0596, cor: 0.8456, auc: 0.9897\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.317 time per batch: 0.166\n", + "Batch 100 device: cuda time passed: 14.128 time per batch: 0.141\n", + "ver 34, iter 16, fold 1, val ll: 0.0596, cor: 0.8457, auc: 0.9898\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.753 time per batch: 0.155\n", + "Batch 100 device: cuda time passed: 13.980 time per batch: 0.140\n", + "ver 34, iter 17, fold 1, val ll: 0.0595, cor: 0.8459, auc: 0.9897\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.082 time per batch: 0.162\n", + "Batch 100 device: cuda time passed: 14.130 time per batch: 0.141\n", + "ver 34, iter 18, fold 1, val ll: 0.0594, cor: 0.8461, auc: 0.9898\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.979 time per batch: 0.160\n", + "Batch 100 device: cuda time passed: 14.019 time per batch: 0.140\n", + "ver 34, iter 19, fold 1, val ll: 0.0593, cor: 0.8464, auc: 0.9899\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.634 time per batch: 0.153\n", + "Batch 100 device: cuda time passed: 14.590 time per batch: 0.146\n", + "ver 34, iter 20, fold 1, val ll: 0.0597, cor: 0.8455, auc: 0.9897\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.381 time per batch: 0.168\n", + "Batch 100 device: cuda time passed: 14.405 time per batch: 0.144\n", + "ver 34, iter 21, fold 1, val ll: 0.0595, cor: 0.8463, auc: 0.9897\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.240 time per batch: 0.165\n", + "Batch 100 device: cuda time passed: 14.160 time per batch: 0.142\n", + "ver 34, iter 22, fold 1, val ll: 0.0596, cor: 0.8458, auc: 0.9897\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.938 time per batch: 0.159\n", + "Batch 100 device: cuda time passed: 14.408 time per batch: 0.144\n", + "ver 34, iter 23, fold 1, val ll: 0.0596, cor: 0.8455, auc: 0.9898\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.677 time per batch: 0.154\n", + "Batch 100 device: cuda time passed: 14.507 time per batch: 0.145\n", + "ver 34, iter 24, fold 1, val ll: 0.0596, cor: 0.8460, auc: 0.9897\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.103 time per batch: 0.162\n", + "Batch 100 device: cuda time passed: 14.345 time per batch: 0.143\n", + "ver 34, iter 25, fold 1, val ll: 0.0593, cor: 0.8464, auc: 0.9898\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.097 time per batch: 0.162\n", + "Batch 100 device: cuda time passed: 14.301 time per batch: 0.143\n", + "ver 34, iter 26, fold 1, val ll: 0.0597, cor: 0.8456, auc: 0.9897\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.920 time per batch: 0.178\n", + "Batch 100 device: cuda time passed: 14.919 time per batch: 0.149\n", + "ver 34, iter 27, fold 1, val ll: 0.0592, cor: 0.8466, auc: 0.9899\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.225 time per batch: 0.165\n", + "Batch 100 device: cuda time passed: 14.347 time per batch: 0.143\n", + "ver 34, iter 28, fold 1, val ll: 0.0595, cor: 0.8456, auc: 0.9898\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.348 time per batch: 0.167\n", + "Batch 100 device: cuda time passed: 14.347 time per batch: 0.143\n", + "ver 34, iter 29, fold 1, val ll: 0.0595, cor: 0.8462, auc: 0.9898\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.762 time per batch: 0.155\n", + "Batch 100 device: cuda time passed: 14.563 time per batch: 0.146\n", + "ver 34, iter 30, fold 1, val ll: 0.0597, cor: 0.8455, auc: 0.9897\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.218 time per batch: 0.164\n", + "Batch 100 device: cuda time passed: 14.506 time per batch: 0.145\n", + "ver 34, iter 31, fold 1, val ll: 0.0595, cor: 0.8458, auc: 0.9898\n", + "total running time 723.6225900650024\n", + "total time 14867.529915571213\n", + "completed epochs: 3 iters starting now: 32\n", + "adding dummy serieses 27\n", + "DataSet 12 valid size 4416 fold 2\n", + "dataset valid: 4416 loader valid: 138\n", + "loading model model.b3.f2.d12.v34\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.349 time per batch: 0.167\n", + "Batch 100 device: cuda time passed: 14.921 time per batch: 0.149\n", + "ver 34, iter 0, fold 2, val ll: 0.0605, cor: 0.8428, auc: 0.9889\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.820 time per batch: 0.156\n", + "Batch 100 device: cuda time passed: 14.591 time per batch: 0.146\n", + "ver 34, iter 1, fold 2, val ll: 0.0600, cor: 0.8438, auc: 0.9891\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.419 time per batch: 0.168\n", + "Batch 100 device: cuda time passed: 14.394 time per batch: 0.144\n", + "ver 34, iter 2, fold 2, val ll: 0.0603, cor: 0.8434, auc: 0.9890\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.641 time per batch: 0.153\n", + "Batch 100 device: cuda time passed: 14.569 time per batch: 0.146\n", + "ver 34, iter 3, fold 2, val ll: 0.0601, cor: 0.8436, auc: 0.9891\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.368 time per batch: 0.167\n", + "Batch 100 device: cuda time passed: 14.677 time per batch: 0.147\n", + "ver 34, iter 4, fold 2, val ll: 0.0604, cor: 0.8432, auc: 0.9888\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.538 time per batch: 0.151\n", + "Batch 100 device: cuda time passed: 14.921 time per batch: 0.149\n", + "ver 34, iter 5, fold 2, val ll: 0.0603, cor: 0.8434, auc: 0.9890\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.965 time per batch: 0.159\n", + "Batch 100 device: cuda time passed: 14.174 time per batch: 0.142\n", + "ver 34, iter 6, fold 2, val ll: 0.0600, cor: 0.8438, auc: 0.9890\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.064 time per batch: 0.161\n", + "Batch 100 device: cuda time passed: 14.308 time per batch: 0.143\n", + "ver 34, iter 7, fold 2, val ll: 0.0603, cor: 0.8434, auc: 0.9889\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.181 time per batch: 0.164\n", + "Batch 100 device: cuda time passed: 14.395 time per batch: 0.144\n", + "ver 34, iter 8, fold 2, val ll: 0.0600, cor: 0.8439, auc: 0.9890\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.308 time per batch: 0.166\n", + "Batch 100 device: cuda time passed: 14.523 time per batch: 0.145\n", + "ver 34, iter 9, fold 2, val ll: 0.0602, cor: 0.8433, auc: 0.9890\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.045 time per batch: 0.161\n", + "Batch 100 device: cuda time passed: 14.723 time per batch: 0.147\n", + "ver 34, iter 10, fold 2, val ll: 0.0604, cor: 0.8427, auc: 0.9889\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.624 time per batch: 0.152\n", + "Batch 100 device: cuda time passed: 14.710 time per batch: 0.147\n", + "ver 34, iter 11, fold 2, val ll: 0.0603, cor: 0.8435, auc: 0.9889\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.438 time per batch: 0.169\n", + "Batch 100 device: cuda time passed: 14.611 time per batch: 0.146\n", + "ver 34, iter 12, fold 2, val ll: 0.0603, cor: 0.8434, auc: 0.9890\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.431 time per batch: 0.169\n", + "Batch 100 device: cuda time passed: 14.251 time per batch: 0.143\n", + "ver 34, iter 13, fold 2, val ll: 0.0602, cor: 0.8432, auc: 0.9891\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.725 time per batch: 0.154\n", + "Batch 100 device: cuda time passed: 14.859 time per batch: 0.149\n", + "ver 34, iter 14, fold 2, val ll: 0.0604, cor: 0.8429, auc: 0.9889\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.611 time per batch: 0.152\n", + "Batch 100 device: cuda time passed: 14.069 time per batch: 0.141\n", + "ver 34, iter 15, fold 2, val ll: 0.0603, cor: 0.8435, auc: 0.9889\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.264 time per batch: 0.165\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Batch 100 device: cuda time passed: 15.089 time per batch: 0.151\n", + "ver 34, iter 16, fold 2, val ll: 0.0605, cor: 0.8425, auc: 0.9890\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.920 time per batch: 0.158\n", + "Batch 100 device: cuda time passed: 14.389 time per batch: 0.144\n", + "ver 34, iter 17, fold 2, val ll: 0.0603, cor: 0.8430, auc: 0.9890\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.102 time per batch: 0.162\n", + "Batch 100 device: cuda time passed: 14.775 time per batch: 0.148\n", + "ver 34, iter 18, fold 2, val ll: 0.0604, cor: 0.8428, auc: 0.9889\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.398 time per batch: 0.168\n", + "Batch 100 device: cuda time passed: 14.497 time per batch: 0.145\n", + "ver 34, iter 19, fold 2, val ll: 0.0603, cor: 0.8435, auc: 0.9889\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.201 time per batch: 0.164\n", + "Batch 100 device: cuda time passed: 15.056 time per batch: 0.151\n", + "ver 34, iter 20, fold 2, val ll: 0.0602, cor: 0.8432, auc: 0.9891\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.929 time per batch: 0.159\n", + "Batch 100 device: cuda time passed: 14.420 time per batch: 0.144\n", + "ver 34, iter 21, fold 2, val ll: 0.0603, cor: 0.8429, auc: 0.9889\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.047 time per batch: 0.161\n", + "Batch 100 device: cuda time passed: 14.790 time per batch: 0.148\n", + "ver 34, iter 22, fold 2, val ll: 0.0601, cor: 0.8436, auc: 0.9891\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.442 time per batch: 0.169\n", + "Batch 100 device: cuda time passed: 14.588 time per batch: 0.146\n", + "ver 34, iter 23, fold 2, val ll: 0.0599, cor: 0.8439, auc: 0.9892\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.374 time per batch: 0.167\n", + "Batch 100 device: cuda time passed: 14.482 time per batch: 0.145\n", + "ver 34, iter 24, fold 2, val ll: 0.0604, cor: 0.8428, auc: 0.9890\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.083 time per batch: 0.162\n", + "Batch 100 device: cuda time passed: 14.383 time per batch: 0.144\n", + "ver 34, iter 25, fold 2, val ll: 0.0605, cor: 0.8427, auc: 0.9889\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.471 time per batch: 0.169\n", + "Batch 100 device: cuda time passed: 14.410 time per batch: 0.144\n", + "ver 34, iter 26, fold 2, val ll: 0.0600, cor: 0.8438, auc: 0.9891\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.600 time per batch: 0.172\n", + "Batch 100 device: cuda time passed: 14.631 time per batch: 0.146\n", + "ver 34, iter 27, fold 2, val ll: 0.0604, cor: 0.8430, auc: 0.9889\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.599 time per batch: 0.172\n", + "Batch 100 device: cuda time passed: 14.776 time per batch: 0.148\n", + "ver 34, iter 28, fold 2, val ll: 0.0604, cor: 0.8432, auc: 0.9890\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.776 time per batch: 0.156\n", + "Batch 100 device: cuda time passed: 14.609 time per batch: 0.146\n", + "ver 34, iter 29, fold 2, val ll: 0.0602, cor: 0.8436, auc: 0.9890\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.443 time per batch: 0.169\n", + "Batch 100 device: cuda time passed: 15.589 time per batch: 0.156\n", + "ver 34, iter 30, fold 2, val ll: 0.0600, cor: 0.8438, auc: 0.9891\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.807 time per batch: 0.156\n", + "Batch 100 device: cuda time passed: 14.568 time per batch: 0.146\n", + "ver 34, iter 31, fold 2, val ll: 0.0603, cor: 0.8431, auc: 0.9889\n", + "total running time 756.8606667518616\n", + "total time 15624.633174657822\n", + "completed epochs: 3 iters starting now: 32\n", + "adding dummy serieses 16\n", + "DataSet 12 valid size 4352 fold 3\n", + "dataset valid: 4352 loader valid: 136\n", + "loading model model.b3.f3.d12.v34\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.148 time per batch: 0.163\n", + "Batch 100 device: cuda time passed: 14.303 time per batch: 0.143\n", + "ver 34, iter 0, fold 3, val ll: 0.0624, cor: 0.8412, auc: 0.9887\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.338 time per batch: 0.167\n", + "Batch 100 device: cuda time passed: 14.757 time per batch: 0.148\n", + "ver 34, iter 1, fold 3, val ll: 0.0628, cor: 0.8402, auc: 0.9886\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.353 time per batch: 0.167\n", + "Batch 100 device: cuda time passed: 14.654 time per batch: 0.147\n", + "ver 34, iter 2, fold 3, val ll: 0.0627, cor: 0.8401, auc: 0.9887\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.905 time per batch: 0.158\n", + "Batch 100 device: cuda time passed: 13.991 time per batch: 0.140\n", + "ver 34, iter 3, fold 3, val ll: 0.0629, cor: 0.8401, auc: 0.9885\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.262 time per batch: 0.165\n", + "Batch 100 device: cuda time passed: 14.397 time per batch: 0.144\n", + "ver 34, iter 4, fold 3, val ll: 0.0626, cor: 0.8405, auc: 0.9887\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.196 time per batch: 0.164\n", + "Batch 100 device: cuda time passed: 14.549 time per batch: 0.145\n", + "ver 34, iter 5, fold 3, val ll: 0.0627, cor: 0.8406, auc: 0.9886\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.002 time per batch: 0.160\n", + "Batch 100 device: cuda time passed: 14.091 time per batch: 0.141\n", + "ver 34, iter 6, fold 3, val ll: 0.0627, cor: 0.8400, auc: 0.9886\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.450 time per batch: 0.169\n", + "Batch 100 device: cuda time passed: 15.029 time per batch: 0.150\n", + "ver 34, iter 7, fold 3, val ll: 0.0628, cor: 0.8399, auc: 0.9887\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.771 time per batch: 0.175\n", + "Batch 100 device: cuda time passed: 15.029 time per batch: 0.150\n", + "ver 34, iter 8, fold 3, val ll: 0.0627, cor: 0.8405, auc: 0.9887\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.014 time per batch: 0.160\n", + "Batch 100 device: cuda time passed: 14.310 time per batch: 0.143\n", + "ver 34, iter 9, fold 3, val ll: 0.0625, cor: 0.8410, auc: 0.9887\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.964 time per batch: 0.159\n", + "Batch 100 device: cuda time passed: 14.924 time per batch: 0.149\n", + "ver 34, iter 10, fold 3, val ll: 0.0626, cor: 0.8407, auc: 0.9887\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.033 time per batch: 0.161\n", + "Batch 100 device: cuda time passed: 14.188 time per batch: 0.142\n", + "ver 34, iter 11, fold 3, val ll: 0.0629, cor: 0.8402, auc: 0.9885\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.700 time per batch: 0.154\n", + "Batch 100 device: cuda time passed: 14.264 time per batch: 0.143\n", + "ver 34, iter 12, fold 3, val ll: 0.0628, cor: 0.8400, auc: 0.9887\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.258 time per batch: 0.165\n", + "Batch 100 device: cuda time passed: 14.647 time per batch: 0.146\n", + "ver 34, iter 13, fold 3, val ll: 0.0627, cor: 0.8399, auc: 0.9887\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.675 time per batch: 0.154\n", + "Batch 100 device: cuda time passed: 15.058 time per batch: 0.151\n", + "ver 34, iter 14, fold 3, val ll: 0.0626, cor: 0.8405, auc: 0.9887\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.952 time per batch: 0.159\n", + "Batch 100 device: cuda time passed: 14.168 time per batch: 0.142\n", + "ver 34, iter 15, fold 3, val ll: 0.0628, cor: 0.8400, auc: 0.9886\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.219 time per batch: 0.164\n", + "Batch 100 device: cuda time passed: 14.740 time per batch: 0.147\n", + "ver 34, iter 16, fold 3, val ll: 0.0625, cor: 0.8409, auc: 0.9887\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.800 time per batch: 0.156\n", + "Batch 100 device: cuda time passed: 14.480 time per batch: 0.145\n", + "ver 34, iter 17, fold 3, val ll: 0.0628, cor: 0.8407, auc: 0.9885\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.316 time per batch: 0.166\n", + "Batch 100 device: cuda time passed: 14.148 time per batch: 0.141\n", + "ver 34, iter 18, fold 3, val ll: 0.0625, cor: 0.8409, auc: 0.9887\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.750 time per batch: 0.155\n", + "Batch 100 device: cuda time passed: 14.642 time per batch: 0.146\n", + "ver 34, iter 19, fold 3, val ll: 0.0628, cor: 0.8401, auc: 0.9887\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.529 time per batch: 0.171\n", + "Batch 100 device: cuda time passed: 14.557 time per batch: 0.146\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ver 34, iter 20, fold 3, val ll: 0.0627, cor: 0.8404, auc: 0.9886\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.006 time per batch: 0.160\n", + "Batch 100 device: cuda time passed: 14.026 time per batch: 0.140\n", + "ver 34, iter 21, fold 3, val ll: 0.0628, cor: 0.8402, auc: 0.9887\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.349 time per batch: 0.167\n", + "Batch 100 device: cuda time passed: 14.435 time per batch: 0.144\n", + "ver 34, iter 22, fold 3, val ll: 0.0627, cor: 0.8403, auc: 0.9887\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.184 time per batch: 0.164\n", + "Batch 100 device: cuda time passed: 14.495 time per batch: 0.145\n", + "ver 34, iter 23, fold 3, val ll: 0.0627, cor: 0.8403, auc: 0.9888\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.872 time per batch: 0.157\n", + "Batch 100 device: cuda time passed: 14.538 time per batch: 0.145\n", + "ver 34, iter 24, fold 3, val ll: 0.0623, cor: 0.8408, auc: 0.9888\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.826 time per batch: 0.157\n", + "Batch 100 device: cuda time passed: 15.779 time per batch: 0.158\n", + "ver 34, iter 25, fold 3, val ll: 0.0627, cor: 0.8404, auc: 0.9886\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.871 time per batch: 0.157\n", + "Batch 100 device: cuda time passed: 14.512 time per batch: 0.145\n", + "ver 34, iter 26, fold 3, val ll: 0.0627, cor: 0.8404, auc: 0.9887\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.599 time per batch: 0.172\n", + "Batch 100 device: cuda time passed: 14.392 time per batch: 0.144\n", + "ver 34, iter 27, fold 3, val ll: 0.0627, cor: 0.8403, auc: 0.9886\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.072 time per batch: 0.161\n", + "Batch 100 device: cuda time passed: 14.356 time per batch: 0.144\n", + "ver 34, iter 28, fold 3, val ll: 0.0627, cor: 0.8403, auc: 0.9886\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.696 time per batch: 0.154\n", + "Batch 100 device: cuda time passed: 14.316 time per batch: 0.143\n", + "ver 34, iter 29, fold 3, val ll: 0.0627, cor: 0.8403, auc: 0.9886\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.732 time per batch: 0.155\n", + "Batch 100 device: cuda time passed: 14.896 time per batch: 0.149\n", + "ver 34, iter 30, fold 3, val ll: 0.0626, cor: 0.8407, auc: 0.9887\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.028 time per batch: 0.161\n", + "Batch 100 device: cuda time passed: 14.561 time per batch: 0.146\n", + "ver 34, iter 31, fold 3, val ll: 0.0625, cor: 0.8406, auc: 0.9888\n", + "total running time 748.939469575882\n", + "total time 16373.82175731659\n", + "completed epochs: 3 iters starting now: 32\n", + "adding dummy serieses 16\n", + "DataSet 12 valid size 4384 fold 4\n", + "dataset valid: 4384 loader valid: 137\n", + "loading model model.b3.f4.d12.v34\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.040 time per batch: 0.161\n", + "Batch 100 device: cuda time passed: 15.289 time per batch: 0.153\n", + "ver 34, iter 0, fold 4, val ll: 0.0611, cor: 0.8442, auc: 0.9884\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.957 time per batch: 0.159\n", + "Batch 100 device: cuda time passed: 14.320 time per batch: 0.143\n", + "ver 34, iter 1, fold 4, val ll: 0.0613, cor: 0.8441, auc: 0.9885\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.086 time per batch: 0.162\n", + "Batch 100 device: cuda time passed: 14.522 time per batch: 0.145\n", + "ver 34, iter 2, fold 4, val ll: 0.0614, cor: 0.8440, auc: 0.9883\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 9.210 time per batch: 0.184\n", + "Batch 100 device: cuda time passed: 15.521 time per batch: 0.155\n", + "ver 34, iter 3, fold 4, val ll: 0.0613, cor: 0.8439, auc: 0.9884\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.946 time per batch: 0.159\n", + "Batch 100 device: cuda time passed: 14.025 time per batch: 0.140\n", + "ver 34, iter 4, fold 4, val ll: 0.0613, cor: 0.8437, auc: 0.9883\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.868 time per batch: 0.157\n", + "Batch 100 device: cuda time passed: 14.371 time per batch: 0.144\n", + "ver 34, iter 5, fold 4, val ll: 0.0612, cor: 0.8440, auc: 0.9883\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.101 time per batch: 0.162\n", + "Batch 100 device: cuda time passed: 14.288 time per batch: 0.143\n", + "ver 34, iter 6, fold 4, val ll: 0.0611, cor: 0.8442, auc: 0.9885\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.979 time per batch: 0.160\n", + "Batch 100 device: cuda time passed: 15.010 time per batch: 0.150\n", + "ver 34, iter 7, fold 4, val ll: 0.0612, cor: 0.8443, auc: 0.9884\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.269 time per batch: 0.165\n", + "Batch 100 device: cuda time passed: 14.420 time per batch: 0.144\n", + "ver 34, iter 8, fold 4, val ll: 0.0612, cor: 0.8443, auc: 0.9884\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.391 time per batch: 0.168\n", + "Batch 100 device: cuda time passed: 14.809 time per batch: 0.148\n", + "ver 34, iter 9, fold 4, val ll: 0.0612, cor: 0.8440, auc: 0.9885\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.734 time per batch: 0.175\n", + "Batch 100 device: cuda time passed: 14.864 time per batch: 0.149\n", + "ver 34, iter 10, fold 4, val ll: 0.0613, cor: 0.8441, auc: 0.9883\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.859 time per batch: 0.157\n", + "Batch 100 device: cuda time passed: 15.081 time per batch: 0.151\n", + "ver 34, iter 11, fold 4, val ll: 0.0614, cor: 0.8436, auc: 0.9884\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.908 time per batch: 0.158\n", + "Batch 100 device: cuda time passed: 14.954 time per batch: 0.150\n", + "ver 34, iter 12, fold 4, val ll: 0.0612, cor: 0.8447, auc: 0.9883\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.701 time per batch: 0.154\n", + "Batch 100 device: cuda time passed: 14.594 time per batch: 0.146\n", + "ver 34, iter 13, fold 4, val ll: 0.0610, cor: 0.8446, auc: 0.9885\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.549 time per batch: 0.151\n", + "Batch 100 device: cuda time passed: 14.648 time per batch: 0.146\n", + "ver 34, iter 14, fold 4, val ll: 0.0613, cor: 0.8438, auc: 0.9883\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.929 time per batch: 0.159\n", + "Batch 100 device: cuda time passed: 14.785 time per batch: 0.148\n", + "ver 34, iter 15, fold 4, val ll: 0.0613, cor: 0.8442, auc: 0.9883\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.508 time per batch: 0.170\n", + "Batch 100 device: cuda time passed: 14.877 time per batch: 0.149\n", + "ver 34, iter 16, fold 4, val ll: 0.0614, cor: 0.8439, auc: 0.9883\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.542 time per batch: 0.171\n", + "Batch 100 device: cuda time passed: 14.509 time per batch: 0.145\n", + "ver 34, iter 17, fold 4, val ll: 0.0611, cor: 0.8443, auc: 0.9885\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.896 time per batch: 0.158\n", + "Batch 100 device: cuda time passed: 14.569 time per batch: 0.146\n", + "ver 34, iter 18, fold 4, val ll: 0.0613, cor: 0.8440, auc: 0.9883\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.913 time per batch: 0.158\n", + "Batch 100 device: cuda time passed: 14.154 time per batch: 0.142\n", + "ver 34, iter 19, fold 4, val ll: 0.0612, cor: 0.8442, auc: 0.9884\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.889 time per batch: 0.158\n", + "Batch 100 device: cuda time passed: 14.455 time per batch: 0.145\n", + "ver 34, iter 20, fold 4, val ll: 0.0610, cor: 0.8451, auc: 0.9884\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.945 time per batch: 0.159\n", + "Batch 100 device: cuda time passed: 14.827 time per batch: 0.148\n", + "ver 34, iter 21, fold 4, val ll: 0.0613, cor: 0.8443, auc: 0.9883\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.976 time per batch: 0.160\n", + "Batch 100 device: cuda time passed: 14.222 time per batch: 0.142\n", + "ver 34, iter 22, fold 4, val ll: 0.0613, cor: 0.8443, auc: 0.9883\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.256 time per batch: 0.165\n", + "Batch 100 device: cuda time passed: 14.979 time per batch: 0.150\n", + "ver 34, iter 23, fold 4, val ll: 0.0613, cor: 0.8440, auc: 0.9883\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.428 time per batch: 0.169\n", + "Batch 100 device: cuda time passed: 14.389 time per batch: 0.144\n", + "ver 34, iter 24, fold 4, val ll: 0.0612, cor: 0.8442, auc: 0.9884\n", + "setFeats, augmentation -1\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Batch 50 device: cuda time passed: 8.386 time per batch: 0.168\n", + "Batch 100 device: cuda time passed: 14.843 time per batch: 0.148\n", + "ver 34, iter 25, fold 4, val ll: 0.0610, cor: 0.8443, auc: 0.9885\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.176 time per batch: 0.164\n", + "Batch 100 device: cuda time passed: 14.860 time per batch: 0.149\n", + "ver 34, iter 26, fold 4, val ll: 0.0614, cor: 0.8437, auc: 0.9883\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.796 time per batch: 0.156\n", + "Batch 100 device: cuda time passed: 14.797 time per batch: 0.148\n", + "ver 34, iter 27, fold 4, val ll: 0.0611, cor: 0.8441, auc: 0.9885\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.082 time per batch: 0.162\n", + "Batch 100 device: cuda time passed: 14.366 time per batch: 0.144\n", + "ver 34, iter 28, fold 4, val ll: 0.0611, cor: 0.8444, auc: 0.9884\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.765 time per batch: 0.155\n", + "Batch 100 device: cuda time passed: 14.102 time per batch: 0.141\n", + "ver 34, iter 29, fold 4, val ll: 0.0613, cor: 0.8439, auc: 0.9884\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.825 time per batch: 0.157\n", + "Batch 100 device: cuda time passed: 14.505 time per batch: 0.145\n", + "ver 34, iter 30, fold 4, val ll: 0.0612, cor: 0.8438, auc: 0.9885\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.774 time per batch: 0.155\n", + "Batch 100 device: cuda time passed: 14.729 time per batch: 0.147\n", + "ver 34, iter 31, fold 4, val ll: 0.0612, cor: 0.8444, auc: 0.9884\n", + "total running time 753.5520458221436\n", + "total time 17127.620171546936\n", + "completed epochs: 3 iters starting now: 32\n", + "adding dummy serieses 9\n", + "DataSet 13 valid size 4384 fold 0\n", + "dataset valid: 4384 loader valid: 137\n", + "loading model model.b3.f0.d13.v34\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.140 time per batch: 0.163\n", + "Batch 100 device: cuda time passed: 14.948 time per batch: 0.149\n", + "ver 34, iter 0, fold 0, val ll: 0.0607, cor: 0.8444, auc: 0.9891\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.765 time per batch: 0.155\n", + "Batch 100 device: cuda time passed: 15.278 time per batch: 0.153\n", + "ver 34, iter 1, fold 0, val ll: 0.0609, cor: 0.8441, auc: 0.9889\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.926 time per batch: 0.159\n", + "Batch 100 device: cuda time passed: 14.573 time per batch: 0.146\n", + "ver 34, iter 2, fold 0, val ll: 0.0609, cor: 0.8436, auc: 0.9890\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.082 time per batch: 0.162\n", + "Batch 100 device: cuda time passed: 14.491 time per batch: 0.145\n", + "ver 34, iter 3, fold 0, val ll: 0.0607, cor: 0.8445, auc: 0.9890\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.787 time per batch: 0.176\n", + "Batch 100 device: cuda time passed: 15.077 time per batch: 0.151\n", + "ver 34, iter 4, fold 0, val ll: 0.0609, cor: 0.8440, auc: 0.9890\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.126 time per batch: 0.163\n", + "Batch 100 device: cuda time passed: 14.653 time per batch: 0.147\n", + "ver 34, iter 5, fold 0, val ll: 0.0609, cor: 0.8441, auc: 0.9889\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.745 time per batch: 0.155\n", + "Batch 100 device: cuda time passed: 14.989 time per batch: 0.150\n", + "ver 34, iter 6, fold 0, val ll: 0.0607, cor: 0.8443, auc: 0.9891\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.878 time per batch: 0.178\n", + "Batch 100 device: cuda time passed: 14.866 time per batch: 0.149\n", + "ver 34, iter 7, fold 0, val ll: 0.0606, cor: 0.8448, auc: 0.9890\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.488 time per batch: 0.170\n", + "Batch 100 device: cuda time passed: 14.818 time per batch: 0.148\n", + "ver 34, iter 8, fold 0, val ll: 0.0607, cor: 0.8443, auc: 0.9891\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.945 time per batch: 0.159\n", + "Batch 100 device: cuda time passed: 14.104 time per batch: 0.141\n", + "ver 34, iter 9, fold 0, val ll: 0.0609, cor: 0.8439, auc: 0.9889\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.374 time per batch: 0.167\n", + "Batch 100 device: cuda time passed: 15.081 time per batch: 0.151\n", + "ver 34, iter 10, fold 0, val ll: 0.0608, cor: 0.8439, auc: 0.9890\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.888 time per batch: 0.158\n", + "Batch 100 device: cuda time passed: 14.354 time per batch: 0.144\n", + "ver 34, iter 11, fold 0, val ll: 0.0610, cor: 0.8437, auc: 0.9889\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.434 time per batch: 0.169\n", + "Batch 100 device: cuda time passed: 14.665 time per batch: 0.147\n", + "ver 34, iter 12, fold 0, val ll: 0.0609, cor: 0.8436, auc: 0.9889\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.988 time per batch: 0.160\n", + "Batch 100 device: cuda time passed: 14.515 time per batch: 0.145\n", + "ver 34, iter 13, fold 0, val ll: 0.0607, cor: 0.8446, auc: 0.9890\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.329 time per batch: 0.167\n", + "Batch 100 device: cuda time passed: 14.576 time per batch: 0.146\n", + "ver 34, iter 14, fold 0, val ll: 0.0608, cor: 0.8444, auc: 0.9890\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.950 time per batch: 0.159\n", + "Batch 100 device: cuda time passed: 14.603 time per batch: 0.146\n", + "ver 34, iter 15, fold 0, val ll: 0.0609, cor: 0.8441, auc: 0.9889\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.156 time per batch: 0.163\n", + "Batch 100 device: cuda time passed: 14.438 time per batch: 0.144\n", + "ver 34, iter 16, fold 0, val ll: 0.0607, cor: 0.8443, auc: 0.9890\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.921 time per batch: 0.158\n", + "Batch 100 device: cuda time passed: 14.418 time per batch: 0.144\n", + "ver 34, iter 17, fold 0, val ll: 0.0608, cor: 0.8442, auc: 0.9890\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.887 time per batch: 0.178\n", + "Batch 100 device: cuda time passed: 15.283 time per batch: 0.153\n", + "ver 34, iter 18, fold 0, val ll: 0.0610, cor: 0.8434, auc: 0.9890\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.868 time per batch: 0.177\n", + "Batch 100 device: cuda time passed: 15.062 time per batch: 0.151\n", + "ver 34, iter 19, fold 0, val ll: 0.0608, cor: 0.8443, auc: 0.9890\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.072 time per batch: 0.161\n", + "Batch 100 device: cuda time passed: 14.485 time per batch: 0.145\n", + "ver 34, iter 20, fold 0, val ll: 0.0608, cor: 0.8441, auc: 0.9890\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.026 time per batch: 0.161\n", + "Batch 100 device: cuda time passed: 15.079 time per batch: 0.151\n", + "ver 34, iter 21, fold 0, val ll: 0.0609, cor: 0.8440, auc: 0.9890\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.831 time per batch: 0.157\n", + "Batch 100 device: cuda time passed: 14.061 time per batch: 0.141\n", + "ver 34, iter 22, fold 0, val ll: 0.0609, cor: 0.8440, auc: 0.9889\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.278 time per batch: 0.166\n", + "Batch 100 device: cuda time passed: 15.131 time per batch: 0.151\n", + "ver 34, iter 23, fold 0, val ll: 0.0608, cor: 0.8442, auc: 0.9890\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.023 time per batch: 0.160\n", + "Batch 100 device: cuda time passed: 15.025 time per batch: 0.150\n", + "ver 34, iter 24, fold 0, val ll: 0.0609, cor: 0.8443, auc: 0.9889\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.205 time per batch: 0.164\n", + "Batch 100 device: cuda time passed: 14.707 time per batch: 0.147\n", + "ver 34, iter 25, fold 0, val ll: 0.0606, cor: 0.8443, auc: 0.9891\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.591 time per batch: 0.172\n", + "Batch 100 device: cuda time passed: 14.854 time per batch: 0.149\n", + "ver 34, iter 26, fold 0, val ll: 0.0608, cor: 0.8440, auc: 0.9890\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.166 time per batch: 0.163\n", + "Batch 100 device: cuda time passed: 14.509 time per batch: 0.145\n", + "ver 34, iter 27, fold 0, val ll: 0.0606, cor: 0.8443, auc: 0.9891\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.502 time per batch: 0.170\n", + "Batch 100 device: cuda time passed: 14.728 time per batch: 0.147\n", + "ver 34, iter 28, fold 0, val ll: 0.0608, cor: 0.8443, auc: 0.9889\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.983 time per batch: 0.160\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Batch 100 device: cuda time passed: 14.007 time per batch: 0.140\n", + "ver 34, iter 29, fold 0, val ll: 0.0608, cor: 0.8444, auc: 0.9889\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.859 time per batch: 0.157\n", + "Batch 100 device: cuda time passed: 14.598 time per batch: 0.146\n", + "ver 34, iter 30, fold 0, val ll: 0.0610, cor: 0.8436, auc: 0.9889\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.346 time per batch: 0.167\n", + "Batch 100 device: cuda time passed: 14.582 time per batch: 0.146\n", + "ver 34, iter 31, fold 0, val ll: 0.0610, cor: 0.8437, auc: 0.9889\n", + "total running time 753.0968706607819\n", + "total time 17880.959055662155\n", + "completed epochs: 3 iters starting now: 32\n", + "adding dummy serieses 12\n", + "DataSet 13 valid size 4288 fold 1\n", + "dataset valid: 4288 loader valid: 134\n", + "loading model model.b3.f1.d13.v34\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.968 time per batch: 0.159\n", + "Batch 100 device: cuda time passed: 14.655 time per batch: 0.147\n", + "ver 34, iter 0, fold 1, val ll: 0.0600, cor: 0.8442, auc: 0.9897\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.093 time per batch: 0.162\n", + "Batch 100 device: cuda time passed: 14.374 time per batch: 0.144\n", + "ver 34, iter 1, fold 1, val ll: 0.0597, cor: 0.8452, auc: 0.9897\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.706 time per batch: 0.154\n", + "Batch 100 device: cuda time passed: 15.249 time per batch: 0.152\n", + "ver 34, iter 2, fold 1, val ll: 0.0599, cor: 0.8446, auc: 0.9896\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.218 time per batch: 0.164\n", + "Batch 100 device: cuda time passed: 14.650 time per batch: 0.146\n", + "ver 34, iter 3, fold 1, val ll: 0.0598, cor: 0.8447, auc: 0.9897\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.348 time per batch: 0.167\n", + "Batch 100 device: cuda time passed: 14.312 time per batch: 0.143\n", + "ver 34, iter 4, fold 1, val ll: 0.0599, cor: 0.8447, auc: 0.9896\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.674 time per batch: 0.173\n", + "Batch 100 device: cuda time passed: 14.201 time per batch: 0.142\n", + "ver 34, iter 5, fold 1, val ll: 0.0598, cor: 0.8449, auc: 0.9898\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.864 time per batch: 0.157\n", + "Batch 100 device: cuda time passed: 14.388 time per batch: 0.144\n", + "ver 34, iter 6, fold 1, val ll: 0.0600, cor: 0.8445, auc: 0.9897\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.661 time per batch: 0.153\n", + "Batch 100 device: cuda time passed: 14.390 time per batch: 0.144\n", + "ver 34, iter 7, fold 1, val ll: 0.0600, cor: 0.8443, auc: 0.9896\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.293 time per batch: 0.166\n", + "Batch 100 device: cuda time passed: 14.570 time per batch: 0.146\n", + "ver 34, iter 8, fold 1, val ll: 0.0599, cor: 0.8448, auc: 0.9896\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.485 time per batch: 0.150\n", + "Batch 100 device: cuda time passed: 14.665 time per batch: 0.147\n", + "ver 34, iter 9, fold 1, val ll: 0.0599, cor: 0.8450, auc: 0.9897\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.037 time per batch: 0.161\n", + "Batch 100 device: cuda time passed: 14.668 time per batch: 0.147\n", + "ver 34, iter 10, fold 1, val ll: 0.0600, cor: 0.8444, auc: 0.9896\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.838 time per batch: 0.157\n", + "Batch 100 device: cuda time passed: 14.042 time per batch: 0.140\n", + "ver 34, iter 11, fold 1, val ll: 0.0601, cor: 0.8445, auc: 0.9896\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.105 time per batch: 0.162\n", + "Batch 100 device: cuda time passed: 14.470 time per batch: 0.145\n", + "ver 34, iter 12, fold 1, val ll: 0.0598, cor: 0.8448, auc: 0.9897\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.542 time per batch: 0.151\n", + "Batch 100 device: cuda time passed: 14.744 time per batch: 0.147\n", + "ver 34, iter 13, fold 1, val ll: 0.0600, cor: 0.8439, auc: 0.9897\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.861 time per batch: 0.157\n", + "Batch 100 device: cuda time passed: 13.964 time per batch: 0.140\n", + "ver 34, iter 14, fold 1, val ll: 0.0599, cor: 0.8448, auc: 0.9897\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.315 time per batch: 0.166\n", + "Batch 100 device: cuda time passed: 14.649 time per batch: 0.146\n", + "ver 34, iter 15, fold 1, val ll: 0.0597, cor: 0.8452, auc: 0.9897\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.373 time per batch: 0.167\n", + "Batch 100 device: cuda time passed: 14.443 time per batch: 0.144\n", + "ver 34, iter 16, fold 1, val ll: 0.0598, cor: 0.8451, auc: 0.9896\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.520 time per batch: 0.170\n", + "Batch 100 device: cuda time passed: 14.838 time per batch: 0.148\n", + "ver 34, iter 17, fold 1, val ll: 0.0600, cor: 0.8447, auc: 0.9896\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.483 time per batch: 0.150\n", + "Batch 100 device: cuda time passed: 14.632 time per batch: 0.146\n", + "ver 34, iter 18, fold 1, val ll: 0.0597, cor: 0.8449, auc: 0.9898\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.596 time per batch: 0.172\n", + "Batch 100 device: cuda time passed: 14.762 time per batch: 0.148\n", + "ver 34, iter 19, fold 1, val ll: 0.0598, cor: 0.8447, auc: 0.9898\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.654 time per batch: 0.173\n", + "Batch 100 device: cuda time passed: 14.672 time per batch: 0.147\n", + "ver 34, iter 20, fold 1, val ll: 0.0599, cor: 0.8447, auc: 0.9896\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.916 time per batch: 0.158\n", + "Batch 100 device: cuda time passed: 14.640 time per batch: 0.146\n", + "ver 34, iter 21, fold 1, val ll: 0.0599, cor: 0.8447, auc: 0.9897\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.700 time per batch: 0.154\n", + "Batch 100 device: cuda time passed: 14.168 time per batch: 0.142\n", + "ver 34, iter 22, fold 1, val ll: 0.0598, cor: 0.8450, auc: 0.9897\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.812 time per batch: 0.156\n", + "Batch 100 device: cuda time passed: 14.426 time per batch: 0.144\n", + "ver 34, iter 23, fold 1, val ll: 0.0598, cor: 0.8451, auc: 0.9898\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.864 time per batch: 0.157\n", + "Batch 100 device: cuda time passed: 14.724 time per batch: 0.147\n", + "ver 34, iter 24, fold 1, val ll: 0.0598, cor: 0.8448, auc: 0.9897\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.879 time per batch: 0.158\n", + "Batch 100 device: cuda time passed: 14.961 time per batch: 0.150\n", + "ver 34, iter 25, fold 1, val ll: 0.0599, cor: 0.8446, auc: 0.9897\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.575 time per batch: 0.171\n", + "Batch 100 device: cuda time passed: 15.369 time per batch: 0.154\n", + "ver 34, iter 26, fold 1, val ll: 0.0600, cor: 0.8445, auc: 0.9896\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.869 time per batch: 0.157\n", + "Batch 100 device: cuda time passed: 14.553 time per batch: 0.146\n", + "ver 34, iter 27, fold 1, val ll: 0.0598, cor: 0.8447, auc: 0.9898\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.820 time per batch: 0.156\n", + "Batch 100 device: cuda time passed: 13.851 time per batch: 0.139\n", + "ver 34, iter 28, fold 1, val ll: 0.0599, cor: 0.8447, auc: 0.9897\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.923 time per batch: 0.158\n", + "Batch 100 device: cuda time passed: 14.560 time per batch: 0.146\n", + "ver 34, iter 29, fold 1, val ll: 0.0598, cor: 0.8449, auc: 0.9898\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.738 time per batch: 0.175\n", + "Batch 100 device: cuda time passed: 14.646 time per batch: 0.146\n", + "ver 34, iter 30, fold 1, val ll: 0.0600, cor: 0.8442, auc: 0.9897\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.081 time per batch: 0.162\n", + "Batch 100 device: cuda time passed: 14.355 time per batch: 0.144\n", + "ver 34, iter 31, fold 1, val ll: 0.0598, cor: 0.8446, auc: 0.9897\n", + "total running time 734.7177088260651\n", + "total time 18615.920258760452\n", + "completed epochs: 3 iters starting now: 32\n", + "adding dummy serieses 27\n", + "DataSet 13 valid size 4416 fold 2\n", + "dataset valid: 4416 loader valid: 138\n", + "loading model model.b3.f2.d13.v34\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.169 time per batch: 0.163\n", + "Batch 100 device: cuda time passed: 14.845 time per batch: 0.148\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ver 34, iter 0, fold 2, val ll: 0.0602, cor: 0.8434, auc: 0.9890\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.255 time per batch: 0.165\n", + "Batch 100 device: cuda time passed: 14.489 time per batch: 0.145\n", + "ver 34, iter 1, fold 2, val ll: 0.0601, cor: 0.8435, auc: 0.9891\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.208 time per batch: 0.164\n", + "Batch 100 device: cuda time passed: 14.743 time per batch: 0.147\n", + "ver 34, iter 2, fold 2, val ll: 0.0602, cor: 0.8432, auc: 0.9890\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.759 time per batch: 0.155\n", + "Batch 100 device: cuda time passed: 14.327 time per batch: 0.143\n", + "ver 34, iter 3, fold 2, val ll: 0.0601, cor: 0.8439, auc: 0.9890\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.998 time per batch: 0.160\n", + "Batch 100 device: cuda time passed: 14.599 time per batch: 0.146\n", + "ver 34, iter 4, fold 2, val ll: 0.0602, cor: 0.8431, auc: 0.9890\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.098 time per batch: 0.162\n", + "Batch 100 device: cuda time passed: 15.145 time per batch: 0.151\n", + "ver 34, iter 5, fold 2, val ll: 0.0603, cor: 0.8429, auc: 0.9890\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.067 time per batch: 0.161\n", + "Batch 100 device: cuda time passed: 15.346 time per batch: 0.153\n", + "ver 34, iter 6, fold 2, val ll: 0.0600, cor: 0.8437, auc: 0.9890\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.533 time per batch: 0.151\n", + "Batch 100 device: cuda time passed: 14.791 time per batch: 0.148\n", + "ver 34, iter 7, fold 2, val ll: 0.0601, cor: 0.8434, auc: 0.9891\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.288 time per batch: 0.166\n", + "Batch 100 device: cuda time passed: 14.702 time per batch: 0.147\n", + "ver 34, iter 8, fold 2, val ll: 0.0600, cor: 0.8437, auc: 0.9891\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.228 time per batch: 0.165\n", + "Batch 100 device: cuda time passed: 14.857 time per batch: 0.149\n", + "ver 34, iter 9, fold 2, val ll: 0.0601, cor: 0.8434, auc: 0.9891\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.901 time per batch: 0.158\n", + "Batch 100 device: cuda time passed: 14.469 time per batch: 0.145\n", + "ver 34, iter 10, fold 2, val ll: 0.0601, cor: 0.8440, auc: 0.9890\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.809 time per batch: 0.176\n", + "Batch 100 device: cuda time passed: 14.642 time per batch: 0.146\n", + "ver 34, iter 11, fold 2, val ll: 0.0602, cor: 0.8433, auc: 0.9890\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.417 time per batch: 0.168\n", + "Batch 100 device: cuda time passed: 15.000 time per batch: 0.150\n", + "ver 34, iter 12, fold 2, val ll: 0.0603, cor: 0.8430, auc: 0.9889\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.645 time per batch: 0.153\n", + "Batch 100 device: cuda time passed: 15.082 time per batch: 0.151\n", + "ver 34, iter 13, fold 2, val ll: 0.0600, cor: 0.8437, auc: 0.9891\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.678 time per batch: 0.174\n", + "Batch 100 device: cuda time passed: 15.222 time per batch: 0.152\n", + "ver 34, iter 14, fold 2, val ll: 0.0599, cor: 0.8439, auc: 0.9891\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.440 time per batch: 0.169\n", + "Batch 100 device: cuda time passed: 14.694 time per batch: 0.147\n", + "ver 34, iter 15, fold 2, val ll: 0.0601, cor: 0.8438, auc: 0.9890\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.452 time per batch: 0.149\n", + "Batch 100 device: cuda time passed: 14.976 time per batch: 0.150\n", + "ver 34, iter 16, fold 2, val ll: 0.0603, cor: 0.8432, auc: 0.9889\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.036 time per batch: 0.161\n", + "Batch 100 device: cuda time passed: 14.464 time per batch: 0.145\n", + "ver 34, iter 17, fold 2, val ll: 0.0600, cor: 0.8440, auc: 0.9890\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.432 time per batch: 0.169\n", + "Batch 100 device: cuda time passed: 14.917 time per batch: 0.149\n", + "ver 34, iter 18, fold 2, val ll: 0.0600, cor: 0.8437, auc: 0.9891\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.448 time per batch: 0.169\n", + "Batch 100 device: cuda time passed: 14.730 time per batch: 0.147\n", + "ver 34, iter 19, fold 2, val ll: 0.0601, cor: 0.8436, auc: 0.9890\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.992 time per batch: 0.160\n", + "Batch 100 device: cuda time passed: 14.586 time per batch: 0.146\n", + "ver 34, iter 20, fold 2, val ll: 0.0602, cor: 0.8431, auc: 0.9891\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.981 time per batch: 0.160\n", + "Batch 100 device: cuda time passed: 14.312 time per batch: 0.143\n", + "ver 34, iter 21, fold 2, val ll: 0.0602, cor: 0.8433, auc: 0.9890\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.863 time per batch: 0.157\n", + "Batch 100 device: cuda time passed: 14.493 time per batch: 0.145\n", + "ver 34, iter 22, fold 2, val ll: 0.0601, cor: 0.8436, auc: 0.9891\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.453 time per batch: 0.169\n", + "Batch 100 device: cuda time passed: 14.578 time per batch: 0.146\n", + "ver 34, iter 23, fold 2, val ll: 0.0602, cor: 0.8434, auc: 0.9890\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.230 time per batch: 0.165\n", + "Batch 100 device: cuda time passed: 14.510 time per batch: 0.145\n", + "ver 34, iter 24, fold 2, val ll: 0.0602, cor: 0.8431, auc: 0.9890\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.489 time per batch: 0.170\n", + "Batch 100 device: cuda time passed: 14.700 time per batch: 0.147\n", + "ver 34, iter 25, fold 2, val ll: 0.0601, cor: 0.8434, auc: 0.9890\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.810 time per batch: 0.156\n", + "Batch 100 device: cuda time passed: 14.881 time per batch: 0.149\n", + "ver 34, iter 26, fold 2, val ll: 0.0601, cor: 0.8438, auc: 0.9890\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.647 time per batch: 0.173\n", + "Batch 100 device: cuda time passed: 14.903 time per batch: 0.149\n", + "ver 34, iter 27, fold 2, val ll: 0.0602, cor: 0.8434, auc: 0.9890\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.024 time per batch: 0.160\n", + "Batch 100 device: cuda time passed: 15.108 time per batch: 0.151\n", + "ver 34, iter 28, fold 2, val ll: 0.0601, cor: 0.8436, auc: 0.9891\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.179 time per batch: 0.164\n", + "Batch 100 device: cuda time passed: 15.084 time per batch: 0.151\n", + "ver 34, iter 29, fold 2, val ll: 0.0603, cor: 0.8433, auc: 0.9889\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.489 time per batch: 0.170\n", + "Batch 100 device: cuda time passed: 15.248 time per batch: 0.152\n", + "ver 34, iter 30, fold 2, val ll: 0.0602, cor: 0.8435, auc: 0.9890\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.780 time per batch: 0.156\n", + "Batch 100 device: cuda time passed: 14.653 time per batch: 0.147\n", + "ver 34, iter 31, fold 2, val ll: 0.0602, cor: 0.8432, auc: 0.9890\n", + "total running time 759.7050180435181\n", + "total time 19375.86375927925\n", + "completed epochs: 3 iters starting now: 32\n", + "adding dummy serieses 16\n", + "DataSet 13 valid size 4352 fold 3\n", + "dataset valid: 4352 loader valid: 136\n", + "loading model model.b3.f3.d13.v34\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.209 time per batch: 0.164\n", + "Batch 100 device: cuda time passed: 14.432 time per batch: 0.144\n", + "ver 34, iter 0, fold 3, val ll: 0.0629, cor: 0.8398, auc: 0.9886\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.060 time per batch: 0.161\n", + "Batch 100 device: cuda time passed: 14.405 time per batch: 0.144\n", + "ver 34, iter 1, fold 3, val ll: 0.0631, cor: 0.8396, auc: 0.9885\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.998 time per batch: 0.160\n", + "Batch 100 device: cuda time passed: 14.574 time per batch: 0.146\n", + "ver 34, iter 2, fold 3, val ll: 0.0632, cor: 0.8388, auc: 0.9886\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.088 time per batch: 0.162\n", + "Batch 100 device: cuda time passed: 14.750 time per batch: 0.148\n", + "ver 34, iter 3, fold 3, val ll: 0.0630, cor: 0.8399, auc: 0.9885\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.872 time per batch: 0.157\n", + "Batch 100 device: cuda time passed: 15.131 time per batch: 0.151\n", + "ver 34, iter 4, fold 3, val ll: 0.0629, cor: 0.8396, auc: 0.9887\n", + "setFeats, augmentation -1\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Batch 50 device: cuda time passed: 7.764 time per batch: 0.155\n", + "Batch 100 device: cuda time passed: 14.443 time per batch: 0.144\n", + "ver 34, iter 5, fold 3, val ll: 0.0630, cor: 0.8392, auc: 0.9886\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.046 time per batch: 0.161\n", + "Batch 100 device: cuda time passed: 14.542 time per batch: 0.145\n", + "ver 34, iter 6, fold 3, val ll: 0.0630, cor: 0.8400, auc: 0.9886\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.369 time per batch: 0.167\n", + "Batch 100 device: cuda time passed: 14.797 time per batch: 0.148\n", + "ver 34, iter 7, fold 3, val ll: 0.0629, cor: 0.8397, auc: 0.9886\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.385 time per batch: 0.168\n", + "Batch 100 device: cuda time passed: 15.082 time per batch: 0.151\n", + "ver 34, iter 8, fold 3, val ll: 0.0630, cor: 0.8396, auc: 0.9887\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.233 time per batch: 0.165\n", + "Batch 100 device: cuda time passed: 14.812 time per batch: 0.148\n", + "ver 34, iter 9, fold 3, val ll: 0.0630, cor: 0.8392, auc: 0.9887\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.719 time per batch: 0.174\n", + "Batch 100 device: cuda time passed: 15.227 time per batch: 0.152\n", + "ver 34, iter 10, fold 3, val ll: 0.0631, cor: 0.8393, auc: 0.9886\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.403 time per batch: 0.168\n", + "Batch 100 device: cuda time passed: 14.953 time per batch: 0.150\n", + "ver 34, iter 11, fold 3, val ll: 0.0630, cor: 0.8396, auc: 0.9886\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.628 time per batch: 0.153\n", + "Batch 100 device: cuda time passed: 15.699 time per batch: 0.157\n", + "ver 34, iter 12, fold 3, val ll: 0.0632, cor: 0.8390, auc: 0.9886\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.949 time per batch: 0.159\n", + "Batch 100 device: cuda time passed: 14.760 time per batch: 0.148\n", + "ver 34, iter 13, fold 3, val ll: 0.0630, cor: 0.8398, auc: 0.9885\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.102 time per batch: 0.162\n", + "Batch 100 device: cuda time passed: 14.558 time per batch: 0.146\n", + "ver 34, iter 14, fold 3, val ll: 0.0631, cor: 0.8389, auc: 0.9886\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.056 time per batch: 0.161\n", + "Batch 100 device: cuda time passed: 14.553 time per batch: 0.146\n", + "ver 34, iter 15, fold 3, val ll: 0.0633, cor: 0.8389, auc: 0.9886\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.476 time per batch: 0.170\n", + "Batch 100 device: cuda time passed: 14.739 time per batch: 0.147\n", + "ver 34, iter 16, fold 3, val ll: 0.0630, cor: 0.8395, auc: 0.9887\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.207 time per batch: 0.164\n", + "Batch 100 device: cuda time passed: 14.548 time per batch: 0.145\n", + "ver 34, iter 17, fold 3, val ll: 0.0632, cor: 0.8392, auc: 0.9886\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.305 time per batch: 0.166\n", + "Batch 100 device: cuda time passed: 14.417 time per batch: 0.144\n", + "ver 34, iter 18, fold 3, val ll: 0.0630, cor: 0.8397, auc: 0.9887\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.726 time per batch: 0.155\n", + "Batch 100 device: cuda time passed: 15.397 time per batch: 0.154\n", + "ver 34, iter 19, fold 3, val ll: 0.0630, cor: 0.8398, auc: 0.9886\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.974 time per batch: 0.159\n", + "Batch 100 device: cuda time passed: 14.515 time per batch: 0.145\n", + "ver 34, iter 20, fold 3, val ll: 0.0634, cor: 0.8385, auc: 0.9885\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.898 time per batch: 0.158\n", + "Batch 100 device: cuda time passed: 14.685 time per batch: 0.147\n", + "ver 34, iter 21, fold 3, val ll: 0.0629, cor: 0.8399, auc: 0.9886\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.814 time per batch: 0.156\n", + "Batch 100 device: cuda time passed: 15.322 time per batch: 0.153\n", + "ver 34, iter 22, fold 3, val ll: 0.0631, cor: 0.8392, auc: 0.9885\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.499 time per batch: 0.170\n", + "Batch 100 device: cuda time passed: 15.189 time per batch: 0.152\n", + "ver 34, iter 23, fold 3, val ll: 0.0630, cor: 0.8397, auc: 0.9887\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.627 time per batch: 0.153\n", + "Batch 100 device: cuda time passed: 14.563 time per batch: 0.146\n", + "ver 34, iter 24, fold 3, val ll: 0.0630, cor: 0.8396, auc: 0.9886\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.223 time per batch: 0.164\n", + "Batch 100 device: cuda time passed: 14.639 time per batch: 0.146\n", + "ver 34, iter 25, fold 3, val ll: 0.0630, cor: 0.8394, auc: 0.9886\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.255 time per batch: 0.165\n", + "Batch 100 device: cuda time passed: 14.365 time per batch: 0.144\n", + "ver 34, iter 26, fold 3, val ll: 0.0629, cor: 0.8395, auc: 0.9887\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.287 time per batch: 0.166\n", + "Batch 100 device: cuda time passed: 14.326 time per batch: 0.143\n", + "ver 34, iter 27, fold 3, val ll: 0.0631, cor: 0.8390, auc: 0.9886\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.750 time per batch: 0.175\n", + "Batch 100 device: cuda time passed: 14.716 time per batch: 0.147\n", + "ver 34, iter 28, fold 3, val ll: 0.0630, cor: 0.8395, auc: 0.9886\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.832 time per batch: 0.157\n", + "Batch 100 device: cuda time passed: 14.454 time per batch: 0.145\n", + "ver 34, iter 29, fold 3, val ll: 0.0629, cor: 0.8397, auc: 0.9887\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.247 time per batch: 0.165\n", + "Batch 100 device: cuda time passed: 14.407 time per batch: 0.144\n", + "ver 34, iter 30, fold 3, val ll: 0.0630, cor: 0.8393, auc: 0.9886\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.728 time per batch: 0.175\n", + "Batch 100 device: cuda time passed: 14.980 time per batch: 0.150\n", + "ver 34, iter 31, fold 3, val ll: 0.0634, cor: 0.8388, auc: 0.9884\n", + "total running time 748.6304786205292\n", + "total time 20124.740348815918\n", + "completed epochs: 3 iters starting now: 32\n", + "adding dummy serieses 16\n", + "DataSet 13 valid size 4384 fold 4\n", + "dataset valid: 4384 loader valid: 137\n", + "loading model model.b3.f4.d13.v34\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.680 time per batch: 0.154\n", + "Batch 100 device: cuda time passed: 14.974 time per batch: 0.150\n", + "ver 34, iter 0, fold 4, val ll: 0.0616, cor: 0.8422, auc: 0.9882\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.849 time per batch: 0.177\n", + "Batch 100 device: cuda time passed: 15.070 time per batch: 0.151\n", + "ver 34, iter 1, fold 4, val ll: 0.0618, cor: 0.8420, auc: 0.9881\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.719 time per batch: 0.154\n", + "Batch 100 device: cuda time passed: 14.696 time per batch: 0.147\n", + "ver 34, iter 2, fold 4, val ll: 0.0618, cor: 0.8423, auc: 0.9880\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.469 time per batch: 0.169\n", + "Batch 100 device: cuda time passed: 14.909 time per batch: 0.149\n", + "ver 34, iter 3, fold 4, val ll: 0.0618, cor: 0.8418, auc: 0.9881\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.626 time per batch: 0.153\n", + "Batch 100 device: cuda time passed: 14.660 time per batch: 0.147\n", + "ver 34, iter 4, fold 4, val ll: 0.0618, cor: 0.8419, auc: 0.9881\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.404 time per batch: 0.168\n", + "Batch 100 device: cuda time passed: 14.750 time per batch: 0.147\n", + "ver 34, iter 5, fold 4, val ll: 0.0619, cor: 0.8417, auc: 0.9880\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.219 time per batch: 0.164\n", + "Batch 100 device: cuda time passed: 14.164 time per batch: 0.142\n", + "ver 34, iter 6, fold 4, val ll: 0.0616, cor: 0.8422, auc: 0.9881\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.061 time per batch: 0.161\n", + "Batch 100 device: cuda time passed: 14.689 time per batch: 0.147\n", + "ver 34, iter 7, fold 4, val ll: 0.0617, cor: 0.8423, auc: 0.9881\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.938 time per batch: 0.159\n", + "Batch 100 device: cuda time passed: 14.192 time per batch: 0.142\n", + "ver 34, iter 8, fold 4, val ll: 0.0617, cor: 0.8421, auc: 0.9881\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.663 time per batch: 0.173\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Batch 100 device: cuda time passed: 14.850 time per batch: 0.149\n", + "ver 34, iter 9, fold 4, val ll: 0.0618, cor: 0.8418, auc: 0.9881\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.651 time per batch: 0.173\n", + "Batch 100 device: cuda time passed: 14.415 time per batch: 0.144\n", + "ver 34, iter 10, fold 4, val ll: 0.0617, cor: 0.8423, auc: 0.9881\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.635 time per batch: 0.153\n", + "Batch 100 device: cuda time passed: 15.063 time per batch: 0.151\n", + "ver 34, iter 11, fold 4, val ll: 0.0617, cor: 0.8423, auc: 0.9880\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.388 time per batch: 0.168\n", + "Batch 100 device: cuda time passed: 14.779 time per batch: 0.148\n", + "ver 34, iter 12, fold 4, val ll: 0.0618, cor: 0.8418, auc: 0.9881\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.871 time per batch: 0.157\n", + "Batch 100 device: cuda time passed: 14.803 time per batch: 0.148\n", + "ver 34, iter 13, fold 4, val ll: 0.0617, cor: 0.8418, auc: 0.9882\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.072 time per batch: 0.161\n", + "Batch 100 device: cuda time passed: 14.433 time per batch: 0.144\n", + "ver 34, iter 14, fold 4, val ll: 0.0618, cor: 0.8419, auc: 0.9882\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.584 time per batch: 0.172\n", + "Batch 100 device: cuda time passed: 15.084 time per batch: 0.151\n", + "ver 34, iter 15, fold 4, val ll: 0.0618, cor: 0.8421, auc: 0.9882\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.715 time per batch: 0.154\n", + "Batch 100 device: cuda time passed: 15.169 time per batch: 0.152\n", + "ver 34, iter 16, fold 4, val ll: 0.0618, cor: 0.8420, auc: 0.9880\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.982 time per batch: 0.160\n", + "Batch 100 device: cuda time passed: 15.258 time per batch: 0.153\n", + "ver 34, iter 17, fold 4, val ll: 0.0614, cor: 0.8429, auc: 0.9882\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.944 time per batch: 0.159\n", + "Batch 100 device: cuda time passed: 14.644 time per batch: 0.146\n", + "ver 34, iter 18, fold 4, val ll: 0.0620, cor: 0.8415, auc: 0.9879\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.880 time per batch: 0.158\n", + "Batch 100 device: cuda time passed: 14.599 time per batch: 0.146\n", + "ver 34, iter 19, fold 4, val ll: 0.0618, cor: 0.8419, auc: 0.9881\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.238 time per batch: 0.165\n", + "Batch 100 device: cuda time passed: 14.637 time per batch: 0.146\n", + "ver 34, iter 20, fold 4, val ll: 0.0617, cor: 0.8419, auc: 0.9881\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.506 time per batch: 0.170\n", + "Batch 100 device: cuda time passed: 14.624 time per batch: 0.146\n", + "ver 34, iter 21, fold 4, val ll: 0.0617, cor: 0.8422, auc: 0.9881\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.764 time per batch: 0.155\n", + "Batch 100 device: cuda time passed: 14.605 time per batch: 0.146\n", + "ver 34, iter 22, fold 4, val ll: 0.0617, cor: 0.8422, auc: 0.9882\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.726 time per batch: 0.155\n", + "Batch 100 device: cuda time passed: 14.446 time per batch: 0.144\n", + "ver 34, iter 23, fold 4, val ll: 0.0617, cor: 0.8422, auc: 0.9881\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.077 time per batch: 0.162\n", + "Batch 100 device: cuda time passed: 14.366 time per batch: 0.144\n", + "ver 34, iter 24, fold 4, val ll: 0.0621, cor: 0.8415, auc: 0.9879\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.973 time per batch: 0.159\n", + "Batch 100 device: cuda time passed: 14.194 time per batch: 0.142\n", + "ver 34, iter 25, fold 4, val ll: 0.0617, cor: 0.8420, auc: 0.9883\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.393 time per batch: 0.148\n", + "Batch 100 device: cuda time passed: 15.218 time per batch: 0.152\n", + "ver 34, iter 26, fold 4, val ll: 0.0615, cor: 0.8427, auc: 0.9883\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.723 time per batch: 0.174\n", + "Batch 100 device: cuda time passed: 15.348 time per batch: 0.153\n", + "ver 34, iter 27, fold 4, val ll: 0.0617, cor: 0.8418, auc: 0.9883\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 7.751 time per batch: 0.155\n", + "Batch 100 device: cuda time passed: 14.291 time per batch: 0.143\n", + "ver 34, iter 28, fold 4, val ll: 0.0619, cor: 0.8419, auc: 0.9880\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.019 time per batch: 0.160\n", + "Batch 100 device: cuda time passed: 15.011 time per batch: 0.150\n", + "ver 34, iter 29, fold 4, val ll: 0.0620, cor: 0.8414, auc: 0.9879\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.106 time per batch: 0.162\n", + "Batch 100 device: cuda time passed: 15.439 time per batch: 0.154\n", + "ver 34, iter 30, fold 4, val ll: 0.0618, cor: 0.8419, auc: 0.9880\n", + "setFeats, augmentation -1\n", + "Batch 50 device: cuda time passed: 8.527 time per batch: 0.171\n", + "Batch 100 device: cuda time passed: 15.187 time per batch: 0.152\n", + "ver 34, iter 31, fold 4, val ll: 0.0619, cor: 0.8414, auc: 0.9881\n", + "total running time 749.8348104953766\n", + "total time 20874.81984090805\n" + ] + } + ], + "source": [ + "stg = time.time()\n", + "for ds in (my_datasets3 + my_datasets5):\n", + " folds = getNFolds(ds)\n", + " for fold in range(folds):\n", + " #pp = pickle.load(open(PATH_DISK/'ensemble/oof_d{}_f{}_v{}'.format(ds, fold, VERSION),'rb'))\n", + " predictions = oof_one(num_iter=32, bs=32, fold=fold, dataset=ds)\n", + " #predictions = np.concatenate([pp,predictions],axis=0)\n", + " pickle.dump(predictions, open(PATH_DISK/'ensemble/oof_d{}_f{}_v{}'.format(ds, fold, VERSION),'wb'))\n", + " print('total time', time.time() - stg)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "#range(6,13) x8\n", + "#5113.189187049866\n", + "#20878.715314388275" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "4.231111111111111" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#total running time 1201.68962931633\n", + "#total time 15020.348212480545" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "preds_all = getPredsOOF(aug=32,datasets=my_datasets3,datasets5=my_datasets5,ver=33)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "preds_all = getPredsOOF(aug=32,datasets=my_datasets3,datasets5=my_datasets5,ver=34)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(5, 32, 752797, 6)" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "preds_all.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "#preds_all2 = getPredsOOF(aug=32,datasets=[],datasets5=[14],ver=35)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "#preds_all2.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "#preds_all = np.concatenate([preds_all, preds_all2], axis=0)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0.14302406, 0.00424933, 0.04813841, 0.03484004, 0.04746119,\n", + " 0.06259691])" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# weighted \n", + "# [0.15059251, 0.00462303, 0.05034504, 0.03602126, 0.04910235, 0.06661193]\n", + "\n", + "# non-weighted\n", + "# [0.14268919, 0.00409448, 0.04815497, 0.03553187, 0.04749233, 0.06196157]\n", + "\n", + "# non-weighted stage2\n", + "# [0.14302406, 0.00424933, 0.04813841, 0.03484004, 0.04746119, 0.06259691]\n", + "\n", + "# weighted stage2\n", + "# [0.14172827, 0.00397889, 0.04794982, 0.0350942 , 0.04717257, 0.06180147]\n", + "\n", + "preds_all.mean((0,1,2))" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "names_y = [\n", + " #'model_Densenet201_3_version_classifier_splits_fullhead_resmodel_pool2_3_type_OOF_pred_split_{}.pkl',\n", + " #'model_Densenet161_3_version_classifier_splits_fullhead_resmodel_pool2_3_type_OOF_pred_split_{}.pkl',\n", + " 'model_Densenet169_3_version_classifier_splits_fullhead_resmodel_pool2_stage2_3_type_OOF_pred_split_{}.pkl',\n", + " 'model_se_resnext101_32x4d_version_classifier_splits_fullhead_resmodel_pool2_stage2_3_type_OOF_pred_split_{}.pkl',\n", + " 'model_se_resnet101_version_classifier_splits_fullhead_resmodel_pool2_stage2_3_type_OOF_pred_split_{}.pkl'\n", + "]" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "names_y5 = [\n", + " 'model_se_resnext101_32x4d_version_new_splits_fullhead_resmodel_pool2_stage2_3_type_OOF_pred_split_{}.pkl',\n", + " 'model_se_resnet101_version_new_splits_fullhead_resmodel_pool2_stage2_3_type_OOF_pred_split_{}.pkl',\n", + " 'model_se_resnet101_version_new_splits_focal_fullhead_resmodel_pool2_stage2_3_type_OOF_pred_split_{}.pkl',\n", + "]" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "adding yuval_idx\n", + "adding yuval_idx\n" + ] + } + ], + "source": [ + "preds_y = getYuvalOOF(train_md=train_md, names=names_y, names5=names_y5)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0.14321291, 0.00391866, 0.04807696, 0.03472973, 0.04762993,\n", + " 0.06291145])" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "preds_y.mean((0,1))" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(6, 752797, 6)" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "preds_y.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "preds_all = np.concatenate([preds_all.mean(1), preds_y], axis=0)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "del preds_y" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(11, 752797, 6)" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "preds_all.shape" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Elimination" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "def getMaskedLoss(preds_all, mask, weighted):\n", + " \n", + " loss = ((- train_md[all_ich].values * np.log(preds_all[mask].mean(0)) \\\n", + " - (1 - train_md[all_ich].values) * np.log(1 - preds_all[mask].mean(0)))*class_weights)\n", + " \n", + " if weighted:\n", + " loss = (loss * np.expand_dims(train_md['weights'].values,axis=1)).mean()\n", + " else:\n", + " loss = loss.mean()\n", + " return loss\n", + "\n", + "def produceDSMask(weighted):\n", + " \n", + " N = len(preds_all)\n", + " ds_mask = np.ones(N, dtype=bool)\n", + " best_loss = getMaskedLoss(preds_all, ds_mask, weighted)\n", + "\n", + " for i in range(N):\n", + " worst_k = -1\n", + " worst_loss = best_loss\n", + " print('starting iter',i,'loss',best_loss,'eliminated',(~ds_mask).sum())\n", + " for k in range(N):\n", + " mask2 = ds_mask.copy()\n", + " mask2[k] = False\n", + " loss = getMaskedLoss(preds_all, mask2, weighted)\n", + " if loss < worst_loss:\n", + " worst_loss = loss\n", + " worst_k = k\n", + " if worst_k >= 0:\n", + " print('eliminating',worst_k,'new loss',worst_loss)\n", + " ds_mask[worst_k] = False\n", + " best_loss = worst_loss\n", + " else:\n", + " break\n", + " \n", + " print('removed', np.where(~ds_mask)[0])\n", + " \n", + " return ds_mask" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "starting iter 0 loss 0.057515051687738426 eliminated 0\n", + "eliminating 1 new loss 0.057490836031309125\n", + "starting iter 1 loss 0.057490836031309125 eliminated 1\n", + "removed [1]\n", + "\n", + "starting iter 0 loss 0.05434281856430104 eliminated 0\n", + "eliminating 1 new loss 0.05431221808734583\n", + "starting iter 1 loss 0.05431221808734583 eliminated 1\n", + "eliminating 4 new loss 0.054308387316921135\n", + "starting iter 2 loss 0.054308387316921135 eliminated 2\n", + "eliminating 5 new loss 0.054305186238067175\n", + "starting iter 3 loss 0.054305186238067175 eliminated 3\n", + "removed [1 4 5]\n" + ] + } + ], + "source": [ + "ds_mask1 = produceDSMask(False)\n", + "print('')\n", + "ds_mask2 = produceDSMask(True)" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [], + "source": [ + "ds_mask = ds_mask1 | ds_mask2" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ True, False, True, True, True, True, True, True, True,\n", + " True, True])" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ds_mask" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [], + "source": [ + "preds_all = preds_all[ds_mask]\n", + "my_len = ds_mask[:my_len].sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "4" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "my_len" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## OOF analysis" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "any [0.099 0.096 0.096 0.096 0.1 0.099 0.098 0.097 0.097 0.097]\n", + "epidural [0.017 0.015 0.016 0.016 0.016 0.015 0.015 0.015 0.015 0.015]\n", + "intraparenchymal [0.043 0.041 0.042 0.042 0.043 0.041 0.042 0.041 0.041 0.041]\n", + "intraventricular [0.026 0.025 0.025 0.025 0.026 0.025 0.025 0.025 0.025 0.025]\n", + "subarachnoid [0.066 0.064 0.064 0.064 0.066 0.064 0.064 0.064 0.063 0.063]\n", + "subdural [0.081 0.079 0.079 0.079 0.08 0.079 0.079 0.079 0.078 0.078]\n" + ] + } + ], + "source": [ + "np.set_printoptions(precision=3)\n", + "\n", + "loss = (- train_md[all_ich].values * np.log(preds_all) \\\n", + " - (1 - train_md[all_ich].values) * np.log(1 - preds_all)).mean(1)\n", + "for k in range(6):\n", + " print('{:20s} {}'.format(all_ich[k],loss[:,k]))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[0.142 0.143 0.143 0.143 0.143 0.145 0.144 0.142 0.142 0.143]\n", + " [0.004 0.005 0.004 0.004 0.003 0.004 0.004 0.004 0.004 0.004]\n", + " [0.048 0.048 0.048 0.048 0.048 0.048 0.049 0.048 0.048 0.048]\n", + " [0.035 0.035 0.035 0.035 0.035 0.034 0.035 0.035 0.035 0.035]\n", + " [0.047 0.047 0.047 0.048 0.048 0.049 0.047 0.047 0.047 0.048]\n", + " [0.062 0.062 0.063 0.063 0.063 0.065 0.064 0.062 0.062 0.063]]\n" + ] + } + ], + "source": [ + "print(preds_all.mean(1).transpose())" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[<matplotlib.lines.Line2D at 0x7f82b89bfc10>]" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD4CAYAAADiry33AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deXyU5b3//9dnJitJSMgChIQlJGHfiewoKipoBbW41mqtSq31e7TL6dH2/LTF1nOqp7WbVal1r0VUrLhUDwqEfQm7BAhJICQs2RNIQraZ6/dHBk6MgUzWe5bP8/GYR2buZeZzQ3jPzXVf93WJMQallFK+y2Z1AUoppbqXBr1SSvk4DXqllPJxGvRKKeXjNOiVUsrHBVhdQEuxsbFmyJAhVpehlFJeZceOHSXGmLjW1nlc0A8ZMoSMjAyry1BKKa8iInkXWqdNN0op5eM06JVSysdp0CullI/ToFdKKR+nQa+UUj5Og14ppXycBr1SSvk4j+tHr3peg8PJsbIacoqqOFJSTVxEMNOTY4iPDLW6NKVUF9Cg91O1DQ6WfJTJtiNl5JVW0+D4+rwESbFhTE+OYUZyDJcNiyMiJNCCSpVSnaVB74fqGh088OYO0rOKuXJEX64a1Y/kuHBS+oaTFBNGQUUNm3NK2ZxTysrdJ3hr6zESokJ54c7JjE2MtLp8pVQ7iafNMJWWlmZ0CITu0+Bw8uDfd7Iqs5CnbhzLHVMHXXT7RoeTrUfK+Pd39lBSXc+SBaO5bcrF91FK9TwR2WGMSWttnV6M9SONDiePLNvNqsxCfnH9qDZDHiDAbmNmSiwf/dtspiZF8+iKffz03T3UNjh6oGKlVFfQoPcTDqfh39/dy8f7TvKza0fwnZlJ7do/OiyIV++ZwkOXp7A8o4BFL2wiv6ymm6pVSnUlDXo/YIzhP/+5j/d3HecnVw9j8aXJHXofu034yTXDeemuNPJKa7ht6RZKq+q6uFqlVFfToPcD6w+X8I9t+TxwWTIPXZHa6febO6ofb947leKqOh78+04aHM4uqFIp1V006H2cMYZnP89iQGQIP7yq8yF/zviBUTz9zXFsPVLGkg8zu+x9lVJdT4Pex6VnFbPrWAUPXp5CcIC9S9/7hokJfO/SobyxJY+3th7r0vdWSnUdDXof1nQ2f5iEqFBuSRvYLZ/x03kjuGxYHI9/8CXbjpR1y2copTpHg96HrT1UzJ78Ch66IoWggO75q7bbhD/ePpFB0b34/ps7KCjXnjhKeRoNeh91rm0+sU8oiyYndutnRYYG8te706hvdPL9N3dS36gXZ5XyJG4FvYjME5FDIpItIo+2sv5HIpIpIntF5AsRGdxsnUNEdrseK7uyeHVhqw8Wsbegkv93RQqB9u7/Pk+OC+d/bhnPvuOV/HbVoW7/PKWU+9pMABGxA88B84FRwO0iMqrFZruANGPMOOBd4Olm684aYya4Hgu6qG51EcYYfv/5YQZF9+KmSd17Nt/cNaP7c/uUQSxdl8um7JIe+1yl1MW5c6o3Bcg2xuQaY+qBZcDC5hsYY9YYY841zm4Bei5d1Nd8fqCIfccreaiHzuab+/++MZKk2DB+tHwP5dX1PfrZSqnWuZMCCUB+s9cFrmUXci/wr2avQ0QkQ0S2iMgNre0gIotd22QUFxe7UZK6kKaz+SwGx/TipokX+2vqHr2CAvjjbRMpra7jsRX78LRB85TyR+4EvbSyrNV/vSJyJ5AGPNNs8SDXiGp3AL8Xka/df2+MWWqMSTPGpMXFxblRkrqQrUfK2H/iND+Yk0JAD5/NnzMmIZJ/v2Y4n+4/xdvb89veQSnVrdxJggKgeSfsROBEy41EZC7wc2CBMeb8ACjGmBOun7nAWmBiJ+pVbVixs4CwIDvXjx9gaR33zRrKzJQYfvlhJjnFVZbWopS/cyfotwOpIpIkIkHAbcBXes+IyETgRZpCvqjZ8j4iEux6HgvMBPR++W5S2+DgX/tOMW9MPKFBXXsXbHvZbMJvb55AcKCNH729G6dTm3CUskqbQW+MaQQeAj4DDgDLjTH7RWSJiJzrRfMMEA6806Ib5UggQ0T2AGuA/zbGaNB3k1WZhZypa+Sbk3q+bb41/SND+MX1o9lTUMm7OwusLkcpv+XWVILGmE+AT1ose7zZ87kX2G8TMLYzBSr3rdhZQHxkCNOGxlhdynkLJwzg9c1HeeazQ1w7Np7wYJ29UqmepnfG+ojiM3WsO1zCwgkJ2GytXT+3hojwxPWjKT5Tx3Nrsq0uRym/pEHvIz7ccwKH03CThzTbNDd+YBQ3TUrgb+uPcKxUx8JRqqdp0PuIFbsKGJPQm2H9IqwupVX/MW8EAXbh15/oJRqlepoGvQ84XHiGL4+f5saJnntDcr/eITw4J5nP9heyKUeHR1CqJ2nQ+4AVu45jtwkLLO4735b7Zg8lISqUJR9m4tDulkr1GA16L+d0Gv656zizU2OJiwi2upyLCgm089i1Izh46gzLtuuMVEr1FA16L7clt5STlbU9OkplZ1w3Np4pQ6L53f9mUVXXaHU5SvkFDXovt2LXccKDA7h6VD+rS3GLiPDYtSMora7ntU1HrS5HKb+gQe/FztY7+Ne+k8wf05+QQGuHPGiPiYP6MHdkX15Mz6HybIPV5Sjl8zTovdjaQ0VU1zu4wYLhiDvrh1cN43RtI39bn2t1KUr5PA16L7bqQCGRoYFMTYq2upR2Gz0gkuvGxvO3DUco0wlKlOpWGvReqtHhZPXBIq4Y0deycec764dXpXK2wcGL6TlWl6KUT/POhFDsyCunoqaBuSO94yJsa1L6RnDDhARe23yUotO1VpejlM/SoPdSqzILCbLbuGy4d8/I9fDcVBochr+s1bN6pbqLBr0XMsaw6kAh05NjvH7Y38ExYdySlshbW49xvOKs1eUo5ZM06L1QdlEVeaU1zPWSvvNteeiKVAD+vPqwxZUo5Zs06L3QqgOFAMwd2dfiSrpGQlQod0wdxPKMAk7oWb1SXU6D3gutyixkbEIk8ZGhVpfSZe6dlYQxhje35FldilI+R4PeyxSdqWV3fgVX+UizzTkDo3tx1ah+/GPbMWobHFaXo5RP0aD3MqsPFGEMPhf0APfMTKK8poF/7jpudSlK+RQNei/z+YFCEqJCGdHfM2eS6oypSdGM6B/BKxuPYoyOV69UV9Gg9yI19Y2sP1zCVaP6IeI5E4B3FRHhuzOTOFR4hs25pVaXo5TP0KD3IhsOl1DX6PTJZptzFkwYQHRYEK9sPGp1KUr5DA16L7Iqs5DeIQFM8cJBzNwVEmjnjimD+PxAIcdKa6wuRymfoEHvJRxOw+qDRVw+oi+BXjqImbvunDYYuwivbT5qdSlK+QTfTgwfsju/nNLqeq8exMxd/SNDmD82nuXb86nW6QaV6jQNei+x9lAxdptw6TDvHsTMXffMHMKZukbe21lgdSlKeT0Nei+RnlXMpEFRRIYGWl1Kj5g0qA/jB0bx6sajOJ3a1VKpznAr6EVknogcEpFsEXm0lfU/EpFMEdkrIl+IyOBm6+4WkcOux91dWby/KKmqY29BJZf5ydn8OXdPH0xuSTXbjpZZXYpSXq3NoBcRO/AcMB8YBdwuIqNabLYLSDPGjAPeBZ527RsNPAFMBaYAT4hIn64r3z9sOFwCwGXDfGMQM3fNG9OfsCA77+/UO2WV6gx3zuinANnGmFxjTD2wDFjYfANjzBpjzLm+cFuARNfza4BVxpgyY0w5sAqY1zWl+4/0rGJiwoIYPaC31aX0qF5BAcwbE88n+07q+DdKdYI7QZ8A5Dd7XeBadiH3Av9qz74islhEMkQko7i42I2S/IfTaViXVczs1FhsNt+7G7Yt35yUwJm6RlZlFlpdilJey52gby1dWr06JiJ3AmnAM+3Z1xiz1BiTZoxJi4vzr3botuw/cZrS6nqvnzKwo6YNjSE+MoQV2vtGqQ5zJ+gLgIHNXicCJ1puJCJzgZ8DC4wxde3ZV11YelYRALNT/TPobTbhhokJrDtcQvGZurZ3UEp9jTtBvx1IFZEkEQkCbgNWNt9ARCYCL9IU8kXNVn0GXC0ifVwXYa92LVNuSs8qZmxCJLHhwVaXYpmbJibgcBpW7tFzBKU6os2gN8Y0Ag/RFNAHgOXGmP0iskREFrg2ewYIB94Rkd0istK1bxnwJE1fFtuBJa5lyg2VZxvYeazC77pVtpTaL4KxCZHafKNUBwW4s5Ex5hPgkxbLHm/2fO5F9n0ZeLmjBfqzTdklOJzGb9vnm7txYgJLPsrk0KkzDPfBsfiV6k56Z6wHS88qJiIkgIkDo6wuxXILJgzAbhNW7NKzeqXaS4PeQxljSM8qZlZKLAE+PlqlO2LDg7lsWBwf7DqBQ4dEUKpdNEE81OGiKk5W1vp9+3xzN01K4NTpWjbn6OxTSrWHBr2HSj/UdOOYv4xW6Y65I/sRERygzTdKtZMGvYdKzypmWL9wBkSFWl2KxwgJtHPduHg+/fIUNfU6Tr1S7tKg90A19Y1sO1KmzTatWDB+ADX1jvMDvSml2qZB74G25JZS73D63WiV7kgbEk1YkJ21WTomklLu0qD3QOmHigkJtJE2REd0bikowMaMlFjSDxVjjPa+UcodGvQeaN3hEqYPjSEk0G51KR5pzvA4jlecJae4yupSlPIKGvQeJq+0miMl1do+fxHn/mzWHtLmG6XcoUHvYdZlabfKtiT26UVK33ANeqXcpEHvYdKzShgYHUpSbJjVpXi0OcPi2HakTLtZKuUGDXoPUt/oZFNOCZcNi0PE/2aTao85w/tS73DqXbJKuUGD3oNk5JVRU+/gUj+dZKQ9LknqQ2igXZtvlHKDBr0HWZdVQoBNmJESa3UpHi84wM6M5BjWZhVpN0ul2qBB70HSs4pJG9KH8GC3pgnwe3OGx5FfdpYjJdVWl6KUR9Og9xBFp2s5cPK09rZph3N3DmvzjVIXp0HvIda5xm7R/vPuGxTTi6GxYaTrcAhKXZQGvYdIzyomNjyYkf17W12KV7lseBxbckupbXBYXYpSHkuD3gM4nIb1h4u5dFgsNpt2q2yPy4bFUdfoZHOudrNU6kI06D3AvuOVVNQ0aLNNB0wbGkNwgO38RC1Kqa/ToPcA6YeKEYHZ2n++3UIC7UxPjtF2eqUuQoPeA6RnFTEuIZLosCCrS/FKlw2L40hJNXml2s1SqdZo0FussqaB3fkV2mzTCef+7NbrrFNKtUqD3mIbsktwGh2tsjOSYsMYEBnCxmwNeqVao0FvsQ3ZxUQEBzBhYJTVpXgtEWFmSiybckpxOHU4BKVa0qC32IbsEqYlxxBg17+KzpiVGkvl2Qb2n6i0uhSlPI5b6SIi80TkkIhki8ijray/VER2ikijiCxqsc4hIrtdj5VdVbgvOFZaQ37ZWWbpIGadNiO56c9wgzbfKPU1bQa9iNiB54D5wCjgdhEZ1WKzY8B3gLdaeYuzxpgJrseCTtbrU86F0kwN+k6LiwhmRP8IbadXqhXunNFPAbKNMbnGmHpgGbCw+QbGmKPGmL2Asxtq9Fkbs0vo3zuE5DidTaorzEyJZfvRch0OQakW3An6BCC/2esC1zJ3hYhIhohsEZEbWttARBa7tskoLvaPG1+cTsPGnBJmpsTqbFJdZFZKLPWNTjKOlltdilIexZ2gby2F2tO1YZAxJg24A/i9iCR/7c2MWWqMSTPGpMXF+Uc3w8yTp6moaWBWaozVpfiMKUnRBNhE2+mVasGdoC8ABjZ7nQiccPcDjDEnXD9zgbXAxHbU57POt88na/t8VwkLDmDSoD7aTq9UC+4E/XYgVUSSRCQIuA1wq/eMiPQRkWDX81hgJpDZ0WJ9ycbsEob1C6dv7xCrS/Eps1Jj+fJEJeXV9VaXopTHaDPojTGNwEPAZ8ABYLkxZr+ILBGRBQAicomIFAA3Ay+KyH7X7iOBDBHZA6wB/tsY4/dBX9vgYNuRMu1t0w1mpsRiDGzK0WGLlTrHrclJjTGfAJ+0WPZ4s+fbaWrSabnfJmBsJ2v0OTvzyqlrdGr/+W4wPjGS8OAANmSXcN24eKvLUcoj6O2YFtiQXYLdJkwdqhdiu1qA3ca0oTHaTq9UMxr0FtiYXcLEgVGEB7v1HyrVTrNSYjhWVsOx0hqrS1HKI2jQ97DKmgb2Hq/U9vluNCu16c92Y46e1SsFGvQ9bnNuCcb8XxiprpccF06/3sHan14pFw36HrYhu4SwILsOS9yNzg9bnF2CU4ctVkqDvqdtzC5l6tAYAnVY4m41KyWW8poGMk+etroUpSynadODCsprOFJSre3zPeDcn/EmbadXSoO+J23KbrqJR/vPd79+rlFB9cYppTToe9TGnBJiw4MY1i/c6lL8wozkWLYdKaPBoaNnK/+mQd9DjDFsyillerIOS9xTZiTHUFPvYG9BhdWlKGUpDfoeklNcRfGZOmYm692wPWXa0BhEmi6AK+XPNOh7yLm24hk6LHGP6RMWxKj43npBVvk9Dfoesim7lISoUAZGh1pdil+ZkRzDzrwKnV5Q+TUN+h7gdBo255YyIzlG2+d72IzkWOodTnbk6fSCyn9p0PeAzJOnqTzbwIwUbZ/vaZckRWO3iTbfKL+mQd8DzoWMts/3vPDgAMYnRmp/euXXNOh7wKacUpLjwuin0wZaYmZKLHsLKjlT22B1KUpZQoO+mzU4nGw7UqZn8xaanhyDw2nYdqTM6lKUsoQGfTfbW1BBTb2DGdp/3jKTBvUhKMCmzTfKb2nQd7NN2aWINN28o6wREmgnbXAfDXrltzTou9mmnFJGxfemT1iQ1aX4tRnJMRw4eZqy6nqrS1Gqx2nQd6PaBgc7jpVrs40HmOEaMXRLrp7VK/+jQd+NduSVU9/o1AuxHmBcQiThwQFs1OkFlR/SoO9Gm3JKsNuES5KirS7F7wXYbUxJimazttMrP6RB34025ZQyPrHpTFJZb0ZyDLkl1ZysPGt1KUr1KA36bnKmtoG9BZU6baAHme66VvLFgSKLK1GqZ2nQd5PtR8twOM35cFHWGxXfmzEJvfnbhiM4nMbqcpTqMRr03WRjdilBATYmDepjdSnKRUT4wZwUjpRU88m+k1aXo1SPcSvoRWSeiBwSkWwRebSV9ZeKyE4RaRSRRS3W3S0ih12Pu7uqcE+3MbuES4b0ISTQbnUpqplrRvcnOS6M59ZkY4ye1Sv/0GbQi4gdeA6YD4wCbheRUS02OwZ8B3irxb7RwBPAVGAK8ISI+PwpbklVHQdPndFulR7IZhO+PyeFg6fOsOaQttUr/+DOGf0UINsYk2uMqQeWAQubb2CMOWqM2Qs4W+x7DbDKGFNmjCkHVgHzuqBuj3auC59eiPVMCycMICEqlD+v1rN65R/cCfoEIL/Z6wLXMne4ta+ILBaRDBHJKC4udvOtPdemnBIiQgIYmxBpdSmqFYF2G9+7bCg7j1WwVUe0VH7AnaBvbe47d0+D3NrXGLPUGJNmjEmLi4tz860918bsUqYNjcFu02kDPdUtaQOJDQ/iuTXZVpeiVLdzJ+gLgIHNXicCJ9x8/87s65Xyy2o4VlbDTO1W6dFCAu3cO2so6w+XsLegwupylOpW7gT9diBVRJJEJAi4DVjp5vt/BlwtIn1cF2Gvdi3zWefGUtH2ec9357RBRIQE8Jc1OVaXolS3ajPojTGNwEM0BfQBYLkxZr+ILBGRBQAicomIFAA3Ay+KyH7XvmXAkzR9WWwHlriW+ayNOaX0jQgmpW+41aWoNkSEBPKdGUP4dP8pDheesbocpbqNW/3ojTGfGGOGGWOSjTG/di173Biz0vV8uzEm0RgTZoyJMcaMbrbvy8aYFNfjle45DM9gjGFzTgkzkmMQ0fZ5b3DPzCSCAmy8sSXP6lKU6jZ6Z2wXOlR4hpKq+vNjnyvPFx0WxFWj+vHhnhPUN7bsHayUb9Cg70Ibs7X/vDe6aWIC5TUNpGd5f9depVqjQd+FNmWXkBQbRkJUqNWlqHa4dFgcMWFBvL+rwOpSlOoWGvRdpNHhZOuRMp020AsF2m1cP34An2cWUVnTYHU5SnU5Dfousqegkqq6Rm228VLfnJRIvcPJxzqqpfJBGvRdZFN2CSIwfaie0XujMQm9Sekbrs03yidp0HeRDdkljIrvTZ+wIKtLUR0gItw0KYHtR8s5VlpjdTlKdSkN+i5wtt7BrmMV2mzj5W6YkIAIvL/ruNWlKNWlNOi7wPajZdQ7nHoh1ssNiApl+tAYVuwq0OGLlU/RoO8CG3NKCLQLU5KirS5FddKNExPIK61h5zEd6Ez5Dg36LpB+qJjJg/vQKyjA6lJUJ80fG09IoE0vyiqfokHfSccrznLw1BmuGNHX6lJUFwgPDuCa0f35cM9J6hodVpejVJfQoO+kNQeb5h3VoPcdN05MoPJsw/m/W6W8nQZ9J605WMTA6FCS43RYYl8xKyWWhKhQfrcqSwc6Uz5Bg74TahscbMwp4coR/XRYYh8SYLfx5A2jySqsYuk6nZREeT8N+k7YnFNKbYOTy7XZxudcMaIf142N54+rszlSUm11OUp1igZ9J6w+WERooJ2p2q3SJz1x/SiCA2z8bMU+7VevvJoGfQcZY1h9sIhZqbGEBNqtLkd1g769Q3h0/gg255by7g7tbqm8lwZ9B2UVVnG84qz2tvFxt18yiLTBffj1JwcoraqzuhylOkSDvoNWu7reXT5cg96X2WzCf900luq6Rn718QGry1GqQzToO2jNwSJGxfemf2SI1aWobpbaL4IHLkvm/V3HWX9YpxtU3keDvgMqaurZcaycK0fq2by/+MHlKQyNDePn73/J2fqL3zGbX1ZDfpkOdaw8hwZ9B6RnFeNwGu1W6UdCAu38+saxHCur4Y+rD19wu8LTtSx8biPX/3kDR7VbpvIQGvQdsOZgEdFhQYxPjLK6FNWDpifHcPPkRJauy+XAydNfW+9wGh5Ztpuz9Q4E+O5r23UOWuURNOjbyeE0pGcVM2dYHHab3g3rb3527UiiQgN5dMU+HM6v9q3/8+psNueWsmThaF78dhr5ZTU8+NYOGhw6jIKylgZ9O+3OL6e8poErtH3eL/UJC+Lx60exJ7+CN7fknV++JbeUP3yRxY0TE1g0OZEpSdH8103j2JhdyuMf7NcbrpSlNOjb6YsDRdhtwuzUOKtLURZZMH4Alw6L4+lPD3Ki4ixl1fU8vGwXg2PCePKGMefHPVo0OZEH5yTzj23HeHnjUWuLbqb4TB1XP5vOhsMlVpeieohbQS8i80TkkIhki8ijrawPFpG3Xeu3isgQ1/IhInJWRHa7Hi90bfk9yxjDJ/tOMmVINJGhgVaXoywiIvz6hjE4jOHxD/bzk3f2UF7dwJ9un0h48Fcnn/nJ1cOZN7o/v/o4k1WZhRZV/FWrDxaSVVjFD5fv1pvA/ESbQS8iduA5YD4wCrhdREa12OxeoNwYkwI8C/ym2bocY8wE1+OBLqrbEtuPlnO0tIZFkxOtLkVZbGB0L344dxifHyhk9cEifnbtCMYkRH5tO5tNePbWCYxNiGTxGxn86qPMNrtndrd1h0uIDA2ksqaB/3hPx/HxB+6c0U8Bso0xucaYemAZsLDFNguB11zP3wWuFB8ct3d5Rj7hwQHMH9vf6lKUB7h3VhJTk6K5aWICd88YcsHtQoPs/P2+qdw+ZRAvbTjC/D+sY9uRsp4rtBmH07Axu4S5I/vxH/NH8PmBQt7adqzT73uqspYztV3Xw2hHXhkvbziiX0JdxJ2gTwDym70ucC1rdRtjTCNQCcS41iWJyC4RSReR2a19gIgsFpEMEckoLvbMOw+r6hr5eO9Jrh8fr3PDKqBp3Ppli6fxu1sntDkfQURIIE/dOJa37puKwxhueXEzT3zwJdV1jT1UbZP9JyqpqGlgdmos98wYwuzUWJ78KJPsoqoOv+eZ2gbm/2Ed8/+wnpzijr/POTX1jfzg77tY8lEmL6Tndvr9lHtB39pvcMuv2QttcxIYZIyZCPwIeEtEen9tQ2OWGmPSjDFpcXGeeZHz470nONvg4Oa0gVaXojxIe//jOiMllk8fvpTvzBjCa5vzuP5PG3r0Ltr1rguwM1NisdmE3948ntBAOw8v29Xh2bTe2JJHeU0DZ2obWfT8JnYdK+9UjUvX5XLqdC1pg/vw9GcH+fTLU516P+Ve0BcAzdMtEThxoW1EJACIBMqMMXXGmFIAY8wOIAcY1tmirbA8o4CUvuFMHKg3SanOCQsO4BcLRvPW/VMpqarj5hc2c7jwTI989vrDxYyK701cRDDQNBTzb745jv0nTvPbVYfa/X419Y28tP4Ilw2L44MfzCQiJJA7/rqV1Qc7duH5ZOVZXkjP4bpx8bx531TGJ0bxw7d38+Xxyg69n2riTtBvB1JFJElEgoDbgJUttlkJ3O16vghYbYwxIhLnupiLiAwFUgGv+79YdlEVO/LKuSUtUacMVF1mRnIsb39vOg5juPnFzezOr2h1u9oGB2XV9Z3+vOq6RnbklTM7NfYry68e3Z87pg5i6bpcfrcqq109cd7aeoyy6nr+7coUhsSG8d73Z5DcN4z7X9/B8oz8r2xbU99IflkNtQ0Xvhj99KeHcBp4bP4IQgLtLL1rMtFhQdz72nZOVda274DVeW02NhtjGkXkIeAzwA68bIzZLyJLgAxjzErgb8AbIpINlNH0ZQBwKbBERBoBB/CAMcaaq1Cd8M6OfOw24caJ2ttGda2R8b1574EZ3Pm3rdzx1y0s/XYas1JjMcawO7+Cd3cUsHLPCWrqHSxZOJpvTR3c4c/adqSMBodp9R6Q/7xuJMVn6vjjF4d5MT2HmyYlcu+sJFL6XnjS+9oGBy+k5zIzJYbJg5tmWYuLCGbZ4ul8/80d/PTdvbyxOY/Ksw2UVNVR4+pt1L93CK/ccwkj47/airvrWDnv7zrOQ5enkNinFwB9I0J46e40Fj2/iftfz2D596YTGqQT/bSXeNpV7bS0NJORkWF1Gec1OJxM/6/VTBwUxV/vSrO6HOWjik7XctfL28gtrubOaYNJzyoip7iakEAb88fEU1pdz7qsYhZfOpRH543A1oHhN3754X7e2nqMPSc4IuUAAA8wSURBVE9cfcFZ0bKLzvC3DUd4b+dx6hudXDGiLz+7dmSrgf/qxiP84sNMli2exrShMV9ZV9/o5DefHuTgqdPEhgcTGx5MTHgQvUMC+fPqbKrqGnn+zknnv3SMMdz0/CYKys+y9idzCGtxP8Lqg4Xc91oGV43qx3N3TCLArvd6tiQiO4wxrYaUBn0bPs8s5L7XM/jrXWlcNaqf1eUoH1ZZ08B3X9vOjrxyLhnSh0WTE7l2bDwRIYE0Opws+SiT1zfnMW90f569dUK7z2zn/i6dAVGhvP7dKW1uW1JVx5tb8nh101EAXv7OJUwa1Of8+rpGB5c9vZZB0b1Y/sD0dtVxsvIs97yyneyiKp66aSy3pA3kg93HeXjZbp5ZNO6CHR5e2XiEX36YyXVj4/n9bRMI1LD/iosFvfYTbMPyjHxiw4OZM9wzewMp3xHZK5B/3D+N0uo64iNDv7IuwG7jlwtGMyQmjCc/zuS2pZv5691p9I1wb+Kbk5VnyS6q4lY3e43FhgfzyNxh3DQxkW+/vJVv/XUrz985iTmuGdXe3VHAqdO1PHPzuPYdJBAfGco7D0znwb/v5Kfv7uVoSTX/3HWcMQm9+eakCzeP3jMzCYfT8KuPD1DvcPLnOyYSHODel13h6VqeX5vDjOQY5gzvS1CAf31J+NfRtlPxmTpWHyzim5MS9OxB9YigANvXQv4cEeG7s5J48c7JZBVWseBPG3khPYeiM21fpDzXrXL2sNg2tvyqQTG9eOeB6STFhnHfaxl8sPs4DQ4nz6/NYcLAKGaltO/9zokICeTl71zCzZMT+cvaHE5U1vL4N0a32SR13+yh/HLBaFZlFvLAGzsuemH3HKfT8OPle3h101EWv7GDqU99zuMffMmuY+V+c0OWntFfxD93HafRabg5TS/CKs9x9ej+LP/edH754X7++18HeeazQ1wxoi+3pg1kzvC4Vtuv1x8uIS4imOH9Itr9eX0jQlj2vWnc/1oGDy/bzcrdJygoP8uShaM71Qst0G7j6UXjGBHfm5q6RqYkRbu1390zhhBot/Hzf+7j/tczWPrttIs2Y725NY8N2SUsWTiagX16sWLXcd7ens/rm/NIjgvjr3elMTTuwhedfYG20V9AfaOTub9LJzY8iBUPzrS6HKValV1UxTsZ+by3s4CSqnriI0P48x2TmDz4/9rTnU5D2q8/Z86wOH5364QOf1Ztg4OHl+3is/2FjEnozYcPzbK0u/E7Gfn89L29TE2KZuldafQO+fpAg7nFVVz7x/VMTYrh1XsuOV/v6doGPt13iqf+dYBB0b147/szvP5/7Rdro/fuI+tGr28+yrGyGv7tylSrS1HqglL6hvPYtSPZ/NiVvPjtyQQF2PjWS1tYc7Do/DaZJ09TVl3f7mablkIC7fzlW5P5z+tG8syi8ZbfU3Jz2kB+f+sEMo6Wc8sLmzlRcfYr6xsdTn60fA/BAXaeXjTuK/X2DgnklksG8tSNY9lbUMlza7J7uvwepUHfioqaev60OpvZqbHnLz4p5ckC7TauGd2fdx+YQUrfcO57PYP3dhQAsO5w0/hRMzvYnt6c3SbcN3vo1/rAW2XhhARevWcKx8vPcuNfNrL/xP/dQfviulx251fwqxvG0K936xetrx0bz40TE/jT6mz2XOCGNV+gQd+KP63O5kxtAz+/bqTVpSjVLnERwfzj/mlMGxrNj9/Zw9J1OWw4XMKI/hFu99DxNrNSY3nn+9OxiXDLC5tZe6iIL49X8uyqLL4xLp7rxw+46P6/WDCavhHB/HD5bsuHkO4uGvQt5JVW8/rmo9w8eSAj+nvGWYtS7XGuR8t14+J56pODbMop5dJhvt09eET/3rz/4EwGxYRx72sZ3P96BtFhQTy5cEyb+0aGBvI/N48nt7ia33x6sAeq7Xka9C385tODBNhs/Phqrxx7TSkAggPs/Om2idw9vWnIhLkjff9mv/6RIbzzwHRmpcRysrKW3ywaR5+wILf2nZkSyz0zh/DqpqOsP+yZQ6V3hva6aSbjaBmLXtjMI3NTeWSuBr3yfsYYis/U0fcCbdS+yOE0nKg4y8DoXu3ar7bBwXV/XE91nYPPHrmUyF7eNV2o9rpxgzFNd9z16x3M4kuHWl2OUl1CRPwq5KHpgnF7Qx6aehU9e+sEiqvqeOqTA91QmXU06F0+2nuS3fkV/Pjq4TqDlFJ+alxiFPfPHsrbGflsyimxupwuo0EPlLq+wUf0j7joWBtKKd/3yNxUBsf04mcr9rk1xII38Pugb3Q4+bdluyitrueZReOxd2D4V6WU7wgJtPNfN47laGkNf/jisNXldAm/D/r/+d8sNmaX8qsbxjA2MdLqcpRSHmBGSiw3T05k6bpcMk+ctrqcTvProP/XvpO8kJ7DHVMHcYtO+q2Uaubn142kT69AHl2xl0ZHxyZO9xR+G/TZRWf4yTt7mDAwiieuH2V1OUopDxPVK4gnrh/N3oLK8xOweCu/DPqquka+98YOQgLtPH/nJLcnL1BK+ZdvjIvnyhF9+e3/ZpFfVmN1OR3md0FfWlXH/3trJ0dKqvnTHRMvOMmDUkqJCE/e0DSMwtOfHbK4mo7zm6Cvb3Ty0vpc5vzPWtYdLuEXC0YzI7nzo/kppXzbgKhQ7p2VxId7TvDl8cq2d/BAPh/0xhg+zyzkmt+v41cfH2DSoD589shs7po+xOrSlFJeYvFlQ4nqFcgzXnpW75O3gJZV17Mnv4Jd+RVsyi4hI6+c5LgwXrnnEi7X8eWVUu3UOySQB+ck89QnB9mcU8r05BirS2oXnwn64jN1PPlRJnsKKsgrbbpoYhNI7RvBE9eP4s5pg71+qjCllHXumj6Elzcc5enPDrLi+zMsn2GrPXwm6CNCAth5rJwxAyK5fcogxidGMTYxkvBgnzlEpZSFQgLtPDI3lUdX7GNVZiFXj+5vdUlu02GKlVLKTY0OJ1c/uw67Tfj0kUs9asgUHaZYKaW6QIDdxk+uGc7hoire33Xc6nLcpkGvlFLtMH9Mf8YmRPLsqizqGr1jdEu3gl5E5onIIRHJFpFHW1kfLCJvu9ZvFZEhzdY95lp+SESu6brSlVKq54kI/zFvBMcrznLnS1tZvj2f07UNbu1rjCGnuIrl2/P5aO+Jbq70/7TZRi8idiALuAooALYDtxtjMptt8yAwzhjzgIjcBtxojLlVREYB/wCmAAOAz4FhxpgLfg1qG71Syhu8tD6XN7bkkVdaQ1CAjStH9GXhhAQGx/SivtFJXaOT+kYntQ0ODhdVsSOvjB155ZTXNH0pzE6N5Y17p3ZZPRdro3enS8oUINsYk+t6s2XAQiCz2TYLgV+4nr8L/Fma+h4tBJYZY+qAIyKS7Xq/zR05kDb961E4ta9b3loppZq7D7g31lAV0UhpVT2l2XU0ZBma3zsbAIQDE4HpgXYiQgKIiAogIiSQEJsNXmlxMbf/WJj/311eqztBnwDkN3tdALT8Gjq/jTGmUUQqgRjX8i0t9k1o+QEishhYDDBo0CB3a1dKKUsJQkRwIBHBgQyO6cXps400Op3YRLCJIAI2EYIDbQTarLsk6k7Qt9Z/qGV7z4W2cWdfjDFLgaXQ1HTjRk2t64ZvQqWUcocAnjp1kTtfMQVA81k5EoGWVxHObyMiATQdb5mb+yqllOpG7gT9diBVRJJEJAi4DVjZYpuVwN2u54uA1abpKu9K4DZXr5wkIBXY1jWlK6WUckebTTeuNveHgM8AO/CyMWa/iCwBMowxK4G/AW+4LraW0fRlgGu75TRduG0EfnCxHjdKKaW6ng6BoJRSPkCHQFBKKT+mQa+UUj5Og14ppXycBr1SSvk4j7sYKyLFQF4n3iIWKOmicqzkK8cBeiyeyleOxVeOAzp3LIONMXGtrfC4oO8sEcm40JVnb+IrxwF6LJ7KV47FV44Duu9YtOlGKaV8nAa9Ukr5OF8M+qVWF9BFfOU4QI/FU/nKsfjKcUA3HYvPtdErpZT6Kl88o1dKKdWMBr1SSvk4nwn6tiYw92Qi8rKIFInIl82WRYvIKhE57PrZx8oa3SUiA0VkjYgcEJH9IvKwa7lXHY+IhIjINhHZ4zqOX7qWJ4nIVtdxvO0autsriIhdRHaJyEeu1155LCJyVET2ichuEclwLfOq3y8AEYkSkXdF5KDr38v07joOnwh61wTmzwHzgVHA7a6Jyb3Fq8C8FsseBb4wxqQCX7hee4NG4MfGmJHANOAHrr8LbzueOuAKY8x4YAIwT0SmAb8BnnUdRzlwr4U1ttfDwIFmr735WC43xkxo1ufc236/AP4AfGqMGQGMp+nvpnuOwxjj9Q9gOvBZs9ePAY9ZXVc7j2EI8GWz14eAeNfzeOCQ1TV28Lg+AK7y5uMBegE7aZoruQQIcC3/yu+dJz9omt3tC+AK4COaZr7z1mM5CsS2WOZVv19Ab+AIrg4x3X0cPnFGT+sTmH9tEnIv088YcxLA9bOvxfW0m4gMASYCW/HC43E1dewGioBVQA5QYYxpdG3iTb9nvwd+Cjhdr2Pw3mMxwP+KyA4RWexa5m2/X0OBYuAVV3PaSyISRjcdh68EvVuTkKueIyLhwHvAI8aY01bX0xHGGIcxZgJNZ8NTgJGtbdazVbWfiHwDKDLG7Gi+uJVNPf5YXGYaYybR1FT7AxG51OqCOiAAmAQ8b4yZCFTTjc1NvhL0vjgJeaGIxAO4fhZZXI/bRCSQppD/uzFmhWux1x6PMaYCWEvTNYcoETk3Bae3/J7NBBaIyFFgGU3NN7/HO48FY8wJ188i4H2avoS97ferACgwxmx1vX6XpuDvluPwlaB3ZwJzb9N8wvW7aWrr9ngiIjTNIXzAGPO7Zqu86nhEJE5EolzPQ4G5NF0sWwMscm3m8ccBYIx5zBiTaIwZQtO/jdXGmG/hhcciImEiEnHuOXA18CVe9vtljDkF5IvIcNeiK2maW7t7jsPqixJdeHHjWiCLpnbUn1tdTztr/wdwEmig6Zv+XpraUL8ADrt+Rltdp5vHMoumJoC9wG7X41pvOx5gHLDLdRxfAo+7lg8FtgHZwDtAsNW1tvO45gAfeeuxuGre43rsP/dv3dt+v1w1TwAyXL9j/wT6dNdx6BAISinl43yl6UYppdQFaNArpZSP06BXSikfp0GvlFI+ToNeKaV8nAa9Ukr5OA16pZTycf8/zo/XmpZcbZgAAAAASUVORK5CYII=\n", + "text/plain": [ + "<Figure size 432x288 with 1 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "zz = preds_all.mean(0)[:,0]\n", + "\n", + "train_md['prob'] = zz\n", + "\n", + "plt.plot(train_md[['prob','pos_idx']].groupby('pos_idx').mean())\n", + "plt.plot([0,60],[0,0])" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.0934667744853716" + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "log_loss(train_md['any'],train_md['prob'])" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(0, 5)" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5gAAAGfCAYAAAA6Un0sAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deZxbZ33v8e8j6Wg8ktdZ7DhxNseOnUDIgkkglCSEBJKQErgECJQW0tCwXCilG1Da21K4L9py27RlTaBspRBCIGVpQjAEE7YkOITs8RI7i2PHHu/2SDOSjp77x3M00ow1I2nmaI6Wz/v1Oq+jdfyMjqXR9/yexVhrBQAAAADATMWibgAAAAAAoDMQMAEAAAAAoSBgAgAAAABCQcAEAAAAAISCgAkAAAAACAUBEwAAAAAQikQ9DzLGPCHpkCRfUsFau6aZjQIAAAAAtJ+6Ambgpdba3U1rCQAAAACgrdFFFgAAAAAQCmOtrf0gY7ZK2ifJSrreWntDlcdcK+laSUqn089fvXp1yE0FAKA17Tw4MuX9S+bPmaWWAADQfPfee+9ua+1gtfvqDZhHW2u3G2MWS1or6T3W2jsne/yaNWvs+vXrp91gAADayXVrN055//suPnmWWgIAQPMZY+6dbF6eurrIWmu3B/tdkm6RdHZ4zQMAAAAAdIKaAdMYkzbGzCtdlvRySQ81u2EAAAAAgPZSzyyySyTdYowpPf5r1tofNLVVAAAAAIC2UzNgWmu3SDp9FtoCAAAAAGhjLFMCAAAAAAgFARMAAAAAEAoCJgAAAAAgFARMAAAAAEAoCJgAAAAAgFAQMAEAAAAAoSBgAgAAAABCQcAEAAAAAISCgAkAAAAACAUBEwAAAAAQCgImAAAAACAUBEwAAAAAQCgImAAAAACAUBAwAQAAAAChIGACAAAAAEJBwAQAAAAAhIKACQAAAAAIBQETAAAAABAKAiYAAAAAIBQETAAAAABAKAiYAAAAAIBQEDABAAAAAKEgYAIAAAAAQkHABAAAAACEgoAJAAAAAAgFARMAAAAAEAoCJgAAAAAgFARMAAAAAEAoCJgAAAAAgFAQMAEAAAAAoSBgAgAAAABCQcAEAAAAAISCgAkAAAAACAUBEwAAAAAQCgImAAAAACAUBEwAAAAAQCgImAAAAACAUBAwAQAAAAChIGACAAAAAEJBwAQAAAAAhIKACQAAAAAIBQETAAAAABAKAiYAAAAAIBQETAAAAABAKAiYAAAAAIBQEDABAAAAAKEgYAIAAAAAQkHABAAAAACEgoAJAAAAAAgFARMAAAAAEAoCJgAAAAAgFARMAAAAAEAoCJgAAAAAgFAQMAEAAAAAoSBgAgAAAABCQcAEAAAAAISCgAkAAAAACAUBEwAAAAAQCgImAAAAACAUBEwAAAAAQCgImAAAAACAUBAwAQAAAAChIGACAAAAAEJBwAQAAAAAhIKACQAAAAAIBQETAAAAABAKAiYAAAAAIBR1B0xjTNwYc58x5vvNbBAAAAAAoD01UsF8r6RHm9UQAAAAAEB7qytgGmOWSXqlpM83tzkAAAAAgHZVbwXzXyX9paTiZA8wxlxrjFlvjFk/NDQUSuMAAAAAAO2jZsA0xlwuaZe19t6pHmetvcFau8Zau2ZwcDC0BgIAAAAA2kM9FcwXS3qVMeYJSTdKutAY89WmtgoAAAAA0HZqBkxr7QettcustSdIukrSHdbaNze9ZQAAAACAtsI6mAAAAACAUCQaebC1dp2kdU1pCQAAAACgrVHBBAAAAACEgoAJAAAAAAgFARMAAAAAEAoCJgAAAAAgFARMAAAAAEAoCJgAAAAAgFAQMAEAAAAAoSBgAgAAAABCQcAEAAAAAISCgAkAAAAACAUBEwAAAAAQCgImAAAAACAUBEwAAAAAQCgImAAAAACAUBAwAQAAAAChIGACAAAAAEJBwAQAAAAAhIKACQAAAAAIBQETAAAAABAKAiYAAAAAIBQETAAAAABAKAiYAAAAAIBQEDABAAAAAKEgYAIAAAAAQkHABAAAAACEgoAJAAAAAAgFARMAAAAAEAoCJgAAAAAgFARMAAAAAEAoCJgAAAAAgFAQMAEAAAAAoSBgAgAAAABCQcAEAAAAAISCgAkAAAAACAUBEwAAAAAQCgImAAAAACAUBEwAAAAAQCgImAAAAACAUBAwAQAAAAChIGACAAAAAEJBwAQAAAAAhIKACQAAAAAIBQETAAAAABAKAiYAAAAAIBQETAAAAABAKAiYAAAAAIBQEDABAAAAAKEgYAIAAAAAQkHABAAAAACEgoAJAAAAAAgFARMAAAAAEAoCJgAAAAAgFARMAAAAAEAoCJgAAAAAgFAQMAEAAAAAoSBgAgAAAABCQcAEAAAAAISCgAkAAAAACAUBEwAAAAAQCgImAAAAACAUBEwAAAAAQCgImAAAAACAUBAwAQAAAAChIGACAAAAAEJBwAQAAAAAhIKACQAAAAAIBQETAAAAABCKmgHTGDPHGHOPMeZ+Y8zDxpgPz0bDAAAAAADtJVHHY0YlXWitPWyM8ST93Bhzm7X2ria3DQAAAADQRmoGTGutlXQ4uOoFm21mowAAAAAA7aeuMZjGmLgx5reSdklaa629u8pjrjXGrDfGrB8aGgq7nQAAAACAFldXwLTW+tbaMyQtk3S2Mea5VR5zg7V2jbV2zeDgYNjtBAAAAAC0uIZmkbXW7pe0TtIlTWkNAAAAAKBt1TOL7KAxZmFwuVfSRZIea3bDAAAAAADtpZ5ZZJdK+rIxJi4XSG+y1n6/uc0CAAAAALSbemaRfUDSmbPQFgAAAABAG2toDCYAAAAAAJMhYAIAAAAAQkHABAAAAACEgoAJAAAAAAgFARMAAAAAEAoCJgAAAAAgFARMAAAAAEAoCJgAAAAAgFAQMAEAAAAAoSBgAgAAAABCQcAEAAAAAISCgAkAAAAACAUBEwAAAAAQCgImAAAAACAUBEwAAAAAQCgImAAAAACAUBAwAQAAAAChIGACAAAAAEJBwAQAAAAAhIKAeWCb9NRdUbcCAAAAANoeAfPu66WvXCFZG3VLAAAAAKCtETBT/VJhRMpnom4JAAAAALQ1Amaqz+0ze6JtBwAAAAC0OQJmqt/tCZgAAAAAMCMETAImAAAAAISCgDkWMPdG2w4AAAAAaHMETCqYAAAAABAKAuacBZKJUcEEAAAAgBlKRN2AyMXiUu8iKpgAgEldt3Zj1E0AAKAtUMGUXDdZAiYAAAAAzAgBUyJgAgAAAEAICJiS1NvHGEwAAAAAmCECpiSl+qhgAgAAAMAMETClchdZa6NuCQAAAAC0LQKm5AJmMS+NHoq6JQAAAADQtgiYkguYEt1kAQAAAGAGCJhSOWBmmegHAAAAAKaLgClVVDAJmAAAAAAwXQRMyc0iK9FFFgAAAABmgIApMQYTABCaJYce0dEH74+6GQAARIKAKUlzFkgmTsAEAMzYuU99Rudv/ZeomwEAQCQImJJkjOsmS8AEAMxQT+GwkoXDUTcDAIBIEDBLUv0ETADAjHnFjHr84aibAQBAJAiYJal+ZpEFAMxY0s/I8zNRNwMAgEgQMEvoIgsACIHnZ5UsZmWsH3VTAACYdQTMEiqYAIAQlKqXnp+NuCUAAMw+AmZJaQymtVG3BADQpmLFvBI2L0lKMg4TANCFCJglqX7J+tLIgahbAgBoU5VjLwmYAIBuRMAsSfW7PeMwAQDTlCyWu8UmmegHANCFCJglvX1uzzhMAMA0VVYtqWACALoRAbOECiYAYIYqJ/YhYAIAuhEBsyRVqmASMAEA0zO+gkkXWQBA9yFgllDBBADMUGUF0yNgAgC6EAGzpGeeFPMImACAaRs3i2yBLrIAgO5DwCwxprwWJgAA05BkmRIAQJcjYFZK9UvZfVG3AgDQpkpdZAuxHsZgAgC6EgGzUqqPCiYAYNqSxYysjIa9PiqYAICuRMCsRBdZAMAMeH5G+VivcvE0FUwAQFciYFaiggkAmIGkn1E+XgqYVDABAN2HgFmpNAaz6EfdEgBAG/L8rHLxtHLxFAETANCVCJiVUv2SLUojB6JuCQCgDSX9YeXivcrH06yDCQDoSgTMSql+t6ebLABgGjw/q3w8pVHGYAIAuhQBs1Kqz+0JmACAaUj6GeXiKeXpIgsA6FIEzEpUMAEAM+AVS7PIplwF0xajbhIAALOKgFlpLGDujbYdAIC2NDbJTyItIyvPz0bdJAAAZhUBsxIVTADADCT94bFlStx1xmECALoLAbOSl5LiPQRMAEDjrB2b5CcXT0kS4zABAF2HgFnJGFfFpIssAKBB8eKoYioqF09VVDAJmACA7lIzYBpjjjXG/MQY86gx5mFjzHtno2GRSfVTwQQANKzUHdZ1kU2Nuw0AgG6RqOMxBUl/Zq39jTFmnqR7jTFrrbWPNLlt0Uj1ETABAA1LFl2YzMXTygcVTI+ACQDoMjUrmNbaHdba3wSXD0l6VNIxzW5YZKhgAgCmwauoYI4GAbOHLrIAgC7T0BhMY8wJks6UdHeV+641xqw3xqwfGhoKp3VRIGACAKYhGSxJkoullA+6yHoETABAl6k7YBpj5kr6lqQ/sdYenHi/tfYGa+0aa+2awcHBMNs4u1L90sh+yS9E3RIAQBspVzBTYxVMxmACALpNXQHTGOPJhcv/stZ+u7lNilhpLcyR/dG2AwDQVkphMhdPyY/1qKg4s8gCALpOPbPIGkn/IelRa+2/NL9JEUv1uT3dZAEADagcgyljlIunqGACALpOPRXMF0v6fUkXGmN+G2yXNbld0SFgAgCmwSsGYzCD7rG5RJoKJgCg69RcpsRa+3NJZhba0hpKXWQJmACABpTCZD7eK0lBBZOACQDoLg3NItsVCJgAgGnw/KyKiss3SUmukkkXWQBAtyFgTtRLF1kAQOOSfka5eEoyrtNPLp5WskAFEwDQXQiYEyVTkpeSMnujbgkAoI14fmase6zkliuhiywAoNsQMKtJ9VPBBAA0JOlnxyb4kdwYTI8usgCALkPArCbVR8AEADTE84fHVTDdGEwqmACA7kLArCbVTxdZAEBDksWsG4MZGJvkx9oIWwUAwOwiYFZDF1kAQIPcGMzKgJlSTEUliqMRtgoAgNlFwKymt48KJgCgIUk/o1xsfBdZd/vhqJoEAMCsI2BWk+qXRg9Ifj7qlgAA2kS1CqYk1sIEAHQVAmY1qdJamFQxAQD18fwjx2BKBEwAQHchYFaT6nd7xmECAOphi0oWsxMqmKWAyUyyAIDuQcCshoAJAGiA52claVwFMz/WRZaACQDoHgTMagiYAIAGJIsuYFZWMEcTroLp0UUWANBFCJjVEDABAA3wgiplvmIW2XzQRbanQAUTANA9CJjVMMkPAKABySpdZEuXqWACALoJAbOaRI+UnCdlCZgAgNrGKpiVYzBjvbIyjMEEAHQVAuZkUovoIgsAqEu1CqaMUS6eImACALpKIuoGtKxUPwETAFCXUjfYygqm5JYqSfoZXbd245TPf9/FJzetbQAAzCYqmJMhYAIA6pQMAmYu3jvudhcwqWACALoHAXMyBEwAQJ28YqmCmR53O11kAQDdhoA5mVQ/s8gCAOriBWMwK5cpkVyX2SSzyAIAuggBczKpPil3WMqPRN0SAECLS/oZFUxSxdj4qQ1G6SILAOgyBMzJpPrdnqVKAAA1eH5m/AyygXw8zTqYAICuQsCcTClgMg4TAFBD0s8eMYOsVBqDScAEAHQPAuZkevvcnnGYAIAaPH9Y+QkzyEpSLpFW0j8sWRtBqwAAmH0EzMlQwQQA1ClZzFbtIpuLpxS3vuI2F0GrAACYfQTMyRAwAQB18vzMJF1k3bIldJMFAHQLAuZkUnSRBQDUJ+lnlItV6SJbCpgFZpIFAHQHAuZk4p7Us4AKJgCgJs/PKh+EyUqlbrMsVQIA6BYEzKmk+giYAICakv6wctUm+aGLLACgyxAwp5LqJ2ACAGryJl2mpBQwqWACALoDAXMqBEwAQA2xYkEJm6s6i2wpdHpUMAEAXYKAOZVUP5P8AACm5BVdeKy2DuYoFUwAQJchYE4l1SdlCZgAgMmVqpO5KpP85JnkBwDQZQiYU0n1SfmMlKNrEwCgutIEPvmqy5Skxj0GAIBOR8CcSqrf7aliAgAm4flZSao6yY9MTLlYigomAKBrEDCnUgqYTPQDAJhEcqyLbJWAGdxOwAQAdAsC5lQImACAGkpjMKtWMFUKmHSRBQB0BwLmVMYCJl1kAQDV1axgJtJUMAEAXYOAORUqmACAGrziFGMw5WaXpYIJAOgWBMypzFkoyRAwAQCTKlUnc1VmkZVc8PSoYAIAugQBcyrxhNS7kIAJAJhUeRbZ6gEzF0+rp0DABAB0BwJmLb19jMEEAEzK8zOuemmq/0nNxVNjEwEBANDpCJi1pPqpYAIAJpX0M5NWLyXGYAIAugsBs5ZUPxVMAMCkPD+jXDw96f25eFoJm1OsmJ/FVgEAEA0CZi1UMAEAU6hdwUwFj2McJgCg8xEwa0n1uYBpbdQtAQC0IK+YrVnBlEQ3WQBAVyBg1pLql/xRafRQ1C0BALSgesZgusdRwQQAdD4CZi2LT3H7bfdE2w4AQEvy/IzysdSk95e7yFLBBAB0PgJmLSeeJ3kpacNtUbcEANCCkn5mLERWk0u4CqZHBRMA0AUImLV4vdJJF7qAyThMAMAEnp+dsotsPgifPQRMAEAXIGDWY9Wl0sFnpGcfiLolAIBWYm3tCma8VMGkiywAoPMRMOux8hWSDN1kAQDjxG1OMfljVcpqxib5KVDBBAB0PgJmPeYOSseeLW24NeqWAABaiOdnJalGBdN1n2UWWQBANyBg1mvVpdKO+6UDz0TdEgBAiyiFxqkqmNYklI/1MIssAKArEDDrteoyt99IN1kAgDNWwZximRLJdZOlggkA6AYEzHoNnCz1LWccJgBgTLmCOfksslIpYFLBBAB0PgJmvYxxVcytd0qjh6JuDQCgBdQzBrN0PxVMAEA3IGA2YtVlkp+THr8j6pYAAFpAsuiqklONwZToIgsA6B4EzEYce47Uu4husgAASRrr9lqri2w+nmIdTABAVyBgNiKecGtibrxd8gtRtwYAELFSaCytdTmZUcZgAgC6BAGzUasulbJ7pW33RN0SAEDEyrPI1qpg0kUWANAdCJiNWvEyKZ6UHvufqFsCAIhY0s+oqJj8WM+Uj2OSHwBAtyBgNqpnnnTCS6QNt0rWRt0aAECEPD/jZpA1ZsrH5RJpecVRGcvwCgBAZyNgTseqS6W9W6Tdm6JuCQAgQp6frTmDrFRexoRxmACATkfAnI5Vl7r9hlujbQcAIFJJf7jmGphSeRIgAiYAoNMRMKdjwTLpqOexXAkAdDmvmK25RIlUETALh5vdJAAAIlUzYBpjvmCM2WWMeWg2GtQ2Vr9SevpuaXh31C0BAEQk6WeUj9FFFgCAknoqmF+SdEmT29F+Vl0qybo1MQEAXWlskp8a8kEF0yNgAgA6XM2Aaa29U9LeWWhLeznqedL8YxiHCQBdLFnnJD+jQcDsYakSAECHC20MpjHmWmPMemPM+qGhobB+bOsyxlUxH79Dyo9E3RoAQASS/nBdYzBLIdQjYAIAOlxoAdNae4O1do21ds3g4GBYP7a1rbpUymekrXdG3RIAQAQ8P1vnLLKMwQQAdAdmkZ2JE14iJefSTRYAupEtBrPINrJMCRVMAEBnI2DORKJHWvEyaeMPpGIx6tYAAGaRVxyRka2rglmMeSqYJBVMAEDHq2eZkq9L+pWkVcaYbcaYa5rfrDay6pXSoR3S1nVRtwQAMItKM8LWs0yJ5LrJUsEEAHS6emaRfaO1dqm11rPWLrPW/sdsNKxtnHqFtOA4ae3fUsUEgC7i+VlJUq6OSX4kKZdIEzABAB0vEXUD2p43R3rZ30jf/iPpwW9Kp78h6hYBABp03dqNDT+n1N21NL6yFlfBpIssAKCzMQYzDM+9Ulp6unTHR1iyBAC6RCks1rNMiSTl4nPHutUCANCpCJhhiMWkiz8iHXhauuf6qFsDAJgFY2Mw65jkR3IVzJ4CXWQBAJ2NgBmW5edLK18u3fnPUmZv1K0BADRZsljqIltfwMzHU/IYgwkA6HAEzDBd/PdS7pB058ejbgkAoMlKk/zUX8FMMwYTANDxCJhhWnyKdOabpXs+J+3dEnVrAABNVJoRtt4KJsuUAAC6AQEzbBf8lRT3pB9/JOqWAACaaKyCGat3kp+0ksWsjPWb2SwAACJFwAzb/KXSi94tPfxtadu9UbcGANAknp9RwXgqxry6Hl9azqQUTAEA6ESsg9kML/5j6d4vSj/8a+nqWyVjom4RACBkST9T9/hLqdyVNukPK5eYO+6+Wutwvu/ikxtvIAAAEaCC2Qw986QLPig99Utpw61RtwYA0AReMVP3+EupXMFkoh8AQCcjYDbLWW+R+ldKa/9W8vNRtwYAEDJXwaxv/KVUGTCZ6AcA0LkImM0ST0gXf1jas0n6zVeibg0AIGSenx0LjfXIV3SRBQBgzDP3Sn4h6laEhoDZTKsuk447V1r3MSm7L+rWAABClPQzdc8gK5XHYHp0kQUAlAxtkL74SunHH466JaEhYDaTMdIrPipl9krXnyc9+cuoWwQACInX6CQ/CVft7KGCCQCQpMKodPM1UjLtVqHoEATMZjvm+dLVt0kmJn3xMulHfycVclG3CgAwQ0l/epP8UMEEAEiSfvz30s4HpSs+Jc1bEnVrQkPAnA3HnSO94+fSWb8v/fw66fMXSrsejbpVAIAZ8IrZBif5YQwmACCw+cfSrz4pveCPpFWXRN2aUBEwZ0vPPOlVn5Cu+pp0cId0/fnSXZ+RisWoWwYAmAZXwax/kh/fJOWbhJIFAiYAdLXh3dJ/v1MaPEV6+Ueibk3oCJizbfUrpXf9Slp+gfSDD0hffY10cHvUrQIANMDYghLF0YYqmDJGuXiadTABoJtZK33n3W4C0Nd+XvIa+DvSJgiYUZi7WHrTN6TL/1V6+h7p0y+S7vkcYzMBoE14/ogkKRerfwymJAImAHS79f8hbbxNuujD0lHPjbo1TUHAjIox0pqr3djMJc+Vbv1z6ZPPl+77r45aBwcAOlFpHGUjs8hKbhwmYzABoEvteky6/UPSSS+TznlH1K1pGgJm1PpPkt76fenN35J6+6TvvEv6zIukh29hfCYAtCjPz0pSQ7PISi6QEjABoAsVRqVvvU1KzpVe/Rkp1rkxrHN/s3ZijLTiIunaddLr/9MtafLNt0o3nCdtvN311QYAtIxyBbOxsTOj8TTLlABAN+rQJUmqIWC2EmOkU18lvfOX0muul0YPSV97vfSFV0hbfxZ16wAAgelXMNNUMAGg23TwkiTVEDBbUSwunX6V9O710uXXSfufkr58ufSVV0vP3Bt16wCg6yWLrgo5vTGYVDABoGvseKCjlySphoDZyuKetOYPpT++T3r5R6Ud90ufu1C68fekXY9G3ToA6Fqlbq6NVjBzVDABoDtY61aJ+PxFbvjblV/oyCVJqiFgtgOvVzr3PdJ775cu+Ctpy0/d0ibffru0d2vUrQOArlOqQuYbXqYkqGAyth4AOld2v3TT77tVIpafH6wacWrUrZo1BMx2Mme+dMH7pT95wAXOR/5b+uQa6fvvkw49G3XrAKBrlMZgNjrJTy6elpGVV8w2o1kAgKg9/Wvpsy+RNtzmeiC+8RtSeiDqVs0qAmY7SvW5Ptx//FvprLdIv/mK9Kmzpftv5Kw4AMyCsQpmowEzkXbPL9BNFgA6SrEo/eLfpC9eIhlJf3i7Kwh18HIkk+m+37iTzF8qXf4v0rvudgOHb3m7dOObpEM7o24ZAHQ0z88oH5sja+INPa80ZpNxmADQQYZ3S197nbT2/0irXym9/WfSsjVRtyoyiagbgBAMrJCuvlW66zPSHR+RPn2OdOnHpdOudEufAABC5RWzDU/wI5VnnW10Jtnr1m6c8v73XXxyw20BAIRg01rpO++WsvukV/6ztOaarv/+TQWzU8Ti0rnvdmdM+k6Svv026Rtvlg7virplANBxkv5ww0uUSNJoPD32fABAG8vslW55h/RfV0q9C6U/+rH0grd1fbiUCJidZ/Bk6ZofShd9WNr0Q+lT50gPfTvqVgFAR/H8rHINjr+UpHwQMD3WwgSA9vXY/0iffqH0wE3SeX8hvf1O6ajTom5Vy6CLbCeKxaXf+RPp5Evcwq43Xy2t+5jkpdzamvGkFEu4fdxz2/xjpFNfLR17NmdeAKAGV8FMN/w8xmACQBsb3iPd9hfSQ9+Slpwm/d43paWnR92qlkPA7GSLV0vXrJXu/oz05K+kYl7yg60wIo0elPyC5OekDT+Q7vq0tOA46bTXSs+9UlryHMImAFTh+VmNJOY3/LwcXWQBoP1YKz18i3TrX0gjB6SXfkj6nfe5Ig2OQMDsdPGEmyL53PdM/biRg67c/9DN0i/+Xfr5ddLgajdR0HOvlPpOnJ32AkAbSPoZHeo5quHnlQMmXWQBoC1k9krf+2Pp0e9JR58pXfE9acmpUbeqpREw4cyZL53xRrcN75Ye+W/pwZulOz7qtr6T3FkaW3RncWyxYrMuyPavdG+4xcE2sFJK9ET9mwFAzVlYG+X5mWnNIluI9aioOAETANrBrsekr79BOrhduujvpBe9x33nxZR4hXCk9ICbBesFb5P2Py09/G1p23rXXdbEJAX7yi2fkXZvlB7/sVQsuJ9j4lL/Chc6lzxHWnGx66dOt1sAbS5ZzE5rFlkZo1w8RRdZAGh1m37k5jFJzJGuvq2r17VsFAETU1t4rPTi99b/+EJO2rNZ2vWItOtRt22/z/Vbv+Ojbozn6ldKp/yudNwL3YREANBmPD+j/DRmkZVEwASAVmatdPf10u0flBY/R3rTjdKCZVG3qq0QMBGuRDKoWE7omz68R9p4m+u/vv4LbuKh1IC0+jJp9e9Ky8+nOy2AthAv5hS3hWl1kZWkXCJNwASAVuTnpVv/XLr3S9Lqy6XXXC/1zI26VW2HgInZke6Xznyz20YPSZt/5MLmQ7dIv/mK5KWluYulZNptXuulR7oAABjKSURBVOrIy/OWuorqwuNcJTTVR3dbALOutIZlPjbNgBlPMwYTAFpNZq900x9IT/xM+p0/lS78GykWi7pVbYmAidnXM096zmvcVhiVtt7pAmdmr5QblvLDUu6wdHiX2+czLpQWRsb/HC9dDpwLj5NOPE9adRlTRgNoKs/PStK0K5j5eGospAIAWsDuTdLXXi8d2OaqlqdfFXWL2hoBE9FK9EgrL3bbVKyVRvZL+59yEw/tf0o6EOz3PyU9dbf068+7Kufz3yqd9RZp/tJZ+RUAdJdS99ZpTfIjV8GcO7orzCbVNUvu+y4+OdR/EwDaSrEoZXZLh3ZIh56t2HZID33bFSje8n3puHOibmnbI2CiPRgj9S5y29LTj7y/6EubfuhC5rqPST/9J+mUy91MuCe8hK60AELjFUsVzOlN8jMaT2tubpeWHHpYO+c9J8ymAUB3GT3kwuHOh12Pt8KIlM+6rTDibsuPSCMHpMM7Jesf+TNSA9LRZ0hXfNL1iMOMETDRGWJxadWlbtvzuHTvF6X7vio98h1pYJX0gmuk017nxm0CwAyUxk/m4+lpPf+Bo16rE/bfpTc+cLXuP+pK/eL4dymXYBIJAKjbjvul9V+UHvymG07Vs0BKpiSvV0r0St4cN4dHasDd1jNfmndUxbZUmrvEbYlk1L9NxyFgovP0nyS9/KPSSz/klkf59eel2/5Suu390tLnubGaJ54vHfei+mcGs9at78n4TqDrlcZPTreCuXPec/TlM2/SuU99VmfsuEkr9vxE65b/mTb1v4zeFgAwmdHD0kPfcjO8bv+NC5LP/V/S8692a1Ty+dkyCJjoXF6vdMab3Lb9t9LG292EQndfL/3yE1IsIR3z/CBwnifNP8YN7h7bnnL7/U+7fTEvLTxeGlgp9a+UBlYE+5XuDBgfbEBXSAaT/Ex3FllJyiXmat3yP9ejg5fpZY9/TJdv+KC2LjpXdyz/Sx2cc0xYTQWA9lHIBRM9ZoJursHl3GFpw23SAzdJuUPS4CnSpf8kPe8NUu/CqFuNKgiY6A5Hn+G2C97vPqyevtuFza13Sj/7Z+nOjx/5nLlHuYV1lz7PrdcZ75H2bHbb1jvHz2rbM98FzaVnSEef6bbB1VKctxjQabxgkp/pziJbaee8U/X107+oM3bcpHOfvF5/cN8bdPexb9O9R79ZxRifHwBaULHoJl7M7JUye9z4Rm+OWyWgZ36wnycl5pRPvheLbjKdfU8E29aKy09I2X2up9hk4j1u9YE1V0vHnsNJ/RZnrLWh/9A1a9bY9evXh/5zgaYYOSA9+Sv3IblgmVv6ZP4xbobbyRSL0sFtblrrPZvdftejbkxA7pB7TKJXOuq0cuBcerrrvjvVzwUwLfXMohqWNdu+opc8+Ql94oU/UyE+J7SfO3d0py7Y8v+0cu86Heg5Wtvnnabd6ZO1K32ydqdXKpPsD+3fqoZZZgGMKRalnQ9JW9ZJ2+6Rhne770mZPS4M2mLtnxFLuKDppaXhIckfLd9nYu4716IT3Jbqd49Lpsrrn3up4HpaGjzZTfSIlmGMuddau6bafZweBeYskFZd0thzYrHy+psrXla+vViU9j4ubb/Pdcvdfp+bbOie6939Jnhe/0qpf4ULnAPB5XlHs6Av0AY8P6OiYirEwj1ZdLhnib5/yse1fO+dOu3ZW7Ts4H06ZfftY/cPe30aCsLmUGqlhtIrta/3eBVjjA0HOopfcBW+oQ3S7o3S6EFXwUskg32PFE+6CmEi6WbSz+6TsvuD/YRNVho4WVp8iutdtfgU971j4gnv/U+5QLllnbTlp25JD0nqW+5OvC8+xQXB0tbb5/ZzFrjwOHoo2A5WXD7kxk6mB8phsu9EacGxzGvRwQiYQJhiMRcYB1ZKz3u9u63ouyrnjvvL1c49m6Unf+nGF5Qk5gQf1Avdh3XvQne5t3R9kTT/6HKw5UweEImkn1E+3tu0Llpb+s7Tlr7zJElz8vs1MLxZg5mNGhzepMHhjTpj+41K2LwkyTcJ7e09QbvTK7Q7tWJsfzi5mC5k6F7Fogtoux51S1MsONYFm4XHua6c05XdJ+3dIu3dGuy3SPuedPd5c4LA1xPsJ1z35pRnNy3d5/W6+w/vCsLkBmloo/u5xXz53415469PJTk3WNZtodsvXu2+hwxtcOMYS8t0mLgLjotXu+8aT/7C/buSGyK04iJp+QXS8vPddw+gAQRMoNlicWlwldsqWSsd3B6M69zk/mCVzkCOHHBnErMPuMulbreVehaUw2Zpm7t4/NnFVJ/7AwYgNF4xo3wI4y/rMeIt1LaFa7RtYbkXUqxY0KLsExrIbNbA8GYNZDbrmAP36ZShH4w9ZjSeVi6elh/z5JukCrGk/FhSvkm622JJFU1CvkmoaBIqmrg00u++yMYSwfhxIykYRlNtOE2q3/XC6DvJfVFNhviaWOu64MXi4f1MdB5rXTjb9Yjbdgb7ocfc+ofVzDu6XElbdLwLT35eKoxKhazb57Pl67lhFyL3Ph5UAyvMX+Z+hom5St3wUPD8ETdPQ+ln+Lnav4uJu8rewCo378PAKld1HFgpzZnvQrOfc5XCQrD5Obc3Mff3fs7CqZfcKIy6k9xDj7nwPfSYe80ye6TjXiid/XYXKgdXcYIKM0LABKJijLTgGLctP3/qx/oFN6D+wDYXPPc/Je1/0u33bXXdWSqroZW8VDlsJudNOHsanFFN9Lgg2rvIjYmYv8y1K7148m67IweDM7iPS3uC/egh1+1mcJX74zh4sht/AXSQpJ8JZYKf6SrGEtqTXqE96RXaMFi+vadwcCxwLso+Kc8fUbw4qoTNK17MKR7sewqHFLc5xYsFxayvmC0oZgsa3jf+epn7ounFg7BnjPtiP/EzZ95SFzb7l7t9etB1gYslXHe+uBdcD/aFEenQs27ij0PPVmzBdT/nPrfSi93Js7mL3Yzd6cHyybRY3H0xjyUmXI65/VjFqGI/k6EIY5ObBGPRDu9yFbLDu6ThXRXXh9x+znxp8anSkue47oWLn+M+H+tdIisK+RHp4DPSgafdcUj0uF40cxYEPWwWut9rqu6NpaW9/Lz72zKdsDJy0AWgfU+64Da8y72upcvDu93rXTmuLz3oXu/nv7X8es87yv3trJxQZv+T0tafSvc/U/3fHqs89rr2LzxOOvXVwQmV5W5bdEL9J3CLxSBwBls+W3F5xP1f7ls+dTiMxaTYnJlVYBM90lHPdRvQRARMoB3EE278QnrAzYY7kbXuzOrwUPmLz9i2t3w5N+yuV/5hqzxjqwlVipjnzu4uONYFzlhC2vO4C5PDQ+MfO+9oFyY33j6+K8/8Y8qBc2Bl+czxgmVMeIS25PnZGS1R0iyjifl6ZsFZembBWU35+UdMAlR5kmnvlvKJpsduLY/dqldyXnkB9GPPkeYtcSfHhoeC0LZL2vZrt5+sMlWveLJiIfbe6iG01HVx9KD7zCxNcJLdW31yExNzC7rPXSLNHXSVp/SA+1ze+Yhbt6+y3YtOcEFo3lEqBfiqrO9OMBYL7nPVz5eDW7Hg2lIZ2uOe+/1iifGXS9dLl0vXrXWB/sDT5SW5hnfV9zp6aRc0JdceP1/Rxoq/AV6qHMoqt/6TXFfMYsGNM9z1qLTr4aAK+ahbKqxSzHMBMj3gTjAMrnbXS2MDF5/qXvtqFhwjHXfOkbfnR9zvOzaeMQiWYVfvYjFX4Q+zyg+0MGaRBeCUQurBZ8avB3rwGenAM+W1QCu/HPRVnM0t/eGsnJxg6DH3xaE0UcG4L4bGVTwWHe/WF110vAuy6YGKyQP63Fnzid3krHXV0kPPSoeflQ7tdPvhIfclY8VF7uegI8zmDLGSNHf0WcVtQZnEItcVdsKXzSsffLsk6ebTrp/VdrW6cQF05ID7PPFLwSg34XLefZGft9SFskYqeqOHXSjI7nNjy4p+ELaCfbFYDmRj3R0rqkb5TPnk2rj9hMcURt1Js9SA+yxK9Zc/n0q3laqqpWrqZIpFaf8T5fBUClKZPVP/riYWBMN4OUTGPHfSMea5/5tjwa7gXttSyPMrAmmxIpBOlOh1s6cvWBacTDy2PKP6vKXudRg5UGULhnNI5Qp1ZbU6FrR7eKhivOIT47uLJnrLbZPc8wdOdp/ji09xld++5e51nrOQbptAC2EWWQC1GRN8iepzy6tMVzxRnujolMvLtxeL0qHtrrvTWPfe4PITP5ce+IaOqKC6hgWTFQRhM7vPdT2rVsUw8WACAyMdc5a08uXSyoulpWcyQy8mZ636s1u0YvcdWrH3J1o8vGnsroJJKustVMbrU9ZbqKy3SH3ZJ7Rz7qkRNrgNlLpUNkPP3NbuYlpNLFY+GVf5uTjbKsN3seBO1s1ZMHvBrei7k5WlwLl3izvRsPhUt/WvmLqbKIC2QMAEMDtiwZpXC5ZJevGR9xdyLoBm9kiZfeXuaKUuvtm97mx534muW1WpO93cJeXLyXnSs/dLm9a6bd0/SOs+5qoNKy5yYXPBsgkVjwkVEJkjqwSlSU9inqsA5IaD7XCwDZf3Jua6bJWqAAuWlbuRoXVYqyWHH9GKPT/Rij0/Ud/IU7Iy2j7/dP30hPdqxFuo3vw+pfL71Btsqfy+YGxjVjvnnhL1bwA0LhaTYklJEYW4WNz1Vll0vHTSS6NpA4Cmo4ssgM41vEd6/A5p0w+lzT9yIbWZYp4kW+7uVdKzoBw25w66EDpORfXAxMrT15e2xBw3jsmb48Y9zV/qAmzvoo7oMta0LrDWqqdwUHNzQ0rn97h9brfmj+zQCft+ofm5nfJNXNsWrNHmvpdqc//5yiTpWt0sR4zhBAC0LbrIAuhO6X7pea9zW9GXdvzWVUFNPBjTlKi4HMxAKTthIo18xdixvAuAPXPdWmPJ9Ph9acHrw7uCMaxPjx/PeuBp6dkHNa4r8MSTfNYPxo1ljgyqEyXnuqA5bvzUsvIMn/lsMN4sK+Uy5cuJZNDuirb3lC6npZ75rttcaV/PLJB+wf2buaDdpQlGxqrBySO7KVv3Wnt+RrFi3s1yGsxgWlRcRROXNW5fWkrDBseoN79P6dwepfN7lMrtUTq3u3w5v8fdl9uthD1yeYCR+FxtW/B8/bL/ndqy6Hc06jWpKycAAF2ICiYAtCo/P36CknzWdcU9+Ex5xscDT7vxrAeePnKNthITc5XPZMpVQ/180K33UPVJPyaKJcYHTmPKgTV32F2uXCpgMibuAqeJHTnTZAiyiQUaTvYr4/VpODmow8lBDSf7NZwc1LA3EFwfUCE+g2n+0TRUOAGgfVDBBIB2VFp2QBPHcFb9PHezax7c7qqxY11s00Goq1KBtNaF18oxpKOH3Qy9I/vdEg0jB9xyFCMHytdt0a0L5wUVz2TKVUG9YBr+WKKiCpzTzzdsD9ZcdBVKY335xlMx5qlgkirGEu668eTHPBVNXMb6wZqMfsXajL6M9WVklfEWKZPs17DXH4TKfhVjU6zLh5ZXq6s0ARQA2gMBEwA6Rc9cabCBL+HGlIPoDJZ1uW7tRikntw1XecCyaf9oYAwBFADaAwETAAC0PQIoALQGAiYAdLmmzeIKtJB6/p8TQgFg5giYANDhCJBAfZr9XiHAAugGXRkw6UYDoFUQ/oDuwfcPAN2gKwMmgM4x0y9sBDwArYIKKoBO0JXrYM7GF0o+xNEKCE8AgFbS7O9HVImB2THVOph1BUxjzCWS/k1SXNLnrbX/MNXjCZgAAADA7CNEYzZMFTBrdpE1xsQlfUrSxZK2Sfq1Mea71tpHwm0mAAAAgJmgkNIZ2vlEQayOx5wtabO1dou1NifpRklXNLdZAAAAAIB2U88kP8dIerri+jZJ50x8kDHmWknXBlcPG2M2zLx5TTMgaXfUjcAROC6th2PSmjgurYdj0po4Lq2HY9KaOC4t5k9b/5gcP9kd9QRMU+W2IwZuWmtvkHRDA42KjDFm/WR9hhEdjkvr4Zi0Jo5L6+GYtCaOS+vhmLQmjkvraedjUk8X2W2Sjq24vkzS9uY0BwAAAADQruoJmL+WtNIYc6IxJinpKknfbW6zAAAAAADtpmYXWWttwRjzbkm3yy1T8gVr7cNNb1lztUVX3i7EcWk9HJPWxHFpPRyT1sRxaT0ck9bEcWk9bXtM6loHEwAAAACAWurpIgsAAAAAQE0ETAAAAABAKDo2YBpjXmeMedgYUzTGTDrFrzHmEmPMBmPMZmPMBypuP9EYc7cxZpMx5hvBBEeYAWNMnzFmbfCarjXGLKrymJcaY35bsY0YY14d3PclY8zWivvOmP3fovPUc1yCx/kVr/13K27nvRKyOt8rZxhjfhV8zj1gjHlDxX28V0I02d+Jivt7gv/7m4P3wgkV930wuH2DMeYVs9nuTlbHMflTY8wjwXvjx8aY4yvuq/pZhpmr47i81RgzVPH6v63ivrcEn3mbjDFvmd2Wd646jsl1FcdjozFmf8V9vFeawBjzBWPMLmPMQ5Pcb4wx/x4csweMMWdV3Nce7xNrbUdukk6RtErSOklrJnlMXNLjkpZLSkq6X9KpwX03SboquPxZSe+M+ndq903SP0n6QHD5A5L+scbj+yTtlZQKrn9J0pVR/x6dttV7XCQdnuR23isRHBNJJ0taGVw+WtIOSQuD67xXwjsWk/6dqHjMuyR9Nrh8laRvBJdPDR7fI+nE4OfEo/6d2n2r85i8tOJvxztLxyS4XvWzjG1WjstbJX2yynP7JG0J9ouCy4ui/p3afavnmEx4/HvkJvMsXee90pzjcp6ksyQ9NMn9l0m6TZKR9EJJdwe3t837pGMrmNbaR621G2o87GxJm621W6y1OUk3SrrCGGMkXSjp5uBxX5b06ua1tmtcIfdaSvW9pldKus1am2lqq9DocRnDe6Vpah4Ta+1Ga+2m4PJ2SbskDc5aC7tH1b8TEx5TebxulvSy4L1xhaQbrbWj1tqtkjYHPw8zU/OYWGt/UvG34y65NbzRXPW8VybzCklrrbV7rbX7JK2VdEmT2tlNGj0mb5T09VlpWRez1t4pV0CZzBWSvmKduyQtNMYsVRu9Tzo2YNbpGElPV1zfFtzWL2m/tbYw4XbMzBJr7Q5JCvaLazz+Kh35Qfd/g+4C1xljeprRyC5U73GZY4xZb4y5q9RtWbxXmqWh94ox5my5s9OPV9zMeyUck/2dqPqY4L1wQO69Uc9z0bhGX9dr5KoBJdU+yzBz9R6X1wafTTcbY45t8LloTN2va9CN/ERJd1TczHslGpMdt7Z5n9RcB7OVGWN+JOmoKnd9yFr7nXp+RJXb7BS3o4apjkmDP2eppNPk1l8t+aCkZ+W+SN8g6f2S/n56Le0uIR2X46y1240xyyXdYYx5UNLBKo/jvVKHkN8r/ynpLdbaYnAz75Xw1PP3gL8ls6vu19UY82ZJaySdX3HzEZ9l1trHqz0fDannuHxP0tettaPGmHfIVf4vrPO5aFwjr+tVkm621voVt/FeiUbb/01p64Bprb1ohj9im6RjK64vk7Rd0m65cnQiOBtduh01THVMjDE7jTFLrbU7gi/Fu6b4Ua+XdIu1Nl/xs3cEF0eNMV+U9OehNLoLhHFcgm6YstZuMcask3SmpG+J98q0hHFMjDHzJf2PpL8OutGUfjbvlfBM9nei2mO2GWMSkhbIdX+q57loXF2vqzHmIrkTNudba0dLt0/yWcaX5pmreVystXsqrn5O0j9WPPeCCc9dF3oLu08jn0FXSfrflTfwXonMZMetbd4n3d5F9teSVho3C2ZS7s31XetG0v5EbgygJL1FUj0VUUztu3KvpVT7NT1iHEDwRbs07u/VkqrOvoWG1TwuxphFpW6WxpgBSS+W9Ajvlaap55gkJd0iN07jmxPu470Snqp/JyY8pvJ4XSnpjuC98V1JVxk3y+yJklZKumeW2t3Jah4TY8yZkq6X9Cpr7a6K26t+ls1ayztbPcdlacXVV0l6NLh8u6SXB8dnkaSXa3wPJkxPPZ9fMsaskps05lcVt/Feic53Jf1BMJvsCyUdCE4ct8/7JOpZhpq1SXqNXNIflbRT0u3B7UdLurXicZdJ2ih3RuZDFbcvl/sisFnSNyX1RP07tfsmNybpx5I2Bfu+4PY1kj5f8bgTJD0jKTbh+XdIelDuy/JXJc2N+nfqhK2e4yLp3OC1vz/YX1PxfN4r0RyTN0vKS/ptxXZGcB/vlXCPxxF/J+S6HL8quDwn+L+/OXgvLK947oeC522QdGnUv0unbHUckx8Ff/tL743vBrdP+lnGNivH5WOSHg5e/59IWl3x3D8M3kObJV0d9e/SKVutYxJc/ztJ/zDhebxXmndMvi4383teLqtcI+kdkt4R3G8kfSo4Zg+qYjWMdnmfmKCxAAAAAADMSLd3kQUAAAAAhISACQAAAAAIBQETAAAAABAKAiYAAAAAIBQETAAAAABAKAiYAAAAAIBQEDABAAAAAKH4/8WYwXdu8iB1AAAAAElFTkSuQmCC\n", + "text/plain": [ + "<Figure size 1152x504 with 1 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "#zz = preds_all.mean(1)[0,:,0]\n", + "k=0\n", + "zz = preds_all.mean(0)[:,k]\n", + "#zz = preds_all[0,0,:,k]\n", + "#zz = scalePreds(zz,power=1.3)\n", + "\n", + "\n", + "plt.figure(figsize=(16, 7))\n", + "a = plt.hist(zz - train_md[all_ich[k]],bins=100,alpha=0.5,density=True)\n", + "b = 0.5*(a[1][1:] + a[1][:-1])\n", + "plt.plot(b,-7*np.log(1-abs(b))*a[0])\n", + "plt.ylim([0,5])" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0 [3.57e-05 6.13e-05 9.31e-05 1.79e-03 9.95e-01 9.98e-01 9.99e-01]\n", + "1 [7.12e-06 9.84e-06 1.44e-05 9.54e-05 8.47e-02 4.76e-01 8.64e-01]\n", + "2 [1.66e-05 2.25e-05 3.18e-05 3.06e-04 9.82e-01 9.94e-01 9.97e-01]\n", + "3 [8.39e-06 1.13e-05 1.72e-05 1.02e-04 9.76e-01 9.92e-01 9.95e-01]\n", + "4 [2.32e-05 3.56e-05 5.27e-05 4.59e-04 9.57e-01 9.92e-01 9.96e-01]\n", + "5 [2.51e-05 4.16e-05 6.20e-05 9.25e-04 9.68e-01 9.93e-01 9.96e-01]\n" + ] + } + ], + "source": [ + "np.set_printoptions(precision=2)\n", + "zz = preds_all.mean(0)\n", + "for k in range(6):\n", + " print(k,np.quantile(zz[:,k],[0.0001,0.001,0.01,0.5,0.99,0.999,0.9999]))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Bounding" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "(10, 752797, 6)" + ] + }, + "execution_count": 29, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "preds_all.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.057490836031309125\n" + ] + } + ], + "source": [ + "loss = ((- train_md[all_ich].values * np.log(preds_all.mean(0)) \\\n", + " - (1 - train_md[all_ich].values) * np.log(1 - preds_all.mean(0)))*class_weights).mean()\n", + "print(loss)" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "initial score 0.057490836031309125\n", + "any too low inconsistencies\n", + "1 class: 0.004179878506423379\n", + "2 class: 0.025429033325053103\n", + "3 class: 0.012410782720972586\n", + "4 class: 0.033147714456885455\n", + "5 class: 0.09211925658577279\n", + "total 0.14343999776832267\n", + "any too low corrected score 0.05748886375218989\n", + "any too high inconsistencies\n", + "total 0.24964844440134593\n", + "any too high corrected score 0.0574848864789516\n" + ] + } + ], + "source": [ + "preds_all = predBounding(preds_all, target=train_md[all_ich].values)" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.0574848864789516\n" + ] + } + ], + "source": [ + "loss = ((- train_md[all_ich].values * np.log(preds_all.mean(0)) \\\n", + " - (1 - train_md[all_ich].values) * np.log(1 - preds_all.mean(0)))*class_weights).mean()\n", + "print(loss)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Models behavior per groups" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 0: 452096 84109 [0.0744 0.0723 0.0724 0.0725 0.0742 0.0729 0.073 0.072 0.0718 0.0718]\n", + " 1: 300701 37123 [0.0418 0.0406 0.0404 0.0408 0.0425 0.0415 0.0417 0.041 0.0405 0.0406]\n" + ] + } + ], + "source": [ + "np.set_printoptions(precision=4)\n", + "for col in ['PxlMin_zero']:\n", + " for i in train_md[col].unique():\n", + " res = ((- train_md[all_ich].values * np.log(preds_all) - (1 - train_md[all_ich].values) \\\n", + " * np.log(1 - preds_all)) * class_weights)[:,(train_md[col] == i)].mean((1,2))\n", + " sz = (train_md[col] == i).sum()\n", + " sz_test = (test_md[col] == i).sum()\n", + " print('{:2d}: {:6d} {:6d} {}'.format(i,sz,sz_test,res))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Inference" + ] + }, + { + "cell_type": "code", + "execution_count": 84, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "completed epochs: 13\n", + "loading model model.b13.f0.d14.v35\n", + "adding dummy serieses 2\n", + "DataSet 14 test size 3520 fold 0\n", + "dataset test: 3520 loader test: 110 anum: 0\n", + "setFeats, augmentation -1\n" + ] + }, + { + "ename": "FileNotFoundError", + "evalue": "[Errno 2] No such file or directory: '/mnt/edisk/running/features/se_resnet101_5n/test2/test.f0.a0'", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mFileNotFoundError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m<ipython-input-84-de854db3530e>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 8\u001b[0m \u001b[0mpreds2\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 9\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0manum\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mrange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m32\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 10\u001b[0;31m \u001b[0mpredictions\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0minference_one\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfold\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfold\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0manum\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0manum\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbs\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mbs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdataset\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 11\u001b[0m \u001b[0mpreds2\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpredictions\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 12\u001b[0m \u001b[0mpreds\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstack\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpreds2\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m<ipython-input-82-5f73bc7ddaa9>\u001b[0m in \u001b[0;36minference_one\u001b[0;34m(dataset, bs, add_seed, fold, anum)\u001b[0m\n\u001b[1;32m 28\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'dataset test:'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtst_ds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'loader test:'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mloader_tst\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'anum:'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0manum\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 29\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 30\u001b[0;31m \u001b[0mtst_ds\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msetFeats\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mepoch\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0manum\u001b[0m\u001b[0;34m+\u001b[0m\u001b[0;36m100\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 31\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 32\u001b[0m \u001b[0mloc_data\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtst_ds\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmetadata\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcopy\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m<ipython-input-82-44e0138eb17e>\u001b[0m in \u001b[0;36msetFeats\u001b[0;34m(self, anum, epoch)\u001b[0m\n\u001b[1;32m 81\u001b[0m getAPathFeats('test', self.metadata.test.sum(), self.test_mask)] ,axis=0)\n\u001b[1;32m 82\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 83\u001b[0;31m \u001b[0mfeats\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mgetAPathFeats\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmode\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msz\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 84\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 85\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdataset\u001b[0m \u001b[0;34m<=\u001b[0m \u001b[0;36m13\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmode\u001b[0m \u001b[0;32min\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m'train'\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m'valid'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0mTRAIN_ON_STAGE_1\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m<ipython-input-82-44e0138eb17e>\u001b[0m in \u001b[0;36mgetAPathFeats\u001b[0;34m(mode, sz, mask)\u001b[0m\n\u001b[1;32m 62\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mgetAPathFeats\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmode\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msz\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmask\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 63\u001b[0m \u001b[0mmax_a\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m8\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mmode\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m'test'\u001b[0m \u001b[0;32melse\u001b[0m \u001b[0;36m4\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 64\u001b[0;31m \u001b[0mfeats2\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstack\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mpickle\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mload\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mopen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mgetAPath\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0man\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mmode\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m'rb'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0man\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mrange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmax_a\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 65\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mmask\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 66\u001b[0m \u001b[0mfeats2\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfeats2\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mmask\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m<ipython-input-82-44e0138eb17e>\u001b[0m in \u001b[0;36m<listcomp>\u001b[0;34m(.0)\u001b[0m\n\u001b[1;32m 62\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mgetAPathFeats\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmode\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msz\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmask\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 63\u001b[0m \u001b[0mmax_a\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m8\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mmode\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m'test'\u001b[0m \u001b[0;32melse\u001b[0m \u001b[0;36m4\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 64\u001b[0;31m \u001b[0mfeats2\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstack\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mpickle\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mload\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mopen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mgetAPath\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0man\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mmode\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m'rb'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0man\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mrange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmax_a\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 65\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mmask\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 66\u001b[0m \u001b[0mfeats2\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfeats2\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mmask\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mFileNotFoundError\u001b[0m: [Errno 2] No such file or directory: '/mnt/edisk/running/features/se_resnet101_5n/test2/test.f0.a0'" + ] + } + ], + "source": [ + "stg = time.time()\n", + "\n", + "#for ds in (my_datasets3 + my_datasets5):\n", + "for ds in [14]:\n", + " folds = getNFolds(ds)\n", + " preds = []\n", + " for fold in range(folds):\n", + " preds2 = []\n", + " for anum in range(32):\n", + " predictions = inference_one(fold = fold, anum = anum, bs=bs, dataset=ds)\n", + " preds2.append(predictions)\n", + " preds.append(np.stack(preds2))\n", + " preds = np.stack(preds)\n", + " print('total time', time.time() - stg)\n", + " \n", + " pickle.dump(preds, open(PATH_DISK/'preds_d{}_v{}'.format(ds, VERSION),'wb'))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "#11221.892060995102" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "#total time 1466.092379808426 5x8\n", + "#total time 5399.404406309128 5x32" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Files transfer" + ] + }, + { + "cell_type": "code", + "execution_count": 68, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Copying file:///home/zahar_chikishev/running/oof_d6_f0_v20 [Content-Type=application/octet-stream]...\n", + "Copying file:///home/zahar_chikishev/running/oof_d6_f1_v20 [Content-Type=application/octet-stream]...\n", + "Copying file:///home/zahar_chikishev/running/oof_d6_f2_v20 [Content-Type=application/octet-stream]...\n", + "Copying file:///home/zahar_chikishev/running/oof_d7_f0_v20 [Content-Type=application/octet-stream]...\n", + "- [4 files][164.5 MiB/164.5 MiB] \n", + "==> NOTE: You are performing a sequence of gsutil operations that may\n", + "run significantly faster if you instead use gsutil -m cp ... Please\n", + "see the -m section under \"gsutil help options\" for further information\n", + "about when gsutil -m can be advantageous.\n", + "\n", + "Copying file:///home/zahar_chikishev/running/oof_d7_f1_v20 [Content-Type=application/octet-stream]...\n", + "Copying file:///home/zahar_chikishev/running/oof_d7_f2_v20 [Content-Type=application/octet-stream]...\n", + "Copying file:///home/zahar_chikishev/running/oof_d8_f0_v20 [Content-Type=application/octet-stream]...\n", + "Copying file:///home/zahar_chikishev/running/oof_d8_f1_v20 [Content-Type=application/octet-stream]...\n", + "Copying file:///home/zahar_chikishev/running/oof_d8_f2_v20 [Content-Type=application/octet-stream]...\n", + "Copying file:///home/zahar_chikishev/running/oof_d9_f0_v20 [Content-Type=application/octet-stream]...\n", + "Copying file:///home/zahar_chikishev/running/oof_d9_f1_v20 [Content-Type=application/octet-stream]...\n", + "Copying file:///home/zahar_chikishev/running/oof_d9_f2_v20 [Content-Type=application/octet-stream]...\n", + "| [12 files][493.8 MiB/493.8 MiB] 35.9 MiB/s \n", + "Operation completed over 12 objects/493.8 MiB. \n" + ] + } + ], + "source": [ + "!gsutil cp /home/zahar_chikishev/running/oof* gs://rsna-hemorrhage/results" + ] + }, + { + "cell_type": "code", + "execution_count": 69, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Copying file:///home/zahar_chikishev/running/preds_d6_v20 [Content-Type=application/octet-stream]...\n", + "Copying file:///home/zahar_chikishev/running/preds_d7_v20 [Content-Type=application/octet-stream]...\n", + "Copying file:///home/zahar_chikishev/running/preds_d8_v20 [Content-Type=application/octet-stream]...\n", + "Copying file:///home/zahar_chikishev/running/preds_d9_v20 [Content-Type=application/octet-stream]...\n", + "\\ [4 files][172.6 MiB/172.6 MiB] \n", + "Operation completed over 4 objects/172.6 MiB. \n" + ] + } + ], + "source": [ + "!gsutil cp /home/zahar_chikishev/running/preds* gs://rsna-hemorrhage/results" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "!gsutil -m cp gs://rsna-hemorrhage/results/* C:\\StudioProjects\\Hemorrhage\\running\\ensemble" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "!gsutil -m cp gs://rsna-hemorrhage/yuvals/model_Densenet161_3_version_classifier_splits_fullhead_resmodel_type_OOF_pred_split_* ." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "!gsutil -m cp gs://rsna-hemorrhage/yuvals/model_*_version_classifier_splits_fullhead_resmodel_type_OOF_pred_split_* ." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "!gsutil -m cp gs://rsna-hemorrhage/yuvals/model_Densenet161_3_version_classifier_splits_fullhead_resmodel_type_test_pred_ensamble_split_* ." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "!gsutil cp gs://rsna-hemorrhage/yuvals/OOF_validation_image_ids.pkl .\n", + "!gsutil cp gs://rsna-hemorrhage/yuvals/ensemble_test_image_ids.pkl ." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "!rm /home/zahar_chikishev/running/*v53" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "/home/zahar_chikishev/running/preds_se_resnext101_32x4d_v53\r\n", + "/home/zahar_chikishev/running/stats.f0.v53\r\n", + "/home/zahar_chikishev/running/stats.f1.v53\r\n", + "/home/zahar_chikishev/running/stats.f2.v53\r\n" + ] + } + ], + "source": [ + "!ls /home/zahar_chikishev/running/*v53" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "/home/zahar_chikishev/running/oof_Densenet161_f0_v72\r\n", + "/home/zahar_chikishev/running/oof_Densenet161_f1_v72\r\n", + "/home/zahar_chikishev/running/oof_Densenet161_f2_v72\r\n", + "/home/zahar_chikishev/running/oof_Densenet169_f0_v73\r\n", + "/home/zahar_chikishev/running/oof_Densenet169_f1_v73\r\n", + "/home/zahar_chikishev/running/oof_Densenet169_f2_v73\r\n", + "/home/zahar_chikishev/running/oof_Densenet201_f0_v74\r\n", + "/home/zahar_chikishev/running/oof_Densenet201_f1_v74\r\n", + "/home/zahar_chikishev/running/oof_Densenet201_f2_v74\r\n", + "/home/zahar_chikishev/running/oof_se_resnext101_32x4d_f0_v75\r\n", + "/home/zahar_chikishev/running/oof_se_resnext101_32x4d_f1_v75\r\n", + "/home/zahar_chikishev/running/oof_se_resnext101_32x4d_f2_v75\r\n" + ] + } + ], + "source": [ + "!ls /home/zahar_chikishev/running/oof*" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "/home/zahar_chikishev/running/preds_Densenet161_v72\r\n", + "/home/zahar_chikishev/running/preds_Densenet169_v73\r\n", + "/home/zahar_chikishev/running/preds_Densenet201_v74\r\n", + "/home/zahar_chikishev/running/preds_se_resnext101_32x4d_v75\r\n" + ] + } + ], + "source": [ + "!ls /home/zahar_chikishev/running/preds*" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Ensembling" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "(10, 752797, 6)" + ] + }, + "execution_count": 34, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "preds_all.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[<matplotlib.lines.Line2D at 0x7f8298f99450>]" + ] + }, + "execution_count": 35, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deVxUVR/H8c+ZAUWQJUAUFcQF913cTcsl0UzULJfKrfKp57GetseszNQ2bc8yy8wyLS2Xcsktl0xzRU3FBcUNcEEURZR95jx/XExSTNTBYWZ+79eLF9x7DzO/24Vv18O55yitNUIIIRyfyd4FCCGEsA0JdCGEcBIS6EII4SQk0IUQwklIoAshhJNws9cbBwYG6rCwMHu9vRBCOKStW7ee1lqXKeiY3QI9LCyM6Ohoe729EEI4JKXU0Wsdky4XIYRwEhLoQgjhJCTQhRDCSUigCyGEk5BAF0IIJ3HdQFdKTVVKnVJKxVzjuFJKTVBKxSmldiqlGtu+TCGEENdTmDv0b4DIfzjeBQjP+xgKTLr1soQQQtyo6wa61vp3IOUfmkQB32rDRsBPKRVsqwKFEMJZZGRbeHvJXhLPphfJ69uiD70CkJBvOzFv31WUUkOVUtFKqejk5GQbvLUQQjiG9QdP0/mj3/lizSFWxxZN/tniSVFVwL4CV83QWk8GJgNERETIyhpCCKd3PjOHtxfvZebmBMICPJk1tAUtqgQUyXvZItATgZB82xWB4zZ4XSGEcEzJ+yFmDodPprD6QApls2Fk0x483L0tHu7mIntbWwT6AmCYUmoW0BxI1VqfsMHrCiGE49AaDq6CjZ9B3AqsmCivTQxUVsxuVgiPhCIMcyhEoCulZgJ3AYFKqUTgNcDdqF9/DiwGugJxQDowuKiKFUKIYik3Cxa/ANu+JbNkIFNVH77Nbs9D7Zvwr3ZVMd+mJ36uG+ha637XOa6B/9isIiGEcCRpSfDjI5CwiUW+/Xk2KZK6oYFMv78+4WW9b2spdps+VwghHN7hteh5Q7GkpzBcP8uSlBa81K0GA1uFYTYVNF6kaEmgCyHEjcq+CCvGwOYvOGkuz5D01wio2oTlveoR4u9pt7Ik0IUQ4kYc346eMwSVcohvrZF8wkP8r1cjHoioiFK3/648Pwl0IYQoDK1h2zSsv/yP0/jydPZIfGrezaIedSnr42Hv6gAJdCGEuLbsi3D+BKSdwLL9O8w7Z/KHtT6j3Z/hub6t6FqvnN3vyvOTQBdCiIKs+xBWjgVtBcAMfJzbi/h6w5jTrR53eJWwb30FkEAXQogrbZgIK0aTW/1eFmY3ZvZ+K5neoTzdrz3/rRFk7+quSQJdCCHy2zIFlr1McmhXescP5ui5bAa0rMTwyJqULlm8I7N4VyeEEEXtXDxs+sL4nJoIx7exx7sV3ff3JTTQnR//1YRmlf3tXWWhSKALIVyXJQdmPQTJ++COME6byvCLqQfjzvTk8btq8N8O4UU6mZatSaALIVzXHx/ByZ2kdv+al/eG8cuuE9QO9mH2o/WpW8HX3tXdMAl0IYRrStqD/m08ieW70G1haTKyk/hf5xoMbVsF99s1m5aNSaALIVyPJZfseU+QiRdRh6KoVqk04++vT7Wg0vau7JZIoAshXIr13DHiZz1DWNIORlif4b/dW/JIi0qY7DCZlq1JoAshXENOBim/vofnlk8ItlqY6zuAZwcOJyTAy96V2YwEuhDC6eXkWkj8vA+Vz6xhOS3I7TiGXm2aF6vH9m1BAl0I4dRijqXy6/cf8OzFNcwN+Bd3DhpLkHfxmEzL1iTQhRBOKTPHwierDjB/zRaWlphMSmAE9/97HJgccwRLYUigCyGcTvSRFIbP3cmh5AssD/gGr2wo3X+KU4c5SKALIZzIhaxc3l26jxUbt9Kp9GFm1Ygj6Gg03PsB+Fe2d3lFTgJdCOEU1uw7yYq5X/Jg1hzGlDwCOcAJb2gyGCKG2Lm620MCXQjh0M6lZzN75lQ6Hf2A101JZPhVgZZvQ1gbKFsHTI4zF8utkkAXQjisJbtOMOHn3/kxdzTZXuXI7jqNUnXuc6kQz08CXQjhcE6dz2TU/N0s3X2S732+xgsr3o/PA/8q9i7NriTQhRAOQ2vNnK2JvL5oD5m5ViZFnKRVzAbo8JrLhzlIoAshHERCSjoLZ3xMVtIB7i3blqG97qHyD89BUB1o9ZS9yysWJNCFEMWaxar5dsMRvlu2jsXqPUq450LKXPi6JFiyoc90MLvbu8xiQQJdCFFsxZ1K48W5u9h69CzTA+bjnmmGx1ZDcizE/Qrl6kHFCHuXWWxIoAship0ci5Uv1hxkwso4PEuamRLpSZvfVqBaDYPg+sZH/QfsXWaxI4EuhChWdiWmMnzuTvaeOM+99YMZfV8dyiwaBCW9oc1z9i6vWJNAF0IUC5k5Fj5acYAv1x4iwKsEXzzShM51ykH8JohdDO1fBU9/e5dZrBUq0JVSkcDHgBmYorUed8XxUGAa4JfXZoTWerGNaxVCOKlNh84wYt4uDp++SJ+IEF6+txa+pdxBa1gxGryCoMWT9i6z2LtuoCulzMBEoBOQCGxRSi3QWu/J12wk8KPWepJSqjawGAgrgnqFEE4kLTOHd5bGMn3jUUL8S/HdY81pXS3wcoN9iyB+vTG5VgnnWVmoqBTmDr0ZEKe1PgSglJoFRAH5A10DPnlf+wLHbVmkEML5rI49xSvzdnHifCZDWlfmhc7V8SyRL5Jys+HXUVCmJjQeaL9CHUhhAr0CkJBvOxFofkWb0cBypdRTgBfQsaAXUkoNBYYChIaG3mitQggncPZiNq8v2sO87ccIDyrN3Cdb0Tj0jqsbbpkCKYfgoTlglj/3FUZh/isVtOievmK7H/CN1vp9pVRLYLpSqq7W2vq3b9J6MjAZICIi4srXEEI4Ma01v+w6wWvzd5OakcPTHcL5T4QnJUtYrm6cngJrxkPV9lCtwPtDUYDCBHoiEJJvuyJXd6k8CkQCaK03KKU8gEDglC2KFEI4tqTzmYz8OYZf9yRRv6IvMx5rTq0AM7xfC7JS4Y7KULEp+ASDyR1O7ICs83DPG+BkCzkXpcIE+hYgXClVGTgG9AX6X9EmHugAfKOUqgV4AMm2LFQI4Xi01vwYncAbv+wlO9fKy11rMqR1ZdzMJtj9sxHmTR+DC0lwZB2knzEe50dDm2eN+cxFoV030LXWuUqpYcAyjCGJU7XWu5VSY4ForfUC4HngS6XUsxjdMYO01tKlIoQLiz+Tzoh5O1l/8AzNK/sz/v76hAXmG6myZz54BkLk+Kv7yK0Wl53T/FYU6i8NeWPKF1+xb1S+r/cArW1bmhDCEVmsmm/WH+G9ZbGYTYo3e9alX9NQTKZ8XSc5GbB/mfH4fkF/8JQwvynyp2MhhM3sT0pj+Jyd/JlwjvY1g3izZ12CfUtd3TBuBeRchNo9bn+RTkwCXQhxy7JzrUz67SCfrt5P6ZLufNy3Id0blEdd6w+ae+ZDKX8Iu/P2FurkJNCFEDfPauXIulnsWPcLd2fu5okSJ7A2Gkipuu0uj07RGk7tAf+q4O4BOZkQuxTq9pTx5TYm/zWFEDclIyuHfVOG0Ch5AUF4kFmuISUDG8DWL+DYerh/KpyJg3UfQOIWKFsXHvgGTh+A7DSoHWXvU3A6EuhCiBu24cApUn8YSmTualYHPUKTQe/i75nXVx67FOb/GyY2Nbb9QqHtcOPJzy/aQUAV8PCDyu3sdwJOSgJdCFFo5zNzeGdxDE23v0yUeT3xDZ7h7p5j/t6oRiQ88Qds+BSCG0CdXkbXSpNBMGcIJGyEhg/LsnFFQAJdCFEoK/cm8cpPMfROn0WU23py7n6N0HbXWHDCJxg6v/n3fb4VYNAvsGMmVOtQ9AW7IAl0IcQ/OnMhizEL97Bgx3G6BCbzXO5PUKsX7tcK839idoPGj9i+SAFIoAshrkFrzYIdxxmzcA9pmTm80D6Mfx94HRP+cO/79i5PFEACXQhxlROpGYz8KYaV+07RIMSPd+6vT41d70HyXug/W5aCK6Yk0IUQf7FaNbO2JPD24r3kWK2MvLcWg1tVwrxlMqyfAI0HQPV77F2muAYJdCEEAEdOX2TEvJ1sPJRCyyoBjLu/HpU4CdO6GcvAhd8Dnd+yd5niH0igC+Hici1Wvv7jCO//Gou7ycS4XvXo0zQEFb8RpvcEcwnoMQka9JO5yYs5CXQhXNi+k+d5cc5OdiSm0rFWWd7oUZdyvh6QnW48HORdFgYvAZ/y9i5VFIIEuhAuKCvXwsTVB/lsdRwNPE7xa/0YqvV4GeXpYTT47S1jPc+BCyXMHYgEuhAuZnv8WV6cu5P9SRcYVLcEryaNx7z/OExeDn2mgyUXNkyEJoOhclt7lytugAS6EC4iPTuX95fvZ+ofhynn48G0h2rSbt1AY+3OqImw6k346h7wKgPewdBprL1LFjdIAl0IF7A+7jQj5u0iPiWdh1uE8mKnqnjPe8iY1vahH6FaRwjvDHMGw5G1xlhzDx97ly1ukAS6EE4sNSOHtxfvZdaWBCoHejFraAtaVAmAVW/AwVXQ/RMjzAFKl4FHfobUBPCvbN/CxU2RQBfCSS3ffZKRP8dw+kIW/2pXhWc7VsfD3QxnDsIfH0O9B40HhfIzu0mYOzAJdCGczOkLWYxesJtFO09Qs5w3UwZGUL+in3FQa1jyIphLwj2v27dQYXMS6EI4Ca01P/95jDEL95CeZeH5TtV54q6quJtNlxvFLoa4X40nPr3L2a9YUSQk0IVwAsfPZfDKT7tYHZtMo1BjMq3wst5/b5STAUtHQJla0GyofQoVRUoCXQgHZrVqvtscz/gl+7BYNaO61WZgqzDMpgIe0d/0BZyLNxaZkNWCnJIEuhAO6lDyBUbM3cXmIym0qRbI273qEeLvCTtnw/FtRrfKpblXrFbY+g1UagNhbexatyg6EuhCOJhci5Up6w7z4a/7Kelm4p3e9XmgSUWUUnB0Pfz8BFhzoUZXqHyn8U1H18HZw3D3y/YtXhQpCXQhHMie4+cZPncHMcfO07lOWV6PqkuQT978K+ePw48Dwa8SZKXBug8vB/q26VDSF2rdZ7/iRZGTQBfCAWTlWvh0VRyTfjuIn6c7nz3UmC51yxl35QC5WfDjAMi+CAMXGKNZVo6FEzvBLwT2zDfGnLuXsu+JiCIlgS5EMbf1aAovzt1F2ql4vgleSYtSibhtcYNoM1hzIOMsXEw2Pj8wDYJqGXOxrP3QeIAopDlYsq5+iEg4HQl0IYqpi1m5vLsslgUbdvI/z8X08VyKKVWDbwujgbaCmwcE1YZSdxh/7KzTwzhWyg8iBhmzJiZuhuCGEFzfbucibo9CBbpSKhL4GDADU7TW4wpo8yAwGtDADq11fxvWKYRLWXsgmZfm7SLw3C7WeH1MactZVIN+0O5FuKNS4V6kxb9h4+fGUMXWzxRtwaJYuG6gK6XMwESgE5AIbFFKLdBa78nXJhx4CWittT6rlAoqqoKFcGap6Tm88cseZm9N5DG/aF4u9Smm0sHQdz6Uq3djL+ZTHhr2g5ifoF7voilYFCuFuUNvBsRprQ8BKKVmAVHAnnxtHgcmaq3PAmitT9m6UCGc0roPISAcanVjacxJXp0fQ8rFbL4NX0vbhElQqTU8OB28Am7u9bu8A22Hg4evbesWxVJhAr0CkJBvOxFofkWb6gBKqT8wumVGa62XXvlCSqmhwFCA0NDQm6lXCOdxOg5WjEa7efB6+c+Yut+D2sE+zO5wkbClk6DeAxD1GbiVuPn3cC9ljHIRLqEwgV7QMt+6gNcJB+4CKgJrlVJ1tdbn/vZNWk8GJgNERERc+RpCuBQd/RVauXEu153eR8dSptMsHmvqj/sXbYz5Vrp/cmthLlxOYQI9Ecj/v/iKwPEC2mzUWucAh5VSsRgBv8UmVQrhZI6dOo3v5umszo1gt39nRqSOobZ1JiyKhcxUGPCzjBkXN6wwgb4FCFdKVQaOAX2BK0ew/Az0A75RSgVidMEcsmWhQjic+E0QVPNv/ddWq2b6xqPsXzqJN01puDd/nOFd74dfjhpjxgEix0PZOnYqWjiy6wa61jpXKTUMWIbRPz5Va71bKTUWiNZaL8g7do9Sag9gAf6ntT5TlIULUaxdPA1fd4Gw1saybiYzB5Mv8OKcnUQfPctKn9XklK5O5L33GxNodX4LEqON1YKa/8ve1QsHVahx6FrrxcDiK/aNyve1Bp7L+xBCHFwF2gKHf8ey7mM+t3Tn45UHKOVu5qtOZqqujYXm716eDbGEF/zrd1Cmy/uEuEHypKgQRSFuJZTyJ7VcC7xWvcHyLDMd67Zh9H21CFrxDLh7QoM+f/8ek9k+tQqnIYEuhK1ZreiDq9jrGUH/2F4sKbGZ7/2n4FUhA74aBKnxxopBMjZc2Jjp+k2EEDdi9/Y/UBdP8dWJKnRqVB3v/tPwSk+E396GgCrQe6rRZy6EjckduhA2ciErl3eW7sNr8wzquMMDfQfQon7eaJXHVoKnP9wRZtcahXOTQBfCBtbsT+blebs4nprBqoD9WDzrXg5zgAqN7VeccBnS5SLELTiXns1zP/7JwKmb8XA3Me/RelRO34U5vIO9SxMuSO7QhbgJWmuWxJxk1PwYzqXnMOzuagxrXw2Pg8uMRSeqSqCL208CXYhrycmA6K+hQV+j/zvPqfOZvDo/hmW7k6hbwYdpQ5pRp3zeiJWDK8HdC0Jb2Klo4cok0IW4lq3TYNlLxvqcj/yENrkxe2sibyzaQ1aulRFdavJYm8q4YYGUQ5ByGPYvMxZmditp7+qFC5JAF6IgWkP0VPAMhCNrSfv5BZ482591cadpFubPuPvrUaVMaUhNhC/bw4Wky99710v2q1u4NAl0IXKzIW4FVI8EU944gaN/wOlYrN0/ZfeOzdTb9Q3hVjc693iah5qFYjLlPZ6/6k3IOAfdPoLA6uBfBXyC7XcuwqXJKBchds6CWf1g/ceX9235CktJX/pvKE9U7D3sKNWMUW7f8EiZQ5fD/OQu2DHTmEwrYrAxEZeEubAjCXQhDvxqfF71BhzbRk7qSSx7FvBteiv2nbHwfp9G1H96NiqwOvzwCJzYabRf/iqU8oM7n7df7ULkI10uwrVZcuHQGqjVHY5tJeuHIczLiqCfziWhal9W9G5HYOm8P3A+NAe+6gTf9Tb6yQ+ths5vG6EuRDEgd+jCtR2LhqxUsmv3YkaFV3BPPUK/rNmcCWrBqEE9Loc5gG8FeHgu5GbComeMx/ibPma30oW4kgS6cG1xK9DKTK+l7ozc7seaoIcACLjr3wW3D6oF/X6A0uWMu3NZ81MUI9LlIlzHgRWwZDgMXgze5UjLzCF1y0JOWKqSqj357rH6tK4SCScehfKNrv06lVrC8/tkIQpR7MgdunAdO76HlIOw6g1W7zvFgx8spHx6LBcq3sWyZ9rSulqgschEhcbXD2sJc1EMyR26cA2WXKN7xc0DvX0G4zfWoa1fMialufvevlBCfhWE45M7dOESdMJGyEzlDcsgzmtPPi/7Ey9WSwTPAAj+h+4VIRyI3JYIp5d0PpNtP31LB20mxr8DWTXLErZ+DKRth9pRl58OFcLByU+ycFpaa2ZtjqfjB2uodu4Pkv2b8N1/OlK2/TDjEX1LtkxzK5yKBLpwLL+Ng6mRYLX+Y7P4M+k8NGUTI+btol2ZdMJVIhWa9cDNbDKGGnZ51wj18E63qXAhip50uQjHsvNHY6TKgeVQI/Kqwxar5us/DvPe8ljcTCbe6lmPviyFJRiTb10S3hHCt9++uoW4DSTQheNITTTCHGD9hKsCPfZkGsPn7mRHwjna1wzizZ51CfYtBTOWgX9VCKhqh6KFuH0k0IXjOPy78blBf2NMeeJWqNiE7Fwrn/0Wx8TVcXh7uPNx34Z0b1AepRRkX4TDa6Hpo/atXYjbQAJdOI7DvxvDDLuMg32/wPoJ7Gj5McPn7CQ2KY2ohuUZ1a02AZfmXzl7xFhCzpIF4ffYtXQhbgcJdOEYtDZmRQy7Ezx8yWk8CPOGT3h6ezuyvCsxZUAEHWuXNR4g2jIFNn8JyfuM7w1tCZVa27d+IW4DCXThGM4chLTjUKUd6w+e5r0/GzBLKyaU/YWqUS9SOlAb63kufxVOx0LFpsbkWdU7S9+5cBkS6MIxHP4NgPcOBPPpjk1UCvDnTI1+NNg/A6atuNzOvyr0/R5qdJX5VoTLkUAXDiFpx69oAvlsp4WhbavybMfqlHJrByeGQNpJOH8cSnhB3d4ypa1wWYUKdKVUJPAxYAamaK3HXaNdb2A20FRrHW2zKoVryDhrfC51x1+7zlzIYuyCGF5LWEd0yeb89GgbGoTkWyGoQpPbXKQQxdd1A10pZQYmAp2ARGCLUmqB1nrPFe28gaeBTUVRqHByudnwZQdj+tonN6BNZhbsOM7oBbsJyYrD3/0C7SN74xYiy70JcS2FuUNvBsRprQ8BKKVmAVHAnivavQ68A7xg0wqFa4ie+tdDQ+c2fM3zcQ1Zue8UDUP8+LJaOmwAt2p32bdGIYq5wszlUgFIyLedmLfvL0qpRkCI1nrRP72QUmqoUipaKRWdnJx8w8UKJ5VxDtaMQ1duR7JfQ7J/fZOtB48x8t5azB1YkzJ7v4UytcCnvL0rFaJYK0ygFzRUQP91UCkT8CHw/PVeSGs9WWsdobWOKFOmTOGrFM5t3QfojHO8mPYg/07qTpA6y29tYnmsVQjmuYMg7QR0/8TeVQpR7BWmyyURCMm3XRE4nm/bG6gL/KaMYWLlgAVKqe7yh1FxPblnjsCGSSy03smS02UY2astev8m/LZNhIx44+nQHpMgpKm9SxWi2CtMoG8BwpVSlYFjQF+g/6WDWutUIPDStlLqN+AFCXNRIK2Nx/aPbeXcqXjOH9xEkEWzIexJVvRuR1kfDwh9DSa1hj9nQMth0LD/9V9XCHH9QNda5yqlhgHLMIYtTtVa71ZKjQWitdYLirpI4SSO/AHLR8LxbViUmXSrH6nKnzMRYxnfrQvq0oNAZevAnc/B+RPQaax9axbCgSit9fVbFYGIiAgdHS038S5Ba5j/H/jzO7K9gvnI8iCfn2tKVKMQRnWrzR1e8iCQEIWllNqqtY4o6Jg8KSqK3v5l8Od3bAx6kEEJXbnDx4evBtXj7ppB9q5MCKcigS6KliWX9F9e5owK5uH4bvRtUYUXI2vi7eFu78qEcDoS6KLIpGbksHL62/Q6f5C3PF7iu0fa0LxKgL3LEsJpSaAL27JaQJlYvieJt3/azJycL4n3acTIp17Ao4T8uAlRlOQ3TNhG5nnY+BnW9Z9wweJOTnY4b3qYCFDnCej7AUiYC1Hk5LdM3LrNX6JXv4XKSOE3mnLe6kF7zwP4ZJ2E+n2hQmN7VyiES5BAF7dm1xxY/AJ7PRoyIutZ3EKa8E7v+vgEeRtzlHsGXv81hBA2IYEurk3nLetWri74VrzqsDXlKLnzn2G3rs4jF4fzfLfaDGgZhtmU94CQTKYlxG0lgS6u7dBqmNkHlBlqdIFmj0NYWzCZOJSUSuaU/oTk5DK9/CsseeBuQvw97V2xEC5NAl1cW/TXUMofGj8C26bDvkXo0uXY492aHcdS6W+KYXOjN3k/KuryY/tCCLspzPS5whWlJUHsYmNirE5j4bm9JLafwB/ZVQk7voj+phVk1oiiWdR/JMyFKCbkDl0U7M8ZYM2FJoPJzLHw6aqjfL6mDH6ez/Fmz2p09k3Ao2IESJgLUWxIoIurWa2wdRqE3cnWi/4Mn7aWg8kXub9xRV7tVgs/zxJAmL2rFEJcQQJdXO3Qajh3lDl+Q/jf5xso71uKaUOa0a66rDIlRHEmgS6ukrzmC9zw4ZXYMAa0qMT/ImtSuqT8qAhR3MlvqfhLanoOn/60iuHxK5hX4j5mDGpL0zB/e5clhCgkCXQBwNKYE7z2804+yR6FditJ1L/G4BEoYS6EI5FAd3Gn0jJ5bf5ulsScZIzfEprl7oPun0NgmL1LE0LcIAl0F6W1Zs7WRN74ZS8ZORbea5nN/X9+D3V7Q4O+9i5PCHETJNBdUEJKOi//tIu1B04TUekO3ulakSo/dQPfCtDtAxlbLoSDkkB3FanHsCZGs2VnDC/srUoKfoyNqsPD1XIwzYyCtJMwcCF4+Nq7UiHETZJAd2ZaQ/RU+P09SDuOCWgOrDB7kN34Ubz9NUx9EpQJBi2CkGb2rlgIcQsk0J3V+ROwYBjEreCYbxOmWu4h1lydAXfVodOZ7yi59TPYOhECwuGhH8G/ir0rFkLcIgl0Z3RoDcweiDU7g89LPcG7SW3oUq88H3avSxnvksBdcOfzsG8hRDwKnjI8UQhnIIHuyE7GwO550HLY5VA+tAb9fR9OuwfTL2MkqaYwJj1ch8i6wX//3qCaxocQwmlIoDuyZS/B4d+NibS6vgNeZbB89yBHdVl6nx1Ox4javNK1Nr6e7vauVAhxG0igO6pTe40wbzwQTu6COUOwYuKgNZjnPEczoV9b2oTLep5CuBIJdEe16Qtw84AOr7E6Pptdc8ZRJ3sH2xu9zg/3tsRLJtMSwuXIb31xlXHW6CN3L2V8+Fa8PEY84yzsmEVWrft5aVEC87Yfo1pQL1oPGM0Lle6wb91CCLuRQC+u5gyBg6sub5f0gQenQdX26G3TUbkZDNrTiC0Zx3mqfTWGta9GSTez/eoVQthdoQJdKRUJfAyYgSla63FXHH8OeAzIBZKBIVrrozau1XXEbzLCvOUwqHIXZF+ANe/CjN6cb/822WsmEmetxYWAWix4tD61y/vYu2IhRDFw3UBXSpmBiUAnIBHYopRaoLXek6/ZdiBCa52ulHoSeAfoUxQFu4Q148AzEO5+GUp4AaCrtufkVw8RvHI4ANvqP89PPVvhZpZ1voUQhsKkQTMgTmt9SGudDcwCovI30Fqv1lqn521uBCratkwXkrDFuDtv9dRfYZ6Qks4jM/bRJmEoi7x6klGhNff0HCJhLoT4m8J0uVQAEvJtJ2JMCXItjwJLCjqglBoKDAUIDQ0tZIkuZs048AyApo9hsWqmrT/Cu8tiMZsUY3o0oGuz+zCZZDZEIcTVChPoBazgH1sAAAvUSURBVKWHLrChUg8DEUC7go5rrScDkwEiIiIKfA2npbXxYfqHu+qELRC3Ajq8xoFzmuFz17M9/hx31SjDWz3rUd6v1O2rVwjhcAoT6IlASL7tisDxKxsppToCrwDttNZZtinPiXzbHRI2G5NhlakBXoFgtYC2QFoSJMXAuaPoUv58nt6eDyesw6ukmY/6NCSqYXmUzFEuhLiOwgT6FiBcKVUZOAb0Bfrnb6CUagR8AURqrU/ZvEpHd2yb8VRntU7GduJmyEg17taV2ZiHpUITTlR7kFGxlfl19THua1Ce1+6rTWDpkvatXQjhMK4b6FrrXKXUMGAZxrDFqVrr3UqpsUC01noB8C5QGpiddycZr7XuXoR1O5YtU6BEaeg9FTyuHmKYmWPhw1/38+XaQ5TxLsmXA+rRqXZZOxQqhHBkhRqHrrVeDCy+Yt+ofF93tHFdzuPiGdg1Bxo9XGCYbzx0hhFzd3LkTDr9moUwokstfEvJZFpCiBsnT4oWte3TwZIFzR7/2+60zBzGLdnHd5viCfX35PvHmtOqmkymJYS4eRLoRclqgeivoFIbCKr11+5V+5J45acYks5n8libyjx3T3U8S8ilEELcGkmRonRgOZyLh05jAUi5mM3Yhbv5+c/jhAeV5rMnW9EoVCbTEkLYhgR6UclOh7UfgHcwusa9LNxxnNELdpOWmcN/O4Tz77urymRaQgibkkC/VZZc+PlJ8CoDbV8whiBeSIaZfeDYNs51nsAL3+1kxd4kGlT0ZXzv5tQsJ5NpCSFsTwL9Vm2aBLt+BBRsnwEtnoQdM9EXTrG28Yf8Z2lZcqzJvNK1FkPaVMYsj+0LIYqIzO50K1IOw6o3oXoXeHI9hDaHNeOwZF1kpN94BqwPok4FH5b+ty2Pt60iYS6EKFJyh36ztIZFz4LJDPe+B74VsfT7kUWLF/L+pjTOpgfyVs9a9G0aIpNpCSFuCwn0G2W1GuPKY+bCodXQ1Qjz2JNpDJ+7kx0JZjrUrM4bPesS7CuTaQkhbh8J9MLKOAtTIyF53+V9FZuR3Wgwn63Yz8TVcXh7uDOhXyPuqx8sk2kJIW47CfTC+m0cnN4Pdz5vzMvi7kmMf0ee/3Q9sUlpRDUsz2v31cHfq4S9KxVCuCgJ9MI4tRc2fwlNBkGHUWRkW3h/eSxT58cS5O3BVwMj6FBLJtMSQtiXBPqVUo/B112g1n3Q4TUwu8OSF6Fkabh7JOsPnmbE3F3Ep6TTv3koI7rUxMdDJtMSQtifBPqV1r4HqQmw4VM4uh7qPQCH15DR8W3GLjvGzM0JVArwZObjLWhZNcDe1QohxF8k0PM7ewS2TYcmg6FKO5j/FCx7iQs+1bhnTRVOXkhgaNsqPNuxOqVKyGP7QojiRQI9vzXvgjIZj/D7lOesb20O/PAybya3waesJ5MG1KdBiJ+9qxRCiAJJoF9yOg52fA/Nn0B7BzN/+zHGLDzMhazBPNUxnCfaVaWEmzxYK4QoviTQL1kzDtw8OFnvSV6eFs2qfadoGOLHO73rU72st72rE0KI65JAB9g5G71rDrsrD6bv5L1YrJpXu9VmUKswmX9FCOEwJNA3fAbLXmJPiXr02duahtV8ebtnfUIDPO1dmRBC3BDXCnSrFRI3Q1YaWHOxHvwN0+bPWWptxivZTzPq/gY8GBEij+0LIRyS6wR6ymFY8BQcWfvXLhMwI7cDv4e/yOKeDSjr42G/+oQQ4hY5f6BbrbB5MqwcAyY3ciLfZfaxAH7YdgKzhzeP9uzEFzKZlhDCCTh3oOdmGcvDxcyF8HvY2WgMzy1NJu7UBXo1asOr3Wpzh0ymJYRwEs4b6Bnn4IeH4chasu96lbfPR/LN9MME+3jw9eCm3F0jyN4VCiGETTlnoJ8/DjPuh9MHiG31Po9uqkLi2aM80qISwyNr4C2TaQkhnJDzBfqZgzC9Bzo9hS9Dx/PWqnJUDjTxw9AWNK8ik2kJIZyXcwX6yRiY3pPsnGwet7zKuv3BPHlXFf7bIRwPd5lMSwjh3Jwn0A+twfrDI6RaStD74iuUKFeLnwfXp15FX3tXJoQQt4XjB7rVgl7zDqwZz2HK82jOCB64pxVD21bB3SyTaQkhXIdjB/qFU2T+MASPhLXMtdzJnHLPMuWBZlQLksm0hBCup1C3sEqpSKVUrFIqTik1ooDjJZVSP+Qd36SUCrN1oVeyHtlA+ietIH4jI61PkNZ5AjOebC9hLoRwWde9Q1dKmYGJQCcgEdiilFqgtd6Tr9mjwFmtdTWlVF9gPNCnKApGa06v/Ai/da9zyhrIl8ETeKJPD0L8ZTItIYRrK0yXSzMgTmt9CEApNQuIAvIHehQwOu/rOcCnSimltdY2rBWAmJkjqbv/U1YTQWqXCbzRorY8ti+EEBQu0CsACfm2E4Hm12qjtc5VSqUCAcDp/I2UUkOBoQChoaE3VXBug/7MTrHQbsAognzkrlwIIS4pTKAXdPt75Z13YdqgtZ4MTAaIiIi4qbv3hnXq0LDOuJv5ViGEcGqF+aNoIhCSb7sicPxabZRSboAvkGKLAoUQQhROYQJ9CxCulKqslCoB9AUWXNFmATAw7+vewKqi6D8XQghxbdftcsnrEx8GLAPMwFSt9W6l1FggWmu9APgKmK6UisO4M+9blEULIYS4WqEeLNJaLwYWX7FvVL6vM4EHbFuaEEKIGyHPxgshhJOQQBdCCCchgS6EEE5CAl0IIZyEstfoQqVUMnD0Jr89kCueQnUBcs6uQc7ZNdzKOVfSWpcp6IDdAv1WKKWitdYR9q7jdpJzdg1yzq6hqM5ZulyEEMJJSKALIYSTcNRAn2zvAuxAztk1yDm7hiI5Z4fsQxdCCHE1R71DF0IIcQUJdCGEcBIOF+jXW7DaGSilQpRSq5VSe5VSu5VS/83b76+U+lUpdSDv8x32rtWWlFJmpdR2pdSivO3KeYuOH8hbhLyEvWu0JaWUn1JqjlJqX961bukC1/jZvJ/pGKXUTKWUh7NdZ6XUVKXUKaVUTL59BV5XZZiQl2c7lVKNb+W9HSrQ8y1Y3QWoDfRTStW2b1VFIhd4XmtdC2gB/CfvPEcAK7XW4cDKvG1n8l9gb77t8cCHeed7FmMxcmfyMbBUa10TaIBx7k57jZVSFYCngQitdV2M6bgvLSrvTNf5GyDyin3Xuq5dgPC8j6HApFt5Y4cKdPItWK21zgYuLVjtVLTWJ7TW2/K+TsP4Ra+Aca7T8ppNA3rYp0LbU0pVBO4FpuRtK6A9xqLj4Hzn6wO0xVhLAK11ttb6HE58jfO4AaXyVjbzBE7gZNdZa/07V6/Ydq3rGgV8qw0bAT+lVPDNvrejBXpBC1ZXsFMtt4VSKgxoBGwCymqtT4AR+kCQ/SqzuY+A4YA1bzsAOKe1zs3bdrZrXQVIBr7O62aaopTywomvsdb6GPAeEI8R5KnAVpz7Ol9yretq00xztEAv1GLUzkIpVRqYCzyjtT5v73qKilKqG3BKa701/+4CmjrTtXYDGgOTtNaNgIs4UfdKQfL6jaOAykB5wAujy+FKznSdr8emP+eOFuiFWbDaKSil3DHC/Dut9by83UmX/jmW9/mUveqzsdZAd6XUEYxutPYYd+x+ef80B+e71olAotZ6U972HIyAd9ZrDNAROKy1TtZa5wDzgFY493W+5FrX1aaZ5miBXpgFqx1eXv/xV8BerfUH+Q7lX4x7IDD/dtdWFLTWL2mtK2qtwzCu6Sqt9UPAaoxFx8GJzhdAa30SSFBK1cjb1QHYg5Ne4zzxQAullGfez/ilc3ba65zPta7rAmBA3miXFkDqpa6Zm6K1dqgPoCuwHzgIvGLveoroHNtg/LNrJ/Bn3kdXjH7llcCBvM/+9q61CM79LmBR3tdVgM1AHDAbKGnv+mx8rg2B6Lzr/DNwh7NfY2AMsA+IAaYDJZ3tOgMzMf5GkINxB/7ota4rRpfLxLw824UxAuim31se/RdCCCfhaF0uQgghrkECXQghnIQEuhBCOAkJdCGEcBIS6EII4SQk0IUQwklIoAshhJP4P6267PfBKD5nAAAAAElFTkSuQmCC\n", + "text/plain": [ + "<Figure size 432x288 with 1 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "#dd = pd.DataFrame(preds_all.mean(1)[4], columns=all_ich)\n", + "dd = pd.DataFrame(preds_all.mean(0), columns=all_ich)\n", + "\n", + "k=5\n", + "plt.plot([0,100],[0,1])\n", + "plt.plot(train_md[[all_ich[k]]].groupby(pd.cut(dd[all_ich[k]],np.arange(101)/100)).mean().values)" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[<matplotlib.lines.Line2D at 0x7f8298d8b790>]" + ] + }, + "execution_count": 36, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deXxM1//H8dfJJLLZkiCIpIJYItbGUqp2tRRVtKiuSjfdF1TpQtdvtdVWteqHLlpqqTWqqK22CiWILYQkEpKIJGRP5vz+uGlFBEGSMTOf5+ORR+beOTPzud/bvL/XmXPPUVprhBBCWD8HSxcghBCiZEigCyGEjZBAF0IIGyGBLoQQNkICXQghbISjpT64SpUqunbt2pb6eCGEsEq7du1K1FpXLeo5iwV67dq1CQ0NtdTHCyGEVVJKnbzSc9LlIoQQNkICXQghbIQEuhBC2AgJdCGEsBES6EIIYSOuGehKqVlKqXil1P4rPK+UUl8opSKUUmFKqZYlX6YQQohrKc4V+hyg51We7wUE5P+MAqbffFlCCCGu1zUDXWu9CUi6SpP+wA/asB2orJSqUVIFCiGErcjIzuODVQeJOZdeKu9fEjcW+QDRBbZj8vfFFW6olBqFcRWPn59fCXy0EELc4hIOw1+fsbv2CF5cc4GopHRqebjxUNvbSvyjSiLQVRH7ilw1Q2s9A5gBEBwcLCtrCCFsV+we2PwJ+uAKcpQz/7ezKg4eXZg3qi1t63iVykeWRKDHAL4FtmsBsSXwvkIIYX3On4E1EyFsHjlOFfjRYSDTMrox6K7mTOlWHxcnU6l9dEkE+jJgtFJqHtAGSNFaX9bdIoQQNi0vF/6eARs+QOdk8IfnMF6N7YJPdW9mP96UprUql3oJ1wx0pdQvQCegilIqBngLcALQWn8DhAC9gQggHXistIoVQohbUuweWP48xO3lTLU7GZUwmINnvHmuez2e7FiXco5lc8vPNQNdaz30Gs9r4NkSq0gIIaxFTiasfw+2TSPP1Ytvqk7kf1ENaOHnwcqBTQnwrlCm5Vhs+lwhhLBqKTEw/yGI3c3RWgN5JLoP5867M/GeBjzSrjYmh6LGi5QuCXQhhLhekZthwaOYczKZ4jGRaRENubNeFT64rwm+nm4WK0sCXQghrsfeeeglz5Ds6suwjHHE5Pjy8cBABgfXQqmyvyovSAJdCCGKa8/P6CXPEObYlAeTnqNdoD9z7g3Cu6KLpSsDJNCFEKJYckK/x3HFC2wxN2aMfp2Pht1O7ybVLX5VXpAEuhBCXMPJ1V/iu20Cm/OCWNl4Civ6tsDDvZyly7qMBLoQQlxBelYO274fT9fYb/nLIRjun8NHgb7XfqGFSKALIUQR/joST8yvrzAkdxl7PO6m+cjvKe/maumyrkoCXQghCkhNiGXzwi8IjFvMnQ5nON3wEZrf/zk43PoLvEmgCyEEgNnM0YUTqR0+nT7kEl2pOdldJ1O92WC4hb74vBoJdCGE3UuMP82ZOQ/TOH0HG5zuwqf/RAKCWlm6rOsmgS6EsFtaa9atX0ejTU8RoJPYUH8c7R94DSfH0pvitjRJoAsh7NKp5Ax+mTuLp+LfJcvkzpkBS+jU5C5Ll3VTJNCFEHbFbNb8tOMkEaumMVHNJLViAB4jfsOrso+lS7tpEuhCCLtxLOECbyz8hy6npvOu40oy/Drh+eBP4Fy209yWFgl0IYTNy8kz893m4/y4didfOH5JK8cD6OARuPb6CExOli6vxEigCyFsl9YcPnyAn1asxelcBKtcQqik0qHvt6hmQyxdXYmTQBdC2KTMnDwOzhxJizOLmATGwpmVA2DwUqjexMLVlQ4JdCGEzQk9kcScX3/lq/RFhFa6mwa9n6GCT2Nwr2I1NwndCAl0IYTNuJCVy/9+P8RP2yNZ6TKDLFdvgp+ZBc7lLV1amZBAF0LYhI1HEnhj8T5iUzKYGrCfhlHHoNdMuwlzkEAXQli55PRsJq04yKLdMdSt6s7iRwNpsfQ58GsHTQZZurwyJYEuhLBaq/bFMWHpAc6lZzO6cz2ea3QB5z+fg4xz0Osjm+4vL4oEuhDC6sSnZjJx6QF+P3CaIJ+KzO/nRt2w8bBtDbhUgl4fQ42mli6zzEmgCyGshtaahbtimLQinMxcM2N6NmRUlX2YljwJ5dyh60RoNRJcKlq6VIuQQBdCWIXopHTeWryL0IhYGt7my4cDm1Dn6GxYOBFqtYKhvxjDEu2YBLoQ4paWZ9b8sO0En64OZ756g0CXE+gkd9TPVSD5JATeCwO+Aadbe3m4siCBLoS4ZUXEn2fMon3sOnmOd2tsJfDcCWjzNEopSImB4Meg3QtWsTxcWZBAF0LccnLyzHy78RhfrIvAzdnEV/feRp8Nz4B/R+j5gd2NXikuCXQhxC1lX0wKry8K42BcKn2a1uDtvo2punEcZJ23y6GI10MCXQhxS8jMyePztUf5bvNxvNzL8e1Dt3N34+oQFwa7ZkPrUVCtkaXLvKUVK9CVUj2BqYAJmKm1/rDQ837A90Dl/DZjtdYhJVyrEMJG7Th+lrGL9xGZmMYDwb680acRlVydQGtYNQZcPaDTWEuXecu7ZqArpUzANKA7EAPsVEot01qHF2j2JvCr1nq6UioQCAFql0K9Qggbcj4zh49/P8yP209S3wPmjmhF+4BqFxuE/QpRW6HvVCPUxVUV5wq9NRChtT4OoJSaB/QHCga6Bv4dyV8JiC3JIoUQtmf94XjGL95HXGomL7Ry58VjI1BbG0PtX8HJBTJTYM0E8LkdWjxs6XKtQnHG+vgA0QW2Y/L3FfQ2MFwpFYNxdf5cUW+klBqllApVSoUmJCTcQLlCCGt3Li2bl+fv4bHZO3F3dmTRk2146fwnqOwLELkRFj8B5jzY8CFciIfen8iwxGIqzhV6UV8p60LbQ4E5WuspSqk7gB+VUkFaa/MlL9J6BjADIDg4uPB7CCFsmNaalfvieGvpAVIycni+awDPdq6L89bP4MRm6P81ZCbD6jdg/nA4stoYZ+7T0tKlW43iBHoM4FtguxaXd6mMAHoCaK23KaVcgCpAfEkUKYSwbmdSM3lzyX62hJ9kpfskqt1WDfdKg+F4JKx/H4IGQvNhxpDE9LOweQq4ekKXCZYu3aoUJ9B3AgFKKX/gFDAEGFaoTRTQFZijlGoEuADSpyKEndNa82toNJNXHiQ718xPgaH4H4+ELAcIedVoVMkP+nx6cXx5lwng5gXeQeDmabnirdA1A11rnauUGg2sxhiSOEtrfUAp9S4QqrVeBrwCfKeUegmjO+ZRrbV0qQhhx6LOpjN2cRhbj52ljb8n/+vji9+PT0KD3jDkZ4g/CIdDoH5PcK188YVKwR3PWq5wK1ascej5Y8pDCu2bWOBxONC+ZEsTQlijPLNmztYTfLL6MCYHxXsDghjayg+HP9+BrFToPN4Ibe9A40eUGLlTVAhRYo6cOc/rC8PYE51Ml4bVeG9AEDUqucL5M7D9G2NJuOpBli7TZkmgCyFuWnaumekbjvHV+qOUd3Zk6pDm9GtW05gVEWDzJ5CXDZ3GWbZQGyeBLoS4PnF74ccBMOQX8GvD3uhkxiwK49Dp8/RrVpO3+gbiVd75YvvUOAidDS2Gg1ddy9VtByTQhRDXZ90kSD9L3pq3+Kj6p8z8K5JqFVyY+XAw3QK9L2+/8zsw58KdL5V9rXZGAl0IUXzRf0PEGtI8AnGP3kb4sWU80KoP43o3pKKL0+Xts9MhdBY07AOe/mVfr52R+2mFEMWWu24yFxwr0y7uRc6oKkyvuYoPBgQVHeYAYfMg4xy0faZsC7VTEuhCiGLZtXEFjic2MjWzD/d3aIJHz/FUSNxj3KJfFLMZtk+HGs3gtnZlW6ydki4XIcRVnb2QxTvLDjDs0GTOmjy4Z8QEmvnXgLwA2D4V1k+GvCyI2gFn9kODXnD7Y8b8LIlHYMAMWWWojEigCyGKpLVm2d5Y3lkeTt2scNo6HiS3+4d4+dcwGpicoONYWPIU/PowOLpAJV/4fSxsmQrOFaF8dWg8wLIHYkck0IUQl4lLyeDN3/az7lA8zXwrM933LPzjgGPLQtM4NX0AHJ2NIK/RDBzLQeQm+PM9iN4O3d429okyIYEuhPiP2ayZtzOaD0IOkmM282afRjzW3h/T/000FppwqXTpCxwcIOi+S/f53wWPd4CEw1AloOyKFxLoQgjDicQ0xi4OY/vxJO6o48WHA5twm5c7ZCRD7G7o8Grx30wpqNaw9IoVRZJAF8LO5eaZmb3lBFPWHMbJwYEP72vCA618L962f2IzaDPU6WTJMkUxSKALYccOnU5lzMIw9sak0K2RN5PvDaJ6JZdLGx1bD07uUKuVZYoUxSaBLoQdysrNY9r6Y3y9PoJKrk58ObQF9zStcfGqvKDjG6D2nfLlphWQG4uEsDP/RJ2j75d/8cW6o/RtVpM1L3ek778zIx5cAVObGYtPACRHQdIx6W6xEnKFLoSdSM/OZcofR5i1JZLqFV2Y9WgwXRoWmEwr7SwsfwHSE2HRSBi5zrg6B6jb2SI1i+sjgS6EHdgakcjYxfuISkpneFs/xvRsSIXC86+sHgeZycbY8bVvw5+TISXGuDmoqoxYsQYS6ELYsJSMHD4IOci8ndH4V3Fn3qi2tK3jdXnDo2sgbD50HGNMc5scBVu/BCdXaNRPbt23EhLoQtioPw6c5s0l+0m8kMWTHevwUrf6uDiZLm94IQGWv2hchXd4xdjXY7Jxx+fZCOlusSIS6ELYmMQLWby97AArwuJoWL0CMx8Jpmmtypc2ysmEfb/CgSUX+8kH/27cxg9Qzh0GzYJ170JAjzKtX9w4CXQhbITWmiV7TvHO8nDSs/J4pXt9nupUFydTocFsmSkw935jrhWP2tD+eWhyP3gHXtquRjMYvqjM6hc3TwJdCBsQm5zB+N/2sf5wAi38KvPxwKYEeFeAU7shfCk0vR+8G0NaIvx0H5w5APfNhCaDpH/chkigC2HFzGbN3L+j+GjVIfLMmon3BPJIu9qYHBRoDStfMeZh2fI5+LYxVg9KjjIWeK4vXSm2RgJdCCt1POECYxft4+8TSfT2NzGha3Vq1CuwbueJzUaYd30LTOVg12w4fwYeXAj+HSxXuCg1EuhCWJncPDMz/4rkszVHcHZ04ONBTRl89HXU/A3w5KaLU9b+9Tm4V4W2TxvDD+94FnIzjcfCJkmgC2FFwmNTeX3RXvafSuXuxt5M6h9ENcd0CPkDzLmw6AkYsQYSD8OxddBlwsUAV0rC3MZJoAthBbJy8/jqzwimbzhGZTcnvn6wJb2Cqhvzr4T+YoR5xzGw8SNjjc/UWChXHlqNsHTpogxJoAtxqzi6Ftw8waflJbt3nUxizKJ9RMRf4L6WPkzoE4iHe4GZD/cvAq8A6DQOLsTDli+Mq/G2z4CrRxkfhLAkCXQhbgVaw29PgnN5GL0LTI6kZeXyv9WH+X7bCWpWcmXOY63o1KDapa9LOQUn/jLCXCm4+z1j+1ykEejCrhQr0JVSPYGpgAmYqbX+sIg29wNvAxrYq7UeVriNEOIKkqOMWQ7TE2H/Ija7dWHc4n3EnMvgkTtu47WeDSnvXMSf64HFgDbGk4Nxh+cjyyElGir5lOkhCMu7ZqArpUzANKA7EAPsVEot01qHF2gTAIwD2mutzymlqhX9bkKIIsXuBsDs4kFCyHs8nOKGf9UKLHjqDlrV9rzy6/YtgJotwKvuxX0Vaxg/wu4UZ4GL1kCE1vq41jobmAf0L9RmJDBNa30OQGsdX7JlCmHjTu3C7ODE2znD8c46yWdNogl5vsPlYZ6bBelJxuPEoxC3F5oMLvt6xS2pOF0uPkB0ge0YoE2hNvUBlFJbMLpl3tZa/174jZRSo4BRAH5+fjdSrxA2J/58Jsn/bCI914/dnt3I0iu59/wv4Pj0pQ21hrmDjFkQ3byMUSwoaHyfReoWt57iXKEXNdGDLrTtCAQAnYChwEylVOXLXqT1DK11sNY6uGrVqtdbqxA2RWvNwl0x3D1lPT7ph3CoFcxvz92Fc6dX4XSYMUd5QUdWG2HebBg0vAcqVIfWI6V7RfynOFfoMYBvge1aQGwRbbZrrXOASKXUYYyA31kiVQphY2LOpfPGb/vZdCSBe31ScT+bRdPWncHkYEyktfFDYwUh39bgWhnMecYqQp51od8XYHK65mcI+1OcK/SdQIBSyl8pVQ4YAiwr1GYJ0BlAKVUFowvmeEkWKoQtMJs13289QY/PNhF6Iol3+jXm0/Z5xpM+txu/TU5w7zdw7gQsfBzycmHPz5BwELpOlDAXV3TNK3Stda5SajSwGqN/fJbW+oBS6l0gVGu9LP+5HkqpcCAPeE1rfbY0CxfC2hxLuMCYhWEQtY3u/g15bXBnanm4wYovwLkieNW72Lh2e+j9Cax4EX4fC4dWgk8wBBYejyDERcUah661DgFCCu2bWOCxBl7O/xFCFJCTZ2bGpuNMXXcUT8dstrh+hINDU1Tl3kaD2N3GYhIOhf7BHPwYxIfD3zOM7YEzZe5ycVVyp6gQpWj/qRReXxhGeFwqvZtU54OGkZiWZ0HMTghfAg16w+n9xkyIRbn7A+N2fufyxlW7EFchgS5EKcjMyWPquqPM2HQcD7dyfDO8JT2DasDiGcb8KhVqGl9ylq8O5pzL5m/5j8kR7v++TGsX1ksCXYiSFBPK7vQqvLrsBMcT0xh8ey3e7BNIJTcn48vNo6sh4G5jJMtP98HK/F7Kf78QFeImSKALUULSzhzHdWY3nMy34eQ2mR9HtKVDQIH7LaK2GUvANewN9bpC3a7GnOXu1aCizLsibl5xhi0KIa5h45EEvvxuBg5oGjtEEVL1azrULn9po8MhYHI2ghygxyRQDkZ3i3zZKUqABLoQNyE5PZuXf93DI7P+pg1hZLt54zDwO0zR2+DXhyE322iotTH0sE4n4wtOAO/GxsiVzm9YqnxhY6TLRYgboLVm1f7TTFy6n+T0HEZ3qkOnvQdRAT2NqWyzUmHFSzBvKAyabUyPm3wSOhQa2Rs00DIHIGySBLoQ1yk+NZMJS/ez+sAZgnwq8v3jrWnMcdieBHU7G42CHze6U1a+Av/XA/zaAArq97Jo7cK2SaALUUw6OYoFRzWTVx4iK9fM2F4NeeJOfxxNDvDXBqORf8eLL7j9UfCoDfMfhl1zoFYrqOBd9oULuyF96EIUw9mtP6A+b4L/8kH08Epk1QsdeKpjXSPMAY6th2qNLw/sOp3gibVGmLceVdZlCzsjV+hCXEWeWbP8j9Xcve0VDnEbTZzjCU56DrU7HLq8CU6ukJMBUduh1RNFv0nV+kaoC1HKJNCFuIKI+PO88+sWJsc/R4ZTRSo9vgIXj/Kw7h3YNs1YMWjIXGN8eV7Wxf5zISxEAl2IQnLyzHyz4Rhz/tzL505f4WtKQj26CuWTv8pW36lQo7kxE+LS0VC+Kjg4wW3tLFu4sHsS6EIUsP9kAmvnfU6LC5v42+kAJvKg9xRjoYmCgh+D9ET4czI4OIJvWyjnbpmihcgngS4ExmRa36zaSdvQF3nR4SDpFf0wNR9tzD9+pXlWOrwKaYmw4xuo26lM6xWiKBLowu7tOH6W6QtX8s6FSdQ0JZPe+2vcgodd+3Z8pYzpbW9rD/W6lU2xQlyFBLqwW+czc/jo90Mc+3sV35X7jHJubjg9GIKTb6viv4mDAwT2K70ihbgOEujCLq0/FM8bv+2jwYXt/OD8OSavOjg8tAgq1bJ0aULcMAl0YVeS0rJ5d/kBluyJ5TGPMCY4f4aDdyAM/w3cvSxdnhA3RQJd2AWtNTvWLMBv6xuM19m8V8GEW2YyyicYHlwArpUtXaIQN00CXdi8M6mZvLMolDdOjEOZnHBseDfurk7g5gl3vnxxOlshrJwEurBZWmvm74zmvZCDPGmeTy2HRHKHr8CxTgdLlyZEqZBAFzYp6mw6YxeHsfXYWe7xzebZpBXQaKCEubBpEujCpuSZNbO3RPLJH4dxdHDg/QFNGBo5DpVsgu6TLF2eEKVKAl3YjMOnz/P6ojD2RifTpWE13u9Vi+qHfoRDK6DrRKgkCzEL2yaBLqzXzv+DsPlk3zuTr//JZNr6CCq4OPFtP296nP0JNXM+5KRDve7Q9llLVytEqZNAF9br7xmQcIhzX3VhaeZYeje7nUmBsVRcNQiy06Hp/dDmSajexNKVClEmJNCFVco8fRSXhEPMy+tMD9Mufq/4Ps4VBsDimeDdBO7/HrzqWrpMIcqULEEnrM7WY4nMnPU1ANGNn6bcyNU4O7vAzpnQ8mF4Yo2EubBLcoUurEZqZg4fhBzil7+j+M1tB2mVG/DakLuNJ0f+CYlHwP8uyxYphAVJoIuyl5FsrMXp6Fzsl6wNP8P4JftIOJ/FC3d40XzPIVSTly42qFDd+BHCjhWry0Up1VMpdVgpFaGUGnuVdoOUUlopFVxyJQqb80M/mN4OUmOv2fTshSye/+UfnvghFA+3cvz2THteqn0SpfOgYe8yKFYI63HNQFdKmYBpQC8gEBiqlAosol0F4HlgR0kXKWxIxjmI2wtnI2B2b0iONvZHrIOv28GCxwDjtv2le07R7dONrNofx0vd6rNs9J00860Mh0OgfHWo0cKCByLErac4XS6tgQit9XEApdQ8oD8QXqjdJOBj4NUSrVDYlri9xu/O42HrVzCnN3gHGSHt5A7xB0hsOpIx25xYdyie5r6V+XhQU+p7VzBel5sFEWuhySBjcQkhxH+K8xfhA0QX2I7J3/cfpVQLwFdrveJqb6SUGqWUClVKhSYkJFx3scIGxP5j/G71BDyyFDJTIXITdHsb8wthZDlVJOznCWw5lsibfRqx6Ol2F8Mc4MRmyL4ADaS7RYjCinOFXtTCivq/J5VyAD4DHr3WG2mtZwAzAIKDg/U1mgtbdGo3ePgbU9e6ecKzO8DBkcgMV8bODaNNeg9edlrI+gerUKNhHdAa/voc9i00umvSE8HJTUazCFGE4lyhxwC+BbZrAQW/zaoABAEblFIngLbAMvliVBQpdg/UvNj3netWjRm7Uuj5+SbC41Kp3ecltHNFaoR9aYT52rdh7VtQzh3qdITgEXDfd8YoGSHEJYpzhb4TCFBK+QOngCHAsH+f1FqnAFX+3VZKbQBe1VqHlmypwuqlJUJKFLQeCcDBuFTGLAojLCaF7oHeTL43CO+KLpAxCjZPgcUjYd8CCH4cek+RPnMhruGaga61zlVKjQZWAyZgltb6gFLqXSBUa72stIsUNiK//zzbuxlfrTnC1+sjqOTqxFfDWtCnSQ2Uyu/da/sMbJ9uhHnrUdDrY1BF9fwJIQoq1o1FWusQIKTQvolXaNvp5ssSNin2HzSKwUvT2ZtwlAEtfJh4TyAe7uUubefuBX0/h/Nx0O55CXMhiknuFBUlR2v47Slo0BMaD7jkqfTsXKJ3b8JkrkF8djlmP9qEzg2rXfm9mt5fysUKYXsk0EXJidsDYfMgfClUC4SqDQDYEpHI2MVhLEjbz2mv1vzx5F1UcHGycLFC2B75lkmUnPCloExQzg0WPEpKaipjFobx4MwdeHOO6uoczdt0kTAXopRIoIuSobUR6P53wYAZEB/Ous9HsHB3DE91rMvPffIn4qopt+sLUVok0EXJOLMfko5zvm4fnt3pyTe593Cf+Q+2tt3J2M41KHdmr3H1LqsHCVFqpA9dlAgdvhRwoN/aypzKPkPjzm9ijs/De/ensP87cC4P1RoZ3TFCiFIhgS5u2qnkDNg2n5N5DfGoUZPvBjWlXrUKwDzjVv/tX8P+xRDY39KlCmHTJNDFDTObNXN3nGTBqrUsc4giqvE4FtzfDpNDgXHjPi1h4Ezo/T9jDhYhRKmRQBc35HjCBcYu2sffJ5KYUm0vOlVxR59HweEKNwG5epRpfULYIwl0cV1y88x8tzmSRWs30dgxhkWtXGkZswnl11aWgBPCwiTQxaW0hlO78r/AdL/kqfDYVF5ftBcdu5fVzhMxkQf7AOUAHa+4MqEQooxIoItLbfsK/ngTnCsaqwLd/iiZVYL46s8Ivtl4DE9XE39Un4cp2wuGzoOKNcG9CpjkZiEhLE0C3d6YzVeehjZiHayZCAE9wM0L9vwMobNYUu4+vkodyMCWvkzy2Ybbmn1w30yodXvZ1i6EuCq5scieHN8IH/hAYsTlzyUdh4WPQ9VGMGg2ab2/4sPAJfyc14Uh2YvZ1ngpU3pWw23T++Df0bh6F0LcUiTQ7cmenyEn3ZhAq6DsNPhlmDFN7ZC5bDqZQY/PNvHtziQO3/4u2e1fpcaxX2H6HZCbAX2myJS2QtyCpMvFXuRmw+FVxuN9C6Dz+Iuh/M9PkHCQtEHzeWtdKgt3hVOnqju/PnkHrWp7Ak2gQhX4fazx5WeVAIsdhhDiyiTQ7UXkRshKgUb94OAyYyRLrWCjT33HtyR7NqP7UkeS0k7xTKe6PN81ABcn08XXt33auNOzQg3LHYMQ4qqky8VehC8xRq7c8xmYnI2rdCB5/++QdIyJp++kanlnlj7bntd7Nrw0zP9VsaZ0tQhxC5MrdHuQlwOHVkL9nsYQw/p3o/cvZpHXU3iHfEwDXZlGXR9iSqcGOJnk/+OFsFby12sPTvwFGef+mxwr0b8fKi2ePUun0oF/MLUewdNdG0mYC2Hl5C/YHoQvBSd3zHW6MGdLJN1WOHNeu/JOuR/RDk543fWkpSsUQpQACXRbpDWcPwN5uWDOg0MrOO/Xhftn7eHt5eE0rV0dh8b9MelcVOMBUMHb0hULIUqA9KHboq1fwpoJoExo96qotATGH67LUacLTBncjPta+qCiNRxZAnc8a+lqhRAlRALd1iRHwYYP4LY7ifdowb7w/VzIq4Nq0IO19wZTtUL+2p5+beCNWHAoYjSLEMIqSaDbmt/HoYFvPF/lkx0ZeLp3YtIDjZkaVMT4cQlzIWyKBLo1i91jjCcPfhy86sKR1XBoBTPLPcRH29K5P7gW43sHUslNZkIUwh5IoFsrsxmWPQenw2D7dHKaPMD5QxtIMtdkrkNffhpxO3cGVLF0lUKIMiSBbq0OLjPCvPskok9GUC3sZzzJYUY+WzkAAAxuSURBVHmDL1g5qCvuznJqhbA38ldvDbIuQFoCePob2+Y8WP8+eV71eT26PYvC6tKmSifevdOFR9r2tmytQgiLkUC/1WkN84fDic3Q80No9QQ6bD4q8TBvOLzC0rgzPNelHqO71MPZUb7kFMKeFSvQlVI9gamACZiptf6w0PMvA08AuUAC8LjW+mQJ12qfDi6H4+vBsw6EvEpG9B4uHFzHGXNtDnp2Ytmg5gTWrGjpKoUQt4Br3imqlDIB04BeQCAwVCkVWKjZP0Cw1ropsBD4uKQLtUvZ6bB6PFRrjH5mOwfrPoHrvp+omhtHVPOXWfzsnRLmQoj/FOcKvTUQobU+DqCUmgf0B8L/baC1Xl+g/XZgeEkWabe2TIWUKOLvW8TLc/bwV0QXRlevzoh6afTu87BMZSuEuERxAt0HiC6wHQO0uUr7EcCqop5QSo0CRgH4+fkVs0Q7de4EesvnRHr3oM+CXEwOyUy+N4hhrXvj4CBBLoS4XHECvaj00EU2VGo4EAx0LOp5rfUMYAZAcHBwke9h1+LCYM9ciNmJjgsjy+zAgyf70qaBJ+8PaELNyq6WrlAIcQsrTqDHAL4FtmsBsYUbKaW6AeOBjlrrrJIpz46c2AJzB6O1mVi3RqzM6cVGx3aMeaAr/ZvXREn3ihDiGooT6DuBAKWUP3AKGAIMK9hAKdUC+BboqbWOL/EqbV3kJvj5ATLda/KYeSLb4h3p26wmU/sGUqW8s6WrE0JYiWsGutY6Vyk1GliNMWxxltb6gFLqXSBUa70M+B9QHliQfyUZpbXuV4p1W7+8HEg8ClHb0KvHk+hUgz5nXkFVcOe7h5vQPVDmKBdCXJ9ijUPXWocAIYX2TSzwuFsJ12W7stNh+QvGKkJ5Rs9UhIM/D5x7nbtbN2Zsr0ZUcpXJtIQQ10/uFC1LaYnwyxCICSW7xaMsOevLd0fLk1u5Ll8Na067ejKZlhDixkmgl5Wzx2DuIEiNZV/7LxgV6sOZ1Eweb+/Pyz3q41ZOToUQ4uZIipSF3CyYOwhzRjJf1PyEz9d5ElDNka+fbkcLPw9LVyeEsBES6GVA7/gWlXSc5xze5I9jXrzQtR7PdK4rk2kJIUqUBHopOxMXQ4W1H7IjrxkxVe5g+aCmNKwu868IIUqeBHop0Vozb2c0auUrDCKDxHYTWHx3e0xy274QopRIoJeCk2fTGLtoHwmRe1ntvJa0Jg8xuFd3S5clhLBxEuglKM+smb0lkk/+OIyzA6yuuQiHC+Wp2PMtS5cmhLADEug3Ky8XTmzmmK7Jy6sT2RudTNeG1ZjquYDyu3dA36ng7mXpKoUQdkAC/UZlpsDuH4wRLCnReGtXmjiMZMTQp+mbsxq14lto8xTc/qilKxVC2AkJ9BuxfzGseAkykwkzBTE7uy/PVdrM5IwvYP9hOLYO6nWHHu9ZulIhhB2RQL8emSkQ8hqEzeeUeyBPZ79KfPlA3nsoiLr1J8HmKbDxQ6jSAAbNApP8zyuEKDuSOMWVFAk/9EenxDDbaQjvne3DA238GdurIRVd8ifT6jQGgu4D9yrgImPNhRBlSwK9OJIiMc/pQ2baeYZnTuCsZ3N+GtmUO+oW8WVnlYCyr08IIZBAv7akSDJn9iIr/TzDst+gfYcuvNStPq7l5LZ9IcStRQL9KlIOb8a84DHIyeCNiu/z/v39aeZb2dJlCSFEkSTQi6Dzcjm04G0CDk0jTldh0+3fMbV3T8o5Oli6NCGEuCIJ9IJS40gOCyFx80waZYWzwbkztYZ/zYO+NS1dmRBCXJMEOkDCYfRvT6Nid1EZSNdebAyaTIeBo2UyLSGE1ZBAj9xE3rzhnM9x4NucIZyr1YlnBvejYxV3S1cmhBDXxa4DPe+fn2HZc0SavXlWjePxezvyerAvSslVuRDC+thnoJ/cxoU/3qP8qc1szQtkXp0P+GFgW7wruli6MiGEuGH2Fehnj2Fe/iIOJzaRqSsy0/QQ9e99janN/OSqXAhh9ewn0A/8Rt6S0aTlwNScB7kQ9DBj+7XEw72cpSsTQogSYfuBnpNBzu9v4rRrJnvN9Zjk8hrPD+1C5wbVLF2ZEEKUKNsNdK3h4DIyV47DJe0U3+X25lTL1/mhdxAV/p1MSwghbIhtBvqZcHJDxuB4chORZl++dX+PoYOHMrKOrBwkhLBdthXoaYmw/j106BzSceXT3Edxaz+SD7s1wsVJJtMSQtg22wn0Pb9gXvU6OusCP+R2Z5XXI0wYfCdNalWydGVCCFEmrD/Qs9PQIa+i9vzMbhoxIecJ7unWibl31cHJJJNpCSHsh3UHesIRcn55EFPSUb7IHcDmGo/z5eAW1KtWwdKVCSFEmSvWJaxSqqdS6rBSKkIpNbaI552VUvPzn9+hlKpd0oUWZj70O9nfdib17GlGmt+gUq+3mP90BwlzIYTduuYVulLKBEwDugMxwE6l1DKtdXiBZiOAc1rrekqpIcBHwAOlUTBac3b1R3hs/5Aj5tuY6TOZtwd3xdfTrVQ+TgghrEVxulxaAxFa6+MASql5QH+gYKD3B97Of7wQ+EoppbTWugRrBWD/L+MJOjKNVbQjo89UPmsdILftCyEExQt0HyC6wHYM0OZKbbTWuUqpFMALSCzYSCk1ChgF4Ofnd0MF5zYbzoIkTceHJ1KtousNvYcQQtii4gR6UZe/ha+8i9MGrfUMYAZAcHDwDV29N28cSPPGH9zIS4UQwqYV50vRGMC3wHYtIPZKbZRSjkAlIKkkChRCCFE8xQn0nUCAUspfKVUOGAIsK9RmGfBI/uNBwJ+l0X8uhBDiyq7Z5ZLfJz4aWA2YgFla6wNKqXeBUK31MuD/gB+VUhEYV+ZDSrNoIYQQlyvWjUVa6xAgpNC+iQUeZwKDS7Y0IYQQ10PujRdCCBshgS6EEDZCAl0IIWyEBLoQQtgIZanRhUqpBODkDb68CoXuQrUDcsz2QY7ZPtzMMd+mta5a1BMWC/SboZQK1VoHW7qOsiTHbB/kmO1DaR2zdLkIIYSNkEAXQggbYa2BPsPSBViAHLN9kGO2D6VyzFbZhy6EEOJy1nqFLoQQohAJdCGEsBFWF+jXWrDaFiilfJVS65VSB5VSB5RSL+Tv91RKrVFKHc3/7WHpWkuSUsqklPpHKbUif9s/f9Hxo/mLkJezdI0lSSlVWSm1UCl1KP9c32EH5/il/P+m9yulflFKudjaeVZKzVJKxSul9hfYV+R5VYYv8vMsTCnV8mY+26oCvcCC1b2AQGCoUirQslWVilzgFa11I6At8Gz+cY4F1mmtA4B1+du25AXgYIHtj4DP8o/3HMZi5LZkKvC71roh0Azj2G32HCulfIDngWCtdRDGdNz/LipvS+d5DtCz0L4rnddeQED+zyhg+s18sFUFOgUWrNZaZwP/LlhtU7TWcVrr3fmPz2P8oftgHOv3+c2+B+61TIUlTylVC+gDzMzfVkAXjEXHwfaOtyJwF8ZaAmits7XWydjwOc7nCLjmr2zmBsRhY+dZa72Jy1dsu9J57Q/8oA3bgcpKqRo3+tnWFuhFLVjtY6FayoRSqjbQAtgBeGut48AIfaCa5SorcZ8DrwPm/G0vIFlrnZu/bWvnug6QAMzO72aaqZRyx4bPsdb6FPAJEIUR5CnALmz7PP/rSue1RDPN2gK9WItR2wqlVHlgEfCi1jrV0vWUFqXUPUC81npXwd1FNLWlc+0ItASma61bAGnYUPdKUfL7jfsD/kBNwB2jy6EwWzrP11Ki/51bW6AXZ8Fqm6CUcsII87la68X5u8/8+8+x/N/xlqqvhLUH+imlTmB0o3XBuGKvnP9Pc7C9cx0DxGitd+RvL8QIeFs9xwDdgEitdYLWOgdYDLTDts/zv650Xks006wt0IuzYLXVy+8//j/goNb60wJPFVyM+xFgaVnXVhq01uO01rW01rUxzumfWusHgfUYi46DDR0vgNb6NBCtlGqQv6srEI6NnuN8UUBbpZRb/n/j/x6zzZ7nAq50XpcBD+ePdmkLpPzbNXNDtNZW9QP0Bo4Ax4Dxlq6nlI7xTox/doUBe/J/emP0K68Djub/9rR0raVw7J2AFfmP6wB/AxHAAsDZ0vWV8LE2B0Lzz/MSwMPWzzHwDnAI2A/8CDjb2nkGfsH4jiAH4wp8xJXOK0aXy7T8PNuHMQLohj9bbv0XQggbYW1dLkIIIa5AAl0IIWyEBLoQQtgICXQhhLAREuhCCGEjJNCFEMJGSKALIYSN+H87mAnrTHyEpQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "<Figure size 432x288 with 1 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "k = 0\n", + "dd = pd.DataFrame((preds_all.mean(0)), columns=all_ich)\n", + "vals = (train_md[all_ich[k]]*train_md['weights']).groupby(pd.cut(dd[all_ich[k]],np.arange(101)/100)).mean()/ \\\n", + " train_md['weights'].groupby(pd.cut(dd[all_ich[k]],np.arange(101)/100)).mean()\n", + "\n", + "#dd = pd.DataFrame(preds_all.mean(1)[4], columns=all_ich)\n", + "\n", + "plt.plot([0,100],[0,1])\n", + "plt.plot(vals.values)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.05430755335203294\n" + ] + } + ], + "source": [ + "res = np.zeros(6)\n", + "for k in range(6):\n", + " res[k] = log_loss(train_md[all_ich[k]], preds_all.mean(0)[:,k], eps=1e-7, labels=[0,1], \\\n", + " sample_weight=train_md.weights)\n", + "print((res*class_weights).mean())" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.05507244939620463\n" + ] + } + ], + "source": [ + "res = np.zeros(6)\n", + "for k in range(6):\n", + " res[k] = log_loss(train_md[all_ich[k]], preds_all.mean(0)[:,k]**(0.9), eps=1e-7, labels=[0,1], \\\n", + " sample_weight=train_md.weights)\n", + "print((res*class_weights).mean())" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 71, + "metadata": {}, + "outputs": [], + "source": [ + "%run ./Code.ipynb" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [], + "source": [ + "stats_fn = PATH_DISK/'ensemble'/'stats.v{}'.format(VERSION)\n", + "if stats_fn.is_file():\n", + " stats_fn.unlink()" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "starting fold 0 target 0\n", + "my_len 4\n", + "obj 0.08727681341480276\n", + "obj 0.08727680961247067\n", + "obj 0.08727681635930583\n", + "obj 0.08727683790936251\n", + "obj 0.08727727172526722\n", + "obj 0.0872790250770156\n", + "obj 0.08728207769630063\n", + "obj 0.08730524551710207\n", + "obj 0.08741163374725006\n", + "obj 0.08737828492011111\n", + "obj 0.08728987139098107\n", + "obj 0.08727957160159115\n", + "obj 0.08727743735897546\n", + "obj 0.08727694643886197\n", + "obj 0.08727683642000757\n", + "obj 0.08727680763252753\n", + "obj 0.08727680110920166\n", + "obj 0.0872767999865726\n", + "model [0.5022 0.4978] sum 0.9999676813453886\n", + "my_len 4\n", + "v34 f0 t0: original ll 0.0935/0.0886, ensemble ll 0.0935/0.0886\n", + "running time 3.408698320388794\n", + "starting fold 0 target 1\n", + "my_len 4\n", + "obj 0.012081623796648948\n", + "obj 0.012064844467400441\n", + "obj 0.012069603621018268\n", + "obj 0.012057825517191024\n", + "obj 0.012063435473538067\n", + "obj 0.012078578108915878\n", + "obj 0.012068894688607414\n", + "obj 0.012071291095892334\n", + "obj 0.012059318504672595\n", + "obj 0.012042443367714269\n", + "obj 0.012035341615015361\n", + "obj 0.012028032305076937\n", + "obj 0.01202777543489789\n", + "obj 0.012027740476985575\n", + "model [0.2831 0.6969] sum 0.9800013450345408\n", + "my_len 4\n", + "v34 f0 t1: original ll 0.0150/0.0139, ensemble ll 0.0149/0.0138\n", + "running time 2.795881509780884\n", + "starting fold 0 target 2\n", + "my_len 4\n", + "obj 0.03643239100707699\n", + "obj 0.03645343904689349\n", + "obj 0.0364534366143448\n", + "obj 0.036453513478217306\n", + "obj 0.036453516366294375\n", + "obj 0.03645341604099942\n", + "obj 0.03645330420145025\n", + "obj 0.03645267895293359\n", + "obj 0.036450097188809066\n", + "obj 0.03641199892754806\n", + "obj 0.036373801711966164\n", + "obj 0.03637281406397558\n", + "obj 0.036372806451137295\n", + "obj 0.03637272605629483\n", + "model [0.2802 0.7198] sum 0.9999991225720998\n", + "my_len 4\n", + "v34 f0 t2: original ll 0.0415/0.0392, ensemble ll 0.0415/0.0392\n", + "running time 2.8015294075012207\n", + "starting fold 0 target 3\n", + "my_len 4\n", + "obj 0.022513923350337257\n", + "obj 0.022514823788354697\n", + "obj 0.02251479174800453\n", + "obj 0.022514828025576614\n", + "obj 0.022514807377993946\n", + "obj 0.022514793548033103\n", + "obj 0.02251478234170425\n", + "obj 0.0225148540628997\n", + "obj 0.02251532492335685\n", + "obj 0.02252397376897954\n", + "obj 0.0224612699479598\n", + "obj 0.022460291244167933\n", + "obj 0.022460281207617266\n", + "obj 0.02246025802669623\n", + "model [0.2562 0.7438] sum 0.9999997939535652\n", + "my_len 4\n", + "v34 f0 t3: original ll 0.0243/0.0239, ensemble ll 0.0243/0.0239\n", + "running time 2.816469669342041\n", + "starting fold 0 target 4\n", + "my_len 4\n", + "obj 0.05866908744304866\n", + "obj 0.058655421224092855\n", + "obj 0.05865799778032658\n", + "obj 0.05865917796177444\n", + "obj 0.05867525787484774\n", + "obj 0.058666700956343514\n", + "obj 0.05866190108829274\n", + "obj 0.05867066520315169\n", + "obj 0.058622009226577926\n", + "obj 0.05857392212815765\n", + "obj 0.058552161805164274\n", + "obj 0.05854793797715716\n", + "obj 0.0585477836014417\n", + "obj 0.05854778093821152\n", + "obj 0.05854778093568046\n", + "model [0.1849 0.8112] sum 0.9961132357622775\n", + "my_len 4\n", + "v34 f0 t4: original ll 0.0617/0.0596, ensemble ll 0.0617/0.0596\n", + "running time 2.985300064086914\n", + "starting fold 0 target 5\n", + "my_len 4\n", + "obj 0.07111888085217989\n", + "obj 0.07109943900079979\n", + "obj 0.07109626046895302\n", + "obj 0.07109808791436022\n", + "obj 0.07111092588847316\n", + "obj 0.0710957678702807\n", + "obj 0.07109475918862561\n", + "obj 0.07109280184395775\n", + "obj 0.07107889783936418\n", + "obj 0.07107915998501899\n", + "obj 0.07106262999212018\n", + "obj 0.07106191775845142\n", + "obj 0.07106191688882099\n", + "model [0.3466 0.6453] sum 0.9918766105998069\n", + "my_len 4\n", + "v34 f0 t5: original ll 0.0789/0.0757, ensemble ll 0.0789/0.0757\n", + "running time 2.694082736968994\n", + "starting fold 1 target 0\n", + "my_len 4\n", + "obj 0.086462634155086\n", + "obj 0.08646150298320077\n", + "obj 0.0864614802906338\n", + "obj 0.08646149569706231\n", + "obj 0.08646172873837056\n", + "obj 0.08646289351196788\n", + "obj 0.08646556301640597\n", + "obj 0.08648759494216639\n", + "obj 0.0866088306497439\n", + "obj 0.08657377479849461\n", + "obj 0.08646196862069534\n", + "obj 0.08644958080609667\n", + "obj 0.08644661615687646\n", + "obj 0.0864458232439799\n", + "obj 0.08644566400280582\n", + "obj 0.08644565114567859\n", + "model [0.5941 0.4059] sum 0.9999997875126851\n", + "my_len 4\n", + "v34 f1 t0: original ll 0.0964/0.0902, ensemble ll 0.0965/0.0902\n", + "running time 3.123203992843628\n", + "starting fold 1 target 1\n", + "my_len 4\n", + "obj 0.013554873239082691\n", + "obj 0.013536021601660043\n", + "obj 0.013540780340295681\n", + "obj 0.013566508884523805\n", + "obj 0.013564699748967186\n", + "obj 0.013552392374760967\n", + "obj 0.013547296797121735\n", + "obj 0.01354698457004907\n", + "obj 0.01350746236715416\n", + "obj 0.013447856802878057\n", + "obj 0.013419140435866268\n", + "obj 0.013415370101089641\n", + "obj 0.01341048435640438\n", + "obj 0.013410353069281782\n", + "obj 0.013410352471037947\n", + "obj 0.013410330155687895\n", + "model [0.1071 0.8929] sum 0.9999981188620239\n", + "my_len 4\n", + "v34 f1 t1: original ll 0.0128/0.0110, ensemble ll 0.0129/0.0111\n", + "running time 3.057985782623291\n", + "starting fold 1 target 2\n", + "my_len 4\n", + "obj 0.03700983338270924\n", + "obj 0.03700942511496985\n", + "obj 0.03700941857757188\n", + "obj 0.037009493333549054\n", + "obj 0.03701008954460971\n", + "obj 0.037016731112905855\n", + "obj 0.037024638902028846\n", + "obj 0.037049487602528804\n", + "obj 0.03702979731288853\n", + "obj 0.037045004627654254\n", + "obj 0.0369870605249707\n", + "obj 0.036984237597943385\n", + "obj 0.036983631845849435\n", + "obj 0.03698346188992404\n", + "obj 0.036983414748853076\n", + "obj 0.036983401729567406\n", + "obj 0.036983398096645255\n", + "obj 0.036983397111147245\n", + "model [0.351 0.649] sum 0.9999845409128088\n", + "my_len 4\n", + "v34 f1 t2: original ll 0.0401/0.0381, ensemble ll 0.0400/0.0380\n", + "running time 3.355295419692993\n", + "starting fold 1 target 3\n", + "my_len 4\n", + "obj 0.023432825312353096\n", + "obj 0.023430311446247156\n", + "obj 0.023430223179945912\n", + "obj 0.023430262634468815\n", + "obj 0.0234308175057871\n", + "obj 0.023438794235891954\n", + "obj 0.02345313737719687\n", + "obj 0.02348204017957184\n", + "obj 0.023460208851731834\n", + "obj 0.023476355780291332\n", + "obj 0.02340827851846919\n", + "obj 0.023406000871457035\n", + "obj 0.023405403449075084\n", + "obj 0.023405297323883776\n", + "obj 0.0234052886876152\n", + "model [0.3264 0.6736] sum 0.9999998723930892\n", + "my_len 4\n", + "v34 f1 t3: original ll 0.0233/0.0221, ensemble ll 0.0233/0.0220\n", + "running time 2.9708051681518555\n", + "starting fold 1 target 4\n", + "my_len 4\n", + "obj 0.05876162822408629\n", + "obj 0.05877796616366613\n", + "obj 0.058777955484026846\n", + "obj 0.058778224218930426\n", + "obj 0.0587782146454934\n", + "obj 0.05877773096065451\n", + "obj 0.05877722216040082\n", + "obj 0.05877439407851651\n", + "obj 0.058760743102489674\n", + "obj 0.05868165579294521\n", + "obj 0.05865935503477886\n", + "obj 0.05865909561692464\n", + "obj 0.05865909552127853\n", + "obj 0.05865908163335363\n", + "model [0.2072 0.7928] sum 0.9999997236086989\n", + "my_len 4\n", + "v34 f1 t4: original ll 0.0632/0.0594, ensemble ll 0.0632/0.0594\n", + "running time 2.8280203342437744\n", + "starting fold 1 target 5\n", + "my_len 4\n", + "obj 0.07183112972231193\n", + "obj 0.07182105040716405\n", + "obj 0.07182017839075075\n", + "obj 0.07182183010763957\n", + "obj 0.07183346670238054\n", + "obj 0.07181975923420639\n", + "obj 0.07182105338358573\n", + "obj 0.07182045801712832\n", + "obj 0.07180832229135492\n", + "obj 0.07180906614397237\n", + "obj 0.07179208329104021\n", + "obj 0.07178991670375105\n", + "obj 0.07178988693665318\n", + "obj 0.07178988689714585\n", + "model [0.3481 0.6455] sum 0.9935939570813068\n", + "my_len 4\n", + "v34 f1 t5: original ll 0.0780/0.0742, ensemble ll 0.0780/0.0742\n", + "running time 2.8228495121002197\n", + "starting fold 2 target 0\n", + "my_len 4\n", + "obj 0.08937950117764316\n", + "obj 0.08937672934263124\n", + "obj 0.08937644247528813\n", + "obj 0.08937645539574389\n", + "obj 0.08937661990672387\n", + "obj 0.08937751986380715\n", + "obj 0.08938010041832908\n", + "obj 0.0894013641490466\n", + "obj 0.08953362229177689\n", + "obj 0.08950694179309915\n", + "obj 0.08939116686116341\n", + "obj 0.08937686219260021\n", + "obj 0.08937344427477412\n", + "obj 0.08937270519391056\n", + "obj 0.08937262922565642\n", + "model [0.5579 0.4421] sum 0.9999993467855719\n", + "my_len 4\n", + "v34 f2 t0: original ll 0.0905/0.0844, ensemble ll 0.0905/0.0844\n", + "running time 2.990800380706787\n", + "starting fold 2 target 1\n", + "my_len 4\n", + "obj 0.012436140247391692\n", + "obj 0.012426658871830904\n", + "obj 0.012428926899146497\n", + "obj 0.012424188907848488\n", + "obj 0.012426993325575834\n", + "obj 0.012433845116420816\n", + "obj 0.012423954674312862\n", + "obj 0.01242496008015588\n", + "obj 0.012400535807525133\n", + "obj 0.01236383429098519\n", + "obj 0.012348143529084353\n", + "obj 0.012343410505174578\n", + "obj 0.012343410238957164\n", + "obj 0.012343391580164224\n", + "model [0.1901 0.7899] sum 0.9800025514053641\n", + "my_len 4\n", + "v34 f2 t1: original ll 0.0150/0.0132, ensemble ll 0.0149/0.0131\n", + "running time 2.79952335357666\n", + "starting fold 2 target 2\n", + "my_len 4\n", + "obj 0.03864261774481127\n", + "obj 0.03864184039486668\n", + "obj 0.038641796041188246\n", + "obj 0.038642060704163234\n", + "obj 0.03864494722268341\n", + "obj 0.03864537483997842\n", + "obj 0.03864934154151825\n", + "obj 0.03866640020838346\n", + "obj 0.0386494241163526\n", + "obj 0.03865924189909652\n", + "obj 0.03862338492653919\n", + "obj 0.03861377744256826\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "obj 0.03861288644457599\n", + "obj 0.03861282478178117\n", + "obj 0.03861282377857218\n", + "obj 0.03861282377493841\n", + "model [0.3423 0.6557] sum 0.998008898781132\n", + "my_len 4\n", + "v34 f2 t2: original ll 0.0370/0.0348, ensemble ll 0.0369/0.0348\n", + "running time 3.07651686668396\n", + "starting fold 2 target 3\n", + "my_len 4\n", + "obj 0.022995224518522383\n", + "obj 0.02299340932717575\n", + "obj 0.022993385766960923\n", + "obj 0.0229934166686739\n", + "obj 0.022994249545199564\n", + "obj 0.0230039489232303\n", + "obj 0.02301358839178314\n", + "obj 0.023040209826170773\n", + "obj 0.023015709942233124\n", + "obj 0.02303114245854406\n", + "obj 0.022971532575813594\n", + "obj 0.022959230997852857\n", + "obj 0.02295682416350499\n", + "obj 0.022956168474470892\n", + "obj 0.022955983453470243\n", + "obj 0.02295594581037717\n", + "obj 0.022955942947855967\n", + "model [0.2945 0.7055] sum 0.9999997552090265\n", + "my_len 4\n", + "v34 f2 t3: original ll 0.0236/0.0230, ensemble ll 0.0235/0.0229\n", + "running time 3.2023861408233643\n", + "starting fold 2 target 4\n", + "my_len 4\n", + "obj 0.05949662701641982\n", + "obj 0.059496427471729306\n", + "obj 0.059496342460381116\n", + "obj 0.059496656778369565\n", + "obj 0.05949867889401739\n", + "obj 0.05949875155855878\n", + "obj 0.05950472150471753\n", + "obj 0.059513989228462204\n", + "obj 0.05949473181554839\n", + "obj 0.05949902808253696\n", + "obj 0.05946635705740825\n", + "obj 0.05945508305105207\n", + "obj 0.05945429089413502\n", + "obj 0.05945422305596472\n", + "obj 0.059454221242697204\n", + "obj 0.059454221233066123\n", + "model [0.3094 0.6888] sum 0.9982120655965214\n", + "my_len 4\n", + "v34 f2 t4: original ll 0.0608/0.0579, ensemble ll 0.0606/0.0578\n", + "running time 3.11377215385437\n", + "starting fold 2 target 5\n", + "my_len 4\n", + "obj 0.07494273297957547\n", + "obj 0.07494193934979902\n", + "obj 0.0749418088452629\n", + "obj 0.07494215623220447\n", + "obj 0.07494534611048678\n", + "obj 0.07494407120248021\n", + "obj 0.07494607787971268\n", + "obj 0.07495872278249605\n", + "obj 0.07493779709805286\n", + "obj 0.0749435731885866\n", + "obj 0.0749166852814284\n", + "obj 0.07490477996495228\n", + "obj 0.0749038705129651\n", + "obj 0.07490382029340723\n", + "obj 0.07490381954831983\n", + "obj 0.07490381954523084\n", + "model [0.3463 0.6515] sum 0.9977752843293807\n", + "my_len 4\n", + "v34 f2 t5: original ll 0.0719/0.0680, ensemble ll 0.0718/0.0680\n", + "running time 3.083256244659424\n", + "total running time 54.07902908325195\n" + ] + } + ], + "source": [ + "stg = time.time()\n", + "for fold in range(3):\n", + " for target in range(6):\n", + " train_ensemble(train_md, preds_all, fold=fold, target=target, weighted=True)\n", + "print('total running time', time.time() - stg)" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "starting fold 0 target 0\n", + "my_len 4\n", + "obj 0.0933852150101332\n", + "obj 0.09338046248442476\n", + "obj 0.09338029486041102\n", + "obj 0.09338035972731744\n", + "obj 0.0933811143108087\n", + "obj 0.09338210596694844\n", + "obj 0.09338474272802534\n", + "obj 0.09340376645538785\n", + "obj 0.0934854721225016\n", + "obj 0.09345651504702965\n", + "obj 0.09338703775747244\n", + "obj 0.09338029268632698\n", + "obj 0.09337958969300378\n", + "obj 0.09337955385335427\n", + "obj 0.0933795535198863\n", + "model [0.5182 0.4808] sum 0.9989492472281913\n", + "my_len 4\n", + "v33 f0 t0: original ll 0.0935/0.0887, ensemble ll 0.0935/0.0887\n", + "running time 3.2507238388061523\n", + "starting fold 0 target 1\n", + "my_len 4\n", + "obj 0.013897395265353997\n", + "obj 0.013881880847430866\n", + "obj 0.013885991780512735\n", + "obj 0.013876246790549903\n", + "obj 0.013881127990830817\n", + "obj 0.013894008184175567\n", + "obj 0.013882457611996777\n", + "obj 0.013884478813005323\n", + "obj 0.013863346223612806\n", + "obj 0.01383540008841151\n", + "obj 0.013825250237213925\n", + "obj 0.013818474145475493\n", + "obj 0.01381843625969093\n", + "obj 0.013818436182581805\n", + "obj 0.013818405670253893\n", + "model [0.2427 0.7373] sum 0.9800015590878185\n", + "my_len 4\n", + "v33 f0 t1: original ll 0.0149/0.0138, ensemble ll 0.0148/0.0137\n", + "running time 3.0066232681274414\n", + "starting fold 0 target 2\n", + "my_len 4\n", + "obj 0.03855627126313789\n", + "obj 0.03856925253658012\n", + "obj 0.03856923323281781\n", + "obj 0.03856931508023857\n", + "obj 0.038569302973706525\n", + "obj 0.03856915496260997\n", + "obj 0.03856899304326355\n", + "obj 0.03856816332340819\n", + "obj 0.0385645791222383\n", + "obj 0.03852293886610801\n", + "obj 0.03849000992229287\n", + "obj 0.038489241766752426\n", + "obj 0.038489236663254565\n", + "obj 0.038489183204291004\n", + "model [0.2783 0.7217] sum 0.9999990774048544\n", + "my_len 4\n", + "v33 f0 t2: original ll 0.0415/0.0392, ensemble ll 0.0415/0.0393\n", + "running time 2.8931853771209717\n", + "starting fold 0 target 3\n", + "my_len 4\n", + "obj 0.023471819011950737\n", + "obj 0.02346308538936012\n", + "obj 0.02346306370142104\n", + "obj 0.023463096870067094\n", + "obj 0.023463084589733965\n", + "obj 0.023463085675027997\n", + "obj 0.023463090035115736\n", + "obj 0.02346320596213014\n", + "obj 0.02346382293862838\n", + "obj 0.02348155081080937\n", + "obj 0.02343353697215318\n", + "obj 0.023433088692115203\n", + "obj 0.02343308800612711\n", + "obj 0.023433059211329016\n", + "model [0.306 0.694] sum 0.9999997220069807\n", + "my_len 4\n", + "v33 f0 t3: original ll 0.0243/0.0239, ensemble ll 0.0243/0.0239\n", + "running time 2.9580657482147217\n", + "starting fold 0 target 4\n", + "my_len 4\n", + "obj 0.06201436184726342\n", + "obj 0.061994016197883355\n", + "obj 0.061996952747678406\n", + "obj 0.061997831217601926\n", + "obj 0.06201332307115508\n", + "obj 0.06200539452619764\n", + "obj 0.061997782770088716\n", + "obj 0.061999809977407665\n", + "obj 0.061946341140497775\n", + "obj 0.06189433265221826\n", + "obj 0.06187496883012553\n", + "obj 0.06187358174569984\n", + "obj 0.061873550371914346\n", + "obj 0.06187354965251176\n", + "obj 0.06187354965195954\n", + "model [0.1759 0.8163] sum 0.9922753054062554\n", + "my_len 4\n", + "v33 f0 t4: original ll 0.0617/0.0596, ensemble ll 0.0617/0.0596\n", + "running time 3.1102256774902344\n", + "starting fold 0 target 5\n", + "my_len 4\n", + "obj 0.07485970317009938\n", + "obj 0.07484302022808972\n", + "obj 0.07484070942818977\n", + "obj 0.07484219496860454\n", + "obj 0.07485295263606241\n", + "obj 0.07484035286995884\n", + "obj 0.07484141900156345\n", + "obj 0.07484183422896018\n", + "obj 0.0748343331646704\n", + "obj 0.07483511386213709\n", + "obj 0.07482549187014455\n", + "obj 0.0748237146789029\n", + "obj 0.07482368467518487\n", + "obj 0.07482367083879939\n", + "obj 0.07482367083046154\n", + "model [0.3925 0.6007] sum 0.9931778590255735\n", + "my_len 4\n", + "v33 f0 t5: original ll 0.0789/0.0757, ensemble ll 0.0789/0.0757\n", + "running time 3.0676307678222656\n", + "starting fold 1 target 0\n", + "my_len 4\n", + "obj 0.0919894615986076\n", + "obj 0.09198934066490368\n", + "obj 0.09198934060039965\n", + "obj 0.0919893485003721\n", + "obj 0.09198977183141734\n", + "obj 0.09199123504674073\n", + "obj 0.09199391461415146\n", + "obj 0.09201565951872456\n", + "obj 0.09211729091908993\n", + "obj 0.09208098074046837\n", + "obj 0.0919837225645165\n", + "obj 0.0919736624585904\n", + "obj 0.09197157155893894\n", + "obj 0.09197109088607663\n", + "obj 0.09197098268778833\n", + "obj 0.09197095367445211\n", + "obj 0.0919709467643533\n", + "model [0.5953 0.4047] sum 0.9999621194280907\n", + "my_len 4\n", + "v33 f1 t0: original ll 0.0963/0.0902, ensemble ll 0.0963/0.0902\n", + "running time 3.3472983837127686\n", + "starting fold 1 target 1\n", + "my_len 4\n", + "obj 0.014958787142420498\n", + "obj 0.014937330106503348\n", + "obj 0.014942650987592622\n", + "obj 0.014975860772633154\n", + "obj 0.014972362994514807\n", + "obj 0.014957564541716397\n", + "obj 0.014951577023955265\n", + "obj 0.014951063187963957\n", + "obj 0.01491070342318423\n", + "obj 0.014853979550418115\n", + "obj 0.014829774294376331\n", + "obj 0.014821112462190839\n", + "obj 0.014821058186807711\n", + "obj 0.0148210268020669\n", + "obj 0.01482102580854534\n", + "model [0.1376 0.8624] sum 0.9999999409483264\n", + "my_len 4\n", + "v33 f1 t1: original ll 0.0128/0.0110, ensemble ll 0.0128/0.0110\n", + "running time 2.9967260360717773\n", + "starting fold 1 target 2\n", + "my_len 4\n", + "obj 0.039245835968578474\n", + "obj 0.03924574127471867\n", + "obj 0.039245713624497434\n", + "obj 0.03924588587989087\n", + "obj 0.03924803573797128\n", + "obj 0.03925147467544376\n", + "obj 0.0392563703952373\n", + "obj 0.03927551263462263\n", + "obj 0.03925650976537233\n", + "obj 0.03926796310975214\n", + "obj 0.0392185324397789\n", + "obj 0.039216537422768455\n", + "obj 0.039216281028530475\n", + "obj 0.039216255398415924\n", + "obj 0.03921625454996835\n", + "obj 0.039216254539564024\n", + "model [0.3469 0.6519] sum 0.9988259427442799\n", + "my_len 4\n", + "v33 f1 t2: original ll 0.0401/0.0381, ensemble ll 0.0401/0.0381\n", + "running time 3.1578216552734375\n", + "starting fold 1 target 3\n", + "my_len 4\n", + "obj 0.02395696038549021\n", + "obj 0.02395486428261125\n", + "obj 0.023954835163552384\n", + "obj 0.023954877532169596\n", + "obj 0.023955568418781947\n", + "obj 0.023963995166198675\n", + "obj 0.023978023975066425\n", + "obj 0.024002845343395824\n", + "obj 0.023983817519113094\n", + "obj 0.023997071439984398\n", + "obj 0.02394045500310195\n", + "obj 0.023937978579431436\n", + "obj 0.0239372920681272\n", + "obj 0.02393711483122209\n", + "obj 0.02393708937017656\n", + "model [0.359 0.641] sum 0.9999985792555948\n", + "my_len 4\n", + "v33 f1 t3: original ll 0.0233/0.0221, ensemble ll 0.0233/0.0220\n", + "running time 3.0442991256713867\n", + "starting fold 1 target 4\n", + "my_len 4\n", + "obj 0.061258507345704066\n", + "obj 0.061265689746832726\n", + "obj 0.06126562077837275\n", + "obj 0.061265854859751424\n", + "obj 0.0612658046238735\n", + "obj 0.061265351617187\n", + "obj 0.061264866771111565\n", + "obj 0.061262444514258725\n", + "obj 0.061251536610214256\n", + "obj 0.06115744444115026\n", + "obj 0.061149983693155184\n", + "obj 0.061149771919456586\n", + "obj 0.061149771087428396\n", + "obj 0.06114975345151202\n", + "model [0.2158 0.7842] sum 0.9999996248180504\n", + "my_len 4\n", + "v33 f1 t4: original ll 0.0632/0.0594, ensemble ll 0.0632/0.0594\n", + "running time 2.8806824684143066\n", + "starting fold 1 target 5\n", + "my_len 4\n", + "obj 0.07535926071665933\n", + "obj 0.07534861733988092\n", + "obj 0.07534762674133844\n", + "obj 0.07534904493869508\n", + "obj 0.07535936082490458\n", + "obj 0.0753471265997745\n", + "obj 0.07534426077367337\n", + "obj 0.07534711702093719\n", + "obj 0.07533211331536023\n", + "obj 0.07533317814561168\n", + "obj 0.07531220405379302\n", + "obj 0.07530996229389857\n", + "obj 0.07530993777029112\n", + "obj 0.07530993774604199\n", + "model [0.3331 0.6604] sum 0.993527447026961\n", + "my_len 4\n", + "v33 f1 t5: original ll 0.0779/0.0742, ensemble ll 0.0779/0.0742\n", + "running time 2.8882410526275635\n", + "starting fold 2 target 0\n", + "my_len 4\n", + "obj 0.09489490438158145\n", + "obj 0.09489430912501066\n", + "obj 0.09489431102390815\n", + "obj 0.09489431535393611\n", + "obj 0.0948945806962745\n", + "obj 0.09489608391205885\n", + "obj 0.09489866734487919\n", + "obj 0.0949200247646217\n", + "obj 0.09503918400778456\n", + "obj 0.09501153296540055\n", + "obj 0.09490249627913898\n", + "obj 0.09488951860739707\n", + "obj 0.09488647087827386\n", + "obj 0.09488564556714987\n", + "obj 0.0948854679188669\n", + "obj 0.09488545200417911\n", + "model [0.5661 0.4339] sum 0.9999997699565845\n", + "my_len 4\n", + "v33 f2 t0: original ll 0.0905/0.0845, ensemble ll 0.0905/0.0845\n", + "running time 3.214533567428589\n", + "starting fold 2 target 1\n", + "my_len 4\n", + "obj 0.013868197433815987\n", + "obj 0.01386027871457582\n", + "obj 0.013862065714890364\n", + "obj 0.013858828553407412\n", + "obj 0.013860879366817503\n", + "obj 0.013866290527273424\n", + "obj 0.013857530201794333\n", + "obj 0.013858298202236378\n", + "obj 0.013836364815367146\n", + "obj 0.013804921280345871\n", + "obj 0.01379261828630837\n", + "obj 0.013789536265747205\n", + "obj 0.013789525064620644\n", + "model [0.2207 0.7593] sum 0.980004158654775\n", + "my_len 4\n", + "v33 f2 t1: original ll 0.0150/0.0133, ensemble ll 0.0149/0.0131\n", + "running time 2.7753772735595703\n", + "starting fold 2 target 2\n", + "my_len 4\n", + "obj 0.04081306058254699\n", + "obj 0.040812031203401905\n", + "obj 0.040811937510774186\n", + "obj 0.04081223601044173\n", + "obj 0.04081528137789779\n", + "obj 0.04081538347060062\n", + "obj 0.04081682793135578\n", + "obj 0.04083251985984981\n", + "obj 0.040810479353506623\n", + "obj 0.04081936079563107\n", + "obj 0.04077962409069144\n", + "obj 0.04077101062103325\n", + "obj 0.0407701494171347\n", + "obj 0.04077012004624905\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "obj 0.040770119816992766\n", + "model [0.3174 0.68 ] sum 0.9973906231915857\n", + "my_len 4\n", + "v33 f2 t2: original ll 0.0370/0.0348, ensemble ll 0.0370/0.0348\n", + "running time 3.0440049171447754\n", + "starting fold 2 target 3\n", + "my_len 4\n", + "obj 0.023823516135291243\n", + "obj 0.02382017911708748\n", + "obj 0.023820106378154727\n", + "obj 0.023820136798804403\n", + "obj 0.023820572725337157\n", + "obj 0.02383469183098074\n", + "obj 0.02384809531847105\n", + "obj 0.023873357339416913\n", + "obj 0.02385181419582523\n", + "obj 0.02386641578011786\n", + "obj 0.023805227006125536\n", + "obj 0.023802547496832128\n", + "obj 0.023801797197722675\n", + "obj 0.02380161177878747\n", + "obj 0.02380158861610797\n", + "model [0.3532 0.6468] sum 0.9999989006282439\n", + "my_len 4\n", + "v33 f2 t3: original ll 0.0236/0.0230, ensemble ll 0.0236/0.0229\n", + "running time 3.017551898956299\n", + "starting fold 2 target 4\n", + "my_len 4\n", + "obj 0.06243179531025402\n", + "obj 0.062427099035585125\n", + "obj 0.06242713613481103\n", + "obj 0.062430316328200154\n", + "obj 0.06243658002881348\n", + "obj 0.062430816202982437\n", + "obj 0.06243507738993893\n", + "obj 0.06244554339226623\n", + "obj 0.062427434946619766\n", + "obj 0.06243147007524259\n", + "obj 0.06240271238770716\n", + "obj 0.06239411214025914\n", + "obj 0.062393648133430374\n", + "obj 0.06239362889706076\n", + "obj 0.06239362873376792\n", + "model [0.3265 0.6706] sum 0.9971639400865144\n", + "my_len 4\n", + "v33 f2 t4: original ll 0.0608/0.0580, ensemble ll 0.0607/0.0578\n", + "running time 3.0167412757873535\n", + "starting fold 2 target 5\n", + "my_len 4\n", + "obj 0.07838134560788608\n", + "obj 0.07838076163206673\n", + "obj 0.07838071177563007\n", + "obj 0.07838080623175392\n", + "obj 0.07838065017243255\n", + "obj 0.07838512557832436\n", + "obj 0.07839379106272942\n", + "obj 0.07841541302344214\n", + "obj 0.07839227446721775\n", + "obj 0.0784030307958988\n", + "obj 0.07835324790612748\n", + "obj 0.078350745139307\n", + "obj 0.07835024106315232\n", + "obj 0.07835010723361426\n", + "obj 0.07835007445229823\n", + "obj 0.07835006754602017\n", + "obj 0.0783500665027853\n", + "obj 0.07835006642985422\n", + "model [0.366 0.6339] sum 0.999906731906863\n", + "my_len 4\n", + "v33 f2 t5: original ll 0.0718/0.0680, ensemble ll 0.0718/0.0680\n", + "running time 3.3957345485687256\n", + "total running time 55.21563124656677\n" + ] + } + ], + "source": [ + "stg = time.time()\n", + "for fold in range(3):\n", + " for target in range(6):\n", + " train_ensemble(train_md, preds_all, fold=fold, target=target, weighted=False)\n", + "print('total running time', time.time() - stg)" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "data": { + "text/html": [ + "<div>\n", + "<style scoped>\n", + " .dataframe tbody tr th:only-of-type {\n", + " vertical-align: middle;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th></th>\n", + " <th></th>\n", + " <th>valid_loss</th>\n", + " <th>valid_loss_ens</th>\n", + " <th>valid_w_loss</th>\n", + " <th>valid_w_loss_ens</th>\n", + " </tr>\n", + " <tr>\n", + " <th>weighted</th>\n", + " <th>target</th>\n", + " <th></th>\n", + " <th></th>\n", + " <th></th>\n", + " <th></th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <td rowspan=\"6\" valign=\"top\">False</td>\n", + " <td>0</td>\n", + " <td>0.093420</td>\n", + " <td>0.093428</td>\n", + " <td>0.087781</td>\n", + " <td>0.087797</td>\n", + " </tr>\n", + " <tr>\n", + " <td>1</td>\n", + " <td>0.014243</td>\n", + " <td>0.014183</td>\n", + " <td>0.012694</td>\n", + " <td>0.012633</td>\n", + " </tr>\n", + " <tr>\n", + " <td>2</td>\n", + " <td>0.039539</td>\n", + " <td>0.039512</td>\n", + " <td>0.037398</td>\n", + " <td>0.037367</td>\n", + " </tr>\n", + " <tr>\n", + " <td>3</td>\n", + " <td>0.023751</td>\n", + " <td>0.023728</td>\n", + " <td>0.022988</td>\n", + " <td>0.022953</td>\n", + " </tr>\n", + " <tr>\n", + " <td>4</td>\n", + " <td>0.061900</td>\n", + " <td>0.061866</td>\n", + " <td>0.058991</td>\n", + " <td>0.058947</td>\n", + " </tr>\n", + " <tr>\n", + " <td>5</td>\n", + " <td>0.076200</td>\n", + " <td>0.076194</td>\n", + " <td>0.072653</td>\n", + " <td>0.072625</td>\n", + " </tr>\n", + " </tbody>\n", + "</table>\n", + "</div>" + ], + "text/plain": [ + " valid_loss valid_loss_ens valid_w_loss valid_w_loss_ens\n", + "weighted target \n", + "False 0 0.093420 0.093428 0.087781 0.087797\n", + " 1 0.014243 0.014183 0.012694 0.012633\n", + " 2 0.039539 0.039512 0.037398 0.037367\n", + " 3 0.023751 0.023728 0.022988 0.022953\n", + " 4 0.061900 0.061866 0.058991 0.058947\n", + " 5 0.076200 0.076194 0.072653 0.072625" + ] + }, + "execution_count": 41, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "stats = pd.read_csv(PATH_DISK/'ensemble'/'stats.v{}'.format(VERSION))\n", + "stats.groupby(['weighted','target'])[['valid_loss','valid_loss_ens','valid_w_loss','valid_w_loss_ens']].mean()" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "<div>\n", + "<style scoped>\n", + " .dataframe tbody tr th:only-of-type {\n", + " vertical-align: middle;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th></th>\n", + " <th>not weighted</th>\n", + " <th>weighted</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <td>valid_loss</td>\n", + " <td>0.057518</td>\n", + " <td>0.057518</td>\n", + " </tr>\n", + " <tr>\n", + " <td>valid_w_loss</td>\n", + " <td>0.054293</td>\n", + " <td>0.054293</td>\n", + " </tr>\n", + " <tr>\n", + " <td>valid_loss_ens</td>\n", + " <td>0.057500</td>\n", + " <td>0.057498</td>\n", + " </tr>\n", + " <tr>\n", + " <td>valid_w_loss_ens</td>\n", + " <td>0.054274</td>\n", + " <td>0.054269</td>\n", + " </tr>\n", + " </tbody>\n", + "</table>\n", + "</div>" + ], + "text/plain": [ + " not weighted weighted\n", + "valid_loss 0.057518 0.057518\n", + "valid_w_loss 0.054293 0.054293\n", + "valid_loss_ens 0.057500 0.057498\n", + "valid_w_loss_ens 0.054274 0.054269" + ] + }, + "execution_count": 46, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# STAGE2 weighted models\n", + "tt = pd.concat([\n", + "stats.loc[stats.weighted == False].groupby('target')[['valid_loss','valid_w_loss',\n", + " 'valid_loss_ens','valid_w_loss_ens']].mean()\\\n", + " .apply(lambda x: x*class_weights).mean(),\n", + "stats.loc[stats.weighted == True].groupby('target')[['valid_loss','valid_w_loss',\n", + " 'valid_loss_ens','valid_w_loss_ens']].mean()\\\n", + " .apply(lambda x: x*class_weights).mean()\n", + "],axis=1)\n", + "tt.columns = ['not weighted','weighted']\n", + "tt" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "<div>\n", + "<style scoped>\n", + " .dataframe tbody tr th:only-of-type {\n", + " vertical-align: middle;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th></th>\n", + " <th>not weighted</th>\n", + " <th>weighted</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <td>valid_loss</td>\n", + " <td>0.057496</td>\n", + " <td>0.057496</td>\n", + " </tr>\n", + " <tr>\n", + " <td>valid_w_loss</td>\n", + " <td>0.054326</td>\n", + " <td>0.054326</td>\n", + " </tr>\n", + " <tr>\n", + " <td>valid_loss_ens</td>\n", + " <td>0.057477</td>\n", + " <td>0.057475</td>\n", + " </tr>\n", + " <tr>\n", + " <td>valid_w_loss_ens</td>\n", + " <td>0.054303</td>\n", + " <td>0.054299</td>\n", + " </tr>\n", + " </tbody>\n", + "</table>\n", + "</div>" + ], + "text/plain": [ + " not weighted weighted\n", + "valid_loss 0.057496 0.057496\n", + "valid_w_loss 0.054326 0.054326\n", + "valid_loss_ens 0.057477 0.057475\n", + "valid_w_loss_ens 0.054303 0.054299" + ] + }, + "execution_count": 52, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# STAGE2 non-wegihted models\n", + "tt = pd.concat([\n", + "stats.loc[stats.weighted == False].groupby('target')[['valid_loss','valid_w_loss',\n", + " 'valid_loss_ens','valid_w_loss_ens']].mean()\\\n", + " .apply(lambda x: x*class_weights).mean(),\n", + "stats.loc[stats.weighted == True].groupby('target')[['valid_loss','valid_w_loss',\n", + " 'valid_loss_ens','valid_w_loss_ens']].mean()\\\n", + " .apply(lambda x: x*class_weights).mean()\n", + "],axis=1)\n", + "tt.columns = ['not weighted','weighted']\n", + "tt" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "<div>\n", + "<style scoped>\n", + " .dataframe tbody tr th:only-of-type {\n", + " vertical-align: middle;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th></th>\n", + " <th>not weighted</th>\n", + " <th>weighted</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <td>valid_loss</td>\n", + " <td>0.057750</td>\n", + " <td>0.057750</td>\n", + " </tr>\n", + " <tr>\n", + " <td>valid_w_loss</td>\n", + " <td>0.061831</td>\n", + " <td>0.061831</td>\n", + " </tr>\n", + " <tr>\n", + " <td>valid_loss_ens</td>\n", + " <td>0.057658</td>\n", + " <td>0.058210</td>\n", + " </tr>\n", + " <tr>\n", + " <td>valid_w_loss_ens</td>\n", + " <td>0.062176</td>\n", + " <td>0.061514</td>\n", + " </tr>\n", + " </tbody>\n", + "</table>\n", + "</div>" + ], + "text/plain": [ + " not weighted weighted\n", + "valid_loss 0.057750 0.057750\n", + "valid_w_loss 0.061831 0.061831\n", + "valid_loss_ens 0.057658 0.058210\n", + "valid_w_loss_ens 0.062176 0.061514" + ] + }, + "execution_count": 41, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# wegihted models\n", + "tt = pd.concat([\n", + "stats.loc[stats.weighted == False].groupby('target')[['valid_loss','valid_w_loss',\n", + " 'valid_loss_ens','valid_w_loss_ens']].mean()\\\n", + " .apply(lambda x: x*class_weights).mean(),\n", + "stats.loc[stats.weighted == True].groupby('target')[['valid_loss','valid_w_loss',\n", + " 'valid_loss_ens','valid_w_loss_ens']].mean()\\\n", + " .apply(lambda x: x*class_weights).mean()\n", + "],axis=1)\n", + "tt.columns = ['not weighted','weighted']\n", + "tt" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "<div>\n", + "<style scoped>\n", + " .dataframe tbody tr th:only-of-type {\n", + " vertical-align: middle;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th></th>\n", + " <th>not weighted</th>\n", + " <th>weighted</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <td>valid_loss</td>\n", + " <td>0.057661</td>\n", + " <td>0.057661</td>\n", + " </tr>\n", + " <tr>\n", + " <td>valid_w_loss</td>\n", + " <td>0.062715</td>\n", + " <td>0.062715</td>\n", + " </tr>\n", + " <tr>\n", + " <td>valid_loss_ens</td>\n", + " <td>0.057638</td>\n", + " <td>0.057799</td>\n", + " </tr>\n", + " <tr>\n", + " <td>valid_w_loss_ens</td>\n", + " <td>0.062705</td>\n", + " <td>0.062648</td>\n", + " </tr>\n", + " </tbody>\n", + "</table>\n", + "</div>" + ], + "text/plain": [ + " not weighted weighted\n", + "valid_loss 0.057661 0.057661\n", + "valid_w_loss 0.062715 0.062715\n", + "valid_loss_ens 0.057638 0.057799\n", + "valid_w_loss_ens 0.062705 0.062648" + ] + }, + "execution_count": 51, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# non-weighted models\n", + "tt = pd.concat([\n", + "stats.loc[stats.weighted == False].groupby('target')[['valid_loss','valid_w_loss',\n", + " 'valid_loss_ens','valid_w_loss_ens']].mean()\\\n", + " .apply(lambda x: x*class_weights).mean(),\n", + "stats.loc[stats.weighted == True].groupby('target')[['valid_loss','valid_w_loss',\n", + " 'valid_loss_ens','valid_w_loss_ens']].mean()\\\n", + " .apply(lambda x: x*class_weights).mean()\n", + "],axis=1)\n", + "tt.columns = ['not weighted','weighted']\n", + "tt" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0 [0.5599 0.4398] 0.9996370455376221\n", + "1 [0.2003 0.7864] 0.9866685528969734\n", + "2 [0.3142 0.6845] 0.99873854778024\n", + "3 [0.3394 0.6606] 0.9999990672969397\n", + "4 [0.2394 0.7571] 0.9964796234369401\n", + "5 [0.3639 0.6317] 0.9955373459864658\n", + "total [0.3362 0.66 ] 0.9961766971558637\n" + ] + } + ], + "source": [ + "np.set_printoptions(precision=4)\n", + "res2_all = []\n", + "for target in range(6):\n", + " res2 = np.zeros((3, 2))\n", + " for fold in range(3):\n", + " model = pickle.load(open(PATH_DISK/'ensemble'/'model.f{}.t{}.v{}'\n", + " .format(fold,target,VERSION),'rb'))\n", + " res2[fold] = model.x\n", + " #print(fold,target,model.x)\n", + " print(target, res2.mean(0), res2.mean(0).sum())\n", + " res2_all.append(res2)\n", + "print('total', np.stack(res2_all).mean((0,1)), np.stack(res2_all).mean((0,1)).sum())" + ] + }, + { + "cell_type": "raw", + "metadata": {}, + "source": [ + "# STAGE2 weighted\n", + "0 [0.5514 0.4486] 0.999988938547882\n", + "1 [0.1934 0.7932] 0.9866673384339762\n", + "2 [0.3245 0.6748] 0.99933085408868\n", + "3 [0.2924 0.7076] 0.999999807185227\n", + "4 [0.2338 0.7643] 0.9981083416558326\n", + "5 [0.347 0.6474] 0.9944152840034981\n", + "total [0.3237 0.6727] 0.9964184273191827\n", + "\n", + "\n", + "# STAGE2 non-weighted\n", + "0 [0.5599 0.4398] 0.9996370455376221\n", + "1 [0.2003 0.7864] 0.9866685528969734\n", + "2 [0.3142 0.6845] 0.99873854778024\n", + "3 [0.3394 0.6606] 0.9999990672969397\n", + "4 [0.2394 0.7571] 0.9964796234369401\n", + "5 [0.3639 0.6317] 0.9955373459864658\n", + "total [0.3362 0.66 ] 0.9961766971558637\n", + "\n", + "# weighted + focal both\n", + "0 [9.8936e-01 4.6289e-06] 0.9893636389192056\n", + "1 [0.1052 0.8948] 0.9999984169006635\n", + "2 [0.4988 0.49 ] 0.9887665083664696\n", + "3 [0.3443 0.6427] 0.9869733391806492\n", + "4 [0.4923 0.4959] 0.9882284866416893\n", + "5 [0.7736 0.217 ] 0.9906108307629572\n", + "total [0.5339 0.4567] 0.9906568701286057\n", + "\n", + "# weighted + focal\n", + "0 [0.9758 0.0133] 0.9890208236733224\n", + "1 [0.0755 0.9245] 0.99999750757956\n", + "2 [0.5121 0.4765] 0.9885906315242545\n", + "3 [0.3465 0.6394] 0.9858337972624043\n", + "4 [0.4733 0.5144] 0.987734118671811\n", + "5 [0.6697 0.3208] 0.9904312808036815\n", + "total [0.5088 0.4815] 0.990268026585839\n", + "\n", + "# weighted\n", + "0 [0.9856 0.0034] 0.9890322827488863\n", + "1 [0.1394 0.8606] 0.9999977090921796\n", + "2 [0.5308 0.4582] 0.9890278807370222\n", + "3 [0.3542 0.6317] 0.9858961392052805\n", + "4 [0.4851 0.5028] 0.9879196279125524\n", + "5 [0.7677 0.2223] 0.9900299923215763\n", + "total [0.5438 0.4465] 0.9903172720029163\n", + "\n", + "# non-weighted\n", + "0 [0.3504 0.6483] 0.9987279422120475\n", + "1 [0.16 0.8267] 0.9866673030259768\n", + "2 [0.2285 0.7706] 0.9990219638127198\n", + "3 [0.2355 0.7636] 0.9991180197159109\n", + "4 [0.1587 0.8378] 0.9965445852859403\n", + "5 [0.2654 0.7281] 0.9934664823990461\n", + "total [0.2331 0.7625] 0.995591049408607" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": {}, + "outputs": [], + "source": [ + "preds3 = np.stack([pickle.load(open(PATH_DISK/'preds_d{}_v{}'.format(ds, VERSION),'rb')) for ds in my_datasets3])\n", + "preds5 = np.stack([pickle.load(open(PATH_DISK/'preds_d{}_v{}'.format(ds, VERSION),'rb')) for ds in my_datasets5])" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": {}, + "outputs": [], + "source": [ + "preds = np.concatenate([preds3.mean((1,2)), preds5.mean((1,2))],axis=0)" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": {}, + "outputs": [], + "source": [ + "#del test_md['yuval_idx']" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": {}, + "outputs": [], + "source": [ + "yuval_test = pickle.load(open(PATH_DISK/'yuval/ensemble_test_image_ids_stage2.pkl','rb'))\n", + "assert len(yuval_test) == len(test_md)\n", + "\n", + "df = pd.DataFrame(np.arange(len(yuval_test)), columns=['yuval_idx'])\n", + "df.index = yuval_test\n", + "test_md = test_md.join(df, on = 'img_id')" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": {}, + "outputs": [], + "source": [ + "names_y3 = [\n", + " #'model_Densenet201_3_version_classifier_splits_fullhead_resmodel_pool2_3_type_OOF_pred_split_{}.pkl',\n", + " #'model_Densenet161_3_version_classifier_splits_fullhead_resmodel_pool2_3_type_OOF_pred_split_{}.pkl',\n", + "'model_Densenet169_3_version_classifier_splits_fullhead_resmodel_pool2_stage2_3_type_test_pred_ensemble_split_{}.pkl',\n", + "'model_se_resnext101_32x4d_version_classifier_splits_fullhead_resmodel_pool2_stage2_3_type_test_pred_ensemble_split_{}.pkl',\n", + "'model_se_resnet101_version_classifier_splits_fullhead_resmodel_pool2_stage2_3_type_test_pred_ensemble_split_{}.pkl'\n", + "]" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": {}, + "outputs": [], + "source": [ + "names_y5 = [\n", + "'model_se_resnext101_32x4d_version_new_splits_fullhead_resmodel_pool2_stage2_3_type_test_pred_ensemble_split_{}.pkl',\n", + "'model_se_resnet101_version_new_splits_fullhead_resmodel_pool2_stage2_3_type_test_pred_ensemble_split_{}.pkl',\n", + "'model_se_resnet101_version_new_splits_focal_fullhead_resmodel_pool2_stage2_3_type_test_pred_ensemble_split_{}.pkl',\n", + "]" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": {}, + "outputs": [], + "source": [ + "preds_y3 = np.stack([torch.sigmoid(torch.stack([torch.stack(pickle.load(\n", + " open(PATH_DISK/'yuval/OOF_stage2'/name.format(fold),'rb'))) for fold in range(3)])).numpy() for name in names_y3])" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": {}, + "outputs": [], + "source": [ + "preds_y5 = np.stack([torch.sigmoid(torch.stack([torch.stack(pickle.load(\n", + " open(PATH_DISK/'yuval/OOF_stage2'/name.format(fold),'rb'))) for fold in range(5)])).numpy() for name in names_y5])" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "metadata": {}, + "outputs": [], + "source": [ + "preds_y = np.concatenate([preds_y3.mean((1,2)), preds_y5.mean((1,2))],axis=0)" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": {}, + "outputs": [], + "source": [ + "preds_y = preds_y[:,test_md.yuval_idx]\n", + "preds_y = preds_y[:,:,np.array([5,0,1,2,3,4])]" + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "metadata": {}, + "outputs": [], + "source": [ + "preds = np.concatenate([preds, preds_y], axis=0)" + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "metadata": {}, + "outputs": [], + "source": [ + "preds = preds[ds_mask]" + ] + }, + { + "cell_type": "code", + "execution_count": 55, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "(10, 121232, 6)" + ] + }, + "execution_count": 55, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "preds.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 56, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "any too low inconsistencies\n", + "1 class: 0.000837237693018345\n", + "2 class: 0.016652369011482118\n", + "3 class: 0.008991850336544807\n", + "4 class: 0.016291903127887027\n", + "5 class: 0.05360135937706216\n", + "total 0.08837930579384981\n", + "any too high inconsistencies\n", + "total 0.21430810347103074\n" + ] + } + ], + "source": [ + "preds = predBounding(preds)" + ] + }, + { + "cell_type": "code", + "execution_count": 70, + "metadata": {}, + "outputs": [], + "source": [ + "#predictions = preds.mean((0,1))" + ] + }, + { + "cell_type": "code", + "execution_count": 57, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "version 33 my_len 4\n", + "total running time 0.07065796852111816\n" + ] + } + ], + "source": [ + "stg = time.time()\n", + "\n", + "test_preds_trgt = []\n", + "print('version', VERSION, 'my_len', my_len)\n", + "for target in range(6):\n", + " \n", + " test_preds_fold = []\n", + " for fold in range(3):\n", + " X = np.stack([preds[:my_len,:,target].mean(0), \n", + " preds[my_len:,:,target].mean(0)], axis=0)\n", + " \n", + " model = pickle.load(open(PATH_DISK/'ensemble'/'model.f{}.t{}.v{}'.format(fold,target,VERSION),'rb'))\n", + " test_preds_fold.append((X*np.expand_dims(model.x, axis=1)).sum(0))\n", + " \n", + " test_preds_trgt.append(np.stack(test_preds_fold).mean(0))\n", + "\n", + "predictions = np.stack(test_preds_trgt,axis=1)\n", + "\n", + "print('total running time', time.time() - stg)" + ] + }, + { + "cell_type": "code", + "execution_count": 58, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[1. , 0.9956, 0.9954, 0.9953, 0.9958, 0.9937, 0.9942, 0.9947,\n", + " 0.9946, 0.9943],\n", + " [0.9956, 1. , 0.9978, 0.9977, 0.9951, 0.997 , 0.9964, 0.9986,\n", + " 0.997 , 0.9967],\n", + " [0.9954, 0.9978, 1. , 0.9992, 0.9951, 0.9956, 0.9972, 0.9966,\n", + " 0.9984, 0.9978],\n", + " [0.9953, 0.9977, 0.9992, 1. , 0.995 , 0.9957, 0.9973, 0.9967,\n", + " 0.9982, 0.9985],\n", + " [0.9958, 0.9951, 0.9951, 0.995 , 1. , 0.9944, 0.9949, 0.9954,\n", + " 0.9955, 0.9951],\n", + " [0.9937, 0.997 , 0.9956, 0.9957, 0.9944, 1. , 0.9965, 0.998 ,\n", + " 0.9968, 0.9967],\n", + " [0.9942, 0.9964, 0.9972, 0.9973, 0.9949, 0.9965, 1. , 0.9971,\n", + " 0.9983, 0.9982],\n", + " [0.9947, 0.9986, 0.9966, 0.9967, 0.9954, 0.998 , 0.9971, 1. ,\n", + " 0.9979, 0.9977],\n", + " [0.9946, 0.997 , 0.9984, 0.9982, 0.9955, 0.9968, 0.9983, 0.9979,\n", + " 1. , 0.9993],\n", + " [0.9943, 0.9967, 0.9978, 0.9985, 0.9951, 0.9967, 0.9982, 0.9977,\n", + " 0.9993, 1. ]])" + ] + }, + "execution_count": 58, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.corrcoef(preds[:,:,0])" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "(121232, 6)" + ] + }, + "execution_count": 59, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "predictions.shape" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Submitting" + ] + }, + { + "cell_type": "code", + "execution_count": 60, + "metadata": {}, + "outputs": [], + "source": [ + "id_column = np.array([a + '_' + b for a in test_md.SOPInstanceUID for b in all_ich])\n", + "sub = pd.DataFrame({'ID': id_column, 'Label': predictions.reshape(-1)})\n", + "sub.to_csv(PATH/'sub.csv', index=False)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Sanity checks" + ] + }, + { + "cell_type": "code", + "execution_count": 61, + "metadata": {}, + "outputs": [], + "source": [ + "test_md['pred_any'] = predictions[:,0]" + ] + }, + { + "cell_type": "code", + "execution_count": 62, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "<div>\n", + "<style scoped>\n", + " .dataframe tbody tr th:only-of-type {\n", + " vertical-align: middle;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th></th>\n", + " <th>img_id</th>\n", + " <th>SOPInstanceUID</th>\n", + " <th>Modality</th>\n", + " <th>PatientID</th>\n", + " <th>StudyInstanceUID</th>\n", + " <th>SeriesInstanceUID</th>\n", + " <th>StudyID</th>\n", + " <th>ImagePositionPatient</th>\n", + " <th>ImageOrientationPatient</th>\n", + " <th>SamplesPerPixel</th>\n", + " <th>PhotometricInterpretation</th>\n", + " <th>Rows</th>\n", + " <th>Columns</th>\n", + " <th>PixelSpacing</th>\n", + " <th>BitsAllocated</th>\n", + " <th>BitsStored</th>\n", + " <th>HighBit</th>\n", + " <th>PixelRepresentation</th>\n", + " <th>WindowCenter</th>\n", + " <th>WindowWidth</th>\n", + " <th>RescaleIntercept</th>\n", + " <th>RescaleSlope</th>\n", + " <th>PxlMin</th>\n", + " <th>PxlMax</th>\n", + " <th>PxlStd</th>\n", + " <th>PxlMean</th>\n", + " <th>test</th>\n", + " <th>test2</th>\n", + " <th>ImageOrientationPatient_0</th>\n", + " <th>ImageOrientationPatient_1</th>\n", + " <th>ImageOrientationPatient_2</th>\n", + " <th>ImageOrientationPatient_3</th>\n", + " <th>ImageOrientationPatient_4</th>\n", + " <th>ImageOrientationPatient_5</th>\n", + " <th>ImagePositionPatient_0</th>\n", + " <th>ImagePositionPatient_1</th>\n", + " <th>ImagePositionPatient_2</th>\n", + " <th>PixelSpacing_0</th>\n", + " <th>PixelSpacing_1</th>\n", + " <th>WindowCenter_0</th>\n", + " <th>WindowCenter_1</th>\n", + " <th>WindowCenter_1_NAN</th>\n", + " <th>WindowWidth_0</th>\n", + " <th>WindowWidth_1</th>\n", + " <th>WindowWidth_0_le</th>\n", + " <th>WindowWidth_1_le</th>\n", + " <th>WindowCenter_1_le</th>\n", + " <th>BitType_le</th>\n", + " <th>ImageOrientationPatient_4_f</th>\n", + " <th>ImageOrientationPatient_4_enc_0</th>\n", + " <th>...</th>\n", + " <th>ImageOrientationPatient_5_f</th>\n", + " <th>ImageOrientationPatient_5_enc_0</th>\n", + " <th>ImageOrientationPatient_5_enc_1</th>\n", + " <th>ImagePositionPatient_0_f</th>\n", + " <th>ImagePositionPatient_0_enc_0</th>\n", + " <th>ImagePositionPatient_0_enc_1</th>\n", + " <th>ImagePositionPatient_0_f_r1</th>\n", + " <th>ImagePositionPatient_0_f_r05</th>\n", + " <th>ImagePositionPatient_1_f</th>\n", + " <th>ImagePositionPatient_1_enc_0</th>\n", + " <th>ImagePositionPatient_2_f</th>\n", + " <th>ImagePositionPatient_2_f_r05</th>\n", + " <th>PixelSpacing_1_f</th>\n", + " <th>PixelSpacing_1_enc_0</th>\n", + " <th>PixelSpacing_1_enc_1</th>\n", + " <th>WindowCenter_0_le</th>\n", + " <th>pos_max</th>\n", + " <th>pos_min</th>\n", + " <th>pos_size</th>\n", + " <th>pos_idx1</th>\n", + " <th>pos_idx</th>\n", + " <th>pos_idx2</th>\n", + " <th>pos_inc1</th>\n", + " <th>pos_inc2</th>\n", + " <th>pos_inc1_grp_le</th>\n", + " <th>pos_inc2_grp_le</th>\n", + " <th>pos_inc1_r1</th>\n", + " <th>pos_inc1_r0001</th>\n", + " <th>pos_inc1_enc_0</th>\n", + " <th>pos_inc2_enc_0</th>\n", + " <th>pos_inc1_enc_1</th>\n", + " <th>pos_inc2_enc_1</th>\n", + " <th>pos_size_le</th>\n", + " <th>pos_range</th>\n", + " <th>pos_rel</th>\n", + " <th>pos_zeros</th>\n", + " <th>pos_inc_rng</th>\n", + " <th>pos_zeros_le</th>\n", + " <th>PxlMin_grp_le</th>\n", + " <th>PxlMin_zero</th>\n", + " <th>any</th>\n", + " <th>epidural</th>\n", + " <th>intraparenchymal</th>\n", + " <th>intraventricular</th>\n", + " <th>subarachnoid</th>\n", + " <th>subdural</th>\n", + " <th>any_series</th>\n", + " <th>SeriesPP</th>\n", + " <th>yuval_idx</th>\n", + " <th>pred_any</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <td>12436</td>\n", + " <td>68c2b8b03</td>\n", + " <td>ID_68c2b8b03</td>\n", + " <td>CT</td>\n", + " <td>ID_db5b61c1</td>\n", + " <td>ID_451abcb4a1</td>\n", + " <td>ID_36778f2a4a</td>\n", + " <td>NaN</td>\n", + " <td>['-125.000', '-148.300', '135.250']</td>\n", + " <td>['1.000000', '0.000000', '0.000000', '0.000000...</td>\n", + " <td>1</td>\n", + " <td>MONOCHROME2</td>\n", + " <td>512</td>\n", + " <td>512</td>\n", + " <td>['0.488281', '0.488281']</td>\n", + " <td>16</td>\n", + " <td>16</td>\n", + " <td>15</td>\n", + " <td>1</td>\n", + " <td>40</td>\n", + " <td>150</td>\n", + " <td>-1024.0</td>\n", + " <td>1.0</td>\n", + " <td>-0.064000</td>\n", + " <td>-1.548000</td>\n", + " <td>-1.402099</td>\n", + " <td>-1.620352</td>\n", + " <td>False</td>\n", + " <td>True</td>\n", + " <td>1.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>1.0</td>\n", + " <td>0.0</td>\n", + " <td>-125.0</td>\n", + " <td>-148.3</td>\n", + " <td>135.250000</td>\n", + " <td>0.488281</td>\n", + " <td>0.488281</td>\n", + " <td>40.0</td>\n", + " <td>NaN</td>\n", + " <td>True</td>\n", + " <td>150.0</td>\n", + " <td>NaN</td>\n", + " <td>1</td>\n", + " <td>1</td>\n", + " <td>3</td>\n", + " <td>0</td>\n", + " <td>-1.333333</td>\n", + " <td>1.0</td>\n", + " <td>...</td>\n", + " <td>-0.666667</td>\n", + " <td>1.0</td>\n", + " <td>False</td>\n", + " <td>-0.720000</td>\n", + " <td>1.0</td>\n", + " <td>0.0</td>\n", + " <td>1.0</td>\n", + " <td>1.0</td>\n", + " <td>-1.110667</td>\n", + " <td>0.0</td>\n", + " <td>-0.045487</td>\n", + " <td>0.0</td>\n", + " <td>-0.480</td>\n", + " <td>1.0</td>\n", + " <td>False</td>\n", + " <td>2</td>\n", + " <td>0.5810</td>\n", + " <td>-0.1190</td>\n", + " <td>0.5</td>\n", + " <td>1.355932</td>\n", + " <td>37</td>\n", + " <td>-1.016949</td>\n", + " <td>-1.5</td>\n", + " <td>-1.5</td>\n", + " <td>3</td>\n", + " <td>3</td>\n", + " <td>1.0</td>\n", + " <td>1.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>1.0</td>\n", + " <td>1.0</td>\n", + " <td>1</td>\n", + " <td>0.266667</td>\n", + " <td>1.771429</td>\n", + " <td>1.6</td>\n", + " <td>-0.600000</td>\n", + " <td>1</td>\n", + " <td>1</td>\n", + " <td>False</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>False</td>\n", + " <td>-0.5</td>\n", + " <td>80726</td>\n", + " <td>0.000082</td>\n", + " </tr>\n", + " <tr>\n", + " <td>82308</td>\n", + " <td>7f95e978e</td>\n", + " <td>ID_7f95e978e</td>\n", + " <td>CT</td>\n", + " <td>ID_ae6fa62a</td>\n", + " <td>ID_3a1815c27a</td>\n", + " <td>ID_64db061397</td>\n", + " <td>NaN</td>\n", + " <td>['-108.000', '-116.300', '114.000']</td>\n", + " <td>['1.000000', '0.000000', '0.000000', '0.000000...</td>\n", + " <td>1</td>\n", + " <td>MONOCHROME2</td>\n", + " <td>512</td>\n", + " <td>512</td>\n", + " <td>['0.421875', '0.421875']</td>\n", + " <td>16</td>\n", + " <td>16</td>\n", + " <td>15</td>\n", + " <td>1</td>\n", + " <td>40</td>\n", + " <td>100</td>\n", + " <td>-1024.0</td>\n", + " <td>1.0</td>\n", + " <td>-0.064000</td>\n", + " <td>-1.572000</td>\n", + " <td>-1.392679</td>\n", + " <td>-1.599246</td>\n", + " <td>False</td>\n", + " <td>True</td>\n", + " <td>1.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>1.0</td>\n", + " <td>0.0</td>\n", + " <td>-108.0</td>\n", + " <td>-116.3</td>\n", + " <td>114.000000</td>\n", + " <td>0.421875</td>\n", + " <td>0.421875</td>\n", + " <td>40.0</td>\n", + " <td>NaN</td>\n", + " <td>True</td>\n", + " <td>100.0</td>\n", + " <td>NaN</td>\n", + " <td>2</td>\n", + " <td>1</td>\n", + " <td>3</td>\n", + " <td>0</td>\n", + " <td>-1.333333</td>\n", + " <td>1.0</td>\n", + " <td>...</td>\n", + " <td>-0.666667</td>\n", + " <td>1.0</td>\n", + " <td>False</td>\n", + " <td>1.733333</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>1.0</td>\n", + " <td>1.0</td>\n", + " <td>-0.684000</td>\n", + " <td>0.0</td>\n", + " <td>-0.075931</td>\n", + " <td>1.0</td>\n", + " <td>1.295</td>\n", + " <td>0.0</td>\n", + " <td>False</td>\n", + " <td>2</td>\n", + " <td>0.4760</td>\n", + " <td>-0.1840</td>\n", + " <td>-0.1</td>\n", + " <td>1.016949</td>\n", + " <td>32</td>\n", + " <td>-1.084746</td>\n", + " <td>-1.5</td>\n", + " <td>-1.5</td>\n", + " <td>3</td>\n", + " <td>3</td>\n", + " <td>1.0</td>\n", + " <td>1.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>1.0</td>\n", + " <td>1.0</td>\n", + " <td>4</td>\n", + " <td>0.000000</td>\n", + " <td>1.878788</td>\n", + " <td>0.0</td>\n", + " <td>-0.600000</td>\n", + " <td>0</td>\n", + " <td>1</td>\n", + " <td>False</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>False</td>\n", + " <td>-0.5</td>\n", + " <td>68171</td>\n", + " <td>0.000082</td>\n", + " </tr>\n", + " <tr>\n", + " <td>60800</td>\n", + " <td>84735b84a</td>\n", + " <td>ID_84735b84a</td>\n", + " <td>CT</td>\n", + " <td>ID_ddcad7d4</td>\n", + " <td>ID_d7e80c40be</td>\n", + " <td>ID_11c94b7b33</td>\n", + " <td>NaN</td>\n", + " <td>['-155', '23', '138.699997']</td>\n", + " <td>['1', '0', '0', '0', '1', '0']</td>\n", + " <td>1</td>\n", + " <td>MONOCHROME2</td>\n", + " <td>512</td>\n", + " <td>512</td>\n", + " <td>['0.48828125', '0.48828125']</td>\n", + " <td>16</td>\n", + " <td>12</td>\n", + " <td>11</td>\n", + " <td>0</td>\n", + " <td>['00036', '00036']</td>\n", + " <td>['00080', '00080']</td>\n", + " <td>-1024.0</td>\n", + " <td>1.0</td>\n", + " <td>1.314667</td>\n", + " <td>-1.914667</td>\n", + " <td>-2.872322</td>\n", + " <td>-0.693297</td>\n", + " <td>False</td>\n", + " <td>True</td>\n", + " <td>1.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>1.0</td>\n", + " <td>0.0</td>\n", + " <td>-155.0</td>\n", + " <td>23.0</td>\n", + " <td>138.699997</td>\n", + " <td>0.488281</td>\n", + " <td>0.488281</td>\n", + " <td>36.0</td>\n", + " <td>36.0</td>\n", + " <td>False</td>\n", + " <td>80.0</td>\n", + " <td>80.0</td>\n", + " <td>0</td>\n", + " <td>0</td>\n", + " <td>0</td>\n", + " <td>1</td>\n", + " <td>-1.333333</td>\n", + " <td>1.0</td>\n", + " <td>...</td>\n", + " <td>-0.666667</td>\n", + " <td>1.0</td>\n", + " <td>False</td>\n", + " <td>0.480000</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>1.0</td>\n", + " <td>1.0</td>\n", + " <td>1.173333</td>\n", + " <td>1.0</td>\n", + " <td>-0.040544</td>\n", + " <td>0.0</td>\n", + " <td>-0.480</td>\n", + " <td>1.0</td>\n", + " <td>False</td>\n", + " <td>1</td>\n", + " <td>0.5748</td>\n", + " <td>-0.1252</td>\n", + " <td>0.1</td>\n", + " <td>1.152542</td>\n", + " <td>34</td>\n", + " <td>-1.084746</td>\n", + " <td>-1.5</td>\n", + " <td>-1.5</td>\n", + " <td>3</td>\n", + " <td>3</td>\n", + " <td>1.0</td>\n", + " <td>1.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>1.0</td>\n", + " <td>1.0</td>\n", + " <td>2</td>\n", + " <td>0.266666</td>\n", + " <td>1.885714</td>\n", + " <td>0.0</td>\n", + " <td>-0.599994</td>\n", + " <td>0</td>\n", + " <td>2</td>\n", + " <td>False</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>False</td>\n", + " <td>-0.5</td>\n", + " <td>27981</td>\n", + " <td>0.000083</td>\n", + " </tr>\n", + " <tr>\n", + " <td>102453</td>\n", + " <td>d6a5e0432</td>\n", + " <td>ID_d6a5e0432</td>\n", + " <td>CT</td>\n", + " <td>ID_73887cfd</td>\n", + " <td>ID_4cc0b3574d</td>\n", + " <td>ID_bd88957d37</td>\n", + " <td>NaN</td>\n", + " <td>['-125.000', '-131.700', '105.000']</td>\n", + " <td>['1.000000', '0.000000', '0.000000', '0.000000...</td>\n", + " <td>1</td>\n", + " <td>MONOCHROME2</td>\n", + " <td>512</td>\n", + " <td>512</td>\n", + " <td>['0.488281', '0.488281']</td>\n", + " <td>16</td>\n", + " <td>16</td>\n", + " <td>15</td>\n", + " <td>1</td>\n", + " <td>40</td>\n", + " <td>150</td>\n", + " <td>-1024.0</td>\n", + " <td>1.0</td>\n", + " <td>-0.064000</td>\n", + " <td>-1.558667</td>\n", + " <td>-1.401150</td>\n", + " <td>-1.616006</td>\n", + " <td>False</td>\n", + " <td>True</td>\n", + " <td>1.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>1.0</td>\n", + " <td>0.0</td>\n", + " <td>-125.0</td>\n", + " <td>-131.7</td>\n", + " <td>105.000000</td>\n", + " <td>0.488281</td>\n", + " <td>0.488281</td>\n", + " <td>40.0</td>\n", + " <td>NaN</td>\n", + " <td>True</td>\n", + " <td>150.0</td>\n", + " <td>NaN</td>\n", + " <td>1</td>\n", + " <td>1</td>\n", + " <td>3</td>\n", + " <td>0</td>\n", + " <td>-1.333333</td>\n", + " <td>1.0</td>\n", + " <td>...</td>\n", + " <td>-0.666667</td>\n", + " <td>1.0</td>\n", + " <td>False</td>\n", + " <td>-0.720000</td>\n", + " <td>1.0</td>\n", + " <td>0.0</td>\n", + " <td>1.0</td>\n", + " <td>1.0</td>\n", + " <td>-0.889333</td>\n", + " <td>0.0</td>\n", + " <td>-0.088825</td>\n", + " <td>1.0</td>\n", + " <td>-0.480</td>\n", + " <td>1.0</td>\n", + " <td>False</td>\n", + " <td>2</td>\n", + " <td>0.4400</td>\n", + " <td>-0.1800</td>\n", + " <td>-0.3</td>\n", + " <td>0.881356</td>\n", + " <td>30</td>\n", + " <td>-1.084746</td>\n", + " <td>-1.5</td>\n", + " <td>-1.5</td>\n", + " <td>3</td>\n", + " <td>3</td>\n", + " <td>1.0</td>\n", + " <td>1.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>1.0</td>\n", + " <td>1.0</td>\n", + " <td>0</td>\n", + " <td>-0.266667</td>\n", + " <td>1.870968</td>\n", + " <td>0.0</td>\n", + " <td>-0.600000</td>\n", + " <td>0</td>\n", + " <td>1</td>\n", + " <td>False</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>False</td>\n", + " <td>-0.5</td>\n", + " <td>90163</td>\n", + " <td>0.000085</td>\n", + " </tr>\n", + " <tr>\n", + " <td>10097</td>\n", + " <td>6df94672e</td>\n", + " <td>ID_6df94672e</td>\n", + " <td>CT</td>\n", + " <td>ID_39c82642</td>\n", + " <td>ID_9f4b3b7a4d</td>\n", + " <td>ID_81c1365f46</td>\n", + " <td>NaN</td>\n", + " <td>['-125', '18', '-120.099976']</td>\n", + " <td>['1', '0', '0', '0', '1', '0']</td>\n", + " <td>1</td>\n", + " <td>MONOCHROME2</td>\n", + " <td>512</td>\n", + " <td>512</td>\n", + " <td>['0.48828125', '0.48828125']</td>\n", + " <td>16</td>\n", + " <td>12</td>\n", + " <td>11</td>\n", + " <td>0</td>\n", + " <td>['00036', '00036']</td>\n", + " <td>['00080', '00080']</td>\n", + " <td>-1024.0</td>\n", + " <td>1.0</td>\n", + " <td>1.301333</td>\n", + " <td>0.108000</td>\n", + " <td>-2.544276</td>\n", + " <td>-0.594726</td>\n", + " <td>False</td>\n", + " <td>True</td>\n", + " <td>1.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>1.0</td>\n", + " <td>0.0</td>\n", + " <td>-125.0</td>\n", + " <td>18.0</td>\n", + " <td>-120.099976</td>\n", + " <td>0.488281</td>\n", + " <td>0.488281</td>\n", + " <td>36.0</td>\n", + " <td>36.0</td>\n", + " <td>False</td>\n", + " <td>80.0</td>\n", + " <td>80.0</td>\n", + " <td>0</td>\n", + " <td>0</td>\n", + " <td>0</td>\n", + " <td>1</td>\n", + " <td>-1.333333</td>\n", + " <td>1.0</td>\n", + " <td>...</td>\n", + " <td>-0.666667</td>\n", + " <td>1.0</td>\n", + " <td>False</td>\n", + " <td>-0.720000</td>\n", + " <td>1.0</td>\n", + " <td>0.0</td>\n", + " <td>1.0</td>\n", + " <td>1.0</td>\n", + " <td>1.106667</td>\n", + " <td>1.0</td>\n", + " <td>-0.411318</td>\n", + " <td>0.0</td>\n", + " <td>-0.480</td>\n", + " <td>1.0</td>\n", + " <td>False</td>\n", + " <td>1</td>\n", + " <td>-0.4404</td>\n", + " <td>-1.4004</td>\n", + " <td>1.4</td>\n", + " <td>1.966102</td>\n", + " <td>46</td>\n", + " <td>-1.016949</td>\n", + " <td>-1.5</td>\n", + " <td>-1.5</td>\n", + " <td>3</td>\n", + " <td>3</td>\n", + " <td>1.0</td>\n", + " <td>1.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>1.0</td>\n", + " <td>1.0</td>\n", + " <td>10</td>\n", + " <td>2.000000</td>\n", + " <td>1.833333</td>\n", + " <td>0.0</td>\n", + " <td>-0.600000</td>\n", + " <td>0</td>\n", + " <td>2</td>\n", + " <td>False</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>False</td>\n", + " <td>-0.5</td>\n", + " <td>14678</td>\n", + " <td>0.000086</td>\n", + " </tr>\n", + " </tbody>\n", + "</table>\n", + "<p>5 rows × 101 columns</p>\n", + "</div>" + ], + "text/plain": [ + " img_id SOPInstanceUID Modality PatientID StudyInstanceUID \\\n", + "12436 68c2b8b03 ID_68c2b8b03 CT ID_db5b61c1 ID_451abcb4a1 \n", + "82308 7f95e978e ID_7f95e978e CT ID_ae6fa62a ID_3a1815c27a \n", + "60800 84735b84a ID_84735b84a CT ID_ddcad7d4 ID_d7e80c40be \n", + "102453 d6a5e0432 ID_d6a5e0432 CT ID_73887cfd ID_4cc0b3574d \n", + "10097 6df94672e ID_6df94672e CT ID_39c82642 ID_9f4b3b7a4d \n", + "\n", + " SeriesInstanceUID StudyID ImagePositionPatient \\\n", + "12436 ID_36778f2a4a NaN ['-125.000', '-148.300', '135.250'] \n", + "82308 ID_64db061397 NaN ['-108.000', '-116.300', '114.000'] \n", + "60800 ID_11c94b7b33 NaN ['-155', '23', '138.699997'] \n", + "102453 ID_bd88957d37 NaN ['-125.000', '-131.700', '105.000'] \n", + "10097 ID_81c1365f46 NaN ['-125', '18', '-120.099976'] \n", + "\n", + " ImageOrientationPatient SamplesPerPixel \\\n", + "12436 ['1.000000', '0.000000', '0.000000', '0.000000... 1 \n", + "82308 ['1.000000', '0.000000', '0.000000', '0.000000... 1 \n", + "60800 ['1', '0', '0', '0', '1', '0'] 1 \n", + "102453 ['1.000000', '0.000000', '0.000000', '0.000000... 1 \n", + "10097 ['1', '0', '0', '0', '1', '0'] 1 \n", + "\n", + " PhotometricInterpretation Rows Columns PixelSpacing \\\n", + "12436 MONOCHROME2 512 512 ['0.488281', '0.488281'] \n", + "82308 MONOCHROME2 512 512 ['0.421875', '0.421875'] \n", + "60800 MONOCHROME2 512 512 ['0.48828125', '0.48828125'] \n", + "102453 MONOCHROME2 512 512 ['0.488281', '0.488281'] \n", + "10097 MONOCHROME2 512 512 ['0.48828125', '0.48828125'] \n", + "\n", + " BitsAllocated BitsStored HighBit PixelRepresentation \\\n", + "12436 16 16 15 1 \n", + "82308 16 16 15 1 \n", + "60800 16 12 11 0 \n", + "102453 16 16 15 1 \n", + "10097 16 12 11 0 \n", + "\n", + " WindowCenter WindowWidth RescaleIntercept \\\n", + "12436 40 150 -1024.0 \n", + "82308 40 100 -1024.0 \n", + "60800 ['00036', '00036'] ['00080', '00080'] -1024.0 \n", + "102453 40 150 -1024.0 \n", + "10097 ['00036', '00036'] ['00080', '00080'] -1024.0 \n", + "\n", + " RescaleSlope PxlMin PxlMax PxlStd PxlMean test test2 \\\n", + "12436 1.0 -0.064000 -1.548000 -1.402099 -1.620352 False True \n", + "82308 1.0 -0.064000 -1.572000 -1.392679 -1.599246 False True \n", + "60800 1.0 1.314667 -1.914667 -2.872322 -0.693297 False True \n", + "102453 1.0 -0.064000 -1.558667 -1.401150 -1.616006 False True \n", + "10097 1.0 1.301333 0.108000 -2.544276 -0.594726 False True \n", + "\n", + " ImageOrientationPatient_0 ImageOrientationPatient_1 \\\n", + "12436 1.0 0.0 \n", + "82308 1.0 0.0 \n", + "60800 1.0 0.0 \n", + "102453 1.0 0.0 \n", + "10097 1.0 0.0 \n", + "\n", + " ImageOrientationPatient_2 ImageOrientationPatient_3 \\\n", + "12436 0.0 0.0 \n", + "82308 0.0 0.0 \n", + "60800 0.0 0.0 \n", + "102453 0.0 0.0 \n", + "10097 0.0 0.0 \n", + "\n", + " ImageOrientationPatient_4 ImageOrientationPatient_5 \\\n", + "12436 1.0 0.0 \n", + "82308 1.0 0.0 \n", + "60800 1.0 0.0 \n", + "102453 1.0 0.0 \n", + "10097 1.0 0.0 \n", + "\n", + " ImagePositionPatient_0 ImagePositionPatient_1 \\\n", + "12436 -125.0 -148.3 \n", + "82308 -108.0 -116.3 \n", + "60800 -155.0 23.0 \n", + "102453 -125.0 -131.7 \n", + "10097 -125.0 18.0 \n", + "\n", + " ImagePositionPatient_2 PixelSpacing_0 PixelSpacing_1 \\\n", + "12436 135.250000 0.488281 0.488281 \n", + "82308 114.000000 0.421875 0.421875 \n", + "60800 138.699997 0.488281 0.488281 \n", + "102453 105.000000 0.488281 0.488281 \n", + "10097 -120.099976 0.488281 0.488281 \n", + "\n", + " WindowCenter_0 WindowCenter_1 WindowCenter_1_NAN WindowWidth_0 \\\n", + "12436 40.0 NaN True 150.0 \n", + "82308 40.0 NaN True 100.0 \n", + "60800 36.0 36.0 False 80.0 \n", + "102453 40.0 NaN True 150.0 \n", + "10097 36.0 36.0 False 80.0 \n", + "\n", + " WindowWidth_1 WindowWidth_0_le WindowWidth_1_le WindowCenter_1_le \\\n", + "12436 NaN 1 1 3 \n", + "82308 NaN 2 1 3 \n", + "60800 80.0 0 0 0 \n", + "102453 NaN 1 1 3 \n", + "10097 80.0 0 0 0 \n", + "\n", + " BitType_le ImageOrientationPatient_4_f \\\n", + "12436 0 -1.333333 \n", + "82308 0 -1.333333 \n", + "60800 1 -1.333333 \n", + "102453 0 -1.333333 \n", + "10097 1 -1.333333 \n", + "\n", + " ImageOrientationPatient_4_enc_0 ... ImageOrientationPatient_5_f \\\n", + "12436 1.0 ... -0.666667 \n", + "82308 1.0 ... -0.666667 \n", + "60800 1.0 ... -0.666667 \n", + "102453 1.0 ... -0.666667 \n", + "10097 1.0 ... -0.666667 \n", + "\n", + " ImageOrientationPatient_5_enc_0 ImageOrientationPatient_5_enc_1 \\\n", + "12436 1.0 False \n", + "82308 1.0 False \n", + "60800 1.0 False \n", + "102453 1.0 False \n", + "10097 1.0 False \n", + "\n", + " ImagePositionPatient_0_f ImagePositionPatient_0_enc_0 \\\n", + "12436 -0.720000 1.0 \n", + "82308 1.733333 0.0 \n", + "60800 0.480000 0.0 \n", + "102453 -0.720000 1.0 \n", + "10097 -0.720000 1.0 \n", + "\n", + " ImagePositionPatient_0_enc_1 ImagePositionPatient_0_f_r1 \\\n", + "12436 0.0 1.0 \n", + "82308 0.0 1.0 \n", + "60800 0.0 1.0 \n", + "102453 0.0 1.0 \n", + "10097 0.0 1.0 \n", + "\n", + " ImagePositionPatient_0_f_r05 ImagePositionPatient_1_f \\\n", + "12436 1.0 -1.110667 \n", + "82308 1.0 -0.684000 \n", + "60800 1.0 1.173333 \n", + "102453 1.0 -0.889333 \n", + "10097 1.0 1.106667 \n", + "\n", + " ImagePositionPatient_1_enc_0 ImagePositionPatient_2_f \\\n", + "12436 0.0 -0.045487 \n", + "82308 0.0 -0.075931 \n", + "60800 1.0 -0.040544 \n", + "102453 0.0 -0.088825 \n", + "10097 1.0 -0.411318 \n", + "\n", + " ImagePositionPatient_2_f_r05 PixelSpacing_1_f PixelSpacing_1_enc_0 \\\n", + "12436 0.0 -0.480 1.0 \n", + "82308 1.0 1.295 0.0 \n", + "60800 0.0 -0.480 1.0 \n", + "102453 1.0 -0.480 1.0 \n", + "10097 0.0 -0.480 1.0 \n", + "\n", + " PixelSpacing_1_enc_1 WindowCenter_0_le pos_max pos_min pos_size \\\n", + "12436 False 2 0.5810 -0.1190 0.5 \n", + "82308 False 2 0.4760 -0.1840 -0.1 \n", + "60800 False 1 0.5748 -0.1252 0.1 \n", + "102453 False 2 0.4400 -0.1800 -0.3 \n", + "10097 False 1 -0.4404 -1.4004 1.4 \n", + "\n", + " pos_idx1 pos_idx pos_idx2 pos_inc1 pos_inc2 pos_inc1_grp_le \\\n", + "12436 1.355932 37 -1.016949 -1.5 -1.5 3 \n", + "82308 1.016949 32 -1.084746 -1.5 -1.5 3 \n", + "60800 1.152542 34 -1.084746 -1.5 -1.5 3 \n", + "102453 0.881356 30 -1.084746 -1.5 -1.5 3 \n", + "10097 1.966102 46 -1.016949 -1.5 -1.5 3 \n", + "\n", + " pos_inc2_grp_le pos_inc1_r1 pos_inc1_r0001 pos_inc1_enc_0 \\\n", + "12436 3 1.0 1.0 0.0 \n", + "82308 3 1.0 1.0 0.0 \n", + "60800 3 1.0 1.0 0.0 \n", + "102453 3 1.0 1.0 0.0 \n", + "10097 3 1.0 1.0 0.0 \n", + "\n", + " pos_inc2_enc_0 pos_inc1_enc_1 pos_inc2_enc_1 pos_size_le \\\n", + "12436 0.0 1.0 1.0 1 \n", + "82308 0.0 1.0 1.0 4 \n", + "60800 0.0 1.0 1.0 2 \n", + "102453 0.0 1.0 1.0 0 \n", + "10097 0.0 1.0 1.0 10 \n", + "\n", + " pos_range pos_rel pos_zeros pos_inc_rng pos_zeros_le \\\n", + "12436 0.266667 1.771429 1.6 -0.600000 1 \n", + "82308 0.000000 1.878788 0.0 -0.600000 0 \n", + "60800 0.266666 1.885714 0.0 -0.599994 0 \n", + "102453 -0.266667 1.870968 0.0 -0.600000 0 \n", + "10097 2.000000 1.833333 0.0 -0.600000 0 \n", + "\n", + " PxlMin_grp_le PxlMin_zero any epidural intraparenchymal \\\n", + "12436 1 False NaN NaN NaN \n", + "82308 1 False NaN NaN NaN \n", + "60800 2 False NaN NaN NaN \n", + "102453 1 False NaN NaN NaN \n", + "10097 2 False NaN NaN NaN \n", + "\n", + " intraventricular subarachnoid subdural any_series SeriesPP \\\n", + "12436 NaN NaN NaN False -0.5 \n", + "82308 NaN NaN NaN False -0.5 \n", + "60800 NaN NaN NaN False -0.5 \n", + "102453 NaN NaN NaN False -0.5 \n", + "10097 NaN NaN NaN False -0.5 \n", + "\n", + " yuval_idx pred_any \n", + "12436 80726 0.000082 \n", + "82308 68171 0.000082 \n", + "60800 27981 0.000083 \n", + "102453 90163 0.000085 \n", + "10097 14678 0.000086 \n", + "\n", + "[5 rows x 101 columns]" + ] + }, + "execution_count": 62, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "test_md.sort_values('pred_any').head()" + ] + }, + { + "cell_type": "code", + "execution_count": 63, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "<div>\n", + "<style scoped>\n", + " .dataframe tbody tr th:only-of-type {\n", + " vertical-align: middle;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th></th>\n", + " <th>img_id</th>\n", + " <th>SOPInstanceUID</th>\n", + " <th>Modality</th>\n", + " <th>PatientID</th>\n", + " <th>StudyInstanceUID</th>\n", + " <th>SeriesInstanceUID</th>\n", + " <th>StudyID</th>\n", + " <th>ImagePositionPatient</th>\n", + " <th>ImageOrientationPatient</th>\n", + " <th>SamplesPerPixel</th>\n", + " <th>PhotometricInterpretation</th>\n", + " <th>Rows</th>\n", + " <th>Columns</th>\n", + " <th>PixelSpacing</th>\n", + " <th>BitsAllocated</th>\n", + " <th>BitsStored</th>\n", + " <th>HighBit</th>\n", + " <th>PixelRepresentation</th>\n", + " <th>WindowCenter</th>\n", + " <th>WindowWidth</th>\n", + " <th>RescaleIntercept</th>\n", + " <th>RescaleSlope</th>\n", + " <th>PxlMin</th>\n", + " <th>PxlMax</th>\n", + " <th>PxlStd</th>\n", + " <th>PxlMean</th>\n", + " <th>test</th>\n", + " <th>test2</th>\n", + " <th>ImageOrientationPatient_0</th>\n", + " <th>ImageOrientationPatient_1</th>\n", + " <th>ImageOrientationPatient_2</th>\n", + " <th>ImageOrientationPatient_3</th>\n", + " <th>ImageOrientationPatient_4</th>\n", + " <th>ImageOrientationPatient_5</th>\n", + " <th>ImagePositionPatient_0</th>\n", + " <th>ImagePositionPatient_1</th>\n", + " <th>ImagePositionPatient_2</th>\n", + " <th>PixelSpacing_0</th>\n", + " <th>PixelSpacing_1</th>\n", + " <th>WindowCenter_0</th>\n", + " <th>WindowCenter_1</th>\n", + " <th>WindowCenter_1_NAN</th>\n", + " <th>WindowWidth_0</th>\n", + " <th>WindowWidth_1</th>\n", + " <th>WindowWidth_0_le</th>\n", + " <th>WindowWidth_1_le</th>\n", + " <th>WindowCenter_1_le</th>\n", + " <th>BitType_le</th>\n", + " <th>ImageOrientationPatient_4_f</th>\n", + " <th>ImageOrientationPatient_4_enc_0</th>\n", + " <th>...</th>\n", + " <th>ImageOrientationPatient_5_f</th>\n", + " <th>ImageOrientationPatient_5_enc_0</th>\n", + " <th>ImageOrientationPatient_5_enc_1</th>\n", + " <th>ImagePositionPatient_0_f</th>\n", + " <th>ImagePositionPatient_0_enc_0</th>\n", + " <th>ImagePositionPatient_0_enc_1</th>\n", + " <th>ImagePositionPatient_0_f_r1</th>\n", + " <th>ImagePositionPatient_0_f_r05</th>\n", + " <th>ImagePositionPatient_1_f</th>\n", + " <th>ImagePositionPatient_1_enc_0</th>\n", + " <th>ImagePositionPatient_2_f</th>\n", + " <th>ImagePositionPatient_2_f_r05</th>\n", + " <th>PixelSpacing_1_f</th>\n", + " <th>PixelSpacing_1_enc_0</th>\n", + " <th>PixelSpacing_1_enc_1</th>\n", + " <th>WindowCenter_0_le</th>\n", + " <th>pos_max</th>\n", + " <th>pos_min</th>\n", + " <th>pos_size</th>\n", + " <th>pos_idx1</th>\n", + " <th>pos_idx</th>\n", + " <th>pos_idx2</th>\n", + " <th>pos_inc1</th>\n", + " <th>pos_inc2</th>\n", + " <th>pos_inc1_grp_le</th>\n", + " <th>pos_inc2_grp_le</th>\n", + " <th>pos_inc1_r1</th>\n", + " <th>pos_inc1_r0001</th>\n", + " <th>pos_inc1_enc_0</th>\n", + " <th>pos_inc2_enc_0</th>\n", + " <th>pos_inc1_enc_1</th>\n", + " <th>pos_inc2_enc_1</th>\n", + " <th>pos_size_le</th>\n", + " <th>pos_range</th>\n", + " <th>pos_rel</th>\n", + " <th>pos_zeros</th>\n", + " <th>pos_inc_rng</th>\n", + " <th>pos_zeros_le</th>\n", + " <th>PxlMin_grp_le</th>\n", + " <th>PxlMin_zero</th>\n", + " <th>any</th>\n", + " <th>epidural</th>\n", + " <th>intraparenchymal</th>\n", + " <th>intraventricular</th>\n", + " <th>subarachnoid</th>\n", + " <th>subdural</th>\n", + " <th>any_series</th>\n", + " <th>SeriesPP</th>\n", + " <th>yuval_idx</th>\n", + " <th>pred_any</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <td>100029</td>\n", + " <td>d3bd67ff1</td>\n", + " <td>ID_d3bd67ff1</td>\n", + " <td>CT</td>\n", + " <td>ID_07aa4e90</td>\n", + " <td>ID_19039aeb7f</td>\n", + " <td>ID_83a456ed02</td>\n", + " <td>NaN</td>\n", + " <td>['-125', '-5.28788193', '235.817384']</td>\n", + " <td>['1', '0', '0', '0', '0.927183855', '-0.374606...</td>\n", + " <td>1</td>\n", + " <td>MONOCHROME2</td>\n", + " <td>512</td>\n", + " <td>512</td>\n", + " <td>['0.48828125', '0.48828125']</td>\n", + " <td>16</td>\n", + " <td>12</td>\n", + " <td>11</td>\n", + " <td>0</td>\n", + " <td>['00040', '00040']</td>\n", + " <td>['00080', '00080']</td>\n", + " <td>-1024.0</td>\n", + " <td>1.0</td>\n", + " <td>1.301333</td>\n", + " <td>0.093333</td>\n", + " <td>-0.618874</td>\n", + " <td>1.229975</td>\n", + " <td>False</td>\n", + " <td>True</td>\n", + " <td>1.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.927184</td>\n", + " <td>-0.374607</td>\n", + " <td>-125.000000</td>\n", + " <td>-5.287882</td>\n", + " <td>235.817384</td>\n", + " <td>0.488281</td>\n", + " <td>0.488281</td>\n", + " <td>40.0</td>\n", + " <td>40.0</td>\n", + " <td>False</td>\n", + " <td>80.0</td>\n", + " <td>80.0</td>\n", + " <td>0</td>\n", + " <td>0</td>\n", + " <td>1</td>\n", + " <td>1</td>\n", + " <td>1.695785</td>\n", + " <td>0.0</td>\n", + " <td>...</td>\n", + " <td>0.835956</td>\n", + " <td>0.0</td>\n", + " <td>False</td>\n", + " <td>-0.72</td>\n", + " <td>1.0</td>\n", + " <td>0.0</td>\n", + " <td>1.0</td>\n", + " <td>1.0</td>\n", + " <td>0.796162</td>\n", + " <td>1.0</td>\n", + " <td>0.098592</td>\n", + " <td>0.0</td>\n", + " <td>-0.480000</td>\n", + " <td>1.0</td>\n", + " <td>False</td>\n", + " <td>2</td>\n", + " <td>1.202425</td>\n", + " <td>0.502892</td>\n", + " <td>-0.7</td>\n", + " <td>0.000000</td>\n", + " <td>17</td>\n", + " <td>-0.474576</td>\n", + " <td>2.247192</td>\n", + " <td>2.247192</td>\n", + " <td>3</td>\n", + " <td>3</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>3</td>\n", + " <td>0.263550</td>\n", + " <td>0.518123</td>\n", + " <td>0.0</td>\n", + " <td>-0.575802</td>\n", + " <td>0</td>\n", + " <td>2</td>\n", + " <td>False</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>False</td>\n", + " <td>-0.5</td>\n", + " <td>52190</td>\n", + " <td>0.998915</td>\n", + " </tr>\n", + " <tr>\n", + " <td>101618</td>\n", + " <td>b5c2fbbe1</td>\n", + " <td>ID_b5c2fbbe1</td>\n", + " <td>CT</td>\n", + " <td>ID_877a2214</td>\n", + " <td>ID_f5d8b2ad40</td>\n", + " <td>ID_c37347c9a3</td>\n", + " <td>NaN</td>\n", + " <td>['-126.408875', '-126.408875', '92.449158']</td>\n", + " <td>['1.000000', '0.000000', '0.000000', '0.000000...</td>\n", + " <td>1</td>\n", + " <td>MONOCHROME2</td>\n", + " <td>512</td>\n", + " <td>512</td>\n", + " <td>['0.494750976563', '0.494750976563']</td>\n", + " <td>16</td>\n", + " <td>16</td>\n", + " <td>15</td>\n", + " <td>1</td>\n", + " <td>35.000000</td>\n", + " <td>135.000000</td>\n", + " <td>-1024.0</td>\n", + " <td>1.0</td>\n", + " <td>1.301333</td>\n", + " <td>0.148000</td>\n", + " <td>-0.975081</td>\n", + " <td>1.044669</td>\n", + " <td>False</td>\n", + " <td>True</td>\n", + " <td>1.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>1.000000</td>\n", + " <td>0.000000</td>\n", + " <td>-126.408875</td>\n", + " <td>-126.408875</td>\n", + " <td>92.449158</td>\n", + " <td>0.494751</td>\n", + " <td>0.494751</td>\n", + " <td>35.0</td>\n", + " <td>NaN</td>\n", + " <td>True</td>\n", + " <td>135.0</td>\n", + " <td>NaN</td>\n", + " <td>3</td>\n", + " <td>1</td>\n", + " <td>3</td>\n", + " <td>0</td>\n", + " <td>-1.333333</td>\n", + " <td>1.0</td>\n", + " <td>...</td>\n", + " <td>-0.666667</td>\n", + " <td>1.0</td>\n", + " <td>False</td>\n", + " <td>-0.72</td>\n", + " <td>0.0</td>\n", + " <td>1.0</td>\n", + " <td>1.0</td>\n", + " <td>1.0</td>\n", + " <td>-0.818785</td>\n", + " <td>0.0</td>\n", + " <td>-0.106806</td>\n", + " <td>0.0</td>\n", + " <td>-0.480000</td>\n", + " <td>0.0</td>\n", + " <td>True</td>\n", + " <td>3</td>\n", + " <td>0.609797</td>\n", + " <td>-0.010203</td>\n", + " <td>-0.3</td>\n", + " <td>0.135593</td>\n", + " <td>19</td>\n", + " <td>-0.338983</td>\n", + " <td>-1.500000</td>\n", + " <td>-1.500000</td>\n", + " <td>3</td>\n", + " <td>3</td>\n", + " <td>1.0</td>\n", + " <td>1.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>1.0</td>\n", + " <td>1.0</td>\n", + " <td>0</td>\n", + " <td>-0.266667</td>\n", + " <td>0.451613</td>\n", + " <td>0.0</td>\n", + " <td>-0.600000</td>\n", + " <td>0</td>\n", + " <td>2</td>\n", + " <td>False</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>False</td>\n", + " <td>-0.5</td>\n", + " <td>93649</td>\n", + " <td>0.998922</td>\n", + " </tr>\n", + " <tr>\n", + " <td>54912</td>\n", + " <td>5519471d4</td>\n", + " <td>ID_5519471d4</td>\n", + " <td>CT</td>\n", + " <td>ID_35384be6</td>\n", + " <td>ID_cc5b6c0a29</td>\n", + " <td>ID_5d7a4ca229</td>\n", + " <td>NaN</td>\n", + " <td>['-125', '72.8792912', '193.380843']</td>\n", + " <td>['1', '0', '0', '0', '0.920504853', '-0.390731...</td>\n", + " <td>1</td>\n", + " <td>MONOCHROME2</td>\n", + " <td>512</td>\n", + " <td>512</td>\n", + " <td>['0.48828125', '0.48828125']</td>\n", + " <td>16</td>\n", + " <td>12</td>\n", + " <td>11</td>\n", + " <td>0</td>\n", + " <td>['00040', '00040']</td>\n", + " <td>['00080', '00080']</td>\n", + " <td>-1024.0</td>\n", + " <td>1.0</td>\n", + " <td>1.301333</td>\n", + " <td>1.525333</td>\n", + " <td>-0.941557</td>\n", + " <td>1.166305</td>\n", + " <td>False</td>\n", + " <td>True</td>\n", + " <td>1.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.920505</td>\n", + " <td>-0.390731</td>\n", + " <td>-125.000000</td>\n", + " <td>72.879291</td>\n", + " <td>193.380843</td>\n", + " <td>0.488281</td>\n", + " <td>0.488281</td>\n", + " <td>40.0</td>\n", + " <td>40.0</td>\n", + " <td>False</td>\n", + " <td>80.0</td>\n", + " <td>80.0</td>\n", + " <td>0</td>\n", + " <td>0</td>\n", + " <td>1</td>\n", + " <td>1</td>\n", + " <td>1.606731</td>\n", + " <td>0.0</td>\n", + " <td>...</td>\n", + " <td>0.728459</td>\n", + " <td>0.0</td>\n", + " <td>False</td>\n", + " <td>-0.72</td>\n", + " <td>1.0</td>\n", + " <td>0.0</td>\n", + " <td>1.0</td>\n", + " <td>1.0</td>\n", + " <td>1.838391</td>\n", + " <td>1.0</td>\n", + " <td>0.037795</td>\n", + " <td>0.0</td>\n", + " <td>-0.480000</td>\n", + " <td>1.0</td>\n", + " <td>False</td>\n", + " <td>2</td>\n", + " <td>1.078723</td>\n", + " <td>0.490115</td>\n", + " <td>-0.7</td>\n", + " <td>-0.271186</td>\n", + " <td>13</td>\n", + " <td>-0.203390</td>\n", + " <td>1.726074</td>\n", + " <td>1.723938</td>\n", + " <td>3</td>\n", + " <td>3</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>3</td>\n", + " <td>-0.475944</td>\n", + " <td>-0.074042</td>\n", + " <td>0.0</td>\n", + " <td>-0.598386</td>\n", + " <td>0</td>\n", + " <td>2</td>\n", + " <td>False</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>False</td>\n", + " <td>-0.5</td>\n", + " <td>115357</td>\n", + " <td>0.998966</td>\n", + " </tr>\n", + " <tr>\n", + " <td>29363</td>\n", + " <td>dfc1d30ba</td>\n", + " <td>ID_dfc1d30ba</td>\n", + " <td>CT</td>\n", + " <td>ID_7ed798ca</td>\n", + " <td>ID_bca01d4025</td>\n", + " <td>ID_bf75646cb6</td>\n", + " <td>NaN</td>\n", + " <td>['-132.5', '13.0711274', '189.612208']</td>\n", + " <td>['1', '0', '0', '0', '0.965925826', '-0.258819...</td>\n", + " <td>1</td>\n", + " <td>MONOCHROME2</td>\n", + " <td>512</td>\n", + " <td>512</td>\n", + " <td>['0.517578125', '0.517578125']</td>\n", + " <td>16</td>\n", + " <td>12</td>\n", + " <td>11</td>\n", + " <td>1</td>\n", + " <td>['00040', '00040']</td>\n", + " <td>['00080', '00080']</td>\n", + " <td>0.0</td>\n", + " <td>1.0</td>\n", + " <td>1.333333</td>\n", + " <td>-0.217333</td>\n", + " <td>-0.920688</td>\n", + " <td>0.910508</td>\n", + " <td>False</td>\n", + " <td>True</td>\n", + " <td>1.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.965926</td>\n", + " <td>-0.258819</td>\n", + " <td>-132.500000</td>\n", + " <td>13.071127</td>\n", + " <td>189.612208</td>\n", + " <td>0.517578</td>\n", + " <td>0.517578</td>\n", + " <td>40.0</td>\n", + " <td>40.0</td>\n", + " <td>False</td>\n", + " <td>80.0</td>\n", + " <td>80.0</td>\n", + " <td>0</td>\n", + " <td>0</td>\n", + " <td>1</td>\n", + " <td>2</td>\n", + " <td>2.212344</td>\n", + " <td>0.0</td>\n", + " <td>...</td>\n", + " <td>1.607873</td>\n", + " <td>0.0</td>\n", + " <td>False</td>\n", + " <td>1.08</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>1.0</td>\n", + " <td>1.040948</td>\n", + " <td>1.0</td>\n", + " <td>0.032396</td>\n", + " <td>0.0</td>\n", + " <td>2.060625</td>\n", + " <td>0.0</td>\n", + " <td>False</td>\n", + " <td>2</td>\n", + " <td>1.026354</td>\n", + " <td>0.428849</td>\n", + " <td>-0.5</td>\n", + " <td>-0.067797</td>\n", + " <td>16</td>\n", + " <td>-0.271186</td>\n", + " <td>1.561829</td>\n", + " <td>1.588135</td>\n", + " <td>3</td>\n", + " <td>3</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>5</td>\n", + " <td>-0.416634</td>\n", + " <td>0.206507</td>\n", + " <td>0.0</td>\n", + " <td>-0.579463</td>\n", + " <td>0</td>\n", + " <td>2</td>\n", + " <td>False</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>False</td>\n", + " <td>-0.5</td>\n", + " <td>111444</td>\n", + " <td>0.999020</td>\n", + " </tr>\n", + " <tr>\n", + " <td>92120</td>\n", + " <td>e33160522</td>\n", + " <td>ID_e33160522</td>\n", + " <td>CT</td>\n", + " <td>ID_7ed798ca</td>\n", + " <td>ID_bca01d4025</td>\n", + " <td>ID_bf75646cb6</td>\n", + " <td>NaN</td>\n", + " <td>['-132.5', '13.0711274', '184.488551']</td>\n", + " <td>['1', '0', '0', '0', '0.965925826', '-0.258819...</td>\n", + " <td>1</td>\n", + " <td>MONOCHROME2</td>\n", + " <td>512</td>\n", + " <td>512</td>\n", + " <td>['0.517578125', '0.517578125']</td>\n", + " <td>16</td>\n", + " <td>12</td>\n", + " <td>11</td>\n", + " <td>1</td>\n", + " <td>['00040', '00040']</td>\n", + " <td>['00080', '00080']</td>\n", + " <td>0.0</td>\n", + " <td>1.0</td>\n", + " <td>1.333333</td>\n", + " <td>-0.197333</td>\n", + " <td>-0.930595</td>\n", + " <td>0.931032</td>\n", + " <td>False</td>\n", + " <td>True</td>\n", + " <td>1.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.965926</td>\n", + " <td>-0.258819</td>\n", + " <td>-132.500000</td>\n", + " <td>13.071127</td>\n", + " <td>184.488551</td>\n", + " <td>0.517578</td>\n", + " <td>0.517578</td>\n", + " <td>40.0</td>\n", + " <td>40.0</td>\n", + " <td>False</td>\n", + " <td>80.0</td>\n", + " <td>80.0</td>\n", + " <td>0</td>\n", + " <td>0</td>\n", + " <td>1</td>\n", + " <td>2</td>\n", + " <td>2.212344</td>\n", + " <td>0.0</td>\n", + " <td>...</td>\n", + " <td>1.607873</td>\n", + " <td>0.0</td>\n", + " <td>False</td>\n", + " <td>1.08</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>1.0</td>\n", + " <td>1.040948</td>\n", + " <td>1.0</td>\n", + " <td>0.025055</td>\n", + " <td>0.0</td>\n", + " <td>2.060625</td>\n", + " <td>0.0</td>\n", + " <td>False</td>\n", + " <td>2</td>\n", + " <td>1.026354</td>\n", + " <td>0.428849</td>\n", + " <td>-0.5</td>\n", + " <td>-0.135593</td>\n", + " <td>15</td>\n", + " <td>-0.203390</td>\n", + " <td>1.588134</td>\n", + " <td>1.561829</td>\n", + " <td>3</td>\n", + " <td>3</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>5</td>\n", + " <td>-0.416634</td>\n", + " <td>0.069305</td>\n", + " <td>0.0</td>\n", + " <td>-0.579463</td>\n", + " <td>0</td>\n", + " <td>2</td>\n", + " <td>False</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>False</td>\n", + " <td>-0.5</td>\n", + " <td>111443</td>\n", + " <td>0.999043</td>\n", + " </tr>\n", + " </tbody>\n", + "</table>\n", + "<p>5 rows × 101 columns</p>\n", + "</div>" + ], + "text/plain": [ + " img_id SOPInstanceUID Modality PatientID StudyInstanceUID \\\n", + "100029 d3bd67ff1 ID_d3bd67ff1 CT ID_07aa4e90 ID_19039aeb7f \n", + "101618 b5c2fbbe1 ID_b5c2fbbe1 CT ID_877a2214 ID_f5d8b2ad40 \n", + "54912 5519471d4 ID_5519471d4 CT ID_35384be6 ID_cc5b6c0a29 \n", + "29363 dfc1d30ba ID_dfc1d30ba CT ID_7ed798ca ID_bca01d4025 \n", + "92120 e33160522 ID_e33160522 CT ID_7ed798ca ID_bca01d4025 \n", + "\n", + " SeriesInstanceUID StudyID \\\n", + "100029 ID_83a456ed02 NaN \n", + "101618 ID_c37347c9a3 NaN \n", + "54912 ID_5d7a4ca229 NaN \n", + "29363 ID_bf75646cb6 NaN \n", + "92120 ID_bf75646cb6 NaN \n", + "\n", + " ImagePositionPatient \\\n", + "100029 ['-125', '-5.28788193', '235.817384'] \n", + "101618 ['-126.408875', '-126.408875', '92.449158'] \n", + "54912 ['-125', '72.8792912', '193.380843'] \n", + "29363 ['-132.5', '13.0711274', '189.612208'] \n", + "92120 ['-132.5', '13.0711274', '184.488551'] \n", + "\n", + " ImageOrientationPatient SamplesPerPixel \\\n", + "100029 ['1', '0', '0', '0', '0.927183855', '-0.374606... 1 \n", + "101618 ['1.000000', '0.000000', '0.000000', '0.000000... 1 \n", + "54912 ['1', '0', '0', '0', '0.920504853', '-0.390731... 1 \n", + "29363 ['1', '0', '0', '0', '0.965925826', '-0.258819... 1 \n", + "92120 ['1', '0', '0', '0', '0.965925826', '-0.258819... 1 \n", + "\n", + " PhotometricInterpretation Rows Columns \\\n", + "100029 MONOCHROME2 512 512 \n", + "101618 MONOCHROME2 512 512 \n", + "54912 MONOCHROME2 512 512 \n", + "29363 MONOCHROME2 512 512 \n", + "92120 MONOCHROME2 512 512 \n", + "\n", + " PixelSpacing BitsAllocated BitsStored \\\n", + "100029 ['0.48828125', '0.48828125'] 16 12 \n", + "101618 ['0.494750976563', '0.494750976563'] 16 16 \n", + "54912 ['0.48828125', '0.48828125'] 16 12 \n", + "29363 ['0.517578125', '0.517578125'] 16 12 \n", + "92120 ['0.517578125', '0.517578125'] 16 12 \n", + "\n", + " HighBit PixelRepresentation WindowCenter WindowWidth \\\n", + "100029 11 0 ['00040', '00040'] ['00080', '00080'] \n", + "101618 15 1 35.000000 135.000000 \n", + "54912 11 0 ['00040', '00040'] ['00080', '00080'] \n", + "29363 11 1 ['00040', '00040'] ['00080', '00080'] \n", + "92120 11 1 ['00040', '00040'] ['00080', '00080'] \n", + "\n", + " RescaleIntercept RescaleSlope PxlMin PxlMax PxlStd \\\n", + "100029 -1024.0 1.0 1.301333 0.093333 -0.618874 \n", + "101618 -1024.0 1.0 1.301333 0.148000 -0.975081 \n", + "54912 -1024.0 1.0 1.301333 1.525333 -0.941557 \n", + "29363 0.0 1.0 1.333333 -0.217333 -0.920688 \n", + "92120 0.0 1.0 1.333333 -0.197333 -0.930595 \n", + "\n", + " PxlMean test test2 ImageOrientationPatient_0 \\\n", + "100029 1.229975 False True 1.0 \n", + "101618 1.044669 False True 1.0 \n", + "54912 1.166305 False True 1.0 \n", + "29363 0.910508 False True 1.0 \n", + "92120 0.931032 False True 1.0 \n", + "\n", + " ImageOrientationPatient_1 ImageOrientationPatient_2 \\\n", + "100029 0.0 0.0 \n", + "101618 0.0 0.0 \n", + "54912 0.0 0.0 \n", + "29363 0.0 0.0 \n", + "92120 0.0 0.0 \n", + "\n", + " ImageOrientationPatient_3 ImageOrientationPatient_4 \\\n", + "100029 0.0 0.927184 \n", + "101618 0.0 1.000000 \n", + "54912 0.0 0.920505 \n", + "29363 0.0 0.965926 \n", + "92120 0.0 0.965926 \n", + "\n", + " ImageOrientationPatient_5 ImagePositionPatient_0 \\\n", + "100029 -0.374607 -125.000000 \n", + "101618 0.000000 -126.408875 \n", + "54912 -0.390731 -125.000000 \n", + "29363 -0.258819 -132.500000 \n", + "92120 -0.258819 -132.500000 \n", + "\n", + " ImagePositionPatient_1 ImagePositionPatient_2 PixelSpacing_0 \\\n", + "100029 -5.287882 235.817384 0.488281 \n", + "101618 -126.408875 92.449158 0.494751 \n", + "54912 72.879291 193.380843 0.488281 \n", + "29363 13.071127 189.612208 0.517578 \n", + "92120 13.071127 184.488551 0.517578 \n", + "\n", + " PixelSpacing_1 WindowCenter_0 WindowCenter_1 WindowCenter_1_NAN \\\n", + "100029 0.488281 40.0 40.0 False \n", + "101618 0.494751 35.0 NaN True \n", + "54912 0.488281 40.0 40.0 False \n", + "29363 0.517578 40.0 40.0 False \n", + "92120 0.517578 40.0 40.0 False \n", + "\n", + " WindowWidth_0 WindowWidth_1 WindowWidth_0_le WindowWidth_1_le \\\n", + "100029 80.0 80.0 0 0 \n", + "101618 135.0 NaN 3 1 \n", + "54912 80.0 80.0 0 0 \n", + "29363 80.0 80.0 0 0 \n", + "92120 80.0 80.0 0 0 \n", + "\n", + " WindowCenter_1_le BitType_le ImageOrientationPatient_4_f \\\n", + "100029 1 1 1.695785 \n", + "101618 3 0 -1.333333 \n", + "54912 1 1 1.606731 \n", + "29363 1 2 2.212344 \n", + "92120 1 2 2.212344 \n", + "\n", + " ImageOrientationPatient_4_enc_0 ... ImageOrientationPatient_5_f \\\n", + "100029 0.0 ... 0.835956 \n", + "101618 1.0 ... -0.666667 \n", + "54912 0.0 ... 0.728459 \n", + "29363 0.0 ... 1.607873 \n", + "92120 0.0 ... 1.607873 \n", + "\n", + " ImageOrientationPatient_5_enc_0 ImageOrientationPatient_5_enc_1 \\\n", + "100029 0.0 False \n", + "101618 1.0 False \n", + "54912 0.0 False \n", + "29363 0.0 False \n", + "92120 0.0 False \n", + "\n", + " ImagePositionPatient_0_f ImagePositionPatient_0_enc_0 \\\n", + "100029 -0.72 1.0 \n", + "101618 -0.72 0.0 \n", + "54912 -0.72 1.0 \n", + "29363 1.08 0.0 \n", + "92120 1.08 0.0 \n", + "\n", + " ImagePositionPatient_0_enc_1 ImagePositionPatient_0_f_r1 \\\n", + "100029 0.0 1.0 \n", + "101618 1.0 1.0 \n", + "54912 0.0 1.0 \n", + "29363 0.0 0.0 \n", + "92120 0.0 0.0 \n", + "\n", + " ImagePositionPatient_0_f_r05 ImagePositionPatient_1_f \\\n", + "100029 1.0 0.796162 \n", + "101618 1.0 -0.818785 \n", + "54912 1.0 1.838391 \n", + "29363 1.0 1.040948 \n", + "92120 1.0 1.040948 \n", + "\n", + " ImagePositionPatient_1_enc_0 ImagePositionPatient_2_f \\\n", + "100029 1.0 0.098592 \n", + "101618 0.0 -0.106806 \n", + "54912 1.0 0.037795 \n", + "29363 1.0 0.032396 \n", + "92120 1.0 0.025055 \n", + "\n", + " ImagePositionPatient_2_f_r05 PixelSpacing_1_f PixelSpacing_1_enc_0 \\\n", + "100029 0.0 -0.480000 1.0 \n", + "101618 0.0 -0.480000 0.0 \n", + "54912 0.0 -0.480000 1.0 \n", + "29363 0.0 2.060625 0.0 \n", + "92120 0.0 2.060625 0.0 \n", + "\n", + " PixelSpacing_1_enc_1 WindowCenter_0_le pos_max pos_min pos_size \\\n", + "100029 False 2 1.202425 0.502892 -0.7 \n", + "101618 True 3 0.609797 -0.010203 -0.3 \n", + "54912 False 2 1.078723 0.490115 -0.7 \n", + "29363 False 2 1.026354 0.428849 -0.5 \n", + "92120 False 2 1.026354 0.428849 -0.5 \n", + "\n", + " pos_idx1 pos_idx pos_idx2 pos_inc1 pos_inc2 pos_inc1_grp_le \\\n", + "100029 0.000000 17 -0.474576 2.247192 2.247192 3 \n", + "101618 0.135593 19 -0.338983 -1.500000 -1.500000 3 \n", + "54912 -0.271186 13 -0.203390 1.726074 1.723938 3 \n", + "29363 -0.067797 16 -0.271186 1.561829 1.588135 3 \n", + "92120 -0.135593 15 -0.203390 1.588134 1.561829 3 \n", + "\n", + " pos_inc2_grp_le pos_inc1_r1 pos_inc1_r0001 pos_inc1_enc_0 \\\n", + "100029 3 0.0 0.0 0.0 \n", + "101618 3 1.0 1.0 0.0 \n", + "54912 3 0.0 0.0 0.0 \n", + "29363 3 0.0 0.0 0.0 \n", + "92120 3 0.0 0.0 0.0 \n", + "\n", + " pos_inc2_enc_0 pos_inc1_enc_1 pos_inc2_enc_1 pos_size_le \\\n", + "100029 0.0 0.0 0.0 3 \n", + "101618 0.0 1.0 1.0 0 \n", + "54912 0.0 0.0 0.0 3 \n", + "29363 0.0 0.0 0.0 5 \n", + "92120 0.0 0.0 0.0 5 \n", + "\n", + " pos_range pos_rel pos_zeros pos_inc_rng pos_zeros_le \\\n", + "100029 0.263550 0.518123 0.0 -0.575802 0 \n", + "101618 -0.266667 0.451613 0.0 -0.600000 0 \n", + "54912 -0.475944 -0.074042 0.0 -0.598386 0 \n", + "29363 -0.416634 0.206507 0.0 -0.579463 0 \n", + "92120 -0.416634 0.069305 0.0 -0.579463 0 \n", + "\n", + " PxlMin_grp_le PxlMin_zero any epidural intraparenchymal \\\n", + "100029 2 False NaN NaN NaN \n", + "101618 2 False NaN NaN NaN \n", + "54912 2 False NaN NaN NaN \n", + "29363 2 False NaN NaN NaN \n", + "92120 2 False NaN NaN NaN \n", + "\n", + " intraventricular subarachnoid subdural any_series SeriesPP \\\n", + "100029 NaN NaN NaN False -0.5 \n", + "101618 NaN NaN NaN False -0.5 \n", + "54912 NaN NaN NaN False -0.5 \n", + "29363 NaN NaN NaN False -0.5 \n", + "92120 NaN NaN NaN False -0.5 \n", + "\n", + " yuval_idx pred_any \n", + "100029 52190 0.998915 \n", + "101618 93649 0.998922 \n", + "54912 115357 0.998966 \n", + "29363 111444 0.999020 \n", + "92120 111443 0.999043 \n", + "\n", + "[5 rows x 101 columns]" + ] + }, + "execution_count": 63, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "test_md.sort_values('pred_any').tail()" + ] + }, + { + "cell_type": "code", + "execution_count": 64, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "<div>\n", + "<style scoped>\n", + " .dataframe tbody tr th:only-of-type {\n", + " vertical-align: middle;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th></th>\n", + " <th>img_id</th>\n", + " <th>SOPInstanceUID</th>\n", + " <th>Modality</th>\n", + " <th>PatientID</th>\n", + " <th>StudyInstanceUID</th>\n", + " <th>SeriesInstanceUID</th>\n", + " <th>StudyID</th>\n", + " <th>ImagePositionPatient</th>\n", + " <th>ImageOrientationPatient</th>\n", + " <th>SamplesPerPixel</th>\n", + " <th>PhotometricInterpretation</th>\n", + " <th>Rows</th>\n", + " <th>Columns</th>\n", + " <th>PixelSpacing</th>\n", + " <th>BitsAllocated</th>\n", + " <th>BitsStored</th>\n", + " <th>HighBit</th>\n", + " <th>PixelRepresentation</th>\n", + " <th>WindowCenter</th>\n", + " <th>WindowWidth</th>\n", + " <th>RescaleIntercept</th>\n", + " <th>RescaleSlope</th>\n", + " <th>PxlMin</th>\n", + " <th>PxlMax</th>\n", + " <th>PxlStd</th>\n", + " <th>PxlMean</th>\n", + " <th>test</th>\n", + " <th>test2</th>\n", + " <th>ImageOrientationPatient_0</th>\n", + " <th>ImageOrientationPatient_1</th>\n", + " <th>ImageOrientationPatient_2</th>\n", + " <th>ImageOrientationPatient_3</th>\n", + " <th>ImageOrientationPatient_4</th>\n", + " <th>ImageOrientationPatient_5</th>\n", + " <th>ImagePositionPatient_0</th>\n", + " <th>ImagePositionPatient_1</th>\n", + " <th>ImagePositionPatient_2</th>\n", + " <th>PixelSpacing_0</th>\n", + " <th>PixelSpacing_1</th>\n", + " <th>WindowCenter_0</th>\n", + " <th>WindowCenter_1</th>\n", + " <th>WindowCenter_1_NAN</th>\n", + " <th>WindowWidth_0</th>\n", + " <th>WindowWidth_1</th>\n", + " <th>WindowWidth_0_le</th>\n", + " <th>WindowWidth_1_le</th>\n", + " <th>WindowCenter_1_le</th>\n", + " <th>BitType_le</th>\n", + " <th>ImageOrientationPatient_4_f</th>\n", + " <th>ImageOrientationPatient_4_enc_0</th>\n", + " <th>...</th>\n", + " <th>ImageOrientationPatient_5_f</th>\n", + " <th>ImageOrientationPatient_5_enc_0</th>\n", + " <th>ImageOrientationPatient_5_enc_1</th>\n", + " <th>ImagePositionPatient_0_f</th>\n", + " <th>ImagePositionPatient_0_enc_0</th>\n", + " <th>ImagePositionPatient_0_enc_1</th>\n", + " <th>ImagePositionPatient_0_f_r1</th>\n", + " <th>ImagePositionPatient_0_f_r05</th>\n", + " <th>ImagePositionPatient_1_f</th>\n", + " <th>ImagePositionPatient_1_enc_0</th>\n", + " <th>ImagePositionPatient_2_f</th>\n", + " <th>ImagePositionPatient_2_f_r05</th>\n", + " <th>PixelSpacing_1_f</th>\n", + " <th>PixelSpacing_1_enc_0</th>\n", + " <th>PixelSpacing_1_enc_1</th>\n", + " <th>WindowCenter_0_le</th>\n", + " <th>pos_max</th>\n", + " <th>pos_min</th>\n", + " <th>pos_size</th>\n", + " <th>pos_idx1</th>\n", + " <th>pos_idx</th>\n", + " <th>pos_idx2</th>\n", + " <th>pos_inc1</th>\n", + " <th>pos_inc2</th>\n", + " <th>pos_inc1_grp_le</th>\n", + " <th>pos_inc2_grp_le</th>\n", + " <th>pos_inc1_r1</th>\n", + " <th>pos_inc1_r0001</th>\n", + " <th>pos_inc1_enc_0</th>\n", + " <th>pos_inc2_enc_0</th>\n", + " <th>pos_inc1_enc_1</th>\n", + " <th>pos_inc2_enc_1</th>\n", + " <th>pos_size_le</th>\n", + " <th>pos_range</th>\n", + " <th>pos_rel</th>\n", + " <th>pos_zeros</th>\n", + " <th>pos_inc_rng</th>\n", + " <th>pos_zeros_le</th>\n", + " <th>PxlMin_grp_le</th>\n", + " <th>PxlMin_zero</th>\n", + " <th>any</th>\n", + " <th>epidural</th>\n", + " <th>intraparenchymal</th>\n", + " <th>intraventricular</th>\n", + " <th>subarachnoid</th>\n", + " <th>subdural</th>\n", + " <th>any_series</th>\n", + " <th>SeriesPP</th>\n", + " <th>yuval_idx</th>\n", + " <th>pred_any</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <td>85421</td>\n", + " <td>ba1a7894c</td>\n", + " <td>ID_ba1a7894c</td>\n", + " <td>CT</td>\n", + " <td>ID_6f87831a</td>\n", + " <td>ID_a6ca244172</td>\n", + " <td>ID_d00cee7f0c</td>\n", + " <td>NaN</td>\n", + " <td>['-125.000000', '-119.997978', '127.192337']</td>\n", + " <td>['1.000000', '0.000000', '0.000000', '0.000000...</td>\n", + " <td>1</td>\n", + " <td>MONOCHROME2</td>\n", + " <td>512</td>\n", + " <td>512</td>\n", + " <td>['0.488281', '0.488281']</td>\n", + " <td>16</td>\n", + " <td>16</td>\n", + " <td>15</td>\n", + " <td>1</td>\n", + " <td>30</td>\n", + " <td>80</td>\n", + " <td>-1024.0</td>\n", + " <td>1.0</td>\n", + " <td>-1.365333</td>\n", + " <td>0.310667</td>\n", + " <td>1.642553</td>\n", + " <td>-0.881730</td>\n", + " <td>False</td>\n", + " <td>True</td>\n", + " <td>1.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.927184</td>\n", + " <td>-0.374607</td>\n", + " <td>-125.0</td>\n", + " <td>-119.997978</td>\n", + " <td>127.192337</td>\n", + " <td>0.488281</td>\n", + " <td>0.488281</td>\n", + " <td>30.0</td>\n", + " <td>NaN</td>\n", + " <td>True</td>\n", + " <td>80.0</td>\n", + " <td>NaN</td>\n", + " <td>0</td>\n", + " <td>1</td>\n", + " <td>3</td>\n", + " <td>0</td>\n", + " <td>-1.333333</td>\n", + " <td>0.0</td>\n", + " <td>...</td>\n", + " <td>-0.666667</td>\n", + " <td>0.0</td>\n", + " <td>True</td>\n", + " <td>-0.72</td>\n", + " <td>1.0</td>\n", + " <td>0.0</td>\n", + " <td>1.0</td>\n", + " <td>1.0</td>\n", + " <td>-0.733306</td>\n", + " <td>0.0</td>\n", + " <td>-0.057031</td>\n", + " <td>0.0</td>\n", + " <td>-0.48</td>\n", + " <td>1.0</td>\n", + " <td>False</td>\n", + " <td>0</td>\n", + " <td>0.918601</td>\n", + " <td>0.249929</td>\n", + " <td>-0.3</td>\n", + " <td>-0.338983</td>\n", + " <td>12</td>\n", + " <td>0.135593</td>\n", + " <td>1.695991</td>\n", + " <td>1.696335</td>\n", + " <td>3</td>\n", + " <td>3</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0</td>\n", + " <td>0.057814</td>\n", + " <td>-0.451618</td>\n", + " <td>0.0</td>\n", + " <td>-0.599737</td>\n", + " <td>0</td>\n", + " <td>0</td>\n", + " <td>True</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>False</td>\n", + " <td>-0.5</td>\n", + " <td>111470</td>\n", + " <td>0.902253</td>\n", + " </tr>\n", + " <tr>\n", + " <td>46168</td>\n", + " <td>7f9480ae5</td>\n", + " <td>ID_7f9480ae5</td>\n", + " <td>CT</td>\n", + " <td>ID_61101bd3</td>\n", + " <td>ID_6aca8f9834</td>\n", + " <td>ID_1cb45bbcea</td>\n", + " <td>NaN</td>\n", + " <td>['-125', '42.4079503', '222.344198']</td>\n", + " <td>['1', '0', '0', '0', '0.939692621', '-0.342020...</td>\n", + " <td>1</td>\n", + " <td>MONOCHROME2</td>\n", + " <td>512</td>\n", + " <td>512</td>\n", + " <td>['0.48828125', '0.48828125']</td>\n", + " <td>16</td>\n", + " <td>12</td>\n", + " <td>11</td>\n", + " <td>0</td>\n", + " <td>['00040', '00040']</td>\n", + " <td>['00080', '00080']</td>\n", + " <td>-1024.0</td>\n", + " <td>1.0</td>\n", + " <td>1.301333</td>\n", + " <td>0.006667</td>\n", + " <td>-0.700807</td>\n", + " <td>1.484853</td>\n", + " <td>False</td>\n", + " <td>True</td>\n", + " <td>1.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.939693</td>\n", + " <td>-0.342020</td>\n", + " <td>-125.0</td>\n", + " <td>42.407950</td>\n", + " <td>222.344198</td>\n", + " <td>0.488281</td>\n", + " <td>0.488281</td>\n", + " <td>40.0</td>\n", + " <td>40.0</td>\n", + " <td>False</td>\n", + " <td>80.0</td>\n", + " <td>80.0</td>\n", + " <td>0</td>\n", + " <td>0</td>\n", + " <td>1</td>\n", + " <td>1</td>\n", + " <td>1.862568</td>\n", + " <td>0.0</td>\n", + " <td>...</td>\n", + " <td>1.053199</td>\n", + " <td>0.0</td>\n", + " <td>False</td>\n", + " <td>-0.72</td>\n", + " <td>1.0</td>\n", + " <td>0.0</td>\n", + " <td>1.0</td>\n", + " <td>1.0</td>\n", + " <td>1.432106</td>\n", + " <td>1.0</td>\n", + " <td>0.079290</td>\n", + " <td>0.0</td>\n", + " <td>-0.48</td>\n", + " <td>1.0</td>\n", + " <td>False</td>\n", + " <td>2</td>\n", + " <td>1.249860</td>\n", + " <td>0.592577</td>\n", + " <td>-0.3</td>\n", + " <td>-0.203390</td>\n", + " <td>14</td>\n", + " <td>0.000000</td>\n", + " <td>1.639649</td>\n", + " <td>1.660400</td>\n", + " <td>3</td>\n", + " <td>3</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0</td>\n", + " <td>-0.018112</td>\n", + " <td>-0.193775</td>\n", + " <td>0.0</td>\n", + " <td>-0.584230</td>\n", + " <td>0</td>\n", + " <td>2</td>\n", + " <td>False</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>False</td>\n", + " <td>-0.5</td>\n", + " <td>35441</td>\n", + " <td>0.911084</td>\n", + " </tr>\n", + " <tr>\n", + " <td>90394</td>\n", + " <td>5d403bd8a</td>\n", + " <td>ID_5d403bd8a</td>\n", + " <td>CT</td>\n", + " <td>ID_61101bd3</td>\n", + " <td>ID_6aca8f9834</td>\n", + " <td>ID_1cb45bbcea</td>\n", + " <td>NaN</td>\n", + " <td>['-125', '42.4079503', '206.464926']</td>\n", + " <td>['1', '0', '0', '0', '0.939692621', '-0.342020...</td>\n", + " <td>1</td>\n", + " <td>MONOCHROME2</td>\n", + " <td>512</td>\n", + " <td>512</td>\n", + " <td>['0.48828125', '0.48828125']</td>\n", + " <td>16</td>\n", + " <td>12</td>\n", + " <td>11</td>\n", + " <td>0</td>\n", + " <td>['00040', '00040']</td>\n", + " <td>['00080', '00080']</td>\n", + " <td>-1024.0</td>\n", + " <td>1.0</td>\n", + " <td>1.301333</td>\n", + " <td>0.010667</td>\n", + " <td>-0.780873</td>\n", + " <td>1.496547</td>\n", + " <td>False</td>\n", + " <td>True</td>\n", + " <td>1.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.939693</td>\n", + " <td>-0.342020</td>\n", + " <td>-125.0</td>\n", + " <td>42.407950</td>\n", + " <td>206.464926</td>\n", + " <td>0.488281</td>\n", + " <td>0.488281</td>\n", + " <td>40.0</td>\n", + " <td>40.0</td>\n", + " <td>False</td>\n", + " <td>80.0</td>\n", + " <td>80.0</td>\n", + " <td>0</td>\n", + " <td>0</td>\n", + " <td>1</td>\n", + " <td>1</td>\n", + " <td>1.862568</td>\n", + " <td>0.0</td>\n", + " <td>...</td>\n", + " <td>1.053199</td>\n", + " <td>0.0</td>\n", + " <td>False</td>\n", + " <td>-0.72</td>\n", + " <td>1.0</td>\n", + " <td>0.0</td>\n", + " <td>1.0</td>\n", + " <td>1.0</td>\n", + " <td>1.432106</td>\n", + " <td>1.0</td>\n", + " <td>0.056540</td>\n", + " <td>0.0</td>\n", + " <td>-0.48</td>\n", + " <td>1.0</td>\n", + " <td>False</td>\n", + " <td>2</td>\n", + " <td>1.249860</td>\n", + " <td>0.592577</td>\n", + " <td>-0.3</td>\n", + " <td>-0.406780</td>\n", + " <td>11</td>\n", + " <td>0.203390</td>\n", + " <td>1.660400</td>\n", + " <td>1.639587</td>\n", + " <td>3</td>\n", + " <td>3</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0</td>\n", + " <td>-0.018112</td>\n", + " <td>-0.580318</td>\n", + " <td>0.0</td>\n", + " <td>-0.584230</td>\n", + " <td>0</td>\n", + " <td>2</td>\n", + " <td>False</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>False</td>\n", + " <td>-0.5</td>\n", + " <td>35438</td>\n", + " <td>0.911625</td>\n", + " </tr>\n", + " <tr>\n", + " <td>23519</td>\n", + " <td>645917b86</td>\n", + " <td>ID_645917b86</td>\n", + " <td>CT</td>\n", + " <td>ID_61101bd3</td>\n", + " <td>ID_6aca8f9834</td>\n", + " <td>ID_1cb45bbcea</td>\n", + " <td>NaN</td>\n", + " <td>['-125', '42.4079503', '211.7441']</td>\n", + " <td>['1', '0', '0', '0', '0.939692621', '-0.342020...</td>\n", + " <td>1</td>\n", + " <td>MONOCHROME2</td>\n", + " <td>512</td>\n", + " <td>512</td>\n", + " <td>['0.48828125', '0.48828125']</td>\n", + " <td>16</td>\n", + " <td>12</td>\n", + " <td>11</td>\n", + " <td>0</td>\n", + " <td>['00040', '00040']</td>\n", + " <td>['00080', '00080']</td>\n", + " <td>-1024.0</td>\n", + " <td>1.0</td>\n", + " <td>1.301333</td>\n", + " <td>0.037333</td>\n", + " <td>-0.754200</td>\n", + " <td>1.500107</td>\n", + " <td>False</td>\n", + " <td>True</td>\n", + " <td>1.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.939693</td>\n", + " <td>-0.342020</td>\n", + " <td>-125.0</td>\n", + " <td>42.407950</td>\n", + " <td>211.744100</td>\n", + " <td>0.488281</td>\n", + " <td>0.488281</td>\n", + " <td>40.0</td>\n", + " <td>40.0</td>\n", + " <td>False</td>\n", + " <td>80.0</td>\n", + " <td>80.0</td>\n", + " <td>0</td>\n", + " <td>0</td>\n", + " <td>1</td>\n", + " <td>1</td>\n", + " <td>1.862568</td>\n", + " <td>0.0</td>\n", + " <td>...</td>\n", + " <td>1.053199</td>\n", + " <td>0.0</td>\n", + " <td>False</td>\n", + " <td>-0.72</td>\n", + " <td>1.0</td>\n", + " <td>0.0</td>\n", + " <td>1.0</td>\n", + " <td>1.0</td>\n", + " <td>1.432106</td>\n", + " <td>1.0</td>\n", + " <td>0.064103</td>\n", + " <td>0.0</td>\n", + " <td>-0.48</td>\n", + " <td>1.0</td>\n", + " <td>False</td>\n", + " <td>2</td>\n", + " <td>1.249860</td>\n", + " <td>0.592577</td>\n", + " <td>-0.3</td>\n", + " <td>-0.338983</td>\n", + " <td>12</td>\n", + " <td>0.135593</td>\n", + " <td>1.639587</td>\n", + " <td>1.660400</td>\n", + " <td>3</td>\n", + " <td>3</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0</td>\n", + " <td>-0.018112</td>\n", + " <td>-0.451810</td>\n", + " <td>0.0</td>\n", + " <td>-0.584230</td>\n", + " <td>0</td>\n", + " <td>2</td>\n", + " <td>False</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>False</td>\n", + " <td>-0.5</td>\n", + " <td>35439</td>\n", + " <td>0.916977</td>\n", + " </tr>\n", + " <tr>\n", + " <td>41043</td>\n", + " <td>0f43a379c</td>\n", + " <td>ID_0f43a379c</td>\n", + " <td>CT</td>\n", + " <td>ID_61101bd3</td>\n", + " <td>ID_6aca8f9834</td>\n", + " <td>ID_1cb45bbcea</td>\n", + " <td>NaN</td>\n", + " <td>['-125', '42.4079503', '217.064901']</td>\n", + " <td>['1', '0', '0', '0', '0.939692621', '-0.342020...</td>\n", + " <td>1</td>\n", + " <td>MONOCHROME2</td>\n", + " <td>512</td>\n", + " <td>512</td>\n", + " <td>['0.48828125', '0.48828125']</td>\n", + " <td>16</td>\n", + " <td>12</td>\n", + " <td>11</td>\n", + " <td>0</td>\n", + " <td>['00040', '00040']</td>\n", + " <td>['00080', '00080']</td>\n", + " <td>-1024.0</td>\n", + " <td>1.0</td>\n", + " <td>1.301333</td>\n", + " <td>0.000000</td>\n", + " <td>-0.718398</td>\n", + " <td>1.505203</td>\n", + " <td>False</td>\n", + " <td>True</td>\n", + " <td>1.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.939693</td>\n", + " <td>-0.342020</td>\n", + " <td>-125.0</td>\n", + " <td>42.407950</td>\n", + " <td>217.064901</td>\n", + " <td>0.488281</td>\n", + " <td>0.488281</td>\n", + " <td>40.0</td>\n", + " <td>40.0</td>\n", + " <td>False</td>\n", + " <td>80.0</td>\n", + " <td>80.0</td>\n", + " <td>0</td>\n", + " <td>0</td>\n", + " <td>1</td>\n", + " <td>1</td>\n", + " <td>1.862568</td>\n", + " <td>0.0</td>\n", + " <td>...</td>\n", + " <td>1.053199</td>\n", + " <td>0.0</td>\n", + " <td>False</td>\n", + " <td>-0.72</td>\n", + " <td>1.0</td>\n", + " <td>0.0</td>\n", + " <td>1.0</td>\n", + " <td>1.0</td>\n", + " <td>1.432106</td>\n", + " <td>1.0</td>\n", + " <td>0.071726</td>\n", + " <td>0.0</td>\n", + " <td>-0.48</td>\n", + " <td>1.0</td>\n", + " <td>False</td>\n", + " <td>2</td>\n", + " <td>1.249860</td>\n", + " <td>0.592577</td>\n", + " <td>-0.3</td>\n", + " <td>-0.271186</td>\n", + " <td>13</td>\n", + " <td>0.067797</td>\n", + " <td>1.660400</td>\n", + " <td>1.639649</td>\n", + " <td>3</td>\n", + " <td>3</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0</td>\n", + " <td>-0.018112</td>\n", + " <td>-0.322287</td>\n", + " <td>0.0</td>\n", + " <td>-0.584230</td>\n", + " <td>0</td>\n", + " <td>2</td>\n", + " <td>False</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>False</td>\n", + " <td>-0.5</td>\n", + " <td>35440</td>\n", + " <td>0.917555</td>\n", + " </tr>\n", + " </tbody>\n", + "</table>\n", + "<p>5 rows × 101 columns</p>\n", + "</div>" + ], + "text/plain": [ + " img_id SOPInstanceUID Modality PatientID StudyInstanceUID \\\n", + "85421 ba1a7894c ID_ba1a7894c CT ID_6f87831a ID_a6ca244172 \n", + "46168 7f9480ae5 ID_7f9480ae5 CT ID_61101bd3 ID_6aca8f9834 \n", + "90394 5d403bd8a ID_5d403bd8a CT ID_61101bd3 ID_6aca8f9834 \n", + "23519 645917b86 ID_645917b86 CT ID_61101bd3 ID_6aca8f9834 \n", + "41043 0f43a379c ID_0f43a379c CT ID_61101bd3 ID_6aca8f9834 \n", + "\n", + " SeriesInstanceUID StudyID \\\n", + "85421 ID_d00cee7f0c NaN \n", + "46168 ID_1cb45bbcea NaN \n", + "90394 ID_1cb45bbcea NaN \n", + "23519 ID_1cb45bbcea NaN \n", + "41043 ID_1cb45bbcea NaN \n", + "\n", + " ImagePositionPatient \\\n", + "85421 ['-125.000000', '-119.997978', '127.192337'] \n", + "46168 ['-125', '42.4079503', '222.344198'] \n", + "90394 ['-125', '42.4079503', '206.464926'] \n", + "23519 ['-125', '42.4079503', '211.7441'] \n", + "41043 ['-125', '42.4079503', '217.064901'] \n", + "\n", + " ImageOrientationPatient SamplesPerPixel \\\n", + "85421 ['1.000000', '0.000000', '0.000000', '0.000000... 1 \n", + "46168 ['1', '0', '0', '0', '0.939692621', '-0.342020... 1 \n", + "90394 ['1', '0', '0', '0', '0.939692621', '-0.342020... 1 \n", + "23519 ['1', '0', '0', '0', '0.939692621', '-0.342020... 1 \n", + "41043 ['1', '0', '0', '0', '0.939692621', '-0.342020... 1 \n", + "\n", + " PhotometricInterpretation Rows Columns PixelSpacing \\\n", + "85421 MONOCHROME2 512 512 ['0.488281', '0.488281'] \n", + "46168 MONOCHROME2 512 512 ['0.48828125', '0.48828125'] \n", + "90394 MONOCHROME2 512 512 ['0.48828125', '0.48828125'] \n", + "23519 MONOCHROME2 512 512 ['0.48828125', '0.48828125'] \n", + "41043 MONOCHROME2 512 512 ['0.48828125', '0.48828125'] \n", + "\n", + " BitsAllocated BitsStored HighBit PixelRepresentation \\\n", + "85421 16 16 15 1 \n", + "46168 16 12 11 0 \n", + "90394 16 12 11 0 \n", + "23519 16 12 11 0 \n", + "41043 16 12 11 0 \n", + "\n", + " WindowCenter WindowWidth RescaleIntercept RescaleSlope \\\n", + "85421 30 80 -1024.0 1.0 \n", + "46168 ['00040', '00040'] ['00080', '00080'] -1024.0 1.0 \n", + "90394 ['00040', '00040'] ['00080', '00080'] -1024.0 1.0 \n", + "23519 ['00040', '00040'] ['00080', '00080'] -1024.0 1.0 \n", + "41043 ['00040', '00040'] ['00080', '00080'] -1024.0 1.0 \n", + "\n", + " PxlMin PxlMax PxlStd PxlMean test test2 \\\n", + "85421 -1.365333 0.310667 1.642553 -0.881730 False True \n", + "46168 1.301333 0.006667 -0.700807 1.484853 False True \n", + "90394 1.301333 0.010667 -0.780873 1.496547 False True \n", + "23519 1.301333 0.037333 -0.754200 1.500107 False True \n", + "41043 1.301333 0.000000 -0.718398 1.505203 False True \n", + "\n", + " ImageOrientationPatient_0 ImageOrientationPatient_1 \\\n", + "85421 1.0 0.0 \n", + "46168 1.0 0.0 \n", + "90394 1.0 0.0 \n", + "23519 1.0 0.0 \n", + "41043 1.0 0.0 \n", + "\n", + " ImageOrientationPatient_2 ImageOrientationPatient_3 \\\n", + "85421 0.0 0.0 \n", + "46168 0.0 0.0 \n", + "90394 0.0 0.0 \n", + "23519 0.0 0.0 \n", + "41043 0.0 0.0 \n", + "\n", + " ImageOrientationPatient_4 ImageOrientationPatient_5 \\\n", + "85421 0.927184 -0.374607 \n", + "46168 0.939693 -0.342020 \n", + "90394 0.939693 -0.342020 \n", + "23519 0.939693 -0.342020 \n", + "41043 0.939693 -0.342020 \n", + "\n", + " ImagePositionPatient_0 ImagePositionPatient_1 ImagePositionPatient_2 \\\n", + "85421 -125.0 -119.997978 127.192337 \n", + "46168 -125.0 42.407950 222.344198 \n", + "90394 -125.0 42.407950 206.464926 \n", + "23519 -125.0 42.407950 211.744100 \n", + "41043 -125.0 42.407950 217.064901 \n", + "\n", + " PixelSpacing_0 PixelSpacing_1 WindowCenter_0 WindowCenter_1 \\\n", + "85421 0.488281 0.488281 30.0 NaN \n", + "46168 0.488281 0.488281 40.0 40.0 \n", + "90394 0.488281 0.488281 40.0 40.0 \n", + "23519 0.488281 0.488281 40.0 40.0 \n", + "41043 0.488281 0.488281 40.0 40.0 \n", + "\n", + " WindowCenter_1_NAN WindowWidth_0 WindowWidth_1 WindowWidth_0_le \\\n", + "85421 True 80.0 NaN 0 \n", + "46168 False 80.0 80.0 0 \n", + "90394 False 80.0 80.0 0 \n", + "23519 False 80.0 80.0 0 \n", + "41043 False 80.0 80.0 0 \n", + "\n", + " WindowWidth_1_le WindowCenter_1_le BitType_le \\\n", + "85421 1 3 0 \n", + "46168 0 1 1 \n", + "90394 0 1 1 \n", + "23519 0 1 1 \n", + "41043 0 1 1 \n", + "\n", + " ImageOrientationPatient_4_f ImageOrientationPatient_4_enc_0 ... \\\n", + "85421 -1.333333 0.0 ... \n", + "46168 1.862568 0.0 ... \n", + "90394 1.862568 0.0 ... \n", + "23519 1.862568 0.0 ... \n", + "41043 1.862568 0.0 ... \n", + "\n", + " ImageOrientationPatient_5_f ImageOrientationPatient_5_enc_0 \\\n", + "85421 -0.666667 0.0 \n", + "46168 1.053199 0.0 \n", + "90394 1.053199 0.0 \n", + "23519 1.053199 0.0 \n", + "41043 1.053199 0.0 \n", + "\n", + " ImageOrientationPatient_5_enc_1 ImagePositionPatient_0_f \\\n", + "85421 True -0.72 \n", + "46168 False -0.72 \n", + "90394 False -0.72 \n", + "23519 False -0.72 \n", + "41043 False -0.72 \n", + "\n", + " ImagePositionPatient_0_enc_0 ImagePositionPatient_0_enc_1 \\\n", + "85421 1.0 0.0 \n", + "46168 1.0 0.0 \n", + "90394 1.0 0.0 \n", + "23519 1.0 0.0 \n", + "41043 1.0 0.0 \n", + "\n", + " ImagePositionPatient_0_f_r1 ImagePositionPatient_0_f_r05 \\\n", + "85421 1.0 1.0 \n", + "46168 1.0 1.0 \n", + "90394 1.0 1.0 \n", + "23519 1.0 1.0 \n", + "41043 1.0 1.0 \n", + "\n", + " ImagePositionPatient_1_f ImagePositionPatient_1_enc_0 \\\n", + "85421 -0.733306 0.0 \n", + "46168 1.432106 1.0 \n", + "90394 1.432106 1.0 \n", + "23519 1.432106 1.0 \n", + "41043 1.432106 1.0 \n", + "\n", + " ImagePositionPatient_2_f ImagePositionPatient_2_f_r05 \\\n", + "85421 -0.057031 0.0 \n", + "46168 0.079290 0.0 \n", + "90394 0.056540 0.0 \n", + "23519 0.064103 0.0 \n", + "41043 0.071726 0.0 \n", + "\n", + " PixelSpacing_1_f PixelSpacing_1_enc_0 PixelSpacing_1_enc_1 \\\n", + "85421 -0.48 1.0 False \n", + "46168 -0.48 1.0 False \n", + "90394 -0.48 1.0 False \n", + "23519 -0.48 1.0 False \n", + "41043 -0.48 1.0 False \n", + "\n", + " WindowCenter_0_le pos_max pos_min pos_size pos_idx1 pos_idx \\\n", + "85421 0 0.918601 0.249929 -0.3 -0.338983 12 \n", + "46168 2 1.249860 0.592577 -0.3 -0.203390 14 \n", + "90394 2 1.249860 0.592577 -0.3 -0.406780 11 \n", + "23519 2 1.249860 0.592577 -0.3 -0.338983 12 \n", + "41043 2 1.249860 0.592577 -0.3 -0.271186 13 \n", + "\n", + " pos_idx2 pos_inc1 pos_inc2 pos_inc1_grp_le pos_inc2_grp_le \\\n", + "85421 0.135593 1.695991 1.696335 3 3 \n", + "46168 0.000000 1.639649 1.660400 3 3 \n", + "90394 0.203390 1.660400 1.639587 3 3 \n", + "23519 0.135593 1.639587 1.660400 3 3 \n", + "41043 0.067797 1.660400 1.639649 3 3 \n", + "\n", + " pos_inc1_r1 pos_inc1_r0001 pos_inc1_enc_0 pos_inc2_enc_0 \\\n", + "85421 0.0 0.0 0.0 0.0 \n", + "46168 0.0 0.0 0.0 0.0 \n", + "90394 0.0 0.0 0.0 0.0 \n", + "23519 0.0 0.0 0.0 0.0 \n", + "41043 0.0 0.0 0.0 0.0 \n", + "\n", + " pos_inc1_enc_1 pos_inc2_enc_1 pos_size_le pos_range pos_rel \\\n", + "85421 0.0 0.0 0 0.057814 -0.451618 \n", + "46168 0.0 0.0 0 -0.018112 -0.193775 \n", + "90394 0.0 0.0 0 -0.018112 -0.580318 \n", + "23519 0.0 0.0 0 -0.018112 -0.451810 \n", + "41043 0.0 0.0 0 -0.018112 -0.322287 \n", + "\n", + " pos_zeros pos_inc_rng pos_zeros_le PxlMin_grp_le PxlMin_zero any \\\n", + "85421 0.0 -0.599737 0 0 True NaN \n", + "46168 0.0 -0.584230 0 2 False NaN \n", + "90394 0.0 -0.584230 0 2 False NaN \n", + "23519 0.0 -0.584230 0 2 False NaN \n", + "41043 0.0 -0.584230 0 2 False NaN \n", + "\n", + " epidural intraparenchymal intraventricular subarachnoid subdural \\\n", + "85421 NaN NaN NaN NaN NaN \n", + "46168 NaN NaN NaN NaN NaN \n", + "90394 NaN NaN NaN NaN NaN \n", + "23519 NaN NaN NaN NaN NaN \n", + "41043 NaN NaN NaN NaN NaN \n", + "\n", + " any_series SeriesPP yuval_idx pred_any \n", + "85421 False -0.5 111470 0.902253 \n", + "46168 False -0.5 35441 0.911084 \n", + "90394 False -0.5 35438 0.911625 \n", + "23519 False -0.5 35439 0.916977 \n", + "41043 False -0.5 35440 0.917555 \n", + "\n", + "[5 rows x 101 columns]" + ] + }, + "execution_count": 64, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "test_md['pred_any'] = predictions[:,1]\n", + "test_md.sort_values('pred_any').tail()" + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "<div>\n", + "<style scoped>\n", + " .dataframe tbody tr th:only-of-type {\n", + " vertical-align: middle;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th></th>\n", + " <th>img_id</th>\n", + " <th>SOPInstanceUID</th>\n", + " <th>Modality</th>\n", + " <th>PatientID</th>\n", + " <th>StudyInstanceUID</th>\n", + " <th>SeriesInstanceUID</th>\n", + " <th>StudyID</th>\n", + " <th>ImagePositionPatient</th>\n", + " <th>ImageOrientationPatient</th>\n", + " <th>SamplesPerPixel</th>\n", + " <th>PhotometricInterpretation</th>\n", + " <th>Rows</th>\n", + " <th>Columns</th>\n", + " <th>PixelSpacing</th>\n", + " <th>BitsAllocated</th>\n", + " <th>BitsStored</th>\n", + " <th>HighBit</th>\n", + " <th>PixelRepresentation</th>\n", + " <th>WindowCenter</th>\n", + " <th>WindowWidth</th>\n", + " <th>RescaleIntercept</th>\n", + " <th>RescaleSlope</th>\n", + " <th>PxlMin</th>\n", + " <th>PxlMax</th>\n", + " <th>PxlStd</th>\n", + " <th>PxlMean</th>\n", + " <th>test</th>\n", + " <th>test2</th>\n", + " <th>ImageOrientationPatient_0</th>\n", + " <th>ImageOrientationPatient_1</th>\n", + " <th>ImageOrientationPatient_2</th>\n", + " <th>ImageOrientationPatient_3</th>\n", + " <th>ImageOrientationPatient_4</th>\n", + " <th>ImageOrientationPatient_5</th>\n", + " <th>ImagePositionPatient_0</th>\n", + " <th>ImagePositionPatient_1</th>\n", + " <th>ImagePositionPatient_2</th>\n", + " <th>PixelSpacing_0</th>\n", + " <th>PixelSpacing_1</th>\n", + " <th>WindowCenter_0</th>\n", + " <th>WindowCenter_1</th>\n", + " <th>WindowCenter_1_NAN</th>\n", + " <th>WindowWidth_0</th>\n", + " <th>WindowWidth_1</th>\n", + " <th>WindowWidth_0_le</th>\n", + " <th>WindowWidth_1_le</th>\n", + " <th>WindowCenter_1_le</th>\n", + " <th>BitType_le</th>\n", + " <th>ImageOrientationPatient_4_f</th>\n", + " <th>ImageOrientationPatient_4_enc_0</th>\n", + " <th>...</th>\n", + " <th>ImageOrientationPatient_5_f</th>\n", + " <th>ImageOrientationPatient_5_enc_0</th>\n", + " <th>ImageOrientationPatient_5_enc_1</th>\n", + " <th>ImagePositionPatient_0_f</th>\n", + " <th>ImagePositionPatient_0_enc_0</th>\n", + " <th>ImagePositionPatient_0_enc_1</th>\n", + " <th>ImagePositionPatient_0_f_r1</th>\n", + " <th>ImagePositionPatient_0_f_r05</th>\n", + " <th>ImagePositionPatient_1_f</th>\n", + " <th>ImagePositionPatient_1_enc_0</th>\n", + " <th>ImagePositionPatient_2_f</th>\n", + " <th>ImagePositionPatient_2_f_r05</th>\n", + " <th>PixelSpacing_1_f</th>\n", + " <th>PixelSpacing_1_enc_0</th>\n", + " <th>PixelSpacing_1_enc_1</th>\n", + " <th>WindowCenter_0_le</th>\n", + " <th>pos_max</th>\n", + " <th>pos_min</th>\n", + " <th>pos_size</th>\n", + " <th>pos_idx1</th>\n", + " <th>pos_idx</th>\n", + " <th>pos_idx2</th>\n", + " <th>pos_inc1</th>\n", + " <th>pos_inc2</th>\n", + " <th>pos_inc1_grp_le</th>\n", + " <th>pos_inc2_grp_le</th>\n", + " <th>pos_inc1_r1</th>\n", + " <th>pos_inc1_r0001</th>\n", + " <th>pos_inc1_enc_0</th>\n", + " <th>pos_inc2_enc_0</th>\n", + " <th>pos_inc1_enc_1</th>\n", + " <th>pos_inc2_enc_1</th>\n", + " <th>pos_size_le</th>\n", + " <th>pos_range</th>\n", + " <th>pos_rel</th>\n", + " <th>pos_zeros</th>\n", + " <th>pos_inc_rng</th>\n", + " <th>pos_zeros_le</th>\n", + " <th>PxlMin_grp_le</th>\n", + " <th>PxlMin_zero</th>\n", + " <th>any</th>\n", + " <th>epidural</th>\n", + " <th>intraparenchymal</th>\n", + " <th>intraventricular</th>\n", + " <th>subarachnoid</th>\n", + " <th>subdural</th>\n", + " <th>any_series</th>\n", + " <th>SeriesPP</th>\n", + " <th>yuval_idx</th>\n", + " <th>pred_any</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <td>56318</td>\n", + " <td>aaea1517d</td>\n", + " <td>ID_aaea1517d</td>\n", + " <td>CT</td>\n", + " <td>ID_e875aaac</td>\n", + " <td>ID_ace87fc419</td>\n", + " <td>ID_c2050c1b62</td>\n", + " <td>NaN</td>\n", + " <td>['-126.408875', '-126.408875', '157.507935']</td>\n", + " <td>['1.000000', '0.000000', '0.000000', '0.000000...</td>\n", + " <td>1</td>\n", + " <td>MONOCHROME2</td>\n", + " <td>512</td>\n", + " <td>512</td>\n", + " <td>['0.494750976563', '0.494750976563']</td>\n", + " <td>16</td>\n", + " <td>16</td>\n", + " <td>15</td>\n", + " <td>1</td>\n", + " <td>35.000000</td>\n", + " <td>135.000000</td>\n", + " <td>-1024.0</td>\n", + " <td>1.0</td>\n", + " <td>1.301333</td>\n", + " <td>0.309333</td>\n", + " <td>-0.835506</td>\n", + " <td>1.294749</td>\n", + " <td>False</td>\n", + " <td>True</td>\n", + " <td>1.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>1.000000</td>\n", + " <td>0.000000</td>\n", + " <td>-126.408875</td>\n", + " <td>-126.408875</td>\n", + " <td>157.507935</td>\n", + " <td>0.494751</td>\n", + " <td>0.494751</td>\n", + " <td>35.0</td>\n", + " <td>NaN</td>\n", + " <td>True</td>\n", + " <td>135.0</td>\n", + " <td>NaN</td>\n", + " <td>3</td>\n", + " <td>1</td>\n", + " <td>3</td>\n", + " <td>0</td>\n", + " <td>-1.333333</td>\n", + " <td>1.0</td>\n", + " <td>...</td>\n", + " <td>-0.666667</td>\n", + " <td>1.0</td>\n", + " <td>False</td>\n", + " <td>-0.720000</td>\n", + " <td>0.0</td>\n", + " <td>1.0</td>\n", + " <td>1.0</td>\n", + " <td>1.0</td>\n", + " <td>-0.818785</td>\n", + " <td>0.0</td>\n", + " <td>-0.013599</td>\n", + " <td>0.0</td>\n", + " <td>-0.48</td>\n", + " <td>0.0</td>\n", + " <td>True</td>\n", + " <td>3</td>\n", + " <td>0.850032</td>\n", + " <td>-0.009968</td>\n", + " <td>0.9</td>\n", + " <td>1.016949</td>\n", + " <td>32</td>\n", + " <td>-0.406780</td>\n", + " <td>-1.500000</td>\n", + " <td>-1.500000</td>\n", + " <td>3</td>\n", + " <td>3</td>\n", + " <td>1.0</td>\n", + " <td>1.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>1.0</td>\n", + " <td>1.0</td>\n", + " <td>9</td>\n", + " <td>1.333334</td>\n", + " <td>0.976744</td>\n", + " <td>0.0</td>\n", + " <td>-0.599997</td>\n", + " <td>0</td>\n", + " <td>2</td>\n", + " <td>False</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>False</td>\n", + " <td>-0.5</td>\n", + " <td>20605</td>\n", + " <td>0.995869</td>\n", + " </tr>\n", + " <tr>\n", + " <td>11838</td>\n", + " <td>8a3a7113f</td>\n", + " <td>ID_8a3a7113f</td>\n", + " <td>CT</td>\n", + " <td>ID_1f7020f7</td>\n", + " <td>ID_ffd91b71d1</td>\n", + " <td>ID_a0997b616a</td>\n", + " <td>NaN</td>\n", + " <td>['-118', '20.437079', '167.587618']</td>\n", + " <td>['1', '0', '0', '0', '0.978147601', '-0.207911...</td>\n", + " <td>1</td>\n", + " <td>MONOCHROME2</td>\n", + " <td>512</td>\n", + " <td>512</td>\n", + " <td>['0.48828125', '0.48828125']</td>\n", + " <td>16</td>\n", + " <td>12</td>\n", + " <td>11</td>\n", + " <td>0</td>\n", + " <td>['00040', '00040']</td>\n", + " <td>['00080', '00080']</td>\n", + " <td>-1024.0</td>\n", + " <td>1.0</td>\n", + " <td>1.301333</td>\n", + " <td>0.126667</td>\n", + " <td>-0.975261</td>\n", + " <td>0.972069</td>\n", + " <td>False</td>\n", + " <td>True</td>\n", + " <td>1.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.978148</td>\n", + " <td>-0.207912</td>\n", + " <td>-118.000000</td>\n", + " <td>20.437079</td>\n", + " <td>167.587618</td>\n", + " <td>0.488281</td>\n", + " <td>0.488281</td>\n", + " <td>40.0</td>\n", + " <td>40.0</td>\n", + " <td>False</td>\n", + " <td>80.0</td>\n", + " <td>80.0</td>\n", + " <td>0</td>\n", + " <td>0</td>\n", + " <td>1</td>\n", + " <td>1</td>\n", + " <td>2.375301</td>\n", + " <td>0.0</td>\n", + " <td>...</td>\n", + " <td>1.947255</td>\n", + " <td>0.0</td>\n", + " <td>False</td>\n", + " <td>1.466667</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>1.0</td>\n", + " <td>1.0</td>\n", + " <td>1.139161</td>\n", + " <td>1.0</td>\n", + " <td>0.000842</td>\n", + " <td>0.0</td>\n", + " <td>-0.48</td>\n", + " <td>1.0</td>\n", + " <td>False</td>\n", + " <td>2</td>\n", + " <td>1.078350</td>\n", + " <td>0.445865</td>\n", + " <td>-0.3</td>\n", + " <td>-0.406780</td>\n", + " <td>11</td>\n", + " <td>0.203390</td>\n", + " <td>1.560669</td>\n", + " <td>1.539367</td>\n", + " <td>3</td>\n", + " <td>3</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0</td>\n", + " <td>-0.183431</td>\n", + " <td>-0.580297</td>\n", + " <td>0.0</td>\n", + " <td>-0.583175</td>\n", + " <td>0</td>\n", + " <td>2</td>\n", + " <td>False</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>False</td>\n", + " <td>-0.5</td>\n", + " <td>49264</td>\n", + " <td>0.995902</td>\n", + " </tr>\n", + " <tr>\n", + " <td>60633</td>\n", + " <td>fd5080c37</td>\n", + " <td>ID_fd5080c37</td>\n", + " <td>CT</td>\n", + " <td>ID_16b922cc</td>\n", + " <td>ID_b48b0482e3</td>\n", + " <td>ID_653f493476</td>\n", + " <td>NaN</td>\n", + " <td>['-125', '32.528565', '161.22819']</td>\n", + " <td>['1', '0', '0', '0', '0.939692621', '-0.342020...</td>\n", + " <td>1</td>\n", + " <td>MONOCHROME2</td>\n", + " <td>512</td>\n", + " <td>512</td>\n", + " <td>['0.48828125', '0.48828125']</td>\n", + " <td>16</td>\n", + " <td>12</td>\n", + " <td>11</td>\n", + " <td>0</td>\n", + " <td>['00040', '00040']</td>\n", + " <td>['00080', '00080']</td>\n", + " <td>-1024.0</td>\n", + " <td>1.0</td>\n", + " <td>1.301333</td>\n", + " <td>-0.090667</td>\n", + " <td>-0.796026</td>\n", + " <td>1.330736</td>\n", + " <td>False</td>\n", + " <td>True</td>\n", + " <td>1.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.939693</td>\n", + " <td>-0.342020</td>\n", + " <td>-125.000000</td>\n", + " <td>32.528565</td>\n", + " <td>161.228190</td>\n", + " <td>0.488281</td>\n", + " <td>0.488281</td>\n", + " <td>40.0</td>\n", + " <td>40.0</td>\n", + " <td>False</td>\n", + " <td>80.0</td>\n", + " <td>80.0</td>\n", + " <td>0</td>\n", + " <td>0</td>\n", + " <td>1</td>\n", + " <td>1</td>\n", + " <td>1.862568</td>\n", + " <td>0.0</td>\n", + " <td>...</td>\n", + " <td>1.053199</td>\n", + " <td>0.0</td>\n", + " <td>False</td>\n", + " <td>-0.720000</td>\n", + " <td>1.0</td>\n", + " <td>0.0</td>\n", + " <td>1.0</td>\n", + " <td>1.0</td>\n", + " <td>1.300381</td>\n", + " <td>1.0</td>\n", + " <td>-0.008269</td>\n", + " <td>0.0</td>\n", + " <td>-0.48</td>\n", + " <td>1.0</td>\n", + " <td>False</td>\n", + " <td>2</td>\n", + " <td>1.132596</td>\n", + " <td>0.432912</td>\n", + " <td>-0.1</td>\n", + " <td>-0.474576</td>\n", + " <td>10</td>\n", + " <td>0.406780</td>\n", + " <td>1.639588</td>\n", + " <td>1.660400</td>\n", + " <td>3</td>\n", + " <td>3</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>4</td>\n", + " <td>0.264557</td>\n", + " <td>-0.788021</td>\n", + " <td>0.0</td>\n", + " <td>-0.584137</td>\n", + " <td>0</td>\n", + " <td>2</td>\n", + " <td>False</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>False</td>\n", + " <td>-0.5</td>\n", + " <td>59637</td>\n", + " <td>0.995940</td>\n", + " </tr>\n", + " <tr>\n", + " <td>30971</td>\n", + " <td>8dbff5245</td>\n", + " <td>ID_8dbff5245</td>\n", + " <td>CT</td>\n", + " <td>ID_f0ef989c</td>\n", + " <td>ID_fcdfd2db4e</td>\n", + " <td>ID_b9627ee31c</td>\n", + " <td>NaN</td>\n", + " <td>['-125', '19.0514449', '123.026026']</td>\n", + " <td>['1', '0', '0', '0', '0.981627183', '-0.190808...</td>\n", + " <td>1</td>\n", + " <td>MONOCHROME2</td>\n", + " <td>512</td>\n", + " <td>512</td>\n", + " <td>['0.48828125', '0.48828125']</td>\n", + " <td>16</td>\n", + " <td>12</td>\n", + " <td>11</td>\n", + " <td>0</td>\n", + " <td>['00040', '00040']</td>\n", + " <td>['00080', '00080']</td>\n", + " <td>-1024.0</td>\n", + " <td>1.0</td>\n", + " <td>1.301333</td>\n", + " <td>0.164000</td>\n", + " <td>-0.675198</td>\n", + " <td>1.380203</td>\n", + " <td>False</td>\n", + " <td>True</td>\n", + " <td>1.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.981627</td>\n", + " <td>-0.190809</td>\n", + " <td>-125.000000</td>\n", + " <td>19.051445</td>\n", + " <td>123.026026</td>\n", + " <td>0.488281</td>\n", + " <td>0.488281</td>\n", + " <td>40.0</td>\n", + " <td>40.0</td>\n", + " <td>False</td>\n", + " <td>80.0</td>\n", + " <td>80.0</td>\n", + " <td>0</td>\n", + " <td>0</td>\n", + " <td>1</td>\n", + " <td>1</td>\n", + " <td>2.421696</td>\n", + " <td>0.0</td>\n", + " <td>...</td>\n", + " <td>2.061273</td>\n", + " <td>0.0</td>\n", + " <td>False</td>\n", + " <td>-0.720000</td>\n", + " <td>1.0</td>\n", + " <td>0.0</td>\n", + " <td>1.0</td>\n", + " <td>1.0</td>\n", + " <td>1.120686</td>\n", + " <td>1.0</td>\n", + " <td>-0.063000</td>\n", + " <td>0.0</td>\n", + " <td>-0.48</td>\n", + " <td>1.0</td>\n", + " <td>False</td>\n", + " <td>2</td>\n", + " <td>0.940904</td>\n", + " <td>0.267694</td>\n", + " <td>-0.1</td>\n", + " <td>-0.406780</td>\n", + " <td>11</td>\n", + " <td>0.338983</td>\n", + " <td>1.551270</td>\n", + " <td>1.548767</td>\n", + " <td>3</td>\n", + " <td>3</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>4</td>\n", + " <td>0.088070</td>\n", + " <td>-0.666627</td>\n", + " <td>0.0</td>\n", + " <td>-0.597988</td>\n", + " <td>0</td>\n", + " <td>2</td>\n", + " <td>False</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>False</td>\n", + " <td>-0.5</td>\n", + " <td>59366</td>\n", + " <td>0.995958</td>\n", + " </tr>\n", + " <tr>\n", + " <td>23816</td>\n", + " <td>423cee314</td>\n", + " <td>ID_423cee314</td>\n", + " <td>CT</td>\n", + " <td>ID_e875aaac</td>\n", + " <td>ID_ace87fc419</td>\n", + " <td>ID_c2050c1b62</td>\n", + " <td>NaN</td>\n", + " <td>['-126.408875', '-126.408875', '167.507935']</td>\n", + " <td>['1.000000', '0.000000', '0.000000', '0.000000...</td>\n", + " <td>1</td>\n", + " <td>MONOCHROME2</td>\n", + " <td>512</td>\n", + " <td>512</td>\n", + " <td>['0.494750976563', '0.494750976563']</td>\n", + " <td>16</td>\n", + " <td>16</td>\n", + " <td>15</td>\n", + " <td>1</td>\n", + " <td>35.000000</td>\n", + " <td>135.000000</td>\n", + " <td>-1024.0</td>\n", + " <td>1.0</td>\n", + " <td>1.301333</td>\n", + " <td>0.265333</td>\n", + " <td>-0.826401</td>\n", + " <td>1.185491</td>\n", + " <td>False</td>\n", + " <td>True</td>\n", + " <td>1.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>1.000000</td>\n", + " <td>0.000000</td>\n", + " <td>-126.408875</td>\n", + " <td>-126.408875</td>\n", + " <td>167.507935</td>\n", + " <td>0.494751</td>\n", + " <td>0.494751</td>\n", + " <td>35.0</td>\n", + " <td>NaN</td>\n", + " <td>True</td>\n", + " <td>135.0</td>\n", + " <td>NaN</td>\n", + " <td>3</td>\n", + " <td>1</td>\n", + " <td>3</td>\n", + " <td>0</td>\n", + " <td>-1.333333</td>\n", + " <td>1.0</td>\n", + " <td>...</td>\n", + " <td>-0.666667</td>\n", + " <td>1.0</td>\n", + " <td>False</td>\n", + " <td>-0.720000</td>\n", + " <td>0.0</td>\n", + " <td>1.0</td>\n", + " <td>1.0</td>\n", + " <td>1.0</td>\n", + " <td>-0.818785</td>\n", + " <td>0.0</td>\n", + " <td>0.000728</td>\n", + " <td>0.0</td>\n", + " <td>-0.48</td>\n", + " <td>0.0</td>\n", + " <td>True</td>\n", + " <td>3</td>\n", + " <td>0.850032</td>\n", + " <td>-0.009968</td>\n", + " <td>0.9</td>\n", + " <td>1.152542</td>\n", + " <td>34</td>\n", + " <td>-0.542373</td>\n", + " <td>-1.500000</td>\n", + " <td>-1.500000</td>\n", + " <td>3</td>\n", + " <td>3</td>\n", + " <td>1.0</td>\n", + " <td>1.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>1.0</td>\n", + " <td>1.0</td>\n", + " <td>9</td>\n", + " <td>1.333334</td>\n", + " <td>1.162791</td>\n", + " <td>0.0</td>\n", + " <td>-0.599997</td>\n", + " <td>0</td>\n", + " <td>2</td>\n", + " <td>False</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>False</td>\n", + " <td>-0.5</td>\n", + " <td>20607</td>\n", + " <td>0.996068</td>\n", + " </tr>\n", + " </tbody>\n", + "</table>\n", + "<p>5 rows × 101 columns</p>\n", + "</div>" + ], + "text/plain": [ + " img_id SOPInstanceUID Modality PatientID StudyInstanceUID \\\n", + "56318 aaea1517d ID_aaea1517d CT ID_e875aaac ID_ace87fc419 \n", + "11838 8a3a7113f ID_8a3a7113f CT ID_1f7020f7 ID_ffd91b71d1 \n", + "60633 fd5080c37 ID_fd5080c37 CT ID_16b922cc ID_b48b0482e3 \n", + "30971 8dbff5245 ID_8dbff5245 CT ID_f0ef989c ID_fcdfd2db4e \n", + "23816 423cee314 ID_423cee314 CT ID_e875aaac ID_ace87fc419 \n", + "\n", + " SeriesInstanceUID StudyID \\\n", + "56318 ID_c2050c1b62 NaN \n", + "11838 ID_a0997b616a NaN \n", + "60633 ID_653f493476 NaN \n", + "30971 ID_b9627ee31c NaN \n", + "23816 ID_c2050c1b62 NaN \n", + "\n", + " ImagePositionPatient \\\n", + "56318 ['-126.408875', '-126.408875', '157.507935'] \n", + "11838 ['-118', '20.437079', '167.587618'] \n", + "60633 ['-125', '32.528565', '161.22819'] \n", + "30971 ['-125', '19.0514449', '123.026026'] \n", + "23816 ['-126.408875', '-126.408875', '167.507935'] \n", + "\n", + " ImageOrientationPatient SamplesPerPixel \\\n", + "56318 ['1.000000', '0.000000', '0.000000', '0.000000... 1 \n", + "11838 ['1', '0', '0', '0', '0.978147601', '-0.207911... 1 \n", + "60633 ['1', '0', '0', '0', '0.939692621', '-0.342020... 1 \n", + "30971 ['1', '0', '0', '0', '0.981627183', '-0.190808... 1 \n", + "23816 ['1.000000', '0.000000', '0.000000', '0.000000... 1 \n", + "\n", + " PhotometricInterpretation Rows Columns \\\n", + "56318 MONOCHROME2 512 512 \n", + "11838 MONOCHROME2 512 512 \n", + "60633 MONOCHROME2 512 512 \n", + "30971 MONOCHROME2 512 512 \n", + "23816 MONOCHROME2 512 512 \n", + "\n", + " PixelSpacing BitsAllocated BitsStored \\\n", + "56318 ['0.494750976563', '0.494750976563'] 16 16 \n", + "11838 ['0.48828125', '0.48828125'] 16 12 \n", + "60633 ['0.48828125', '0.48828125'] 16 12 \n", + "30971 ['0.48828125', '0.48828125'] 16 12 \n", + "23816 ['0.494750976563', '0.494750976563'] 16 16 \n", + "\n", + " HighBit PixelRepresentation WindowCenter WindowWidth \\\n", + "56318 15 1 35.000000 135.000000 \n", + "11838 11 0 ['00040', '00040'] ['00080', '00080'] \n", + "60633 11 0 ['00040', '00040'] ['00080', '00080'] \n", + "30971 11 0 ['00040', '00040'] ['00080', '00080'] \n", + "23816 15 1 35.000000 135.000000 \n", + "\n", + " RescaleIntercept RescaleSlope PxlMin PxlMax PxlStd PxlMean \\\n", + "56318 -1024.0 1.0 1.301333 0.309333 -0.835506 1.294749 \n", + "11838 -1024.0 1.0 1.301333 0.126667 -0.975261 0.972069 \n", + "60633 -1024.0 1.0 1.301333 -0.090667 -0.796026 1.330736 \n", + "30971 -1024.0 1.0 1.301333 0.164000 -0.675198 1.380203 \n", + "23816 -1024.0 1.0 1.301333 0.265333 -0.826401 1.185491 \n", + "\n", + " test test2 ImageOrientationPatient_0 ImageOrientationPatient_1 \\\n", + "56318 False True 1.0 0.0 \n", + "11838 False True 1.0 0.0 \n", + "60633 False True 1.0 0.0 \n", + "30971 False True 1.0 0.0 \n", + "23816 False True 1.0 0.0 \n", + "\n", + " ImageOrientationPatient_2 ImageOrientationPatient_3 \\\n", + "56318 0.0 0.0 \n", + "11838 0.0 0.0 \n", + "60633 0.0 0.0 \n", + "30971 0.0 0.0 \n", + "23816 0.0 0.0 \n", + "\n", + " ImageOrientationPatient_4 ImageOrientationPatient_5 \\\n", + "56318 1.000000 0.000000 \n", + "11838 0.978148 -0.207912 \n", + "60633 0.939693 -0.342020 \n", + "30971 0.981627 -0.190809 \n", + "23816 1.000000 0.000000 \n", + "\n", + " ImagePositionPatient_0 ImagePositionPatient_1 ImagePositionPatient_2 \\\n", + "56318 -126.408875 -126.408875 157.507935 \n", + "11838 -118.000000 20.437079 167.587618 \n", + "60633 -125.000000 32.528565 161.228190 \n", + "30971 -125.000000 19.051445 123.026026 \n", + "23816 -126.408875 -126.408875 167.507935 \n", + "\n", + " PixelSpacing_0 PixelSpacing_1 WindowCenter_0 WindowCenter_1 \\\n", + "56318 0.494751 0.494751 35.0 NaN \n", + "11838 0.488281 0.488281 40.0 40.0 \n", + "60633 0.488281 0.488281 40.0 40.0 \n", + "30971 0.488281 0.488281 40.0 40.0 \n", + "23816 0.494751 0.494751 35.0 NaN \n", + "\n", + " WindowCenter_1_NAN WindowWidth_0 WindowWidth_1 WindowWidth_0_le \\\n", + "56318 True 135.0 NaN 3 \n", + "11838 False 80.0 80.0 0 \n", + "60633 False 80.0 80.0 0 \n", + "30971 False 80.0 80.0 0 \n", + "23816 True 135.0 NaN 3 \n", + "\n", + " WindowWidth_1_le WindowCenter_1_le BitType_le \\\n", + "56318 1 3 0 \n", + "11838 0 1 1 \n", + "60633 0 1 1 \n", + "30971 0 1 1 \n", + "23816 1 3 0 \n", + "\n", + " ImageOrientationPatient_4_f ImageOrientationPatient_4_enc_0 ... \\\n", + "56318 -1.333333 1.0 ... \n", + "11838 2.375301 0.0 ... \n", + "60633 1.862568 0.0 ... \n", + "30971 2.421696 0.0 ... \n", + "23816 -1.333333 1.0 ... \n", + "\n", + " ImageOrientationPatient_5_f ImageOrientationPatient_5_enc_0 \\\n", + "56318 -0.666667 1.0 \n", + "11838 1.947255 0.0 \n", + "60633 1.053199 0.0 \n", + "30971 2.061273 0.0 \n", + "23816 -0.666667 1.0 \n", + "\n", + " ImageOrientationPatient_5_enc_1 ImagePositionPatient_0_f \\\n", + "56318 False -0.720000 \n", + "11838 False 1.466667 \n", + "60633 False -0.720000 \n", + "30971 False -0.720000 \n", + "23816 False -0.720000 \n", + "\n", + " ImagePositionPatient_0_enc_0 ImagePositionPatient_0_enc_1 \\\n", + "56318 0.0 1.0 \n", + "11838 0.0 0.0 \n", + "60633 1.0 0.0 \n", + "30971 1.0 0.0 \n", + "23816 0.0 1.0 \n", + "\n", + " ImagePositionPatient_0_f_r1 ImagePositionPatient_0_f_r05 \\\n", + "56318 1.0 1.0 \n", + "11838 1.0 1.0 \n", + "60633 1.0 1.0 \n", + "30971 1.0 1.0 \n", + "23816 1.0 1.0 \n", + "\n", + " ImagePositionPatient_1_f ImagePositionPatient_1_enc_0 \\\n", + "56318 -0.818785 0.0 \n", + "11838 1.139161 1.0 \n", + "60633 1.300381 1.0 \n", + "30971 1.120686 1.0 \n", + "23816 -0.818785 0.0 \n", + "\n", + " ImagePositionPatient_2_f ImagePositionPatient_2_f_r05 \\\n", + "56318 -0.013599 0.0 \n", + "11838 0.000842 0.0 \n", + "60633 -0.008269 0.0 \n", + "30971 -0.063000 0.0 \n", + "23816 0.000728 0.0 \n", + "\n", + " PixelSpacing_1_f PixelSpacing_1_enc_0 PixelSpacing_1_enc_1 \\\n", + "56318 -0.48 0.0 True \n", + "11838 -0.48 1.0 False \n", + "60633 -0.48 1.0 False \n", + "30971 -0.48 1.0 False \n", + "23816 -0.48 0.0 True \n", + "\n", + " WindowCenter_0_le pos_max pos_min pos_size pos_idx1 pos_idx \\\n", + "56318 3 0.850032 -0.009968 0.9 1.016949 32 \n", + "11838 2 1.078350 0.445865 -0.3 -0.406780 11 \n", + "60633 2 1.132596 0.432912 -0.1 -0.474576 10 \n", + "30971 2 0.940904 0.267694 -0.1 -0.406780 11 \n", + "23816 3 0.850032 -0.009968 0.9 1.152542 34 \n", + "\n", + " pos_idx2 pos_inc1 pos_inc2 pos_inc1_grp_le pos_inc2_grp_le \\\n", + "56318 -0.406780 -1.500000 -1.500000 3 3 \n", + "11838 0.203390 1.560669 1.539367 3 3 \n", + "60633 0.406780 1.639588 1.660400 3 3 \n", + "30971 0.338983 1.551270 1.548767 3 3 \n", + "23816 -0.542373 -1.500000 -1.500000 3 3 \n", + "\n", + " pos_inc1_r1 pos_inc1_r0001 pos_inc1_enc_0 pos_inc2_enc_0 \\\n", + "56318 1.0 1.0 0.0 0.0 \n", + "11838 0.0 0.0 0.0 0.0 \n", + "60633 0.0 0.0 0.0 0.0 \n", + "30971 0.0 0.0 0.0 0.0 \n", + "23816 1.0 1.0 0.0 0.0 \n", + "\n", + " pos_inc1_enc_1 pos_inc2_enc_1 pos_size_le pos_range pos_rel \\\n", + "56318 1.0 1.0 9 1.333334 0.976744 \n", + "11838 0.0 0.0 0 -0.183431 -0.580297 \n", + "60633 0.0 0.0 4 0.264557 -0.788021 \n", + "30971 0.0 0.0 4 0.088070 -0.666627 \n", + "23816 1.0 1.0 9 1.333334 1.162791 \n", + "\n", + " pos_zeros pos_inc_rng pos_zeros_le PxlMin_grp_le PxlMin_zero any \\\n", + "56318 0.0 -0.599997 0 2 False NaN \n", + "11838 0.0 -0.583175 0 2 False NaN \n", + "60633 0.0 -0.584137 0 2 False NaN \n", + "30971 0.0 -0.597988 0 2 False NaN \n", + "23816 0.0 -0.599997 0 2 False NaN \n", + "\n", + " epidural intraparenchymal intraventricular subarachnoid subdural \\\n", + "56318 NaN NaN NaN NaN NaN \n", + "11838 NaN NaN NaN NaN NaN \n", + "60633 NaN NaN NaN NaN NaN \n", + "30971 NaN NaN NaN NaN NaN \n", + "23816 NaN NaN NaN NaN NaN \n", + "\n", + " any_series SeriesPP yuval_idx pred_any \n", + "56318 False -0.5 20605 0.995869 \n", + "11838 False -0.5 49264 0.995902 \n", + "60633 False -0.5 59637 0.995940 \n", + "30971 False -0.5 59366 0.995958 \n", + "23816 False -0.5 20607 0.996068 \n", + "\n", + "[5 rows x 101 columns]" + ] + }, + "execution_count": 65, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "test_md['pred_any'] = predictions[:,2]\n", + "test_md.sort_values('pred_any').tail()" + ] + }, + { + "cell_type": "code", + "execution_count": 66, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "<div>\n", + "<style scoped>\n", + " .dataframe tbody tr th:only-of-type {\n", + " vertical-align: middle;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th></th>\n", + " <th>img_id</th>\n", + " <th>SOPInstanceUID</th>\n", + " <th>Modality</th>\n", + " <th>PatientID</th>\n", + " <th>StudyInstanceUID</th>\n", + " <th>SeriesInstanceUID</th>\n", + " <th>StudyID</th>\n", + " <th>ImagePositionPatient</th>\n", + " <th>ImageOrientationPatient</th>\n", + " <th>SamplesPerPixel</th>\n", + " <th>PhotometricInterpretation</th>\n", + " <th>Rows</th>\n", + " <th>Columns</th>\n", + " <th>PixelSpacing</th>\n", + " <th>BitsAllocated</th>\n", + " <th>BitsStored</th>\n", + " <th>HighBit</th>\n", + " <th>PixelRepresentation</th>\n", + " <th>WindowCenter</th>\n", + " <th>WindowWidth</th>\n", + " <th>RescaleIntercept</th>\n", + " <th>RescaleSlope</th>\n", + " <th>PxlMin</th>\n", + " <th>PxlMax</th>\n", + " <th>PxlStd</th>\n", + " <th>PxlMean</th>\n", + " <th>test</th>\n", + " <th>test2</th>\n", + " <th>ImageOrientationPatient_0</th>\n", + " <th>ImageOrientationPatient_1</th>\n", + " <th>ImageOrientationPatient_2</th>\n", + " <th>ImageOrientationPatient_3</th>\n", + " <th>ImageOrientationPatient_4</th>\n", + " <th>ImageOrientationPatient_5</th>\n", + " <th>ImagePositionPatient_0</th>\n", + " <th>ImagePositionPatient_1</th>\n", + " <th>ImagePositionPatient_2</th>\n", + " <th>PixelSpacing_0</th>\n", + " <th>PixelSpacing_1</th>\n", + " <th>WindowCenter_0</th>\n", + " <th>WindowCenter_1</th>\n", + " <th>WindowCenter_1_NAN</th>\n", + " <th>WindowWidth_0</th>\n", + " <th>WindowWidth_1</th>\n", + " <th>WindowWidth_0_le</th>\n", + " <th>WindowWidth_1_le</th>\n", + " <th>WindowCenter_1_le</th>\n", + " <th>BitType_le</th>\n", + " <th>ImageOrientationPatient_4_f</th>\n", + " <th>ImageOrientationPatient_4_enc_0</th>\n", + " <th>...</th>\n", + " <th>ImageOrientationPatient_5_f</th>\n", + " <th>ImageOrientationPatient_5_enc_0</th>\n", + " <th>ImageOrientationPatient_5_enc_1</th>\n", + " <th>ImagePositionPatient_0_f</th>\n", + " <th>ImagePositionPatient_0_enc_0</th>\n", + " <th>ImagePositionPatient_0_enc_1</th>\n", + " <th>ImagePositionPatient_0_f_r1</th>\n", + " <th>ImagePositionPatient_0_f_r05</th>\n", + " <th>ImagePositionPatient_1_f</th>\n", + " <th>ImagePositionPatient_1_enc_0</th>\n", + " <th>ImagePositionPatient_2_f</th>\n", + " <th>ImagePositionPatient_2_f_r05</th>\n", + " <th>PixelSpacing_1_f</th>\n", + " <th>PixelSpacing_1_enc_0</th>\n", + " <th>PixelSpacing_1_enc_1</th>\n", + " <th>WindowCenter_0_le</th>\n", + " <th>pos_max</th>\n", + " <th>pos_min</th>\n", + " <th>pos_size</th>\n", + " <th>pos_idx1</th>\n", + " <th>pos_idx</th>\n", + " <th>pos_idx2</th>\n", + " <th>pos_inc1</th>\n", + " <th>pos_inc2</th>\n", + " <th>pos_inc1_grp_le</th>\n", + " <th>pos_inc2_grp_le</th>\n", + " <th>pos_inc1_r1</th>\n", + " <th>pos_inc1_r0001</th>\n", + " <th>pos_inc1_enc_0</th>\n", + " <th>pos_inc2_enc_0</th>\n", + " <th>pos_inc1_enc_1</th>\n", + " <th>pos_inc2_enc_1</th>\n", + " <th>pos_size_le</th>\n", + " <th>pos_range</th>\n", + " <th>pos_rel</th>\n", + " <th>pos_zeros</th>\n", + " <th>pos_inc_rng</th>\n", + " <th>pos_zeros_le</th>\n", + " <th>PxlMin_grp_le</th>\n", + " <th>PxlMin_zero</th>\n", + " <th>any</th>\n", + " <th>epidural</th>\n", + " <th>intraparenchymal</th>\n", + " <th>intraventricular</th>\n", + " <th>subarachnoid</th>\n", + " <th>subdural</th>\n", + " <th>any_series</th>\n", + " <th>SeriesPP</th>\n", + " <th>yuval_idx</th>\n", + " <th>pred_any</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <td>8592</td>\n", + " <td>2b3878103</td>\n", + " <td>ID_2b3878103</td>\n", + " <td>CT</td>\n", + " <td>ID_b81caf1c</td>\n", + " <td>ID_3d31a06240</td>\n", + " <td>ID_25c620d29b</td>\n", + " <td>NaN</td>\n", + " <td>['-126.408875', '-126.408875', '77.500000']</td>\n", + " <td>['1.000000', '0.000000', '0.000000', '0.000000...</td>\n", + " <td>1</td>\n", + " <td>MONOCHROME2</td>\n", + " <td>512</td>\n", + " <td>512</td>\n", + " <td>['0.494750976563', '0.494750976563']</td>\n", + " <td>16</td>\n", + " <td>16</td>\n", + " <td>15</td>\n", + " <td>1</td>\n", + " <td>35.000000</td>\n", + " <td>135.000000</td>\n", + " <td>-1024.0</td>\n", + " <td>1.0</td>\n", + " <td>1.301333</td>\n", + " <td>0.394667</td>\n", + " <td>-0.776436</td>\n", + " <td>1.134899</td>\n", + " <td>False</td>\n", + " <td>True</td>\n", + " <td>1.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>1.0</td>\n", + " <td>0.0</td>\n", + " <td>-126.408875</td>\n", + " <td>-126.408875</td>\n", + " <td>77.5</td>\n", + " <td>0.494751</td>\n", + " <td>0.494751</td>\n", + " <td>35.0</td>\n", + " <td>NaN</td>\n", + " <td>True</td>\n", + " <td>135.0</td>\n", + " <td>NaN</td>\n", + " <td>3</td>\n", + " <td>1</td>\n", + " <td>3</td>\n", + " <td>0</td>\n", + " <td>-1.333333</td>\n", + " <td>1.0</td>\n", + " <td>...</td>\n", + " <td>-0.666667</td>\n", + " <td>1.0</td>\n", + " <td>False</td>\n", + " <td>-0.720000</td>\n", + " <td>0.0</td>\n", + " <td>1.0</td>\n", + " <td>1.0</td>\n", + " <td>1.0</td>\n", + " <td>-0.818785</td>\n", + " <td>0.0</td>\n", + " <td>-0.128223</td>\n", + " <td>1.0</td>\n", + " <td>-0.4800</td>\n", + " <td>0.0</td>\n", + " <td>True</td>\n", + " <td>3</td>\n", + " <td>0.61</td>\n", + " <td>-0.01</td>\n", + " <td>-0.3</td>\n", + " <td>-0.067797</td>\n", + " <td>16</td>\n", + " <td>-0.135593</td>\n", + " <td>-1.5</td>\n", + " <td>-1.5</td>\n", + " <td>3</td>\n", + " <td>3</td>\n", + " <td>1.0</td>\n", + " <td>1.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>1.0</td>\n", + " <td>1.0</td>\n", + " <td>0</td>\n", + " <td>-0.266667</td>\n", + " <td>0.064516</td>\n", + " <td>0.0</td>\n", + " <td>-0.6</td>\n", + " <td>0</td>\n", + " <td>2</td>\n", + " <td>False</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>False</td>\n", + " <td>-0.5</td>\n", + " <td>95036</td>\n", + " <td>0.995983</td>\n", + " </tr>\n", + " <tr>\n", + " <td>101233</td>\n", + " <td>734856256</td>\n", + " <td>ID_734856256</td>\n", + " <td>CT</td>\n", + " <td>ID_4482f018</td>\n", + " <td>ID_5ccd14e6b7</td>\n", + " <td>ID_b75da817b2</td>\n", + " <td>NaN</td>\n", + " <td>['-126.438', '-126.438', '97.500']</td>\n", + " <td>['1.0', '0.0', '0.0', '0.0', '1.0', '0.0']</td>\n", + " <td>1</td>\n", + " <td>MONOCHROME2</td>\n", + " <td>512</td>\n", + " <td>512</td>\n", + " <td>['0.4949', '0.4949']</td>\n", + " <td>16</td>\n", + " <td>16</td>\n", + " <td>15</td>\n", + " <td>1</td>\n", + " <td>35.0</td>\n", + " <td>135.0</td>\n", + " <td>-1024.0</td>\n", + " <td>1.0</td>\n", + " <td>1.301333</td>\n", + " <td>0.378667</td>\n", + " <td>-0.862722</td>\n", + " <td>1.089866</td>\n", + " <td>False</td>\n", + " <td>True</td>\n", + " <td>1.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>1.0</td>\n", + " <td>0.0</td>\n", + " <td>-126.438000</td>\n", + " <td>-126.438000</td>\n", + " <td>97.5</td>\n", + " <td>0.494900</td>\n", + " <td>0.494900</td>\n", + " <td>35.0</td>\n", + " <td>NaN</td>\n", + " <td>True</td>\n", + " <td>135.0</td>\n", + " <td>NaN</td>\n", + " <td>3</td>\n", + " <td>1</td>\n", + " <td>3</td>\n", + " <td>0</td>\n", + " <td>-1.333333</td>\n", + " <td>1.0</td>\n", + " <td>...</td>\n", + " <td>-0.666667</td>\n", + " <td>1.0</td>\n", + " <td>False</td>\n", + " <td>1.241653</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>-0.819173</td>\n", + " <td>0.0</td>\n", + " <td>-0.099570</td>\n", + " <td>1.0</td>\n", + " <td>1.8792</td>\n", + " <td>0.0</td>\n", + " <td>False</td>\n", + " <td>3</td>\n", + " <td>0.67</td>\n", + " <td>0.01</td>\n", + " <td>-0.1</td>\n", + " <td>0.135593</td>\n", + " <td>19</td>\n", + " <td>-0.203390</td>\n", + " <td>-1.5</td>\n", + " <td>-1.5</td>\n", + " <td>3</td>\n", + " <td>3</td>\n", + " <td>1.0</td>\n", + " <td>1.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>1.0</td>\n", + " <td>1.0</td>\n", + " <td>4</td>\n", + " <td>0.000000</td>\n", + " <td>0.303030</td>\n", + " <td>0.0</td>\n", + " <td>-0.6</td>\n", + " <td>0</td>\n", + " <td>2</td>\n", + " <td>False</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>False</td>\n", + " <td>-0.5</td>\n", + " <td>23495</td>\n", + " <td>0.996200</td>\n", + " </tr>\n", + " <tr>\n", + " <td>38580</td>\n", + " <td>1bb3fe555</td>\n", + " <td>ID_1bb3fe555</td>\n", + " <td>CT</td>\n", + " <td>ID_ca92b4e6</td>\n", + " <td>ID_e14681614d</td>\n", + " <td>ID_23f8022c7d</td>\n", + " <td>NaN</td>\n", + " <td>['-126.408875', '-126.408875', '72.500000']</td>\n", + " <td>['1.000000', '0.000000', '0.000000', '0.000000...</td>\n", + " <td>1</td>\n", + " <td>MONOCHROME2</td>\n", + " <td>512</td>\n", + " <td>512</td>\n", + " <td>['0.494750976563', '0.494750976563']</td>\n", + " <td>16</td>\n", + " <td>16</td>\n", + " <td>15</td>\n", + " <td>1</td>\n", + " <td>35.000000</td>\n", + " <td>135.000000</td>\n", + " <td>-1024.0</td>\n", + " <td>1.0</td>\n", + " <td>1.301333</td>\n", + " <td>0.472000</td>\n", + " <td>-0.733947</td>\n", + " <td>1.184966</td>\n", + " <td>False</td>\n", + " <td>True</td>\n", + " <td>1.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>1.0</td>\n", + " <td>0.0</td>\n", + " <td>-126.408875</td>\n", + " <td>-126.408875</td>\n", + " <td>72.5</td>\n", + " <td>0.494751</td>\n", + " <td>0.494751</td>\n", + " <td>35.0</td>\n", + " <td>NaN</td>\n", + " <td>True</td>\n", + " <td>135.0</td>\n", + " <td>NaN</td>\n", + " <td>3</td>\n", + " <td>1</td>\n", + " <td>3</td>\n", + " <td>0</td>\n", + " <td>-1.333333</td>\n", + " <td>1.0</td>\n", + " <td>...</td>\n", + " <td>-0.666667</td>\n", + " <td>1.0</td>\n", + " <td>False</td>\n", + " <td>-0.720000</td>\n", + " <td>0.0</td>\n", + " <td>1.0</td>\n", + " <td>1.0</td>\n", + " <td>1.0</td>\n", + " <td>-0.818785</td>\n", + " <td>0.0</td>\n", + " <td>-0.135387</td>\n", + " <td>1.0</td>\n", + " <td>-0.4800</td>\n", + " <td>0.0</td>\n", + " <td>True</td>\n", + " <td>3</td>\n", + " <td>0.61</td>\n", + " <td>-0.01</td>\n", + " <td>-0.3</td>\n", + " <td>-0.135593</td>\n", + " <td>15</td>\n", + " <td>-0.067797</td>\n", + " <td>-1.5</td>\n", + " <td>-1.5</td>\n", + " <td>3</td>\n", + " <td>3</td>\n", + " <td>1.0</td>\n", + " <td>1.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>1.0</td>\n", + " <td>1.0</td>\n", + " <td>0</td>\n", + " <td>-0.266667</td>\n", + " <td>-0.064516</td>\n", + " <td>0.0</td>\n", + " <td>-0.6</td>\n", + " <td>0</td>\n", + " <td>2</td>\n", + " <td>False</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>False</td>\n", + " <td>-0.5</td>\n", + " <td>40054</td>\n", + " <td>0.996345</td>\n", + " </tr>\n", + " <tr>\n", + " <td>29351</td>\n", + " <td>5bd2084d9</td>\n", + " <td>ID_5bd2084d9</td>\n", + " <td>CT</td>\n", + " <td>ID_4482f018</td>\n", + " <td>ID_5ccd14e6b7</td>\n", + " <td>ID_b75da817b2</td>\n", + " <td>NaN</td>\n", + " <td>['-126.438', '-126.438', '102.500']</td>\n", + " <td>['1.0', '0.0', '0.0', '0.0', '1.0', '0.0']</td>\n", + " <td>1</td>\n", + " <td>MONOCHROME2</td>\n", + " <td>512</td>\n", + " <td>512</td>\n", + " <td>['0.4949', '0.4949']</td>\n", + " <td>16</td>\n", + " <td>16</td>\n", + " <td>15</td>\n", + " <td>1</td>\n", + " <td>35.0</td>\n", + " <td>135.0</td>\n", + " <td>-1024.0</td>\n", + " <td>1.0</td>\n", + " <td>1.301333</td>\n", + " <td>0.442667</td>\n", + " <td>-0.849438</td>\n", + " <td>1.059636</td>\n", + " <td>False</td>\n", + " <td>True</td>\n", + " <td>1.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>1.0</td>\n", + " <td>0.0</td>\n", + " <td>-126.438000</td>\n", + " <td>-126.438000</td>\n", + " <td>102.5</td>\n", + " <td>0.494900</td>\n", + " <td>0.494900</td>\n", + " <td>35.0</td>\n", + " <td>NaN</td>\n", + " <td>True</td>\n", + " <td>135.0</td>\n", + " <td>NaN</td>\n", + " <td>3</td>\n", + " <td>1</td>\n", + " <td>3</td>\n", + " <td>0</td>\n", + " <td>-1.333333</td>\n", + " <td>1.0</td>\n", + " <td>...</td>\n", + " <td>-0.666667</td>\n", + " <td>1.0</td>\n", + " <td>False</td>\n", + " <td>1.241653</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>-0.819173</td>\n", + " <td>0.0</td>\n", + " <td>-0.092407</td>\n", + " <td>1.0</td>\n", + " <td>1.8792</td>\n", + " <td>0.0</td>\n", + " <td>False</td>\n", + " <td>3</td>\n", + " <td>0.67</td>\n", + " <td>0.01</td>\n", + " <td>-0.1</td>\n", + " <td>0.203390</td>\n", + " <td>20</td>\n", + " <td>-0.271186</td>\n", + " <td>-1.5</td>\n", + " <td>-1.5</td>\n", + " <td>3</td>\n", + " <td>3</td>\n", + " <td>1.0</td>\n", + " <td>1.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>1.0</td>\n", + " <td>1.0</td>\n", + " <td>4</td>\n", + " <td>0.000000</td>\n", + " <td>0.424242</td>\n", + " <td>0.0</td>\n", + " <td>-0.6</td>\n", + " <td>0</td>\n", + " <td>2</td>\n", + " <td>False</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>False</td>\n", + " <td>-0.5</td>\n", + " <td>23496</td>\n", + " <td>0.996412</td>\n", + " </tr>\n", + " <tr>\n", + " <td>90564</td>\n", + " <td>2941d6eba</td>\n", + " <td>ID_2941d6eba</td>\n", + " <td>CT</td>\n", + " <td>ID_ca92b4e6</td>\n", + " <td>ID_e14681614d</td>\n", + " <td>ID_23f8022c7d</td>\n", + " <td>NaN</td>\n", + " <td>['-126.408875', '-126.408875', '77.500000']</td>\n", + " <td>['1.000000', '0.000000', '0.000000', '0.000000...</td>\n", + " <td>1</td>\n", + " <td>MONOCHROME2</td>\n", + " <td>512</td>\n", + " <td>512</td>\n", + " <td>['0.494750976563', '0.494750976563']</td>\n", + " <td>16</td>\n", + " <td>16</td>\n", + " <td>15</td>\n", + " <td>1</td>\n", + " <td>35.000000</td>\n", + " <td>135.000000</td>\n", + " <td>-1024.0</td>\n", + " <td>1.0</td>\n", + " <td>1.301333</td>\n", + " <td>0.482667</td>\n", + " <td>-0.703788</td>\n", + " <td>1.179639</td>\n", + " <td>False</td>\n", + " <td>True</td>\n", + " <td>1.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>1.0</td>\n", + " <td>0.0</td>\n", + " <td>-126.408875</td>\n", + " <td>-126.408875</td>\n", + " <td>77.5</td>\n", + " <td>0.494751</td>\n", + " <td>0.494751</td>\n", + " <td>35.0</td>\n", + " <td>NaN</td>\n", + " <td>True</td>\n", + " <td>135.0</td>\n", + " <td>NaN</td>\n", + " <td>3</td>\n", + " <td>1</td>\n", + " <td>3</td>\n", + " <td>0</td>\n", + " <td>-1.333333</td>\n", + " <td>1.0</td>\n", + " <td>...</td>\n", + " <td>-0.666667</td>\n", + " <td>1.0</td>\n", + " <td>False</td>\n", + " <td>-0.720000</td>\n", + " <td>0.0</td>\n", + " <td>1.0</td>\n", + " <td>1.0</td>\n", + " <td>1.0</td>\n", + " <td>-0.818785</td>\n", + " <td>0.0</td>\n", + " <td>-0.128223</td>\n", + " <td>1.0</td>\n", + " <td>-0.4800</td>\n", + " <td>0.0</td>\n", + " <td>True</td>\n", + " <td>3</td>\n", + " <td>0.61</td>\n", + " <td>-0.01</td>\n", + " <td>-0.3</td>\n", + " <td>-0.067797</td>\n", + " <td>16</td>\n", + " <td>-0.135593</td>\n", + " <td>-1.5</td>\n", + " <td>-1.5</td>\n", + " <td>3</td>\n", + " <td>3</td>\n", + " <td>1.0</td>\n", + " <td>1.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>1.0</td>\n", + " <td>1.0</td>\n", + " <td>0</td>\n", + " <td>-0.266667</td>\n", + " <td>0.064516</td>\n", + " <td>0.0</td>\n", + " <td>-0.6</td>\n", + " <td>0</td>\n", + " <td>2</td>\n", + " <td>False</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>False</td>\n", + " <td>-0.5</td>\n", + " <td>40055</td>\n", + " <td>0.996628</td>\n", + " </tr>\n", + " </tbody>\n", + "</table>\n", + "<p>5 rows × 101 columns</p>\n", + "</div>" + ], + "text/plain": [ + " img_id SOPInstanceUID Modality PatientID StudyInstanceUID \\\n", + "8592 2b3878103 ID_2b3878103 CT ID_b81caf1c ID_3d31a06240 \n", + "101233 734856256 ID_734856256 CT ID_4482f018 ID_5ccd14e6b7 \n", + "38580 1bb3fe555 ID_1bb3fe555 CT ID_ca92b4e6 ID_e14681614d \n", + "29351 5bd2084d9 ID_5bd2084d9 CT ID_4482f018 ID_5ccd14e6b7 \n", + "90564 2941d6eba ID_2941d6eba CT ID_ca92b4e6 ID_e14681614d \n", + "\n", + " SeriesInstanceUID StudyID \\\n", + "8592 ID_25c620d29b NaN \n", + "101233 ID_b75da817b2 NaN \n", + "38580 ID_23f8022c7d NaN \n", + "29351 ID_b75da817b2 NaN \n", + "90564 ID_23f8022c7d NaN \n", + "\n", + " ImagePositionPatient \\\n", + "8592 ['-126.408875', '-126.408875', '77.500000'] \n", + "101233 ['-126.438', '-126.438', '97.500'] \n", + "38580 ['-126.408875', '-126.408875', '72.500000'] \n", + "29351 ['-126.438', '-126.438', '102.500'] \n", + "90564 ['-126.408875', '-126.408875', '77.500000'] \n", + "\n", + " ImageOrientationPatient SamplesPerPixel \\\n", + "8592 ['1.000000', '0.000000', '0.000000', '0.000000... 1 \n", + "101233 ['1.0', '0.0', '0.0', '0.0', '1.0', '0.0'] 1 \n", + "38580 ['1.000000', '0.000000', '0.000000', '0.000000... 1 \n", + "29351 ['1.0', '0.0', '0.0', '0.0', '1.0', '0.0'] 1 \n", + "90564 ['1.000000', '0.000000', '0.000000', '0.000000... 1 \n", + "\n", + " PhotometricInterpretation Rows Columns \\\n", + "8592 MONOCHROME2 512 512 \n", + "101233 MONOCHROME2 512 512 \n", + "38580 MONOCHROME2 512 512 \n", + "29351 MONOCHROME2 512 512 \n", + "90564 MONOCHROME2 512 512 \n", + "\n", + " PixelSpacing BitsAllocated BitsStored \\\n", + "8592 ['0.494750976563', '0.494750976563'] 16 16 \n", + "101233 ['0.4949', '0.4949'] 16 16 \n", + "38580 ['0.494750976563', '0.494750976563'] 16 16 \n", + "29351 ['0.4949', '0.4949'] 16 16 \n", + "90564 ['0.494750976563', '0.494750976563'] 16 16 \n", + "\n", + " HighBit PixelRepresentation WindowCenter WindowWidth \\\n", + "8592 15 1 35.000000 135.000000 \n", + "101233 15 1 35.0 135.0 \n", + "38580 15 1 35.000000 135.000000 \n", + "29351 15 1 35.0 135.0 \n", + "90564 15 1 35.000000 135.000000 \n", + "\n", + " RescaleIntercept RescaleSlope PxlMin PxlMax PxlStd \\\n", + "8592 -1024.0 1.0 1.301333 0.394667 -0.776436 \n", + "101233 -1024.0 1.0 1.301333 0.378667 -0.862722 \n", + "38580 -1024.0 1.0 1.301333 0.472000 -0.733947 \n", + "29351 -1024.0 1.0 1.301333 0.442667 -0.849438 \n", + "90564 -1024.0 1.0 1.301333 0.482667 -0.703788 \n", + "\n", + " PxlMean test test2 ImageOrientationPatient_0 \\\n", + "8592 1.134899 False True 1.0 \n", + "101233 1.089866 False True 1.0 \n", + "38580 1.184966 False True 1.0 \n", + "29351 1.059636 False True 1.0 \n", + "90564 1.179639 False True 1.0 \n", + "\n", + " ImageOrientationPatient_1 ImageOrientationPatient_2 \\\n", + "8592 0.0 0.0 \n", + "101233 0.0 0.0 \n", + "38580 0.0 0.0 \n", + "29351 0.0 0.0 \n", + "90564 0.0 0.0 \n", + "\n", + " ImageOrientationPatient_3 ImageOrientationPatient_4 \\\n", + "8592 0.0 1.0 \n", + "101233 0.0 1.0 \n", + "38580 0.0 1.0 \n", + "29351 0.0 1.0 \n", + "90564 0.0 1.0 \n", + "\n", + " ImageOrientationPatient_5 ImagePositionPatient_0 \\\n", + "8592 0.0 -126.408875 \n", + "101233 0.0 -126.438000 \n", + "38580 0.0 -126.408875 \n", + "29351 0.0 -126.438000 \n", + "90564 0.0 -126.408875 \n", + "\n", + " ImagePositionPatient_1 ImagePositionPatient_2 PixelSpacing_0 \\\n", + "8592 -126.408875 77.5 0.494751 \n", + "101233 -126.438000 97.5 0.494900 \n", + "38580 -126.408875 72.5 0.494751 \n", + "29351 -126.438000 102.5 0.494900 \n", + "90564 -126.408875 77.5 0.494751 \n", + "\n", + " PixelSpacing_1 WindowCenter_0 WindowCenter_1 WindowCenter_1_NAN \\\n", + "8592 0.494751 35.0 NaN True \n", + "101233 0.494900 35.0 NaN True \n", + "38580 0.494751 35.0 NaN True \n", + "29351 0.494900 35.0 NaN True \n", + "90564 0.494751 35.0 NaN True \n", + "\n", + " WindowWidth_0 WindowWidth_1 WindowWidth_0_le WindowWidth_1_le \\\n", + "8592 135.0 NaN 3 1 \n", + "101233 135.0 NaN 3 1 \n", + "38580 135.0 NaN 3 1 \n", + "29351 135.0 NaN 3 1 \n", + "90564 135.0 NaN 3 1 \n", + "\n", + " WindowCenter_1_le BitType_le ImageOrientationPatient_4_f \\\n", + "8592 3 0 -1.333333 \n", + "101233 3 0 -1.333333 \n", + "38580 3 0 -1.333333 \n", + "29351 3 0 -1.333333 \n", + "90564 3 0 -1.333333 \n", + "\n", + " ImageOrientationPatient_4_enc_0 ... ImageOrientationPatient_5_f \\\n", + "8592 1.0 ... -0.666667 \n", + "101233 1.0 ... -0.666667 \n", + "38580 1.0 ... -0.666667 \n", + "29351 1.0 ... -0.666667 \n", + "90564 1.0 ... -0.666667 \n", + "\n", + " ImageOrientationPatient_5_enc_0 ImageOrientationPatient_5_enc_1 \\\n", + "8592 1.0 False \n", + "101233 1.0 False \n", + "38580 1.0 False \n", + "29351 1.0 False \n", + "90564 1.0 False \n", + "\n", + " ImagePositionPatient_0_f ImagePositionPatient_0_enc_0 \\\n", + "8592 -0.720000 0.0 \n", + "101233 1.241653 0.0 \n", + "38580 -0.720000 0.0 \n", + "29351 1.241653 0.0 \n", + "90564 -0.720000 0.0 \n", + "\n", + " ImagePositionPatient_0_enc_1 ImagePositionPatient_0_f_r1 \\\n", + "8592 1.0 1.0 \n", + "101233 0.0 0.0 \n", + "38580 1.0 1.0 \n", + "29351 0.0 0.0 \n", + "90564 1.0 1.0 \n", + "\n", + " ImagePositionPatient_0_f_r05 ImagePositionPatient_1_f \\\n", + "8592 1.0 -0.818785 \n", + "101233 0.0 -0.819173 \n", + "38580 1.0 -0.818785 \n", + "29351 0.0 -0.819173 \n", + "90564 1.0 -0.818785 \n", + "\n", + " ImagePositionPatient_1_enc_0 ImagePositionPatient_2_f \\\n", + "8592 0.0 -0.128223 \n", + "101233 0.0 -0.099570 \n", + "38580 0.0 -0.135387 \n", + "29351 0.0 -0.092407 \n", + "90564 0.0 -0.128223 \n", + "\n", + " ImagePositionPatient_2_f_r05 PixelSpacing_1_f PixelSpacing_1_enc_0 \\\n", + "8592 1.0 -0.4800 0.0 \n", + "101233 1.0 1.8792 0.0 \n", + "38580 1.0 -0.4800 0.0 \n", + "29351 1.0 1.8792 0.0 \n", + "90564 1.0 -0.4800 0.0 \n", + "\n", + " PixelSpacing_1_enc_1 WindowCenter_0_le pos_max pos_min pos_size \\\n", + "8592 True 3 0.61 -0.01 -0.3 \n", + "101233 False 3 0.67 0.01 -0.1 \n", + "38580 True 3 0.61 -0.01 -0.3 \n", + "29351 False 3 0.67 0.01 -0.1 \n", + "90564 True 3 0.61 -0.01 -0.3 \n", + "\n", + " pos_idx1 pos_idx pos_idx2 pos_inc1 pos_inc2 pos_inc1_grp_le \\\n", + "8592 -0.067797 16 -0.135593 -1.5 -1.5 3 \n", + "101233 0.135593 19 -0.203390 -1.5 -1.5 3 \n", + "38580 -0.135593 15 -0.067797 -1.5 -1.5 3 \n", + "29351 0.203390 20 -0.271186 -1.5 -1.5 3 \n", + "90564 -0.067797 16 -0.135593 -1.5 -1.5 3 \n", + "\n", + " pos_inc2_grp_le pos_inc1_r1 pos_inc1_r0001 pos_inc1_enc_0 \\\n", + "8592 3 1.0 1.0 0.0 \n", + "101233 3 1.0 1.0 0.0 \n", + "38580 3 1.0 1.0 0.0 \n", + "29351 3 1.0 1.0 0.0 \n", + "90564 3 1.0 1.0 0.0 \n", + "\n", + " pos_inc2_enc_0 pos_inc1_enc_1 pos_inc2_enc_1 pos_size_le \\\n", + "8592 0.0 1.0 1.0 0 \n", + "101233 0.0 1.0 1.0 4 \n", + "38580 0.0 1.0 1.0 0 \n", + "29351 0.0 1.0 1.0 4 \n", + "90564 0.0 1.0 1.0 0 \n", + "\n", + " pos_range pos_rel pos_zeros pos_inc_rng pos_zeros_le \\\n", + "8592 -0.266667 0.064516 0.0 -0.6 0 \n", + "101233 0.000000 0.303030 0.0 -0.6 0 \n", + "38580 -0.266667 -0.064516 0.0 -0.6 0 \n", + "29351 0.000000 0.424242 0.0 -0.6 0 \n", + "90564 -0.266667 0.064516 0.0 -0.6 0 \n", + "\n", + " PxlMin_grp_le PxlMin_zero any epidural intraparenchymal \\\n", + "8592 2 False NaN NaN NaN \n", + "101233 2 False NaN NaN NaN \n", + "38580 2 False NaN NaN NaN \n", + "29351 2 False NaN NaN NaN \n", + "90564 2 False NaN NaN NaN \n", + "\n", + " intraventricular subarachnoid subdural any_series SeriesPP \\\n", + "8592 NaN NaN NaN False -0.5 \n", + "101233 NaN NaN NaN False -0.5 \n", + "38580 NaN NaN NaN False -0.5 \n", + "29351 NaN NaN NaN False -0.5 \n", + "90564 NaN NaN NaN False -0.5 \n", + "\n", + " yuval_idx pred_any \n", + "8592 95036 0.995983 \n", + "101233 23495 0.996200 \n", + "38580 40054 0.996345 \n", + "29351 23496 0.996412 \n", + "90564 40055 0.996628 \n", + "\n", + "[5 rows x 101 columns]" + ] + }, + "execution_count": 66, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "test_md['pred_any'] = predictions[:,3]\n", + "test_md.sort_values('pred_any').tail()" + ] + }, + { + "cell_type": "code", + "execution_count": 67, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "<div>\n", + "<style scoped>\n", + " .dataframe tbody tr th:only-of-type {\n", + " vertical-align: middle;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th></th>\n", + " <th>img_id</th>\n", + " <th>SOPInstanceUID</th>\n", + " <th>Modality</th>\n", + " <th>PatientID</th>\n", + " <th>StudyInstanceUID</th>\n", + " <th>SeriesInstanceUID</th>\n", + " <th>StudyID</th>\n", + " <th>ImagePositionPatient</th>\n", + " <th>ImageOrientationPatient</th>\n", + " <th>SamplesPerPixel</th>\n", + " <th>PhotometricInterpretation</th>\n", + " <th>Rows</th>\n", + " <th>Columns</th>\n", + " <th>PixelSpacing</th>\n", + " <th>BitsAllocated</th>\n", + " <th>BitsStored</th>\n", + " <th>HighBit</th>\n", + " <th>PixelRepresentation</th>\n", + " <th>WindowCenter</th>\n", + " <th>WindowWidth</th>\n", + " <th>RescaleIntercept</th>\n", + " <th>RescaleSlope</th>\n", + " <th>PxlMin</th>\n", + " <th>PxlMax</th>\n", + " <th>PxlStd</th>\n", + " <th>PxlMean</th>\n", + " <th>test</th>\n", + " <th>test2</th>\n", + " <th>ImageOrientationPatient_0</th>\n", + " <th>ImageOrientationPatient_1</th>\n", + " <th>ImageOrientationPatient_2</th>\n", + " <th>ImageOrientationPatient_3</th>\n", + " <th>ImageOrientationPatient_4</th>\n", + " <th>ImageOrientationPatient_5</th>\n", + " <th>ImagePositionPatient_0</th>\n", + " <th>ImagePositionPatient_1</th>\n", + " <th>ImagePositionPatient_2</th>\n", + " <th>PixelSpacing_0</th>\n", + " <th>PixelSpacing_1</th>\n", + " <th>WindowCenter_0</th>\n", + " <th>WindowCenter_1</th>\n", + " <th>WindowCenter_1_NAN</th>\n", + " <th>WindowWidth_0</th>\n", + " <th>WindowWidth_1</th>\n", + " <th>WindowWidth_0_le</th>\n", + " <th>WindowWidth_1_le</th>\n", + " <th>WindowCenter_1_le</th>\n", + " <th>BitType_le</th>\n", + " <th>ImageOrientationPatient_4_f</th>\n", + " <th>ImageOrientationPatient_4_enc_0</th>\n", + " <th>...</th>\n", + " <th>ImageOrientationPatient_5_f</th>\n", + " <th>ImageOrientationPatient_5_enc_0</th>\n", + " <th>ImageOrientationPatient_5_enc_1</th>\n", + " <th>ImagePositionPatient_0_f</th>\n", + " <th>ImagePositionPatient_0_enc_0</th>\n", + " <th>ImagePositionPatient_0_enc_1</th>\n", + " <th>ImagePositionPatient_0_f_r1</th>\n", + " <th>ImagePositionPatient_0_f_r05</th>\n", + " <th>ImagePositionPatient_1_f</th>\n", + " <th>ImagePositionPatient_1_enc_0</th>\n", + " <th>ImagePositionPatient_2_f</th>\n", + " <th>ImagePositionPatient_2_f_r05</th>\n", + " <th>PixelSpacing_1_f</th>\n", + " <th>PixelSpacing_1_enc_0</th>\n", + " <th>PixelSpacing_1_enc_1</th>\n", + " <th>WindowCenter_0_le</th>\n", + " <th>pos_max</th>\n", + " <th>pos_min</th>\n", + " <th>pos_size</th>\n", + " <th>pos_idx1</th>\n", + " <th>pos_idx</th>\n", + " <th>pos_idx2</th>\n", + " <th>pos_inc1</th>\n", + " <th>pos_inc2</th>\n", + " <th>pos_inc1_grp_le</th>\n", + " <th>pos_inc2_grp_le</th>\n", + " <th>pos_inc1_r1</th>\n", + " <th>pos_inc1_r0001</th>\n", + " <th>pos_inc1_enc_0</th>\n", + " <th>pos_inc2_enc_0</th>\n", + " <th>pos_inc1_enc_1</th>\n", + " <th>pos_inc2_enc_1</th>\n", + " <th>pos_size_le</th>\n", + " <th>pos_range</th>\n", + " <th>pos_rel</th>\n", + " <th>pos_zeros</th>\n", + " <th>pos_inc_rng</th>\n", + " <th>pos_zeros_le</th>\n", + " <th>PxlMin_grp_le</th>\n", + " <th>PxlMin_zero</th>\n", + " <th>any</th>\n", + " <th>epidural</th>\n", + " <th>intraparenchymal</th>\n", + " <th>intraventricular</th>\n", + " <th>subarachnoid</th>\n", + " <th>subdural</th>\n", + " <th>any_series</th>\n", + " <th>SeriesPP</th>\n", + " <th>yuval_idx</th>\n", + " <th>pred_any</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <td>46433</td>\n", + " <td>f3a75309f</td>\n", + " <td>ID_f3a75309f</td>\n", + " <td>CT</td>\n", + " <td>ID_f6723c35</td>\n", + " <td>ID_fc07fac521</td>\n", + " <td>ID_cfd350c878</td>\n", + " <td>NaN</td>\n", + " <td>['-125.000', '-118.558', '151.625']</td>\n", + " <td>['1.000000', '0.000000', '0.000000', '0.000000...</td>\n", + " <td>1</td>\n", + " <td>MONOCHROME2</td>\n", + " <td>512</td>\n", + " <td>512</td>\n", + " <td>['0.488281', '0.488281']</td>\n", + " <td>16</td>\n", + " <td>16</td>\n", + " <td>15</td>\n", + " <td>1</td>\n", + " <td>40</td>\n", + " <td>150</td>\n", + " <td>-1024.0</td>\n", + " <td>1.0</td>\n", + " <td>-0.064</td>\n", + " <td>0.292000</td>\n", + " <td>0.113617</td>\n", + " <td>-0.426832</td>\n", + " <td>False</td>\n", + " <td>True</td>\n", + " <td>1.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.961262</td>\n", + " <td>-0.275637</td>\n", + " <td>-125.0</td>\n", + " <td>-118.558</td>\n", + " <td>151.625</td>\n", + " <td>0.488281</td>\n", + " <td>0.488281</td>\n", + " <td>40.0</td>\n", + " <td>NaN</td>\n", + " <td>True</td>\n", + " <td>150.0</td>\n", + " <td>NaN</td>\n", + " <td>1</td>\n", + " <td>1</td>\n", + " <td>3</td>\n", + " <td>0</td>\n", + " <td>2.15016</td>\n", + " <td>0.0</td>\n", + " <td>...</td>\n", + " <td>1.495753</td>\n", + " <td>0.0</td>\n", + " <td>False</td>\n", + " <td>-0.72</td>\n", + " <td>1.0</td>\n", + " <td>0.0</td>\n", + " <td>1.0</td>\n", + " <td>1.0</td>\n", + " <td>-0.714107</td>\n", + " <td>0.0</td>\n", + " <td>-0.022027</td>\n", + " <td>0.0</td>\n", + " <td>-0.48</td>\n", + " <td>1.0</td>\n", + " <td>False</td>\n", + " <td>2</td>\n", + " <td>0.68972</td>\n", + " <td>0.127984</td>\n", + " <td>-0.7</td>\n", + " <td>0.406780</td>\n", + " <td>23</td>\n", + " <td>-0.881356</td>\n", + " <td>1.6005</td>\n", + " <td>1.6005</td>\n", + " <td>3</td>\n", + " <td>3</td>\n", + " <td>0.0</td>\n", + " <td>1.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>3</td>\n", + " <td>-0.655093</td>\n", + " <td>1.407408</td>\n", + " <td>0.0</td>\n", + " <td>-0.599615</td>\n", + " <td>0</td>\n", + " <td>1</td>\n", + " <td>False</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>False</td>\n", + " <td>-0.5</td>\n", + " <td>55354</td>\n", + " <td>0.993246</td>\n", + " </tr>\n", + " <tr>\n", + " <td>59590</td>\n", + " <td>dc7e09cbd</td>\n", + " <td>ID_dc7e09cbd</td>\n", + " <td>CT</td>\n", + " <td>ID_f6723c35</td>\n", + " <td>ID_fc07fac521</td>\n", + " <td>ID_cfd350c878</td>\n", + " <td>NaN</td>\n", + " <td>['-125.000', '-118.558', '130.820']</td>\n", + " <td>['1.000000', '0.000000', '0.000000', '0.000000...</td>\n", + " <td>1</td>\n", + " <td>MONOCHROME2</td>\n", + " <td>512</td>\n", + " <td>512</td>\n", + " <td>['0.488281', '0.488281']</td>\n", + " <td>16</td>\n", + " <td>16</td>\n", + " <td>15</td>\n", + " <td>1</td>\n", + " <td>40</td>\n", + " <td>150</td>\n", + " <td>-1024.0</td>\n", + " <td>1.0</td>\n", + " <td>-0.064</td>\n", + " <td>0.180000</td>\n", + " <td>0.216861</td>\n", + " <td>-0.102710</td>\n", + " <td>False</td>\n", + " <td>True</td>\n", + " <td>1.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.961262</td>\n", + " <td>-0.275637</td>\n", + " <td>-125.0</td>\n", + " <td>-118.558</td>\n", + " <td>130.820</td>\n", + " <td>0.488281</td>\n", + " <td>0.488281</td>\n", + " <td>40.0</td>\n", + " <td>NaN</td>\n", + " <td>True</td>\n", + " <td>150.0</td>\n", + " <td>NaN</td>\n", + " <td>1</td>\n", + " <td>1</td>\n", + " <td>3</td>\n", + " <td>0</td>\n", + " <td>2.15016</td>\n", + " <td>0.0</td>\n", + " <td>...</td>\n", + " <td>1.495753</td>\n", + " <td>0.0</td>\n", + " <td>False</td>\n", + " <td>-0.72</td>\n", + " <td>1.0</td>\n", + " <td>0.0</td>\n", + " <td>1.0</td>\n", + " <td>1.0</td>\n", + " <td>-0.714107</td>\n", + " <td>0.0</td>\n", + " <td>-0.051834</td>\n", + " <td>0.0</td>\n", + " <td>-0.48</td>\n", + " <td>1.0</td>\n", + " <td>False</td>\n", + " <td>2</td>\n", + " <td>0.68972</td>\n", + " <td>0.127984</td>\n", + " <td>-0.7</td>\n", + " <td>0.135593</td>\n", + " <td>19</td>\n", + " <td>-0.610169</td>\n", + " <td>1.6005</td>\n", + " <td>1.6005</td>\n", + " <td>3</td>\n", + " <td>3</td>\n", + " <td>0.0</td>\n", + " <td>1.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>3</td>\n", + " <td>-0.655093</td>\n", + " <td>0.814817</td>\n", + " <td>0.0</td>\n", + " <td>-0.599615</td>\n", + " <td>0</td>\n", + " <td>1</td>\n", + " <td>False</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>False</td>\n", + " <td>-0.5</td>\n", + " <td>55350</td>\n", + " <td>0.993314</td>\n", + " </tr>\n", + " <tr>\n", + " <td>33815</td>\n", + " <td>397e899f6</td>\n", + " <td>ID_397e899f6</td>\n", + " <td>CT</td>\n", + " <td>ID_f6723c35</td>\n", + " <td>ID_fc07fac521</td>\n", + " <td>ID_cfd350c878</td>\n", + " <td>NaN</td>\n", + " <td>['-125.000', '-118.558', '146.424']</td>\n", + " <td>['1.000000', '0.000000', '0.000000', '0.000000...</td>\n", + " <td>1</td>\n", + " <td>MONOCHROME2</td>\n", + " <td>512</td>\n", + " <td>512</td>\n", + " <td>['0.488281', '0.488281']</td>\n", + " <td>16</td>\n", + " <td>16</td>\n", + " <td>15</td>\n", + " <td>1</td>\n", + " <td>40</td>\n", + " <td>150</td>\n", + " <td>-1024.0</td>\n", + " <td>1.0</td>\n", + " <td>-0.064</td>\n", + " <td>0.218667</td>\n", + " <td>0.157382</td>\n", + " <td>-0.319805</td>\n", + " <td>False</td>\n", + " <td>True</td>\n", + " <td>1.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.961262</td>\n", + " <td>-0.275637</td>\n", + " <td>-125.0</td>\n", + " <td>-118.558</td>\n", + " <td>146.424</td>\n", + " <td>0.488281</td>\n", + " <td>0.488281</td>\n", + " <td>40.0</td>\n", + " <td>NaN</td>\n", + " <td>True</td>\n", + " <td>150.0</td>\n", + " <td>NaN</td>\n", + " <td>1</td>\n", + " <td>1</td>\n", + " <td>3</td>\n", + " <td>0</td>\n", + " <td>2.15016</td>\n", + " <td>0.0</td>\n", + " <td>...</td>\n", + " <td>1.495753</td>\n", + " <td>0.0</td>\n", + " <td>False</td>\n", + " <td>-0.72</td>\n", + " <td>1.0</td>\n", + " <td>0.0</td>\n", + " <td>1.0</td>\n", + " <td>1.0</td>\n", + " <td>-0.714107</td>\n", + " <td>0.0</td>\n", + " <td>-0.029479</td>\n", + " <td>0.0</td>\n", + " <td>-0.48</td>\n", + " <td>1.0</td>\n", + " <td>False</td>\n", + " <td>2</td>\n", + " <td>0.68972</td>\n", + " <td>0.127984</td>\n", + " <td>-0.7</td>\n", + " <td>0.338983</td>\n", + " <td>22</td>\n", + " <td>-0.813559</td>\n", + " <td>1.6010</td>\n", + " <td>1.6005</td>\n", + " <td>3</td>\n", + " <td>3</td>\n", + " <td>0.0</td>\n", + " <td>1.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>3</td>\n", + " <td>-0.655093</td>\n", + " <td>1.259268</td>\n", + " <td>0.0</td>\n", + " <td>-0.599615</td>\n", + " <td>0</td>\n", + " <td>1</td>\n", + " <td>False</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>False</td>\n", + " <td>-0.5</td>\n", + " <td>55353</td>\n", + " <td>0.993623</td>\n", + " </tr>\n", + " <tr>\n", + " <td>2113</td>\n", + " <td>ed2a8477b</td>\n", + " <td>ID_ed2a8477b</td>\n", + " <td>CT</td>\n", + " <td>ID_f6723c35</td>\n", + " <td>ID_fc07fac521</td>\n", + " <td>ID_cfd350c878</td>\n", + " <td>NaN</td>\n", + " <td>['-125.000', '-118.558', '141.222']</td>\n", + " <td>['1.000000', '0.000000', '0.000000', '0.000000...</td>\n", + " <td>1</td>\n", + " <td>MONOCHROME2</td>\n", + " <td>512</td>\n", + " <td>512</td>\n", + " <td>['0.488281', '0.488281']</td>\n", + " <td>16</td>\n", + " <td>16</td>\n", + " <td>15</td>\n", + " <td>1</td>\n", + " <td>40</td>\n", + " <td>150</td>\n", + " <td>-1024.0</td>\n", + " <td>1.0</td>\n", + " <td>-0.064</td>\n", + " <td>0.169333</td>\n", + " <td>0.193354</td>\n", + " <td>-0.226621</td>\n", + " <td>False</td>\n", + " <td>True</td>\n", + " <td>1.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.961262</td>\n", + " <td>-0.275637</td>\n", + " <td>-125.0</td>\n", + " <td>-118.558</td>\n", + " <td>141.222</td>\n", + " <td>0.488281</td>\n", + " <td>0.488281</td>\n", + " <td>40.0</td>\n", + " <td>NaN</td>\n", + " <td>True</td>\n", + " <td>150.0</td>\n", + " <td>NaN</td>\n", + " <td>1</td>\n", + " <td>1</td>\n", + " <td>3</td>\n", + " <td>0</td>\n", + " <td>2.15016</td>\n", + " <td>0.0</td>\n", + " <td>...</td>\n", + " <td>1.495753</td>\n", + " <td>0.0</td>\n", + " <td>False</td>\n", + " <td>-0.72</td>\n", + " <td>1.0</td>\n", + " <td>0.0</td>\n", + " <td>1.0</td>\n", + " <td>1.0</td>\n", + " <td>-0.714107</td>\n", + " <td>0.0</td>\n", + " <td>-0.036931</td>\n", + " <td>0.0</td>\n", + " <td>-0.48</td>\n", + " <td>1.0</td>\n", + " <td>False</td>\n", + " <td>2</td>\n", + " <td>0.68972</td>\n", + " <td>0.127984</td>\n", + " <td>-0.7</td>\n", + " <td>0.271186</td>\n", + " <td>21</td>\n", + " <td>-0.745763</td>\n", + " <td>1.6005</td>\n", + " <td>1.6010</td>\n", + " <td>3</td>\n", + " <td>3</td>\n", + " <td>0.0</td>\n", + " <td>1.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>3</td>\n", + " <td>-0.655093</td>\n", + " <td>1.111098</td>\n", + " <td>0.0</td>\n", + " <td>-0.599615</td>\n", + " <td>0</td>\n", + " <td>1</td>\n", + " <td>False</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>False</td>\n", + " <td>-0.5</td>\n", + " <td>55352</td>\n", + " <td>0.993728</td>\n", + " </tr>\n", + " <tr>\n", + " <td>61829</td>\n", + " <td>b2d64d052</td>\n", + " <td>ID_b2d64d052</td>\n", + " <td>CT</td>\n", + " <td>ID_f6723c35</td>\n", + " <td>ID_fc07fac521</td>\n", + " <td>ID_cfd350c878</td>\n", + " <td>NaN</td>\n", + " <td>['-125.000', '-118.558', '136.021']</td>\n", + " <td>['1.000000', '0.000000', '0.000000', '0.000000...</td>\n", + " <td>1</td>\n", + " <td>MONOCHROME2</td>\n", + " <td>512</td>\n", + " <td>512</td>\n", + " <td>['0.488281', '0.488281']</td>\n", + " <td>16</td>\n", + " <td>16</td>\n", + " <td>15</td>\n", + " <td>1</td>\n", + " <td>40</td>\n", + " <td>150</td>\n", + " <td>-1024.0</td>\n", + " <td>1.0</td>\n", + " <td>-0.064</td>\n", + " <td>0.148000</td>\n", + " <td>0.208909</td>\n", + " <td>-0.156506</td>\n", + " <td>False</td>\n", + " <td>True</td>\n", + " <td>1.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.961262</td>\n", + " <td>-0.275637</td>\n", + " <td>-125.0</td>\n", + " <td>-118.558</td>\n", + " <td>136.021</td>\n", + " <td>0.488281</td>\n", + " <td>0.488281</td>\n", + " <td>40.0</td>\n", + " <td>NaN</td>\n", + " <td>True</td>\n", + " <td>150.0</td>\n", + " <td>NaN</td>\n", + " <td>1</td>\n", + " <td>1</td>\n", + " <td>3</td>\n", + " <td>0</td>\n", + " <td>2.15016</td>\n", + " <td>0.0</td>\n", + " <td>...</td>\n", + " <td>1.495753</td>\n", + " <td>0.0</td>\n", + " <td>False</td>\n", + " <td>-0.72</td>\n", + " <td>1.0</td>\n", + " <td>0.0</td>\n", + " <td>1.0</td>\n", + " <td>1.0</td>\n", + " <td>-0.714107</td>\n", + " <td>0.0</td>\n", + " <td>-0.044383</td>\n", + " <td>0.0</td>\n", + " <td>-0.48</td>\n", + " <td>1.0</td>\n", + " <td>False</td>\n", + " <td>2</td>\n", + " <td>0.68972</td>\n", + " <td>0.127984</td>\n", + " <td>-0.7</td>\n", + " <td>0.203390</td>\n", + " <td>20</td>\n", + " <td>-0.677966</td>\n", + " <td>1.6005</td>\n", + " <td>1.6005</td>\n", + " <td>3</td>\n", + " <td>3</td>\n", + " <td>0.0</td>\n", + " <td>1.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>3</td>\n", + " <td>-0.655093</td>\n", + " <td>0.962958</td>\n", + " <td>0.0</td>\n", + " <td>-0.599615</td>\n", + " <td>0</td>\n", + " <td>1</td>\n", + " <td>False</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>False</td>\n", + " <td>-0.5</td>\n", + " <td>55351</td>\n", + " <td>0.993775</td>\n", + " </tr>\n", + " </tbody>\n", + "</table>\n", + "<p>5 rows × 101 columns</p>\n", + "</div>" + ], + "text/plain": [ + " img_id SOPInstanceUID Modality PatientID StudyInstanceUID \\\n", + "46433 f3a75309f ID_f3a75309f CT ID_f6723c35 ID_fc07fac521 \n", + "59590 dc7e09cbd ID_dc7e09cbd CT ID_f6723c35 ID_fc07fac521 \n", + "33815 397e899f6 ID_397e899f6 CT ID_f6723c35 ID_fc07fac521 \n", + "2113 ed2a8477b ID_ed2a8477b CT ID_f6723c35 ID_fc07fac521 \n", + "61829 b2d64d052 ID_b2d64d052 CT ID_f6723c35 ID_fc07fac521 \n", + "\n", + " SeriesInstanceUID StudyID ImagePositionPatient \\\n", + "46433 ID_cfd350c878 NaN ['-125.000', '-118.558', '151.625'] \n", + "59590 ID_cfd350c878 NaN ['-125.000', '-118.558', '130.820'] \n", + "33815 ID_cfd350c878 NaN ['-125.000', '-118.558', '146.424'] \n", + "2113 ID_cfd350c878 NaN ['-125.000', '-118.558', '141.222'] \n", + "61829 ID_cfd350c878 NaN ['-125.000', '-118.558', '136.021'] \n", + "\n", + " ImageOrientationPatient SamplesPerPixel \\\n", + "46433 ['1.000000', '0.000000', '0.000000', '0.000000... 1 \n", + "59590 ['1.000000', '0.000000', '0.000000', '0.000000... 1 \n", + "33815 ['1.000000', '0.000000', '0.000000', '0.000000... 1 \n", + "2113 ['1.000000', '0.000000', '0.000000', '0.000000... 1 \n", + "61829 ['1.000000', '0.000000', '0.000000', '0.000000... 1 \n", + "\n", + " PhotometricInterpretation Rows Columns PixelSpacing \\\n", + "46433 MONOCHROME2 512 512 ['0.488281', '0.488281'] \n", + "59590 MONOCHROME2 512 512 ['0.488281', '0.488281'] \n", + "33815 MONOCHROME2 512 512 ['0.488281', '0.488281'] \n", + "2113 MONOCHROME2 512 512 ['0.488281', '0.488281'] \n", + "61829 MONOCHROME2 512 512 ['0.488281', '0.488281'] \n", + "\n", + " BitsAllocated BitsStored HighBit PixelRepresentation WindowCenter \\\n", + "46433 16 16 15 1 40 \n", + "59590 16 16 15 1 40 \n", + "33815 16 16 15 1 40 \n", + "2113 16 16 15 1 40 \n", + "61829 16 16 15 1 40 \n", + "\n", + " WindowWidth RescaleIntercept RescaleSlope PxlMin PxlMax PxlStd \\\n", + "46433 150 -1024.0 1.0 -0.064 0.292000 0.113617 \n", + "59590 150 -1024.0 1.0 -0.064 0.180000 0.216861 \n", + "33815 150 -1024.0 1.0 -0.064 0.218667 0.157382 \n", + "2113 150 -1024.0 1.0 -0.064 0.169333 0.193354 \n", + "61829 150 -1024.0 1.0 -0.064 0.148000 0.208909 \n", + "\n", + " PxlMean test test2 ImageOrientationPatient_0 \\\n", + "46433 -0.426832 False True 1.0 \n", + "59590 -0.102710 False True 1.0 \n", + "33815 -0.319805 False True 1.0 \n", + "2113 -0.226621 False True 1.0 \n", + "61829 -0.156506 False True 1.0 \n", + "\n", + " ImageOrientationPatient_1 ImageOrientationPatient_2 \\\n", + "46433 0.0 0.0 \n", + "59590 0.0 0.0 \n", + "33815 0.0 0.0 \n", + "2113 0.0 0.0 \n", + "61829 0.0 0.0 \n", + "\n", + " ImageOrientationPatient_3 ImageOrientationPatient_4 \\\n", + "46433 0.0 0.961262 \n", + "59590 0.0 0.961262 \n", + "33815 0.0 0.961262 \n", + "2113 0.0 0.961262 \n", + "61829 0.0 0.961262 \n", + "\n", + " ImageOrientationPatient_5 ImagePositionPatient_0 \\\n", + "46433 -0.275637 -125.0 \n", + "59590 -0.275637 -125.0 \n", + "33815 -0.275637 -125.0 \n", + "2113 -0.275637 -125.0 \n", + "61829 -0.275637 -125.0 \n", + "\n", + " ImagePositionPatient_1 ImagePositionPatient_2 PixelSpacing_0 \\\n", + "46433 -118.558 151.625 0.488281 \n", + "59590 -118.558 130.820 0.488281 \n", + "33815 -118.558 146.424 0.488281 \n", + "2113 -118.558 141.222 0.488281 \n", + "61829 -118.558 136.021 0.488281 \n", + "\n", + " PixelSpacing_1 WindowCenter_0 WindowCenter_1 WindowCenter_1_NAN \\\n", + "46433 0.488281 40.0 NaN True \n", + "59590 0.488281 40.0 NaN True \n", + "33815 0.488281 40.0 NaN True \n", + "2113 0.488281 40.0 NaN True \n", + "61829 0.488281 40.0 NaN True \n", + "\n", + " WindowWidth_0 WindowWidth_1 WindowWidth_0_le WindowWidth_1_le \\\n", + "46433 150.0 NaN 1 1 \n", + "59590 150.0 NaN 1 1 \n", + "33815 150.0 NaN 1 1 \n", + "2113 150.0 NaN 1 1 \n", + "61829 150.0 NaN 1 1 \n", + "\n", + " WindowCenter_1_le BitType_le ImageOrientationPatient_4_f \\\n", + "46433 3 0 2.15016 \n", + "59590 3 0 2.15016 \n", + "33815 3 0 2.15016 \n", + "2113 3 0 2.15016 \n", + "61829 3 0 2.15016 \n", + "\n", + " ImageOrientationPatient_4_enc_0 ... ImageOrientationPatient_5_f \\\n", + "46433 0.0 ... 1.495753 \n", + "59590 0.0 ... 1.495753 \n", + "33815 0.0 ... 1.495753 \n", + "2113 0.0 ... 1.495753 \n", + "61829 0.0 ... 1.495753 \n", + "\n", + " ImageOrientationPatient_5_enc_0 ImageOrientationPatient_5_enc_1 \\\n", + "46433 0.0 False \n", + "59590 0.0 False \n", + "33815 0.0 False \n", + "2113 0.0 False \n", + "61829 0.0 False \n", + "\n", + " ImagePositionPatient_0_f ImagePositionPatient_0_enc_0 \\\n", + "46433 -0.72 1.0 \n", + "59590 -0.72 1.0 \n", + "33815 -0.72 1.0 \n", + "2113 -0.72 1.0 \n", + "61829 -0.72 1.0 \n", + "\n", + " ImagePositionPatient_0_enc_1 ImagePositionPatient_0_f_r1 \\\n", + "46433 0.0 1.0 \n", + "59590 0.0 1.0 \n", + "33815 0.0 1.0 \n", + "2113 0.0 1.0 \n", + "61829 0.0 1.0 \n", + "\n", + " ImagePositionPatient_0_f_r05 ImagePositionPatient_1_f \\\n", + "46433 1.0 -0.714107 \n", + "59590 1.0 -0.714107 \n", + "33815 1.0 -0.714107 \n", + "2113 1.0 -0.714107 \n", + "61829 1.0 -0.714107 \n", + "\n", + " ImagePositionPatient_1_enc_0 ImagePositionPatient_2_f \\\n", + "46433 0.0 -0.022027 \n", + "59590 0.0 -0.051834 \n", + "33815 0.0 -0.029479 \n", + "2113 0.0 -0.036931 \n", + "61829 0.0 -0.044383 \n", + "\n", + " ImagePositionPatient_2_f_r05 PixelSpacing_1_f PixelSpacing_1_enc_0 \\\n", + "46433 0.0 -0.48 1.0 \n", + "59590 0.0 -0.48 1.0 \n", + "33815 0.0 -0.48 1.0 \n", + "2113 0.0 -0.48 1.0 \n", + "61829 0.0 -0.48 1.0 \n", + "\n", + " PixelSpacing_1_enc_1 WindowCenter_0_le pos_max pos_min pos_size \\\n", + "46433 False 2 0.68972 0.127984 -0.7 \n", + "59590 False 2 0.68972 0.127984 -0.7 \n", + "33815 False 2 0.68972 0.127984 -0.7 \n", + "2113 False 2 0.68972 0.127984 -0.7 \n", + "61829 False 2 0.68972 0.127984 -0.7 \n", + "\n", + " pos_idx1 pos_idx pos_idx2 pos_inc1 pos_inc2 pos_inc1_grp_le \\\n", + "46433 0.406780 23 -0.881356 1.6005 1.6005 3 \n", + "59590 0.135593 19 -0.610169 1.6005 1.6005 3 \n", + "33815 0.338983 22 -0.813559 1.6010 1.6005 3 \n", + "2113 0.271186 21 -0.745763 1.6005 1.6010 3 \n", + "61829 0.203390 20 -0.677966 1.6005 1.6005 3 \n", + "\n", + " pos_inc2_grp_le pos_inc1_r1 pos_inc1_r0001 pos_inc1_enc_0 \\\n", + "46433 3 0.0 1.0 0.0 \n", + "59590 3 0.0 1.0 0.0 \n", + "33815 3 0.0 1.0 0.0 \n", + "2113 3 0.0 1.0 0.0 \n", + "61829 3 0.0 1.0 0.0 \n", + "\n", + " pos_inc2_enc_0 pos_inc1_enc_1 pos_inc2_enc_1 pos_size_le pos_range \\\n", + "46433 0.0 0.0 0.0 3 -0.655093 \n", + "59590 0.0 0.0 0.0 3 -0.655093 \n", + "33815 0.0 0.0 0.0 3 -0.655093 \n", + "2113 0.0 0.0 0.0 3 -0.655093 \n", + "61829 0.0 0.0 0.0 3 -0.655093 \n", + "\n", + " pos_rel pos_zeros pos_inc_rng pos_zeros_le PxlMin_grp_le \\\n", + "46433 1.407408 0.0 -0.599615 0 1 \n", + "59590 0.814817 0.0 -0.599615 0 1 \n", + "33815 1.259268 0.0 -0.599615 0 1 \n", + "2113 1.111098 0.0 -0.599615 0 1 \n", + "61829 0.962958 0.0 -0.599615 0 1 \n", + "\n", + " PxlMin_zero any epidural intraparenchymal intraventricular \\\n", + "46433 False NaN NaN NaN NaN \n", + "59590 False NaN NaN NaN NaN \n", + "33815 False NaN NaN NaN NaN \n", + "2113 False NaN NaN NaN NaN \n", + "61829 False NaN NaN NaN NaN \n", + "\n", + " subarachnoid subdural any_series SeriesPP yuval_idx pred_any \n", + "46433 NaN NaN False -0.5 55354 0.993246 \n", + "59590 NaN NaN False -0.5 55350 0.993314 \n", + "33815 NaN NaN False -0.5 55353 0.993623 \n", + "2113 NaN NaN False -0.5 55352 0.993728 \n", + "61829 NaN NaN False -0.5 55351 0.993775 \n", + "\n", + "[5 rows x 101 columns]" + ] + }, + "execution_count": 67, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "test_md['pred_any'] = predictions[:,4]\n", + "test_md.sort_values('pred_any').tail()" + ] + }, + { + "cell_type": "code", + "execution_count": 68, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "<div>\n", + "<style scoped>\n", + " .dataframe tbody tr th:only-of-type {\n", + " vertical-align: middle;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th></th>\n", + " <th>img_id</th>\n", + " <th>SOPInstanceUID</th>\n", + " <th>Modality</th>\n", + " <th>PatientID</th>\n", + " <th>StudyInstanceUID</th>\n", + " <th>SeriesInstanceUID</th>\n", + " <th>StudyID</th>\n", + " <th>ImagePositionPatient</th>\n", + " <th>ImageOrientationPatient</th>\n", + " <th>SamplesPerPixel</th>\n", + " <th>PhotometricInterpretation</th>\n", + " <th>Rows</th>\n", + " <th>Columns</th>\n", + " <th>PixelSpacing</th>\n", + " <th>BitsAllocated</th>\n", + " <th>BitsStored</th>\n", + " <th>HighBit</th>\n", + " <th>PixelRepresentation</th>\n", + " <th>WindowCenter</th>\n", + " <th>WindowWidth</th>\n", + " <th>RescaleIntercept</th>\n", + " <th>RescaleSlope</th>\n", + " <th>PxlMin</th>\n", + " <th>PxlMax</th>\n", + " <th>PxlStd</th>\n", + " <th>PxlMean</th>\n", + " <th>test</th>\n", + " <th>test2</th>\n", + " <th>ImageOrientationPatient_0</th>\n", + " <th>ImageOrientationPatient_1</th>\n", + " <th>ImageOrientationPatient_2</th>\n", + " <th>ImageOrientationPatient_3</th>\n", + " <th>ImageOrientationPatient_4</th>\n", + " <th>ImageOrientationPatient_5</th>\n", + " <th>ImagePositionPatient_0</th>\n", + " <th>ImagePositionPatient_1</th>\n", + " <th>ImagePositionPatient_2</th>\n", + " <th>PixelSpacing_0</th>\n", + " <th>PixelSpacing_1</th>\n", + " <th>WindowCenter_0</th>\n", + " <th>WindowCenter_1</th>\n", + " <th>WindowCenter_1_NAN</th>\n", + " <th>WindowWidth_0</th>\n", + " <th>WindowWidth_1</th>\n", + " <th>WindowWidth_0_le</th>\n", + " <th>WindowWidth_1_le</th>\n", + " <th>WindowCenter_1_le</th>\n", + " <th>BitType_le</th>\n", + " <th>ImageOrientationPatient_4_f</th>\n", + " <th>ImageOrientationPatient_4_enc_0</th>\n", + " <th>...</th>\n", + " <th>ImageOrientationPatient_5_f</th>\n", + " <th>ImageOrientationPatient_5_enc_0</th>\n", + " <th>ImageOrientationPatient_5_enc_1</th>\n", + " <th>ImagePositionPatient_0_f</th>\n", + " <th>ImagePositionPatient_0_enc_0</th>\n", + " <th>ImagePositionPatient_0_enc_1</th>\n", + " <th>ImagePositionPatient_0_f_r1</th>\n", + " <th>ImagePositionPatient_0_f_r05</th>\n", + " <th>ImagePositionPatient_1_f</th>\n", + " <th>ImagePositionPatient_1_enc_0</th>\n", + " <th>ImagePositionPatient_2_f</th>\n", + " <th>ImagePositionPatient_2_f_r05</th>\n", + " <th>PixelSpacing_1_f</th>\n", + " <th>PixelSpacing_1_enc_0</th>\n", + " <th>PixelSpacing_1_enc_1</th>\n", + " <th>WindowCenter_0_le</th>\n", + " <th>pos_max</th>\n", + " <th>pos_min</th>\n", + " <th>pos_size</th>\n", + " <th>pos_idx1</th>\n", + " <th>pos_idx</th>\n", + " <th>pos_idx2</th>\n", + " <th>pos_inc1</th>\n", + " <th>pos_inc2</th>\n", + " <th>pos_inc1_grp_le</th>\n", + " <th>pos_inc2_grp_le</th>\n", + " <th>pos_inc1_r1</th>\n", + " <th>pos_inc1_r0001</th>\n", + " <th>pos_inc1_enc_0</th>\n", + " <th>pos_inc2_enc_0</th>\n", + " <th>pos_inc1_enc_1</th>\n", + " <th>pos_inc2_enc_1</th>\n", + " <th>pos_size_le</th>\n", + " <th>pos_range</th>\n", + " <th>pos_rel</th>\n", + " <th>pos_zeros</th>\n", + " <th>pos_inc_rng</th>\n", + " <th>pos_zeros_le</th>\n", + " <th>PxlMin_grp_le</th>\n", + " <th>PxlMin_zero</th>\n", + " <th>any</th>\n", + " <th>epidural</th>\n", + " <th>intraparenchymal</th>\n", + " <th>intraventricular</th>\n", + " <th>subarachnoid</th>\n", + " <th>subdural</th>\n", + " <th>any_series</th>\n", + " <th>SeriesPP</th>\n", + " <th>yuval_idx</th>\n", + " <th>pred_any</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <td>9661</td>\n", + " <td>feb0a9076</td>\n", + " <td>ID_feb0a9076</td>\n", + " <td>CT</td>\n", + " <td>ID_252323d1</td>\n", + " <td>ID_0257ad04c2</td>\n", + " <td>ID_58b46714eb</td>\n", + " <td>NaN</td>\n", + " <td>['-125', '24.4169536', '204.228683']</td>\n", + " <td>['1', '0', '0', '0', '0.990268069', '-0.139173...</td>\n", + " <td>1</td>\n", + " <td>MONOCHROME2</td>\n", + " <td>512</td>\n", + " <td>512</td>\n", + " <td>['0.48828125', '0.48828125']</td>\n", + " <td>16</td>\n", + " <td>12</td>\n", + " <td>11</td>\n", + " <td>0</td>\n", + " <td>['00040', '00040']</td>\n", + " <td>['00080', '00080']</td>\n", + " <td>-1024.0</td>\n", + " <td>1.0</td>\n", + " <td>1.301333</td>\n", + " <td>0.126667</td>\n", + " <td>-0.761993</td>\n", + " <td>1.166719</td>\n", + " <td>False</td>\n", + " <td>True</td>\n", + " <td>1.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.990268</td>\n", + " <td>-0.139173</td>\n", + " <td>-125.0</td>\n", + " <td>24.416954</td>\n", + " <td>204.228683</td>\n", + " <td>0.488281</td>\n", + " <td>0.488281</td>\n", + " <td>40.0</td>\n", + " <td>40.0</td>\n", + " <td>False</td>\n", + " <td>80.0</td>\n", + " <td>80.0</td>\n", + " <td>0</td>\n", + " <td>0</td>\n", + " <td>1</td>\n", + " <td>1</td>\n", + " <td>2.536908</td>\n", + " <td>0.0</td>\n", + " <td>...</td>\n", + " <td>2.405513</td>\n", + " <td>0.0</td>\n", + " <td>False</td>\n", + " <td>-0.72</td>\n", + " <td>1.0</td>\n", + " <td>0.0</td>\n", + " <td>1.0</td>\n", + " <td>1.0</td>\n", + " <td>1.192226</td>\n", + " <td>1.0</td>\n", + " <td>0.053336</td>\n", + " <td>0.0</td>\n", + " <td>-0.48</td>\n", + " <td>1.0</td>\n", + " <td>False</td>\n", + " <td>2</td>\n", + " <td>1.099715</td>\n", + " <td>0.473493</td>\n", + " <td>-0.3</td>\n", + " <td>0.000000</td>\n", + " <td>17</td>\n", + " <td>-0.203390</td>\n", + " <td>1.527710</td>\n", + " <td>1.522339</td>\n", + " <td>3</td>\n", + " <td>3</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0</td>\n", + " <td>-0.225189</td>\n", + " <td>0.193609</td>\n", + " <td>0.0</td>\n", + " <td>-0.595692</td>\n", + " <td>0</td>\n", + " <td>2</td>\n", + " <td>False</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>False</td>\n", + " <td>-0.5</td>\n", + " <td>49823</td>\n", + " <td>0.992338</td>\n", + " </tr>\n", + " <tr>\n", + " <td>107285</td>\n", + " <td>cfbf38afe</td>\n", + " <td>ID_cfbf38afe</td>\n", + " <td>CT</td>\n", + " <td>ID_6e75b42a</td>\n", + " <td>ID_b94674c76f</td>\n", + " <td>ID_93d835d9f3</td>\n", + " <td>NaN</td>\n", + " <td>['-125', '17.5586391', '177.279488']</td>\n", + " <td>['1', '0', '0', '0', '0.933580426', '-0.358367...</td>\n", + " <td>1</td>\n", + " <td>MONOCHROME2</td>\n", + " <td>512</td>\n", + " <td>512</td>\n", + " <td>['0.48828125', '0.48828125']</td>\n", + " <td>16</td>\n", + " <td>12</td>\n", + " <td>11</td>\n", + " <td>0</td>\n", + " <td>['00040', '00040']</td>\n", + " <td>['00080', '00080']</td>\n", + " <td>-1024.0</td>\n", + " <td>1.0</td>\n", + " <td>1.301333</td>\n", + " <td>0.098667</td>\n", + " <td>-0.807341</td>\n", + " <td>1.049002</td>\n", + " <td>False</td>\n", + " <td>True</td>\n", + " <td>1.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.933580</td>\n", + " <td>-0.358368</td>\n", + " <td>-125.0</td>\n", + " <td>17.558639</td>\n", + " <td>177.279488</td>\n", + " <td>0.488281</td>\n", + " <td>0.488281</td>\n", + " <td>40.0</td>\n", + " <td>40.0</td>\n", + " <td>False</td>\n", + " <td>80.0</td>\n", + " <td>80.0</td>\n", + " <td>0</td>\n", + " <td>0</td>\n", + " <td>1</td>\n", + " <td>1</td>\n", + " <td>1.781072</td>\n", + " <td>0.0</td>\n", + " <td>...</td>\n", + " <td>0.944214</td>\n", + " <td>0.0</td>\n", + " <td>False</td>\n", + " <td>-0.72</td>\n", + " <td>1.0</td>\n", + " <td>0.0</td>\n", + " <td>1.0</td>\n", + " <td>1.0</td>\n", + " <td>1.100782</td>\n", + " <td>1.0</td>\n", + " <td>0.014727</td>\n", + " <td>0.0</td>\n", + " <td>-0.48</td>\n", + " <td>1.0</td>\n", + " <td>False</td>\n", + " <td>2</td>\n", + " <td>1.051518</td>\n", + " <td>0.388022</td>\n", + " <td>-0.3</td>\n", + " <td>-0.135593</td>\n", + " <td>15</td>\n", + " <td>-0.067797</td>\n", + " <td>1.687011</td>\n", + " <td>1.663025</td>\n", + " <td>3</td>\n", + " <td>3</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0</td>\n", + " <td>0.023307</td>\n", + " <td>-0.064219</td>\n", + " <td>0.0</td>\n", + " <td>-0.581939</td>\n", + " <td>0</td>\n", + " <td>2</td>\n", + " <td>False</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>False</td>\n", + " <td>-0.5</td>\n", + " <td>74776</td>\n", + " <td>0.992465</td>\n", + " </tr>\n", + " <tr>\n", + " <td>81787</td>\n", + " <td>95aace9ba</td>\n", + " <td>ID_95aace9ba</td>\n", + " <td>CT</td>\n", + " <td>ID_6e75b42a</td>\n", + " <td>ID_b94674c76f</td>\n", + " <td>ID_93d835d9f3</td>\n", + " <td>NaN</td>\n", + " <td>['-125', '17.5586391', '193.305489']</td>\n", + " <td>['1', '0', '0', '0', '0.933580426', '-0.358367...</td>\n", + " <td>1</td>\n", + " <td>MONOCHROME2</td>\n", + " <td>512</td>\n", + " <td>512</td>\n", + " <td>['0.48828125', '0.48828125']</td>\n", + " <td>16</td>\n", + " <td>12</td>\n", + " <td>11</td>\n", + " <td>0</td>\n", + " <td>['00040', '00040']</td>\n", + " <td>['00080', '00080']</td>\n", + " <td>-1024.0</td>\n", + " <td>1.0</td>\n", + " <td>1.301333</td>\n", + " <td>0.086667</td>\n", + " <td>-0.789830</td>\n", + " <td>0.920645</td>\n", + " <td>False</td>\n", + " <td>True</td>\n", + " <td>1.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.933580</td>\n", + " <td>-0.358368</td>\n", + " <td>-125.0</td>\n", + " <td>17.558639</td>\n", + " <td>193.305489</td>\n", + " <td>0.488281</td>\n", + " <td>0.488281</td>\n", + " <td>40.0</td>\n", + " <td>40.0</td>\n", + " <td>False</td>\n", + " <td>80.0</td>\n", + " <td>80.0</td>\n", + " <td>0</td>\n", + " <td>0</td>\n", + " <td>1</td>\n", + " <td>1</td>\n", + " <td>1.781072</td>\n", + " <td>0.0</td>\n", + " <td>...</td>\n", + " <td>0.944214</td>\n", + " <td>0.0</td>\n", + " <td>False</td>\n", + " <td>-0.72</td>\n", + " <td>1.0</td>\n", + " <td>0.0</td>\n", + " <td>1.0</td>\n", + " <td>1.0</td>\n", + " <td>1.100782</td>\n", + " <td>1.0</td>\n", + " <td>0.037687</td>\n", + " <td>0.0</td>\n", + " <td>-0.48</td>\n", + " <td>1.0</td>\n", + " <td>False</td>\n", + " <td>2</td>\n", + " <td>1.051518</td>\n", + " <td>0.388022</td>\n", + " <td>-0.3</td>\n", + " <td>0.067797</td>\n", + " <td>18</td>\n", + " <td>-0.271186</td>\n", + " <td>1.662964</td>\n", + " <td>1.687012</td>\n", + " <td>3</td>\n", + " <td>3</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0</td>\n", + " <td>0.023307</td>\n", + " <td>0.322242</td>\n", + " <td>0.0</td>\n", + " <td>-0.581939</td>\n", + " <td>0</td>\n", + " <td>2</td>\n", + " <td>False</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>False</td>\n", + " <td>-0.5</td>\n", + " <td>74779</td>\n", + " <td>0.992568</td>\n", + " </tr>\n", + " <tr>\n", + " <td>87951</td>\n", + " <td>5092c392f</td>\n", + " <td>ID_5092c392f</td>\n", + " <td>CT</td>\n", + " <td>ID_6e75b42a</td>\n", + " <td>ID_b94674c76f</td>\n", + " <td>ID_93d835d9f3</td>\n", + " <td>NaN</td>\n", + " <td>['-125', '17.5586391', '187.979561']</td>\n", + " <td>['1', '0', '0', '0', '0.933580426', '-0.358367...</td>\n", + " <td>1</td>\n", + " <td>MONOCHROME2</td>\n", + " <td>512</td>\n", + " <td>512</td>\n", + " <td>['0.48828125', '0.48828125']</td>\n", + " <td>16</td>\n", + " <td>12</td>\n", + " <td>11</td>\n", + " <td>0</td>\n", + " <td>['00040', '00040']</td>\n", + " <td>['00080', '00080']</td>\n", + " <td>-1024.0</td>\n", + " <td>1.0</td>\n", + " <td>1.301333</td>\n", + " <td>0.130667</td>\n", + " <td>-0.782852</td>\n", + " <td>0.978311</td>\n", + " <td>False</td>\n", + " <td>True</td>\n", + " <td>1.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.933580</td>\n", + " <td>-0.358368</td>\n", + " <td>-125.0</td>\n", + " <td>17.558639</td>\n", + " <td>187.979561</td>\n", + " <td>0.488281</td>\n", + " <td>0.488281</td>\n", + " <td>40.0</td>\n", + " <td>40.0</td>\n", + " <td>False</td>\n", + " <td>80.0</td>\n", + " <td>80.0</td>\n", + " <td>0</td>\n", + " <td>0</td>\n", + " <td>1</td>\n", + " <td>1</td>\n", + " <td>1.781072</td>\n", + " <td>0.0</td>\n", + " <td>...</td>\n", + " <td>0.944214</td>\n", + " <td>0.0</td>\n", + " <td>False</td>\n", + " <td>-0.72</td>\n", + " <td>1.0</td>\n", + " <td>0.0</td>\n", + " <td>1.0</td>\n", + " <td>1.0</td>\n", + " <td>1.100782</td>\n", + " <td>1.0</td>\n", + " <td>0.030057</td>\n", + " <td>0.0</td>\n", + " <td>-0.48</td>\n", + " <td>1.0</td>\n", + " <td>False</td>\n", + " <td>2</td>\n", + " <td>1.051518</td>\n", + " <td>0.388022</td>\n", + " <td>-0.3</td>\n", + " <td>0.000000</td>\n", + " <td>17</td>\n", + " <td>-0.203390</td>\n", + " <td>1.687011</td>\n", + " <td>1.662964</td>\n", + " <td>3</td>\n", + " <td>3</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0</td>\n", + " <td>0.023307</td>\n", + " <td>0.193809</td>\n", + " <td>0.0</td>\n", + " <td>-0.581939</td>\n", + " <td>0</td>\n", + " <td>2</td>\n", + " <td>False</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>False</td>\n", + " <td>-0.5</td>\n", + " <td>74778</td>\n", + " <td>0.992820</td>\n", + " </tr>\n", + " <tr>\n", + " <td>86533</td>\n", + " <td>3a20374d3</td>\n", + " <td>ID_3a20374d3</td>\n", + " <td>CT</td>\n", + " <td>ID_6e75b42a</td>\n", + " <td>ID_b94674c76f</td>\n", + " <td>ID_93d835d9f3</td>\n", + " <td>NaN</td>\n", + " <td>['-125', '17.5586391', '182.605538']</td>\n", + " <td>['1', '0', '0', '0', '0.933580426', '-0.358367...</td>\n", + " <td>1</td>\n", + " <td>MONOCHROME2</td>\n", + " <td>512</td>\n", + " <td>512</td>\n", + " <td>['0.48828125', '0.48828125']</td>\n", + " <td>16</td>\n", + " <td>12</td>\n", + " <td>11</td>\n", + " <td>0</td>\n", + " <td>['00040', '00040']</td>\n", + " <td>['00080', '00080']</td>\n", + " <td>-1024.0</td>\n", + " <td>1.0</td>\n", + " <td>1.301333</td>\n", + " <td>0.124000</td>\n", + " <td>-0.788199</td>\n", + " <td>1.016346</td>\n", + " <td>False</td>\n", + " <td>True</td>\n", + " <td>1.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.933580</td>\n", + " <td>-0.358368</td>\n", + " <td>-125.0</td>\n", + " <td>17.558639</td>\n", + " <td>182.605538</td>\n", + " <td>0.488281</td>\n", + " <td>0.488281</td>\n", + " <td>40.0</td>\n", + " <td>40.0</td>\n", + " <td>False</td>\n", + " <td>80.0</td>\n", + " <td>80.0</td>\n", + " <td>0</td>\n", + " <td>0</td>\n", + " <td>1</td>\n", + " <td>1</td>\n", + " <td>1.781072</td>\n", + " <td>0.0</td>\n", + " <td>...</td>\n", + " <td>0.944214</td>\n", + " <td>0.0</td>\n", + " <td>False</td>\n", + " <td>-0.72</td>\n", + " <td>1.0</td>\n", + " <td>0.0</td>\n", + " <td>1.0</td>\n", + " <td>1.0</td>\n", + " <td>1.100782</td>\n", + " <td>1.0</td>\n", + " <td>0.022358</td>\n", + " <td>0.0</td>\n", + " <td>-0.48</td>\n", + " <td>1.0</td>\n", + " <td>False</td>\n", + " <td>2</td>\n", + " <td>1.051518</td>\n", + " <td>0.388022</td>\n", + " <td>-0.3</td>\n", + " <td>-0.067797</td>\n", + " <td>16</td>\n", + " <td>-0.135593</td>\n", + " <td>1.663025</td>\n", + " <td>1.687011</td>\n", + " <td>3</td>\n", + " <td>3</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0.0</td>\n", + " <td>0</td>\n", + " <td>0.023307</td>\n", + " <td>0.064217</td>\n", + " <td>0.0</td>\n", + " <td>-0.581939</td>\n", + " <td>0</td>\n", + " <td>2</td>\n", + " <td>False</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>False</td>\n", + " <td>-0.5</td>\n", + " <td>74777</td>\n", + " <td>0.992826</td>\n", + " </tr>\n", + " </tbody>\n", + "</table>\n", + "<p>5 rows × 101 columns</p>\n", + "</div>" + ], + "text/plain": [ + " img_id SOPInstanceUID Modality PatientID StudyInstanceUID \\\n", + "9661 feb0a9076 ID_feb0a9076 CT ID_252323d1 ID_0257ad04c2 \n", + "107285 cfbf38afe ID_cfbf38afe CT ID_6e75b42a ID_b94674c76f \n", + "81787 95aace9ba ID_95aace9ba CT ID_6e75b42a ID_b94674c76f \n", + "87951 5092c392f ID_5092c392f CT ID_6e75b42a ID_b94674c76f \n", + "86533 3a20374d3 ID_3a20374d3 CT ID_6e75b42a ID_b94674c76f \n", + "\n", + " SeriesInstanceUID StudyID ImagePositionPatient \\\n", + "9661 ID_58b46714eb NaN ['-125', '24.4169536', '204.228683'] \n", + "107285 ID_93d835d9f3 NaN ['-125', '17.5586391', '177.279488'] \n", + "81787 ID_93d835d9f3 NaN ['-125', '17.5586391', '193.305489'] \n", + "87951 ID_93d835d9f3 NaN ['-125', '17.5586391', '187.979561'] \n", + "86533 ID_93d835d9f3 NaN ['-125', '17.5586391', '182.605538'] \n", + "\n", + " ImageOrientationPatient SamplesPerPixel \\\n", + "9661 ['1', '0', '0', '0', '0.990268069', '-0.139173... 1 \n", + "107285 ['1', '0', '0', '0', '0.933580426', '-0.358367... 1 \n", + "81787 ['1', '0', '0', '0', '0.933580426', '-0.358367... 1 \n", + "87951 ['1', '0', '0', '0', '0.933580426', '-0.358367... 1 \n", + "86533 ['1', '0', '0', '0', '0.933580426', '-0.358367... 1 \n", + "\n", + " PhotometricInterpretation Rows Columns PixelSpacing \\\n", + "9661 MONOCHROME2 512 512 ['0.48828125', '0.48828125'] \n", + "107285 MONOCHROME2 512 512 ['0.48828125', '0.48828125'] \n", + "81787 MONOCHROME2 512 512 ['0.48828125', '0.48828125'] \n", + "87951 MONOCHROME2 512 512 ['0.48828125', '0.48828125'] \n", + "86533 MONOCHROME2 512 512 ['0.48828125', '0.48828125'] \n", + "\n", + " BitsAllocated BitsStored HighBit PixelRepresentation \\\n", + "9661 16 12 11 0 \n", + "107285 16 12 11 0 \n", + "81787 16 12 11 0 \n", + "87951 16 12 11 0 \n", + "86533 16 12 11 0 \n", + "\n", + " WindowCenter WindowWidth RescaleIntercept \\\n", + "9661 ['00040', '00040'] ['00080', '00080'] -1024.0 \n", + "107285 ['00040', '00040'] ['00080', '00080'] -1024.0 \n", + "81787 ['00040', '00040'] ['00080', '00080'] -1024.0 \n", + "87951 ['00040', '00040'] ['00080', '00080'] -1024.0 \n", + "86533 ['00040', '00040'] ['00080', '00080'] -1024.0 \n", + "\n", + " RescaleSlope PxlMin PxlMax PxlStd PxlMean test test2 \\\n", + "9661 1.0 1.301333 0.126667 -0.761993 1.166719 False True \n", + "107285 1.0 1.301333 0.098667 -0.807341 1.049002 False True \n", + "81787 1.0 1.301333 0.086667 -0.789830 0.920645 False True \n", + "87951 1.0 1.301333 0.130667 -0.782852 0.978311 False True \n", + "86533 1.0 1.301333 0.124000 -0.788199 1.016346 False True \n", + "\n", + " ImageOrientationPatient_0 ImageOrientationPatient_1 \\\n", + "9661 1.0 0.0 \n", + "107285 1.0 0.0 \n", + "81787 1.0 0.0 \n", + "87951 1.0 0.0 \n", + "86533 1.0 0.0 \n", + "\n", + " ImageOrientationPatient_2 ImageOrientationPatient_3 \\\n", + "9661 0.0 0.0 \n", + "107285 0.0 0.0 \n", + "81787 0.0 0.0 \n", + "87951 0.0 0.0 \n", + "86533 0.0 0.0 \n", + "\n", + " ImageOrientationPatient_4 ImageOrientationPatient_5 \\\n", + "9661 0.990268 -0.139173 \n", + "107285 0.933580 -0.358368 \n", + "81787 0.933580 -0.358368 \n", + "87951 0.933580 -0.358368 \n", + "86533 0.933580 -0.358368 \n", + "\n", + " ImagePositionPatient_0 ImagePositionPatient_1 \\\n", + "9661 -125.0 24.416954 \n", + "107285 -125.0 17.558639 \n", + "81787 -125.0 17.558639 \n", + "87951 -125.0 17.558639 \n", + "86533 -125.0 17.558639 \n", + "\n", + " ImagePositionPatient_2 PixelSpacing_0 PixelSpacing_1 \\\n", + "9661 204.228683 0.488281 0.488281 \n", + "107285 177.279488 0.488281 0.488281 \n", + "81787 193.305489 0.488281 0.488281 \n", + "87951 187.979561 0.488281 0.488281 \n", + "86533 182.605538 0.488281 0.488281 \n", + "\n", + " WindowCenter_0 WindowCenter_1 WindowCenter_1_NAN WindowWidth_0 \\\n", + "9661 40.0 40.0 False 80.0 \n", + "107285 40.0 40.0 False 80.0 \n", + "81787 40.0 40.0 False 80.0 \n", + "87951 40.0 40.0 False 80.0 \n", + "86533 40.0 40.0 False 80.0 \n", + "\n", + " WindowWidth_1 WindowWidth_0_le WindowWidth_1_le WindowCenter_1_le \\\n", + "9661 80.0 0 0 1 \n", + "107285 80.0 0 0 1 \n", + "81787 80.0 0 0 1 \n", + "87951 80.0 0 0 1 \n", + "86533 80.0 0 0 1 \n", + "\n", + " BitType_le ImageOrientationPatient_4_f \\\n", + "9661 1 2.536908 \n", + "107285 1 1.781072 \n", + "81787 1 1.781072 \n", + "87951 1 1.781072 \n", + "86533 1 1.781072 \n", + "\n", + " ImageOrientationPatient_4_enc_0 ... ImageOrientationPatient_5_f \\\n", + "9661 0.0 ... 2.405513 \n", + "107285 0.0 ... 0.944214 \n", + "81787 0.0 ... 0.944214 \n", + "87951 0.0 ... 0.944214 \n", + "86533 0.0 ... 0.944214 \n", + "\n", + " ImageOrientationPatient_5_enc_0 ImageOrientationPatient_5_enc_1 \\\n", + "9661 0.0 False \n", + "107285 0.0 False \n", + "81787 0.0 False \n", + "87951 0.0 False \n", + "86533 0.0 False \n", + "\n", + " ImagePositionPatient_0_f ImagePositionPatient_0_enc_0 \\\n", + "9661 -0.72 1.0 \n", + "107285 -0.72 1.0 \n", + "81787 -0.72 1.0 \n", + "87951 -0.72 1.0 \n", + "86533 -0.72 1.0 \n", + "\n", + " ImagePositionPatient_0_enc_1 ImagePositionPatient_0_f_r1 \\\n", + "9661 0.0 1.0 \n", + "107285 0.0 1.0 \n", + "81787 0.0 1.0 \n", + "87951 0.0 1.0 \n", + "86533 0.0 1.0 \n", + "\n", + " ImagePositionPatient_0_f_r05 ImagePositionPatient_1_f \\\n", + "9661 1.0 1.192226 \n", + "107285 1.0 1.100782 \n", + "81787 1.0 1.100782 \n", + "87951 1.0 1.100782 \n", + "86533 1.0 1.100782 \n", + "\n", + " ImagePositionPatient_1_enc_0 ImagePositionPatient_2_f \\\n", + "9661 1.0 0.053336 \n", + "107285 1.0 0.014727 \n", + "81787 1.0 0.037687 \n", + "87951 1.0 0.030057 \n", + "86533 1.0 0.022358 \n", + "\n", + " ImagePositionPatient_2_f_r05 PixelSpacing_1_f PixelSpacing_1_enc_0 \\\n", + "9661 0.0 -0.48 1.0 \n", + "107285 0.0 -0.48 1.0 \n", + "81787 0.0 -0.48 1.0 \n", + "87951 0.0 -0.48 1.0 \n", + "86533 0.0 -0.48 1.0 \n", + "\n", + " PixelSpacing_1_enc_1 WindowCenter_0_le pos_max pos_min pos_size \\\n", + "9661 False 2 1.099715 0.473493 -0.3 \n", + "107285 False 2 1.051518 0.388022 -0.3 \n", + "81787 False 2 1.051518 0.388022 -0.3 \n", + "87951 False 2 1.051518 0.388022 -0.3 \n", + "86533 False 2 1.051518 0.388022 -0.3 \n", + "\n", + " pos_idx1 pos_idx pos_idx2 pos_inc1 pos_inc2 pos_inc1_grp_le \\\n", + "9661 0.000000 17 -0.203390 1.527710 1.522339 3 \n", + "107285 -0.135593 15 -0.067797 1.687011 1.663025 3 \n", + "81787 0.067797 18 -0.271186 1.662964 1.687012 3 \n", + "87951 0.000000 17 -0.203390 1.687011 1.662964 3 \n", + "86533 -0.067797 16 -0.135593 1.663025 1.687011 3 \n", + "\n", + " pos_inc2_grp_le pos_inc1_r1 pos_inc1_r0001 pos_inc1_enc_0 \\\n", + "9661 3 0.0 0.0 0.0 \n", + "107285 3 0.0 0.0 0.0 \n", + "81787 3 0.0 0.0 0.0 \n", + "87951 3 0.0 0.0 0.0 \n", + "86533 3 0.0 0.0 0.0 \n", + "\n", + " pos_inc2_enc_0 pos_inc1_enc_1 pos_inc2_enc_1 pos_size_le \\\n", + "9661 0.0 0.0 0.0 0 \n", + "107285 0.0 0.0 0.0 0 \n", + "81787 0.0 0.0 0.0 0 \n", + "87951 0.0 0.0 0.0 0 \n", + "86533 0.0 0.0 0.0 0 \n", + "\n", + " pos_range pos_rel pos_zeros pos_inc_rng pos_zeros_le \\\n", + "9661 -0.225189 0.193609 0.0 -0.595692 0 \n", + "107285 0.023307 -0.064219 0.0 -0.581939 0 \n", + "81787 0.023307 0.322242 0.0 -0.581939 0 \n", + "87951 0.023307 0.193809 0.0 -0.581939 0 \n", + "86533 0.023307 0.064217 0.0 -0.581939 0 \n", + "\n", + " PxlMin_grp_le PxlMin_zero any epidural intraparenchymal \\\n", + "9661 2 False NaN NaN NaN \n", + "107285 2 False NaN NaN NaN \n", + "81787 2 False NaN NaN NaN \n", + "87951 2 False NaN NaN NaN \n", + "86533 2 False NaN NaN NaN \n", + "\n", + " intraventricular subarachnoid subdural any_series SeriesPP \\\n", + "9661 NaN NaN NaN False -0.5 \n", + "107285 NaN NaN NaN False -0.5 \n", + "81787 NaN NaN NaN False -0.5 \n", + "87951 NaN NaN NaN False -0.5 \n", + "86533 NaN NaN NaN False -0.5 \n", + "\n", + " yuval_idx pred_any \n", + "9661 49823 0.992338 \n", + "107285 74776 0.992465 \n", + "81787 74779 0.992568 \n", + "87951 74778 0.992820 \n", + "86533 74777 0.992826 \n", + "\n", + "[5 rows x 101 columns]" + ] + }, + "execution_count": 68, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "test_md['pred_any'] = predictions[:,5]\n", + "test_md.sort_values('pred_any').tail()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 66, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(10, 121232, 6)" + ] + }, + "execution_count": 66, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "preds.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 69, + "metadata": {}, + "outputs": [], + "source": [ + "test_md['pred_any'] = preds[9,:,1]" + ] + }, + { + "cell_type": "code", + "execution_count": 70, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "[<matplotlib.lines.Line2D at 0x7f8297793f50>]" + ] + }, + "execution_count": 70, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAD4CAYAAADlwTGnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deXxU9b3/8ddnJjvZQ4AskIU97BABV3BHpaBWLVStt9dqbfHW3t7eVu/Sxce1y/3dbrdFe6321motKmpFBCwVEFd2CHsIa1aSEJJA9sx8f3/khBtilgmZ5MzyeT7MIzNnzjnz+cpk3jPf7znnK8YYlFJKBR+H3QUopZSyhwaAUkoFKQ0ApZQKUhoASikVpDQAlFIqSIXYXUBfDB061GRmZtpdhlJK+Y0dO3ZUGmOSu3rMrwIgMzOT7du3212GUkr5DRE52d1j2gWklFJBSgNAKaWClAaAUkoFKQ0ApZQKUhoASikVpDQAlFIqSGkAKKVUkPKr8wCUvYwxVNU1U1zdQNHZBorPNjBtZDyzsxLtLk0pdQk0AFSv3G7Dd17P4528UhpaXBc9FuoUXn5oLpdlaggo5W80AFSvnt5UwModRdw5I43JaXGkJ0SSlhBJXGQo9z+/lUde3MGqf7iKtPhIu0tVSvWBjgGoHn1wpIKfrc9n8fRUfnbPNP7+qixumjSCSalxpCdE8bsv5dLc6uahF7ZT39xqd7lKqT7QAFDdKqlu4LEVuxk7LJof3zkFEfnMOmOGRfPfS2dwsKyWf34tD51iVCn/oQGgutTc6mbZyztpanHxzH2ziArrvrfw2gnDeHzBBN7ZW8pvNhQMYpVKqf7QMQDVpR+tOciuU9U8fe9MRidH97r+w9dkc6jsHD9bn8/Y4TEsmDxiEKpUSvWHfgNQn7FqTwl/+PgED16Vxa1TUjzaRkT48Z1TmJYex+Nv5FHb2DLAVSql+ksDQF2kvrmV7721j1kZCTx+y4Q+bRsR6uSpO6ZQXd/C7zYfG6AKlVLeogGgLvLa9iKq61v4l1snEOrs+8tjcloct01N4fkPj1NxrmkAKlRKeYsGgLrA5TY89+ExZmUkMCvj0k/s+qcbx9HU6mb5Rh0QVsqXaQCoC9btK6OwqoGHrs7u136yk6O5e1Y6L285RdHZei9Vp5TyNo8CQEQWiMhhESkQkce7eDxcRF6xHt8iIpkdHnvCWn5YRG7usPyEiOwVkd0iohP92swYw7Obj5KZFMWNOcP7vb/HbhgLAr/82xEvVKeUGgi9BoCIOIHlwC1ADrBURHI6rfYgcNYYMwb4BfBTa9scYAkwCVgAPG3tr921xpjpxpjcfrdE9cu2E2fZU1TDV67Oxun47AlffZUSF8mX5mbwxs4ijpw+54UKlVLe5sk3gNlAgTHmmDGmGVgBLO60zmLgBev2SuB6aTttdDGwwhjTZIw5DhRY+1M+5tnNx0gcEsbnZ6Z7bZ9fv3YMUWEh/Oyv+V7bp1LKezwJgDSgsMP9ImtZl+sYY1qBGiCpl20N8FcR2SEiD3f35CLysIhsF5HtFRUVHpSr+qqg/Dx/O3ia++dmEBnm7H0DDyUOCeOhq7NZt7+MPYXVXtuvUso7PAmArvoDOl/wpbt1etr2SmPMTNq6lpaJyDVdPbkx5lljTK4xJjc5OdmDclVfPf/hMcJDHHzp8gyv7/vBq7NIGhLGj9YcxO3W6wQp5Us8CYAiYGSH++lASXfriEgIEAdU9bStMab9dznwJto1ZIuKc028vrOYu2alkxQd7vX9R4eH8O2bx7PleBU/W3/Y6/tXSl06TwJgGzBWRLJEJIy2Qd1VndZZBTxg3b4L2GDaLgu5ClhiHSWUBYwFtorIEBGJARCRIcBNwL7+N0f11YufnKDF5ebBq7IG7DmWXDaSpbNHsXzjUd7aXTxgz6OU6pteLwZnjGkVkUeBdwEn8HtjzH4ReRLYboxZBTwPvCgiBbR98l9ibbtfRF4FDgCtwDJjjEtEhgNvWpcXDgFeNsasG4D2qR40tbp48dOT3DBxONkeXPDtUokIP1w0iWMV5/nnlXmMSoxixqiEAXs+pZRnxJ+u356bm2u2b9dTBrxl3b4yHnlpB3/48mXMHz9swJ+vqq6Zxcs/pLHFzapHryQlTmcQU2qgiciO7g611zOBg9gbO4tIjgnnqjFDB+X5EoeE8fwDl9HQ7OKhP26nodnV+0ZKqQGjARCkztY1s/FwObdPTyXkEi76dqnGDY/hv5dOZ39JLY+t2MX5Jp1GUim7aAAEqdV5JbS4DHd68cQvT103YTj/flsO6w+e5safv8+6fWU6laRSNtAACFKv7yxmYkosE1NibXn+v78qi9e/dgVxkaE88tIOvvLCdr1wnFKDTAMgCB2tOM/uwmo+P7PzCd2Da+aoBFb/w1X8660T+eTYGW78+Wb+5/2jtLrcttalVLDQAAhCb+4sxiGwaFqq3aUQ4nTw0DXZrP/WPK4aO5Qfrz3Enc98zOEyvYCcUgNNAyDIuN2GN3cVc/XYZIbFRthdzgVp8ZH87ku5LP/iTIrPNrDw1x/w3+8doUW/DSg1YDQAgsyW41UUVzdwp83dP925bWoKf/3Ha1gwOYWfr8/n9uUfcaCk1u6ylApIGgBB5o2dRUSHh3BTzgi7S+lWUnQ4v146g9/eN4vTtU3cvvwjCsq1S0gpb9MACCINzS7W7C3l1ikjvHrZ54GyYPII1nzjKpwO4TcbdH5hpbxNAyCI/PVAGXXNLluO/b9Uw2IjuP/yDFbtKeFYxXm7y1EqoGgABJHXdxaTFh/J7MxEu0vpk4euziYsxMFvNuq3AKW8SQMgSFSca+LDIxXcMSMNhxfm/B1MyTHh3Dsng7d2l3Ciss7ucpQKGBoAQWLdvlLcBhZNt//Y/0vx1WuyCXEIT2/SbwFKeYsGQJB4O6+UscOiGTc8xu5SLsmw2AiWzh7FGzuLKazSS0Yo5Q0aAEHgdG0j205UsXCqf376b/fIvNE4RL8FKOUtGgBBYM3eUoxpO8nKn42Ii2DJ7JGs3FGkF45Tygs0AILA6rxSJoyIYcywgZv2cbA8Mm80AM9sOmpzJUr5Pw2AAFdS3cCOk2dZ6Oef/tulxkdyd+5IXt1eSFlNo93lKOXXNAAC3Jq9pQB+3//f0dfmjabVbXh56ym7S1HKr2kABLjVeaVMToslc+gQu0vxmpGJUcwbl8yKraf0aqFK9YMGQAArrKpnd2E1t00JnE//7e6fm0H5uSb+duC03aUo5bc0AALYOxe6fwKj/7+j+eOHkRYfyYufnrS7FKX8lgZAAHsnr5Rp6XGMTIyyuxSvczqEL84ZxcdHz3BULxKn1CXRAAhQJyrr2FtcE1CDv53dkzuSUKfwp091MFipS6EBEKDau39uDcDun3bJMeHcPGkEK3cU0tDssrscpfyOBkCAWp1XysxR8aTFR9pdyoC6b24GtY2tvJ1XYncpSvkdDYAAdOpMPQdLa7l1SuB++m83JyuRscOi+ZMOBivVZx4FgIgsEJHDIlIgIo938Xi4iLxiPb5FRDI7PPaEtfywiNzcaTuniOwSkdX9bYj6P+8fqQDgugnDbK5k4IkI984ZxZ6iGvKKqu0uRym/0msAiIgTWA7cAuQAS0Ukp9NqDwJnjTFjgF8AP7W2zQGWAJOABcDT1v7aPQYc7G8j1MU251eQnhBJVgCd/NWTO2elExnq5CX9FqBUn3jyDWA2UGCMOWaMaQZWAIs7rbMYeMG6vRK4XkTEWr7CGNNkjDkOFFj7Q0TSgduA5/rfDNWuudXNxwWVXDMumbZ/gsAXGxHK4umprNpTQk19i93lKOU3PAmANKCww/0ia1mX6xhjWoEaIKmXbX8JfAfo8Vx+EXlYRLaLyPaKigoPyg1uO0+dpa7ZxTVjk+0uZVDdOyeDxhb3haOflFK98yQAuvoYaTxcp8vlIrIQKDfG7OjtyY0xzxpjco0xucnJwfWmdik251fgdAhXjEmyu5RBNTktluyhQ1itRwMp5TFPAqAIGNnhfjrQ+a/swjoiEgLEAVU9bHslsEhETtDWpXSdiLx0CfWrTjYfqWDmqHhiI0LtLmVQiQi3TU3h02NnqDjXZHc5SvkFTwJgGzBWRLJEJIy2Qd1VndZZBTxg3b4L2GCMMdbyJdZRQlnAWGCrMeYJY0y6MSbT2t8GY8x9XmhPUKs838S+4lrmjQvOb0oLp6biNrB2n3YDKeWJXgPA6tN/FHiXtiN2XjXG7BeRJ0VkkbXa80CSiBQA3wIet7bdD7wKHADWAcuMMXrK5gD58EglANcEaQCMHxHD2GHRrN6jAaCUJ0I8WckYswZY02nZ9zrcbgTu7mbbp4Cnetj3JmCTJ3Wonm3OryBxSBiTU+PsLsU2C6em8sv38imraWREXITd5Sjl0/RM4ADhdhs2H6nkqjFDcTiC4/DPriycloIx6NFASnlAAyBAHCyrpfJ8U9B2/7QbnRzNxJRYPRpIKQ9oAASI9/PbzpG4ZuxQmyux38KpKew6VU3R2Xq7S1HKp2kABIjN+RVMGBHDsFjt9/6cNQfCO3naDaRUTzQAAkBdUys7Tp4N2sM/OxuVFMXU9DgdB1CqFxoAAeCTo2docZmg7//vaOHUFPKKajh5ps7uUpTyWRoAAWDzkQoiQ53kZibYXYrPuM3qBlqt3UBKdUsDIABszq9gbnYi4SHO3lcOEmnxkcwcFa8BoFQPNAD83Kkz9Zw4U6/dP11YODWVg6W1HK04b3cpSvkkDQA/tym/HID54wN/9q++umXKCAA2HCy3uRKlfJMGgJ/bdLiCjKSooJn9qy9S4iLJTIpiy/Equ0tRyidpAPixxhYXHx+tZL52/3RrTlYS205U4XZ3nsJCKaUB4Me2Hq+iscWt3T89mJOdSE1DC4fKztldilI+RwPAj206XEFYiIO52cE1+1dfzLH+32w5fsbmSpTyPRoAfmxTfjlzs5OIDNPDP7uTFh9JWnwkW3UcQKnP0ADwU4VV9RyrqNP+fw/MyU5k6/Eq2iapU0q10wDwU5sOtx/+qQHQm7lZSZypa6agXM8HUKojDQA/telwBaMS9fBPT8zJTgTgU+0GUuoiGgB+qO3wzzPMH5+MSPDO/uWpUYlRjIiNYMsxHQhWqiMNAD+07UQVDS0u7f7xkIgwO0vHAZTqTAPAD7Uf/nl5ts7+5ak52YmUn2vixBmdJUypdhoAfmjT4XLmZCXq4Z99MCfLOh9Au4GUukADwM8UVtVztKJOz/7to9HJQxgaHabXBVKqAw0AP7PJmvxdp3/sm/ZxgC3Hzug4gFIWDQA/8/7hctITIhmdrId/9tWcrCRKahopOttgdylK+QQNAD/S1KqHf/ZH+/kA2g2kVBsNAD+y7fhZ6ptdzB+n/f+XYtywGOKjQnUgWCmLBoAf2XConLAQB1eM0at/XgqHQ5idmajfAJSyeBQAIrJARA6LSIGIPN7F4+Ei8or1+BYRyezw2BPW8sMicrO1LEJEtorIHhHZLyI/9FaDAtmmw+Vcnp1EVFiI3aX4rdlZiZyqqqe0RscBlOo1AETECSwHbgFygKUiktNptQeBs8aYMcAvgJ9a2+YAS4BJwALgaWt/TcB1xphpwHRggYjM9U6TAtOJyjqOVdZxrZ792y/tcyfo5aGV8uwbwGygwBhzzBjTDKwAFndaZzHwgnV7JXC9tI1SLgZWGGOajDHHgQJgtmnTfmnGUOtHj83rwUbr6p/XTRhucyX+bWJKLJGhTnadqra7FKVs50kApAGFHe4XWcu6XMcY0wrUAEk9bSsiThHZDZQD640xW7p6chF5WES2i8j2iooKD8oNTBsOlZOdPIRRSVF2l+LXnA5hUmos+4pr7C5FKdt5EgBdHW/Y+dN6d+t0u60xxmWMmQ6kA7NFZHJXT26MedYYk2uMyU1ODs7uj/rmVrYcq+I6PfvXKyanxbG/pBaXThSvgpwnAVAEjOxwPx0o6W4dEQkB4oAqT7Y1xlQDm2gbI1Bd+KjgDM0uN9dO0ADwhqnpcTS0uDhaoRPEqODmSQBsA8aKSJaIhNE2qLuq0zqrgAes23cBG0zb+fargCXWUUJZwFhgq4gki0g8gIhEAjcAh/rfnMC08XA50eEhXJaZaHcpAWFKWhwAe4u0G0gFt14DwOrTfxR4FzgIvGqM2S8iT4rIImu154EkESkAvgU8bm27H3gVOACsA5YZY1xACrBRRPJoC5j1xpjV3m1aYDDGsPFQOVeNGUpYiJ624Q3ZydFEhTnZq+MAKsh5dEC5MWYNsKbTsu91uN0I3N3Ntk8BT3ValgfM6GuxwehQ2TlKaxr55g3BOf4xENoHgjUAVLDTj5Q+buOFyd+1/9+bpqTFs7+khlaX2+5SlLKNBoCP23ionEmpsQyPjbC7lIAyJT2WxhY3Ryvq7C5FKdtoAPiwmvoWdpw8y3V69I/XTUmLByCvSE8IU8FLA8CHvX+kArfR7p+BkD10CEPCnHpCmApqGgA+bNOhchKHhDF9ZLzdpQQch0OYlBZHngaACmIaAD7K5TZsyq9g3rhknA6d/GUgTEmL42BprQ4Eq6ClAeCj8oqqqaprZr5e/XPATE2Po7HFTYGeEayClAaAj3o/vwIRuGasBsBAmWydEZynZwSrIKUB4KPez69gWno8CUPC7C4lYGUlDSE6PEQHglXQ0gDwQTX1LewprOaacfrpfyA5rDOC9RuAClYaAD7ow4JK3AbmjRtqdykBb2p620Bwiw4EqyCkAeCDNudXEBMRwrR0PfxzoE1Oi6Op1c2R0zoQrIKPBoCPMcbwfn4FV48dSohT/3kG2lQrZHUcQAUjfYfxMUfKz1NW26hH/wySjMQoYsJDyCvWS0Ko4KMB4GM257fNe6wDwIPD4RAmp8Wxt7jW7lKUGnQaAD7m/fwKxgyLJjU+0u5SgsYUHQhWQUoDwIc0trjYeryKefrpf1BNSYujudVN/ulzdpei1KDSAPAhnx47Q1OrW7t/BpnOEayClQaAD9mcX0l4iIM5WTr5+2DKSIpieGw46/aX2V2KUoNKA8CHbD5SweysRCJCnXaXElREhCWXjeL9/ApOntEZwlTw0ADwEcXVDRSUn9f+f5ssnT0KhwgvbzlldylKDRoNAB/RfvinBoA9RsRFcFPOcF7ZXkhji8vucpQaFBoAPmJzfgUpcRGMGRZtdylB6/65GVTXt/BOXqndpSg1KDQAfECry82HBZVcMzYZEZ39yy6Xj05idPIQXvz0pN2lKDUoNAB8wJ6ias41turhnzYTEe6fm8Huwmo9JFQFBQ0AH/DewXKcDuGqMXr5Z7vdOSudyFAnL356wu5SlBpwGgA+YP2B08zJSiQuKtTuUoJebEQot89I463dJdTUt9hdjlIDyqMAEJEFInJYRApE5PEuHg8XkVesx7eISGaHx56wlh8WkZutZSNFZKOIHBSR/SLymLca5G9OVNZxpPw8N+YMt7sUZblv7iiaWt28tqPQ7lKUGlC9BoCIOIHlwC1ADrBURHI6rfYgcNYYMwb4BfBTa9scYAkwCVgAPG3trxX4J2PMRGAusKyLfQaF9QdOA2gA+JBJqXHMykjgT1tO4XYbu8tRasB48g1gNlBgjDlmjGkGVgCLO62zGHjBur0SuF7aDmdZDKwwxjQZY44DBcBsY0ypMWYngDHmHHAQSOt/c/zP+gOnmZgSS3pClN2lqA7un5vB8co6PjpaaXcpSg0YTwIgDej4XbiIz75ZX1jHGNMK1ABJnmxrdRfNALZ4XnZgqKprZvvJKv3074NumTKCxCFhrNim3UAqcHkSAF0dmN75e3F36/S4rYhEA68D3zTGdDkjh4g8LCLbRWR7RUWFB+X6j/cOnsZt4CYNAJ8THuLktikpvHfwNHVNrXaXo9SA8CQAioCRHe6nAyXdrSMiIUAcUNXTtiISStub/5+MMW909+TGmGeNMbnGmNzk5MA6Tv6vB06TGhfBpNRYu0tRXVg0PZXGFveFcRqlAo0nAbANGCsiWSISRtug7qpO66wCHrBu3wVsMMYYa/kS6yihLGAssNUaH3geOGiM+bk3GuJvGppdfHCkghtyhuvZvz5q1qgEUuIiWLWn8+cdpQJDrwFg9ek/CrxL22Dtq8aY/SLypIgsslZ7HkgSkQLgW8Dj1rb7gVeBA8A6YJkxxgVcCdwPXCciu62fW73cNp/2YUEljS1u7f/3YQ6H8LlpqWzOr+BsXbPd5SjldSGerGSMWQOs6bTsex1uNwJ3d7PtU8BTnZZ9SNfjA0Fj/YEyYsJDmJOVZHcpqgeLpqXy7OZjrN1XxhfnjLK7HKW8Ss8EtoHLbXjvYDnzJwwjLET/CXzZpNRYsocO4W3tBlIBSN99bLDr1FnO1DVr948fEGnrBvr0+BlO1zbaXY5SXqUBYIP1B04T6hTmjw+so5oC1aLpqRgDq3WeABVgNABssP7AaeZmJxEboRd/8wejk6OZlBqrRwOpgKMBMMgKys9zrLJOu3/8zKJpqewprNZJ41VA0QAYZO1XmLxhogaAP1k4LRXApwaDjTGcqNRAUpdOA2AQFVbV878fneDOGWmkxkfaXY7qg7T4SHIzEvrVDbS7sJo3dhZ5raYXPz3J/P/axE/WHqLtvEul+kYDYBD9eO1BnCL884LxdpeiLsGi6anknz7P4bJzfd7WGMN3V+bxrVf3sGZv/weTm1pdPL3xKDHhIfz2/aN89/U8Wl3ufu9XBRcNgEGy5dgZ1uwt45F5o0mJ00///ujWKSk4HcJLlzBp/K7Cag6fPkdMRAjfWZnX766b17YXUVbbyDP3zeIb14/l1e1FPPLSThpbXP3arwouGgCDwOU2PLn6AKlxETx8Tbbd5ahLNDQ6nHtyR/Lipyf73O3yytZCosKcvP61K3A6hK//6dLfrJtb3Tyz6SgzR8Vz5ZgkvnXjOJ5cPIn3Dp3m/ue36FSWymMaAIPg9R1F7C+p5bu3TCAyzGl3Oaof/uP2ydw7ZxS/ff8o//LmPlwezBh2vqmVt/NK+NzUVMYNj+Hn90zjQGktT64+cEk1vLmriOLqBv7h+rEXLiT4pcsz+fXSGewurOYLz35CbaOGgOqdBsAAO9/Uyn++e5iZo+JZZB1JovyX0yH8x+2T+fr80fx56ym+sWIXza09972/vaeE+mYXS2a3XRn9+onD+eq8bF7ecoq3dhf36flbXW6WbzzK1PQ45o+7+ETChVNTee6ByzhUdo4VW0/1rWEqKGkADLDlGwuoPN/E9z83SS/7HCBEhO8smMATt0zgnbxSHvrjdhqau+/OWbH1FOOHxzB9ZPyFZd++aTyXZSbwxBt7KSg/7/Fzr9pTwqmqeh69dkyXr6d545KZnZXIS5/qfMaqdxoAA6iwqp7nPzjOnTPTmNbhj18Fhq/OG81P7pzCB0cq+Moft3V5FM6Bklr2FNXwhctGXvSGHep08OulM4kIdXLfc1v4ydpDbDtR1WOXkstt+M2GAiaMiOnxRML752Zwqqqe9/MDawY95X0aAAPEGMP3V+3H6RC+c/MEu8tRA2TJ7FH85M6pfFRwhp+sPfSZx1/ZdoqwEAd3zuw8jTaMiIvgd1/KJTt5CM99cIy7f/sJuf+xnn98ZTer80qoabi4H/+dvaUcq6zjGx36/rty86QRJMeE8+IlHK2kgotH8wGovlu1p4QNh8r594U5jIiLsLscNYDuuWwk+0tqeO7D40xJj2Px9LY3+8YWF2/uKmbBpBHER4V1ue2sjARefmguNQ0tfHCkgvcOlrPxcDlv7irG6RByMxK4bsIwrp0wjN9sOMLYYdEsmDSix3rCQhwsvWwkv95YQGFVPSMTo7zeZhUYNAAGQFVdMz98+wDTR8bzd1dk2l2OGgT/tjCHg6Xn+O7reYxOjmZyWhzr9pVR29h6YfC3J3GRoSycmsrCqam43IZdp86y4VA5Gw6V8+O1h/ix9e3iV0um43D0Ppa0dM4olm86yktbTvLELRP73T4VmLQLaAA8+fZ+zjW28NPPT8XpwR+r8n+hTgfL751JQlQYX31xB1V1zfx56ykykqKY28dZ35wOITczke8smMC6b17Dx49fx1N3TOax68eycKpnR5KlxEVy48ThvLqtUE8OU93SAPCyjYfL+cvuEr42fwzjR8TYXY4aRMkx4fz2vllUnG/igd9vZcvxKu7JHenRJ/aepMZHcu+cDP7xxnF9+kDxpcszOFvfwjs6j4HqhgaAF51vauVf39jLmGHRLLt2tN3lKBtMGxnPU7dPZm9xDU6HcPesdNtquXx0EqOTh/BHHQxW3dAxAC/6f+sOUVrbyMpHriA8RM/4DVZ3546k4nwTLa2GYbH2HQAgItw/N4MfvH2AvKJqpqbrocjqYvoNwEt2nKzij5+e5IHLM5mVkWB3OcpmX58/hsduGGt3Gdw5K52oMCcvfqLfAtRnaQB4gTGGp945yIjYCP75Zr3Us/IdsRGh3D4jjVV7Sjhb12x3OcrHaAB4wSfHzrDzVDVfnz+aIeHaq6Z8yxdyR9LU6tYzg9VnaAB4wfKNBSTHhHN3bu/Heys12HJSYwlzOjhYWmt3KcrHaAD0065TZ/mo4AwPXZ1FRKgO/CrfE+p0MGZYNAc0AFQnGgD9tHxjAfFRodw7J8PuUpTqVk5qLAdL+z6VpQpsGgD9cKCklr8dLOfLV2Rp37/yaRNTYqk830TFuSa7S1E+xKMAEJEFInJYRApE5PEuHg8XkVesx7eISGaHx56wlh8WkZs7LP+9iJSLyD5vNMQOyzcVEB0eotf7UT5vYkrbWek6DqA66jUARMQJLAduAXKApSKS02m1B4GzxpgxwC+An1rb5gBLgEnAAuBpa38Af7CW+aWjFedZs7eU++ZmEBcVanc5SvUoJyUW0ABQF/PkG8BsoMAYc8wY0wysABZ3Wmcx8IJ1eyVwvbRdsHwxsMIY02SMOQ4UWPvDGLMZqPJCG2zxzKajhIc4+MrVWXaXolSv4qPCSImL0IFgdRFPAiANKOxwv8ha1uU6xphWoAZI8nDbHonIwyKyXUS2V1T4xnHMRWfr+cuuYpZcNoqh0eF2l6OURyamxOo3AHURTwKgq8sPdp63rrt1PNm2R8aYZ0Kze7cAAA9iSURBVI0xucaY3OTk5N43GATPfXAcEfjqvGy7S1HKYxNTYjhaUaeXh1YXeBIARUDHM5zSgZLu1hGRECCOtu4dT7b1Ky63YXVeCTfljCAlLtLucpTy2MSUWFxu06dJ6FVg8yQAtgFjRSRLRMJoG9Rd1WmdVcAD1u27gA3GGGMtX2IdJZQFjAW2eqd0e2w9XkXl+WZunZJidylK9Un7QLCOA6h2vQaA1af/KPAucBB41RizX0SeFJFF1mrPA0kiUgB8C3jc2nY/8CpwAFgHLDPGuABE5M/AJ8B4ESkSkQe927SBsXZfKRGhDuaP943uKKU8lZE0hMhQp44DqAs8OnvJGLMGWNNp2fc63G4E7u5m26eAp7pYvrRPlfoAt9uwdl8Z88cN0xO/lN9xOoTxI2I0ANQFeiZwH+w4dZaKc03cMmWE3aUodUkmpsRyoKSWth5aFew0APpgzd5SwkIcXD9xuN2lKHVJclJiqG1spaSm0e5SlA/QAPCQ221Yt6+MeeOSidbuH+WnJrafEVyi3UBKA8Bju4uqKa1p5Fbt/lF+bIJeEkJ1oAHgobV7Swl1inb/KL8WHR5CRlIUB8s0AJSHRwEFO2MMa/aWcfXYZGIj9MJvyr9NHGHP3AANzS62nqji44JKRiZGce+cUbRdMkzZRQPAA3lFNRRXN/DNG8baXYpS/TYxJZZ3D5RR39xKVNjAvgUUna3nrd0lfHikkh0nz9LscuMQcBuorm/m0ev0b8pOGgAeWLOvlBCHcGOOdv8o/zcxJQZj4FDZOWaOShiw56lpaOGuZz6hrLaRnJRY/u7KTK4cM5TcjAT+7S/7+K+/5hMTEcoDOp+GbTQAemGMYe3eMq4YM5T4qDC7y1Gq39qPBDpQUjugAfDk2weoON/EX5ZdyfSR8Rc99p93TeVcYyvfX7Wf2MgQ7piRPmB1qO7pIHAv9pfUcqqqntv06B8VINITIomJCBnQI4H+duA0r+8sYtn80Z9584e2iep/88UZXJ6dxLdfy2P9gdMDVovqngZAL9buK8XpEG7M0QBQgUFErIHggQmA6vpmnnhzLxNGxPTYxx8R6uR3D+QyOTWWZS/v5OOjlQNSj+qeBkAPGltcrNxRxBWjk0gcot0/KnBMTInhUNk53G7vXxLiB6v2c7aumZ/dM42wkJ7fYqLDQ/jDl2eTkRjFN/68ixaX2+v1qO5pAPRg5Y4iTtc28ci80XaXopRX5aTGUt/s4lRVvVf3u25fGX/ZXcKj141hUmqcR9skDAnjOwsmUHm+mc35vjHrX7DQQeButLjcPLPpKNNHxnPF6CS7y1HKq9oHgu97fgsjYiOIiwwlLjKU+Kgw5mYnMn/8sF4/vXdWVdfMv/1lLzkpsSy7dkyftp03LpmEqFDe2FWsJ1sOIg2Abry1u4Ti6gaeXDxJT1ZRAWdSahxfnZfNqTP11DS0UFrTyKGyc5ypa+L3Hx0nPiqUhVNTuGNGGjNHJXT5N9DQ7KKg/Dz5p8+RX36OD/IrqWlo4cUH5xDq7Ft4hIU4WDQtlT9vK6S2sUVPuBwkGgBdcLkNT28sYGJKLNdNGGZ3OUp5ndMhPHHLxM8sb3G5+fBIJW/sKua17UW89OkpRiVGkRIXQWOrm6YWFw0tLhqaXVScb6L9qtJhTgfZyUP40R1TLny76Ks7ZqbzwicnWbu3lC9cNqo/zVMe0gDowtp9pRyrrGP5F2fqp38VVEKdDq6dMIxrJwzjXGML7+4/zTt5JdQ1u4iLDCUyNpyIUCcRIU5S4yMZNzyascNjyEyKIqSPn/o7m5YeR/bQIby+s1gDYJBoAHRijOE3GwoYnTyEBZP10E8VvGIiQrlrVjp3zRqck7REhDtmpPGz9fkUVtUzMjFqUJ43mOlRQJ28d7CcQ2XnWHbtGJwO/fSv1GC6fUYaAG/tLra5kuCgAdCBMYZfbyxgZGIki6al2l2OUkFnZGIUs7MSeWNXsU5bOQiCIgBO1zbS6sEJJh8WVLKnsJqvzRvT7/5MpdSluXNGGscq6sgrqrG7lIAX8O9yZ+uaWfjrD/n3t/b1+ImiodnFf647zIjYCD4/K20QK1RKdXTLlBTCQhy8uSv4uoE+Kqjk3f1lg/Z8AR8ACUPCuCc3nT9vLeSXfzvS5TotLjfLXt7JvpIafrh4EuEhzkGuUinVLi4ylBsnDmfVnpKgujTEucYWvv3aHv7r3cOD1u6ADwCAb980nnty0/nVe0d46dOTFz3mdhu++3oeGw6V8x+3T+bmSXrkj1J2u3NmGlV1zbx/OHguDfHjtYc4XdvIf941tc8n0l2qoAgAEeFHd0zhugnD+N5b+1i37/++Yv1k3SHe2FnMP904jnvnZNhYpVKq3TXjkkkaEsZrOwoH5IJ1vubjgkpe3nKKr1ydzYwBnKOhM/Gnkfbc3Fyzffv2S96+vrmVL/5uCwdKa3nx72ezu7CaH689xN9dkcn3P5ejJ30p5UN+tOYgz24+RnpCJJ+fmc7nZ6YzKsmzcwPcbkNNQwutboPBYP2H2xiaW900t7ppanXT1OrCbWBaenyfr33kLXVNrSz41WZCHA7WPnY1EaHe7YIWkR3GmNwuHwumAIC2C1bd9duPKatppL7ZxaJpqfzyC9Nx6DH/SvmU5lY3a/aWsnJHER8drcQYmJ2ZyI05wwl1Ci7Tdui2y21obHFTUt1AcYef5lbP+9GHx4bz5SuzWDp7FHGRg3sdoh+s2s8Ln5zg1a9ezmWZiV7fvwZAJ0Vn67nnt58wbkQMz96fa1vyK6U8U1LdwJu7inl9ZxHHKuq6XCc5Jpy0+EjSEiJJT4hkeEwEoU4BEQQQAUEID3EQHuogPMRJeIiDuqZWXtpyko8KzhAdHsKSy0by5auySIuPHPB2bT1exT3/8wl/d0UmP1g0aUCeo98BICILgF8BTuA5Y8xPOj0eDvwRmAWcAb5gjDlhPfYE8CDgAr5hjHnXk312xVsBAG2fLkKdot0+SvkRYwxn61sQwOEQHNJ2YbsQh6PfH+T2Fdfwuw+OsTqvFGMMqfGRjIiNYHhcBCNiIxgWE05Tq5sz55s4U9dMlfUzLDaCyamxTE6LY3JqHCMTIz16X2lodnHrf39Aq9vNu9+8hqiwgbkyT78CQEScQD5wI1AEbAOWGmMOdFjn68BUY8wjIrIEuMMY8wURyQH+DMwGUoG/AeOszXrcZ1e8GQBKKdWV4uoGXt1WyMkzdZTVNnK6tomymkYaWlwAxEaEkBQdTuKQMBKiQimpbiT/9DlarcHqmIgQspOjSbe+jaTGRZCWEIUA5eeaqDjXRMX5Rg6U1LLzVDUvf2UOV4wZOmDt6SkAPImc2UCBMeaYtbMVwGKg45v1YuAH1u2VwG+kLQIXAyuMMU3AcREpsPaHB/v0nrWPQ9neAdm1UiqwpAH/2H4nFEgCk9Q21uAQwdHx070biAV3jKG+2UVdcyt1Ta001bhpOuOmyeWi42fsaCAbCHEIdzsdDB0eTtoHkfBBL0WNmAK39NpJ0meeBEAaUNjhfhEwp7t1jDGtIlIDJFnLP+20bftptr3tEwAReRh4GGDUKL1ErFJq8AlCSA8HijhEiA4PITo8BGL+b7nB0OIyFwakQ51CqNNxcYjYyJMA6KrSzv1G3a3T3fKuOuu67IsyxjwLPAttXUDdl9mDAUhOpZTqjQBh1o8v8mTUpAgY2eF+OlDS3ToiEgLEAVU9bOvJPpVSSg0gTwJgGzBWRLJEJAxYAqzqtM4q4AHr9l3ABtM2urwKWCIi4SKSBYwFtnq4T6WUUgOo1y4gq0//UeBd2g7Z/L0xZr+IPAlsN8asAp4HXrQGeatoe0PHWu9V2gZ3W4FlxhgXQFf79H7zlFJKdScoTwRTSqlg0dNhoHoKrFJKBSkNAKWUClIaAEopFaQ0AJRSKkj51SCwiFQAJ3tdsWtDgUovlmOnQGlLoLQDtC2+KFDaAf1rS4YxJrmrB/wqAPpDRLZ3NxLubwKlLYHSDtC2+KJAaQcMXFu0C0gppYKUBoBSSgWpYAqAZ+0uwIsCpS2B0g7QtviiQGkHDFBbgmYMQCml1MWC6RuAUkqpDjQAlFIqSAV8AIjIAhE5LCIFIvK43fX0hYj8XkTKRWRfh2WJIrJeRI5YvxPsrNFTIjJSRDaKyEER2S8ij1nL/ao9IhIhIltFZI/Vjh9ay7NEZIvVjlesy5z7BRFxisguEVlt3ffLtojICRHZKyK7RWS7tcyvXl/tRCReRFaKyCHrb+bygWhLQAeANaH9cuAWIAdYak1U7y/+ACzotOxx4D1jzFjgPeu+P2gF/skYMxGYCyyz/i38rT1NwHXGmGnAdGCBiMwFfgr8wmrHWeBBG2vsq8eAgx3u+3NbrjXGTO9wzLy/vb7a/QpYZ4yZAEyj7d/H+20xxgTsD3A58G6H+08AT9hdVx/bkAns63D/MJBi3U4BDttd4yW26y3gRn9uDxAF7KRtPutKIMRaftHrzpd/aJuN7z3gOmA1bbMY+mtbTgBDOy3zu9cXEAscxzpIZyDbEtDfAOh6Qvu0btb1F8ONMaUA1u9hNtfTZyKSCcwAtuCH7bG6THYD5cB64ChQbYxptVbxp9fZL4HvAG7rfhL+2xYD/FVEdojIw9Yyv3t9AdlABfC/VtfccyIyhAFoS6AHgCcT2qtBJCLRwOvAN40xtXbXcymMMS5jzHTaPj3PBiZ2tdrgVtV3IrIQKDfG7Oi4uItVfb4tliuNMTNp6/JdJiLX2F3QJQoBZgLPGGNmAHUMUNdVoAdAIE4+f1pEUgCs3+U21+MxEQml7c3/T8aYN6zFftseY0w1sIm2MY14EWmfYtVfXmdXAotE5ASwgrZuoF/in23BGFNi/S4H3qQtnP3x9VUEFBljtlj3V9IWCF5vS6AHQCBOPr8KeMC6/QBtfek+T0SEtrmjDxpjft7hIb9qj4gki0i8dTsSuIG2AbqNwF3Waj7fDgBjzBPGmHRjTCZtfxsbjDH34odtEZEhIhLTfhu4CdiHn72+AIwxZUChiIy3Fl1P27zq3m+L3QMegzCgciuQT1s/7b/aXU8fa/8zUAq00Pap4EHa+mjfA45YvxPtrtPDtlxFW1dCHrDb+rnV39oDTAV2We3YB3zPWp4NbAUKgNeAcLtr7WO75gOr/bUtVs17rJ/97X/r/vb66tCe6cB263X2FyBhINqil4JQSqkgFehdQEoppbqhAaCUUkFKA0AppYKUBoBSSgUpDQCllApSGgBKKRWkNACUUipI/X+prQdaZtcg6wAAAABJRU5ErkJggg==\n", + "text/plain": [ + "<Figure size 432x288 with 1 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(test_md[['pos_idx','pred_any']].groupby('pos_idx').mean())\n", + "plt.plot([0,60],[0,0])" + ] + }, + { + "cell_type": "code", + "execution_count": 71, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "[<matplotlib.lines.Line2D at 0x7f8255ef9250>]" + ] + }, + "execution_count": 71, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD4CAYAAADiry33AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3dd3wU17n/8c+zq15QFwKBGgiE6CDAdOMKbtiO47gRHJM4zddJfHMTpzmJfdPs302c5Po6xsY1wQ07NnGwHRd6F70KVYRoaiCBhOqe3x9aiACBVnW2PO/Xa1/anZndfQYt3x2dOXOOGGNQSinlvWxWF6CUUqpnadArpZSX06BXSikvp0GvlFJeToNeKaW8nJ/VBVwoNjbWpKSkWF2GUkp5lC1btpQbY+LaWud2QZ+SkkJ2drbVZSillEcRkYOXWqdNN0op5eU06JVSystp0CullJfToFdKKS+nQa+UUl5Og14ppbycBr1SSnk5t+tHr6xTUHaaNXnlJMeEMiM9FhGxuiSlVDfQoPdhDU0ONhdV8tm+UpbnlFJYXnNuXXp8GF+dnsrcMYkE+dstrFIp1VUa9D5q9+EqFryymePV9QT42ZicFsNXpqYwPT2ObcUneH51IT98ZxdPfpTDvMnJzJ+cQlRogNVlK6U6QYPeB63LL+fBV7fQJ8iP5+aNZ3p6LCEB//4opMaGctvYRNbnV/DCmkKe/jSXJVtKeG3BJFJjQy2sXCnVGXoy1scs23WU+1/cTL+IIN751hSuH55wXsifJSJMGRzLi/dP4N1vTaG2oZk7nl3HzpKTFlStlOoKDXof8tqGg3x78VZGDojg7W9Mpl9EsEvPG5cUxZJvTCbI387dCzewOreshytVSnUnDXof8fSnB/jZe7u5amg8f10wiciQjrW3p8WF8e63pjAwOoQHXt7M0h1HeqhSpVR306D3AduKT/D0p7ncPi6R5+aNJzigc71o+vYJ4s2vT2ZsUhQPv76Nv2645KioSik3okHvAxauKqBPkB+Pzx2Bn71rv/KIYH9efWAiV2fE89j7u1l5QJtxlHJ3GvRerqi8ho/2HOO+K5IJC+yeTlZB/nb+fM9Yhib04aHFWykoO90tr6uU6hka9F7u+dUF+Nts3D8lpVtfNyTAj+e/PB5/u42vvppNdV1jt76+Uqr7aNB7sfLT9SzZUsLt4xKJ7xPU7a8/ICqEZ+8dR3FFLQ+/vo1mh+n291BKdZ0GvRd7df1B6pscfHV6Wo+9x6S0GH45dzgrcsp48uP9PfY+SqnO0ytjvVRtQxOvri/immF9GRwf1qPvde+kZPYdrea5lQVkJIRz29gBPfp+SqmO0SN6L/V2dgknaxv5xsyeO5pv7ec3D+eKtGh+sGQna/PKe+U9lVKucSnoRWS2iOSISJ6IPNrG+kdEZK+I7BSRz0QkudW6ZhHZ7rwt7c7iVduamh28sKaAcUmRZKVE98p7+tttPHdfFmmxYXz9tS3sPlzVK++rlGpfu0EvInbgGWAOkAncLSKZF2y2DcgyxowClgBPtlp3xhgzxnm7pZvqVpfx4e5jHKo8w4MzBvXq+0aE+PPKAxOJCPbn/pc2c7Cipv0nKaV6nCtH9BOBPGNMgTGmAXgDmNt6A2PMcmNMrfPhBkAbaS1ijGHhqgLSYkO5NrNvr79/QkQQrzwwkSaHgy+/uImyU/W9XoNS6nyuBH0icKjV4xLnsktZAHzY6nGQiGSLyAYRubWtJ4jIg85tssvK9ErLrsg+eIJdh6tYMD0Vu82aGaIGx4fx4v0TOF5dx1de3sTp+iZL6lBKtXAl6NtKizY7TIvIfUAW8FSrxUnGmCzgHuBpEbmoPcEYs9AYk2WMyYqLi3OhJHUpizcWEx7ox21jL/dd3PPGJUXx7L3j2Xf0FP+xeCvGaB97paziStCXAANbPR4AXDR0oYhcA/wEuMUYc+7vdWPMEefPAmAFMLYL9arLOFHTwD93HeXWsYltjjHf22ZlxPPjG4axPKeMz/eXWl2OUj7LlaDfDKSLSKqIBAB3Aef1nhGRscBztIR8aavlUSIS6LwfC0wF9nZX8ep872wtoaHJwT2Tkqwu5ZwvT04mNTaU3364n6Zmh9XlKOWT2g16Y0wT8BDwMbAPeMsYs0dEHheRs71ongLCgLcv6EY5DMgWkR3AcuC3xhgN+h5gjGHxpmLGJkUyrF8fq8s5x99u44ezh5JbepolW0qsLkcpn+TS3/fGmGXAsguWPdbq/jWXeN46YGRXClSu2VhYSUFZDU/dMcrqUi5y/fAExidH8ftPDnDLmP5u0ayklC/RK2O9xOKNxfQJ8uOmUf2tLuUiIsKPb8ig9FQ9i1YXWl2OUj5Hg94LVJyu58PdR7l93IBOzx7V08YnRzN7eAJ/WZlP+WntW69Ub9Kg9wJLtpTQ2Gy4141OwrblB7OHUtfk4I+f5lpdilI+RYPewzkchtc3FTMhJYr0vuFWl3NZaXFh3DMxicWbisnXWamU6jUa9B5ufUEFRRW1btWl8nIevjqdID8bT36kY9cr1Vs06D3c4o3FRIb4M2dEP6tLcUlceCAPzhjEx3uO6wiXSvUSDXoPVn66no/3HOML4wYQ5O+eJ2Hb8pVpKfQJ8uPPn2tbvVK9QYPegy3fX0qTw3D7OGvHtemoPkH+PDAtlY/3HGff0Wqry1HK62nQe7AVB8qIDw8k042uhHXVV6akEh6oR/VK9QYNeg/V1OxgTW45M4fEIWLNcMRdERHiz/1TU1i26xg5x05ZXY5SXk2D3kPtKKmi6kwjVw6Nt7qUTlswLZXQALse1SvVwzToPdTKA2XYBKYNjrW6lE6LDAlg/pQU/rnrKHmlelSvVE/RoPdQKw+UMTYpiogQf6tL6ZKvTk8j2N/Onz/Ps7oUpbyWBr0HqqxpYGfJSWYO8fzZuKJDA5g3OZl/7DiiV8sq1UM06D3Q6twyjMErgh7ga9PTCPCz8cxyPapXqido0HuglTllRIcGMDIxwupSukVsWCD3TUrmvW2HKa6otbocpbyOBr2HcTgMq3LLmJ4ei83med0qL+VrM9Lws9l4fnWB1aUo5XU06D3M3qPVlJ9u8Jpmm7P69gni9nGJvJV9iLJTOl69Ut1Jg97DrDxQBsD0dO8KeoAHZ6TR0Ozg5XU6C5VS3UmD3sOszCljZGIEceGBVpfS7dLiwpgzIoFX1x/kVF2j1eUo5TU06D1IdV0jW4pPeF2zTWvfmDmIU3VNLN5YbHUpSnkNDXoPsja3nGaHYeZQ7w36UQMimTY4lhfWFFLX2Gx1OUp5BQ16D7LyQBnhQX6MHRhpdSk96ptXDqLsVD3vbj1sdSlKeQUNeg9hjGHlgTKmDY7Fz+7dv7Ypg2IYNSCC51bl0+wwVpejlMfz7sTwIrmlpzlaVefV7fNniQjfnDmIgxW1fLj7qNXlKOXxNOg9xCpnt8oZPhD0ANcNTyAtNpRnV+RjjB7VK9UVGvQeYlVuOYPjw+gfGWx1Kb3CbhO+Oj2NPUeq2X7opNXlKOXRXAp6EZktIjkikicij7ax/hER2SsiO0XkMxFJbrVuvojkOm/zu7N4X1HX2MzGggqmp3vu2POdcdPofgT42Vi644jVpSjl0doNehGxA88Ac4BM4G4Rybxgs21AljFmFLAEeNL53Gjg58AkYCLwcxGJ6r7yfUN20QnqmxzM8MKrYS+nT5A/Vw2N5x87jupJWaW6wJUj+olAnjGmwBjTALwBzG29gTFmuTHm7LCDG4ABzvvXA58YYyqNMSeAT4DZ3VO671idW4a/XZiUFm11Kb1u7pj+lJ+uZ31+hdWlKOWxXAn6ROBQq8clzmWXsgD4sCPPFZEHRSRbRLLLyspcKMm3rMotZ3xyFCEBflaX0utmZcQTHujH+9u1T71SneVK0Lc1Fm6bf0eLyH1AFvBUR55rjFlojMkyxmTFxflW80R7yk7Vs+9otVcOYuaKIH87149I4KPdx/RKWaU6yZWgLwEGtno8ALjo7JiIXAP8BLjFGFPfkeeqS1ubVw7gc+3zrc0d059T9U2syCm1uhSlPJIrQb8ZSBeRVBEJAO4ClrbeQETGAs/REvKt/zd+DFwnIlHOk7DXOZcpF63KLSMqxJ/h/ftYXYplJqfFEBsWyHvb9BhBqc5oN+iNMU3AQ7QE9D7gLWPMHhF5XERucW72FBAGvC0i20VkqfO5lcATtHxZbAYedy5TLjDGsDq3nGnpcV41m1RH+dlt3Dy6H5/nlFJ1RocvVqqjXDq7Z4xZBiy7YNljre5fc5nnvgi82NkCfVnO8VOUnar3uf7zbZk7JpGX1hbx8Z5j3Jk1sP0nKKXO0Stj3djqAy3t8xr0MHpABMkxISzdrs03SnWUBr0bW5VbRnp8GP0ifGPYg8sREeaO7s+6/HJKq+usLkcpj6JB76bqGpvZVFjps90q23LLmP44DHywU0e0VKojNOjd1OaiSuqbHEwfos02Zw2OD2d4/z68r2PfKNUhGvRuanVuOQF2G5NSfW/Yg8uZO6Y/Ow6d5FBlbfsbK6UADXq3tepAGVkpvjnsweVcPawv0HL+QinlGg16N1RaXcf+Y6e0fb4NabGh9I8IYk1uudWlKOUxNOjd0Opc7VZ5KSLC1MGxrMuv0KGLlXKRBr0bWp5TSlx4IJn9fHfYg8uZlh5L1ZlGdh+usroUpTyCBr2baWp2sOpAGTOH+PawB5czdXDLXzpr8rT5RilXaNC7mW2HTlJd18SsofFWl+K2YsMCGdavj7bTK+UiDXo3syKnFLtNmKbt85c1PT2WLQdPcKZBx6hXqj0a9G5m+f4yxidHERHsb3Upbm3q4Fgamh1sKtLBUJVqjwa9GzlWVcfeo9XabOOCiSnRBNht5yZmUUpdmga9G1l5oGXOllkZ2n++PcEBdsYnR53riqqUujQNejeyfH8Z/SKCGNo33OpSPMK09Fj2Ha2m/HR9+xsr5cM06N1EQ5ODNXnlXDk0HhHtVumKac5ultp8o9TladC7ieyDlZyub2LWUG22cdWIxAgigv21m6VS7dCgdxMrcsrwt8u5i4FU++w2YcqgGNbmlWOMDoeg1KVo0LuJ5ftLmZQaQ2igjlbZEdPSYzlSVUdBeY3VpSjltjTo3UDJiVpyS09zpTbbdJi20yvVPg16N7Aip2Vs9Su1/3yHJceEMjA6WLtZKnUZGvRuYEVOKQOjgxkUF2p1KR5p2uBYNuRX0NTssLoUpdySBr3F6hqbWZtXwSztVtlp0wbHcaq+iR0lOmyxUm3RoLfYpsJKzjQ267AHXTB5UAwA6/O1+UaptmjQW2x5TimBfjauSIuxuhSPFR0aQGa/PqzNq7C6FKXckga9xVbklDF5UAzBAXarS/FoUwbFsKX4BHWNOmyxUhdyKehFZLaI5IhInog82sb6GSKyVUSaROSOC9Y1i8h2521pdxXuDQrLaygsr9Fmm24wdXAsDU0Othw8YXUpSrmddoNeROzAM8AcIBO4W0QyL9isGLgfWNzGS5wxxoxx3m7pYr1eZUWOc7RKDfoum5AajZ9NtD+9Um1w5TLMiUCeMaYAQETeAOYCe89uYIwpcq7T/m0dsDynjLS4UJJiQqwuxeOFBfoxemAk6/K1nV6pC7nSdJMIHGr1uMS5zFVBIpItIhtE5Na2NhCRB53bZJeVlXXgpT1XbUMTGwoq9Gi+G00dFMPOkpNU1zVaXYpSbsWVoG+rc3dHRpBKMsZkAfcAT4vIoItezJiFxpgsY0xWXJxvDAOwPr+ChiaHBn03mjwoFoeBTQU6vaBSrbkS9CXAwFaPBwBHXH0DY8wR588CYAUwtgP1ea0VOWWEBNiZkBpldSleY1xyJIF+NtZqf3qlzuNK0G8G0kUkVUQCgLsAl3rPiEiUiAQ678cCU2nVtu+rjDEszyll6uBYAv20W2V3CfSzMyElmvXaTq/UedoNemNME/AQ8DGwD3jLGLNHRB4XkVsARGSCiJQAXwSeE5E9zqcPA7JFZAewHPitMcbngz6/7DQlJ85os00PmDI4hv3HTun0gkq14tLg58aYZcCyC5Y91ur+ZlqadC583jpgZBdr9DrL958drdI3zkf0pimDYoEc1uVXcMvo/laXo5Rb0CtjLbA8p5SMhHD6RwZbXYrXGdG/D+FBfjrujVKtaND3slN1jWwuqmSmHs33CD+7jUmpMTrujVKtaND3srV5FTQ2G22f70FTB8dQXFnLocpaq0tRyi1o0PeyFTmlhAf6MT5Zu1X2lLMTrGvvG6VaaND3ImMMK3LKmD4kFn+7/tP3lPT4MGLDAlmn7fRKARr0vWr/sVMcq67TuWF7mIgwZVAMa/MrMKYjF3Er5Z006HvRuUnAh+iJ2J42ZVAMZafqySs9bXUpSllOg74XrcsvJyMhnPg+QVaX4vXOttOvPOAbg+QpdTka9L2kvqmZzUWVOmVgLxkYHUJ6fBjLnWP+K+XLNOh7yY5DVdQ1OpgySIO+t8zKiGdTYSWn65usLkUpS2nQ95J1+eWIwKRUDfreMmtoPI3NhjW52vtG+TYN+l6yPr+CEf0jiAjxt7oUn5GVEkV4kB/L92vzjfJtGvS9oK6xmW3FJ5mszTa9yt9uY0Z6HMtzSrWbpfJpGvS9YMvBEzQ0OzToLTArI57SU/XsOVJtdSlKWUaDvhesz6/AbhMmpERbXYrPmem8ZkGbb5Qv06DvBevyyxk9IIKwQJeG/1fdKC48kNEDIvhcu1kqH6ZB38NO1zexs6RKm20sNCsjnu2HTlKhs04pH6VB38M2F1XS5DBMTou1uhSfdVVGPMboVbLKd2nQ97AN+RUE2G06LLGFRvSPIDYskM+1nV75KA36HrYuv4IxSZEEB9itLsVn2WzClUPjWHWgjKZmh9XlKNXrNOh7UFVtI3uOVOmwB27gqox4quua2Fp80upSlOp1GvQ9aGNhBQ4Dk3UgM8tNS4/FzybafKN8kgZ9D1pfUEGQv40xSZFWl+Lz+gT5MyElWvvTK5+kQd+D1udXkJUcTaCfts+7g1kZceQcP8Xhk2esLkWpXqVB30MqTtez/9gp7T/vRq7K6AvAh7uOWlyJUr1Lg76HbCioBNCgdyOD48MYnxzFXzccxOHQQc6U79Cg7yHrC8oJDbAzMjHC6lJUK1+enExRRS2rcvXiKeU7XAp6EZktIjkikicij7axfoaIbBWRJhG544J180Uk13mb312Fu7u1eRVckRaDv12/S93JnBH9iA0L5LX1B60uRale024KiYgdeAaYA2QCd4tI5gWbFQP3A4sveG408HNgEjAR+LmIeP0loiUnaiksrzk3QbVyHwF+Nu6ZOJDPc0oprqi1uhyleoUrh5sTgTxjTIExpgF4A5jbegNjTJExZidw4WWH1wOfGGMqjTEngE+A2d1Qt1tbl1cBtPTdVu7nnknJ2ET460Y9qle+wZWgTwQOtXpc4lzmCpeeKyIPiki2iGSXlXl+2+mavHLiwgNJjw+zuhTVhoSIIGYPT+DNzYc409BsdTlK9ThXgl7aWOZqlwWXnmuMWWiMyTLGZMXFxbn40u7J4TCszStn2uBYRNrafeUOvjw5maozjSzdcdjqUpTqca4EfQkwsNXjAcARF1+/K8/1SDnHT1FR06Dt825uYmo0GQnhvLLuoM4nq7yeK0G/GUgXkVQRCQDuApa6+PofA9eJSJTzJOx1zmVea21eOQBTB2v/eXcmIsybnMzeo9VsOXjC6nKU6lHtBr0xpgl4iJaA3ge8ZYzZIyKPi8gtACIyQURKgC8Cz4nIHudzK4EnaPmy2Aw87lzmtdbklTMoLpR+EcFWl6LaceuYRMKD/HhVu1oqL+fSJKbGmGXAsguWPdbq/mZammXaeu6LwItdqNFjNDQ52FhQyZ1Zbf5TKDcTGujHF8cP5NX1Rfz0xmHE9wmyuiSleoRezdONthWf4Exjs7bPe5B5k5Npchje3Hyo/Y2V8lAa9N1obV45NoErdHwbj5EaG8rktBje3lKi498or6VB343W5JUzemAkfYL8rS5FdcCdEwZQXFnLxkKvPn2kfJgGfTeprmtkR0kV07TZxuPMHt6P8EA/3s7W5hvlnTTou8nGgkqaHUbb5z1QcICdm8f0Z9nuo1TXNVpdjlLdToO+m6zNKyfY385YnTbQI92ZNZC6Rgcf7NBJSZT30aDvJmvyypmYqtMGeqrRAyIY0jeMt7T5RnkhDfpucKyqjrzS09o+78FEhDuzBrL90EkOHD9ldTlKdSsN+m7w72EPNOg92a1jE/GziZ6UVV5Hg74brMkrJyY0gIyEcKtLUV0QGxbI1cPieXfrYRqbL5xaQSnPpUHfRQ6HYdWBMqanx2Kz6bDEnu7OrIFU1DTw+f5Sq0tRqtto0HfRrsNVVNQ0cOXQeKtLUd1g5pA44sIDtflGeRUN+i5anlOKCMwY4tkTpqgWfnYbXxg3gOU5ZZRW11ldjlLdQoO+i1bklDF6QCTRoQFWl6K6yRezBtDsMLyhA50pL6FB3wWVNQ3sKDnJLG228SqD4sK4NrMvf1mZz3E9qldeQIO+C1YdKMMYuHKoNtt4m5/dmEmTw/CbZfusLkWpLtOg74IVOaXEhAYwMjHC6lJUN0uKCeHrM9J4b/sRNhfpqJbKs2nQd1Kzw7DyQBkzh8Rpt0ov9c0rB9E/Ioifv7+HZh2rXnkwDfpO2llykhO1jczUZhuvFRLgx49vHMbeo9Us3lRsdTlKdZoGfSetyCnDJjAjXYPem904sh+T02L4n3/lcKKmwepylOoUDfpOWpFTypiBkURpt0qvJiL8/JZMTtU18T+f5FhdjlKdokHfCeWn69l5uEqvhvURGQl9mHdFMos3FrPnSJXV5SjVYRr0nXC2W6X2n/cd37tmCFEhAfzo3V00tTPgmTEGY/TkrXIfGvSdsCKnjNiwAIb372N1KaqXRIT488u5w9lZUsVzqwouuV19UzP3vrCRe1/YSF1jcy9WqNSladB3ULPDsCq3jJlD4rVbpY+5aVR/bhiZwB8/zSXn2MWTkxhjeOy9PazLr2B9QQXfe3M7DjfsltnsMLy4ppCqWp0f11do0HfQ9kMnOVnbqFfD+qgn5o4gPMiP77+946Ix6/+64SBvZh/ioVmD+ckNw/hw9zF+7YZX1q7Pr+DxD/by3//ca3Upl2SM0TkBupEGfQetzCnFJjA9XWeT8kUxYYE8cesIdh2u4rmV+eeWbyyo4Jf/2MtVGfF879ohLJiWyv1TUnhhTSEvry20sOKLnb3S9+0tJWw/dNLiatr2q3/uY+aTyzlUWWt1KV5Bg74DjDF8uPsY45OjiAzRbpW+6oaR/bhxVD/++Fku+45Wc+TkGb71t60kRYfw9F1jsNsEEeFnN2VyXWZffvnBXv6155jVZZ+TfbCSQXGhxIUH8vOle7qleamusbnbTkCXnarn1Q0HOVJVx/yXNnGyVq9f6CqXgl5EZotIjojkicijbawPFJE3nes3ikiKc3mKiJwRke3O21+6t/zetf3QSXJLT/OFcQOsLkVZ7Im5I4gI9uf7b+/g669tob7JwcIvZ9EnyP/cNnab8Me7xjJqQCQPv7GNTYXWj5nT2OxgW/FJpqfH8aM5Gew4dJJ3tpZ0+TVv+NNq7lvUPSegX11fRGOzg999YSQllWf42qvZemK7i9oNehGxA88Ac4BM4G4RybxgswXACWPMYOAPwO9arcs3xoxx3r7RTXVb4q3sEoL97dw4qp/VpSiLRYcG8N+3jmDPkWp2H6ni6S+NYXB82EXbBQfYWTQ/i/jwIO58bj2z/t8KfrF0DytySi0Jr71HqqltaCYrJYrbxiYyLimS3320n+q6zp+YXbbrKAVlNazNq+Dh17e12/30cmobmnhtw0GuHdaXL01I4vdfGs3mohM88pZ7ntj2FK4c0U8E8owxBcaYBuANYO4F28wFXnHeXwJcLSJe1SXlTEMz/9hxhBtG9iO81VGb8l2zR/TjkWuH8JvbRnJNZt9LbhcbFsi735rCL27OJDkmhNc3FXP/S5sZ8/i/+M+3dvRq4J9tn89KjkZE+OUtI6ioaeBPn+Z26vWMMTy/uoC0uFAeuymTf+09zk/+vrvTzThvbT7EydpGvj4zDWjp6fTTG4exbNcxfuWGJ7Y9hZ8L2yQCrafaKQEmXWobY0yTiFQBMc51qSKyDagGfmqMWX3hG4jIg8CDAElJSR3agd7y4e6jnK5v4s4sbbZR//bw1ekubRcbFsj9U1O5f2oqdY3NbCio4JO9x/nbxmJKT9WxcF4WwQH2Hq4WsotOMDA6mISIIABGDojgrgkDeXldEXdNHMjg+PAOvd7Gwkp2H67m17eN5J5JSZyobeDPn+cRHRbAD2dndOi1mpodLFpbyLikSMYnR59bvmBaKiUnzrBoTSH9I4NZMC21Q6+rXDuib+vI/MKv60ttcxRIMsaMBR4BFovIRVcZGWMWGmOyjDFZcXHu2W3xrexDpMSEMDE1uv2NlbqMIH87Vw6N51e3jeTJO0axJq+cB17eTE19U5vb7z1SzbtbS7p8stMYw+aiSiaknP8Z/v51QwkJsPPLf+zt8Hu8sLqA6NAAbh+XCMAj1w7hnklJPLsinxdWX/rCsrZ8tOcYhyrP8OCMQectP3tie/bwBP77n3tZvr+0Q6+rXDuiLwEGtno8ADhyiW1KRMQPiAAqTcunph7AGLNFRPKBIUB2VwvvTQcrathQUMl/XT8UL2uRUha7M2sgAXYbj7y1nfkvbuKlr0w41zSYX3aaP3xygA92HgWgqKKWR64d0un3KiyvoaKm4aKgjwkL5JFrh/CLf+zlhj+tYWBUMP0jg0mMDGZgdDAzh8S3+ddGQdlpPt1XysNXpxPk37JeRHhi7ghO1jbw3//cx6HKWjL79yE1NoyU2BDiwgLb/D9kjGHhqgJSY0O5to1mMLtN+MOXxnDHX9bx8OvbeO+hqQyKu/iciGqbK0G/GUgXkVTgMHAXcM8F2ywF5gPrgTuAz40xRkTiaAn8ZhFJA9KBjn3Nu4G3s0uwCdrbRvWIW8cm4m+38Z03tjFv0SZ+c/tIXlpbyJItJQT523lo1mCOVdfxp89y6dsnkHsnJXfqfbKLTgAwIRMommUAAA7kSURBVCXqonX3XZFMZU0Duw5XUVRRw9q8cmoaWs4dTEyN5tUHJp4L87MWrSkkwM/GvCvOr+dsKBuznb9tLKap1UnUsEA/pgyK4YdzMs4L6o2FlewsqeJXt43AfokrzoMD7Cz8cha3/HkNX3slm79/eyoRwZ0/X7Y6t4yX1hbxxK0jSIwM7vTreIJ2g97Z5v4Q8DFgB140xuwRkceBbGPMUmAR8JqI5AGVtHwZAMwAHheRJqAZ+IYxxvo+Zh3Q7DAs2VLCzCFx59o1lepuN47qh79d+Pbircz542oC7Dbun5LKt2YNIjYskKZmB5U1Dfzsvd3EhgVy/fCEDr/H5qJKokL82zwS9rPbeOS6oeceG2OoPtPER3uO8ui7u3ho8Tb+ct84/Owtrb2VNQ28s7WE28YkEhceeNHrBfrZefa+8TQ1Ozh88gyF5TUUldeQX1bD37cd5vo/rGLe5GS+c3U6kSEBLFxVQExoQLsHU4mRwfzfveO494WNfPeNbbwwf8Ilvxgupa6xmd9+uJ+X1xUBMGzjQf7r+o6dT/A04m6j7GVlZZnsbPdp2VmRU8r9L23m2XvHMWekdqtUPWtNbjkrckr5yrTUi44yaxuauPv5jew/Ws3fvjqJrJSOnS+68qnlpPcN5/kvZ3Xoea+tL+Jn7+/hC+MG8NQdo7DZhD9/lsv/fHKAf31vBkP6duwEbtmpen7/yQHe3FxMeJA/865I5n+X5/G9a4bwnWtcO7n91w0H+el7u/nmlYM6dNJ3z5EqvvvGdnJLT3P/lBRyjp3i0IlaVv9glsc3y4rIFmNMm79cvTK2HW9nlxAdGsDVwy7dfU6p7jItPZaf3pTZZlNCSIAfL90/gcTIYBa8kk3u8YsHVruU0lN1FFXUttls0555k1N45NohvLO1hF8t20ddYzOvrD/IzCFxHQ55gLjwQH5z+0iWfWc6IxL78L/L8wjytzFvsutNUvddkXzupO/72w+3u33F6Xr+b0Uetz6zlqozjbz6wER+cctw7hg/gJITZ9hafKLD++FJXGmj91mVNQ38a+8x5l2RQoCfficq60WHBvDKAxO5/dl13PvCRr4yNZW5Y/rTv5025i3n2uc712vsP64aTGVNA4vWFLL7cBXlp+v56vSudXPMSOjDXxdMYuWBMqBl3zriFzcPJ/f4Kb7zxnae+GAfw/qFM6xfH4b1C6dveBB7j1azo6SKHYdOUuwcM+eGkQn86taR52aGu35EAj/++y7e23bkvC6d3kaD/jLe336YxmbDnRP0JKxyHwOjQ3j1gYn85O+7+N1H+3ny4/1ckRrDbeMSmTMioc0L+jYVVRLkb2N4/4hOvaeI8NhNmVSdaeTv2w6TkRDOtMFdH9hPRDo9U1uAn40X5k9gyZYS9h2tZt/Ral5eW0RDqytzEyODGT0wgnsnJTE+OYrxyVHnNdGEBfpxTWZf/rnrKI/dnIm/3TsP6DToL6Gx2cFr6w8yakAEGQk6wYhyL8P69eHdb03lYEXLyc33th3mB0t28sule3jlgYkXtd9nF51gzMDILv1larMJT94xin4RQVyVEe8WbdoRwf7nXUDV2OygqLyGY9V1DE0IJz68/Q4Ut45J5J87j7I6t4yrMryzidY7v766wavrD1JQXsN3XLzyUSkrJMeE8t1rhrD8+1fy7remEN8niAdf20Jxxb+H9z1d38SeI1VM7GSzTWv+dhs/mJ3R4RPBvcXfbiO9bzjT0+NcCnmAmUPiiAzx5/3tF14e5D006NtQWdPAHz89wPT0WK7K0HlhlfsTEcYlRbFofhbNDsMDr2ym6kzLQGXbi0/iMLhtOFstwM/GDSP78a89xy95dbKn06Bvw+8/yaGmoZnHbsp0iz9PlXJVWlwYz943jqLyGh5avJXGZgebiiqxCYxNirS6PLd165hEzjQ288ne41aX0iM06C+w/1g1izcWc9+kJNI70XVMKatNGRTLr28byerccn6xdA+bCyvJ7N9HR129jKzkKBIjg3nPha6ankhPxrZijOGJD/YSHuTPd6/p/JgiSlntzgkDyS8/zXMrCxCB+ZNTrC7Jrdlsws2j+/P86gLKT9cTG3bx1b6eTI/oW/lk73HW5lXwvWvSz/WzVcpT/fD6DK4f3hdjOt9/3pfcOrY/zQ7Dsl1HrS6l22nQO9U3NfOrZfsYHB/GvVd0btAopdyJzSY8/aWx/Pq2kW2OCKnOl5HQh4yEcN7b5n3NNxr0Ti+vLeJgRS0/u8l7L5pQvic4wM49k5L0ym4XzR2TyNbik+d1T/UG+tunZdzvpz/N5eqMeGYOcc+JT5RSPW/umP7YBBZvKra6lG7l80Ff39TMw69vI8jfxq9uG2l1OUopC/WPDGbOiH4s3njQq/rU+3zQP/lRDnuOVPPUHaN1vHmlFAump1Jd18SSLSVWl9JtfDrol+eUsmhNIfMnJ3ONnqxSSgHjkqIYlxTJojWFNDvca76OzvLZoC89Vcf339pBRkI4P7phmNXlKKXcyFenp1FcWes1V8r6ZNA7HIb/fGsHp+ub+PPdYy+aC1Mp5duuH57AwOhgFq3xuCmu2+RzQW+M4dmV+azOLeexmzN1mAOl1EXsNuErU1LZXHSC7YdOWl1Ol/lM0Dc7DB/sPMLN/7uGpz7OYc6IBO6ZmGR1WUopN3XnhIGEB/qxaE2h1aV0mdePdVPX2Mw7W0tYuKqAgxW1pMWG8tvbR3L7uAE6MqVS6pLCAv24e1ISi9YU8uicjDbn8fUUXhf0Tc0O9h6tZmNBJRsLK9lUWEF1XROjB0Two/vGcW1mAnabBrxSqn3zp6SwaE0hr6wr4sce3GnDa4L+eHUd/7VkJ1uKKqlpaAYgJSaE2SMSuHVsIpPTYvQIXinVIYmRwdwwsh+vbyzmP64a7LFDPXtN0EeG+FNZU89t4xKZlBrDxNRo+vbRC6CUUl3ztemp/GPHEf70WS4/uTHT6nI6xWuCPtDPzgf/Md3qMpRSXmbUgEjmXZHM86sLGZEYwdwxiVaX1GE+0+tGKaU662c3ZTIxJZofvrOT3YerrC6nwzTolVKqHQF+Np65dxxRIQF8/bUtVJyut7qkDnEp6EVktojkiEieiDzaxvpAEXnTuX6jiKS0Wvcj5/IcEbm++0pXSqneExceyHPzxlN2up6HFm+jsdlhdUkuazfoRcQOPAPMATKBu0XkwjMSC4ATxpjBwB+A3zmfmwncBQwHZgP/53w9pZTyOKMGRPKb20ayvqCCXy/bZ3U5LnPlZOxEIM8YUwAgIm8Ac4G9rbaZC/zCeX8J8L/S0pdxLvCGMaYeKBSRPOfrre+e8i/w4aNwbFePvLRSSgF8ARgfW8OxzXVs326ns522w4P8SIsNO39hwkiY89uulngRV4I+ETjU6nEJMOlS2xhjmkSkCohxLt9wwXMvOmUtIg8CDwIkJemwBEop95YcE4JNhLqm5k6/RqBf7zVuuBL0bX1hXThI86W2ceW5GGMWAgsBsrKyOj8AdA98Eyql1IUE8KRDUldOxpYAA1s9HgAcudQ2IuIHRACVLj5XKaVUD3Il6DcD6SKSKiIBtJxcXXrBNkuB+c77dwCfG2OMc/ldzl45qUA6sKl7SldKKeWKdptunG3uDwEfA3bgRWPMHhF5HMg2xiwFFgGvOU+2VtLyZYBzu7doOXHbBHzbGNP5Ri2llFIdJi0H3u4jKyvLZGdnW12GUkp5FBHZYozJamudXhmrlFJeToNeKaW8nAa9Ukp5OQ16pZTycm53MlZEyoCDXXiJWKC8m8qxkrfsB+i+uCtv2Rdv2Q/o2r4kG2Pi2lrhdkHfVSKSfakzz57EW/YDdF/clbfsi7fsB/TcvmjTjVJKeTkNeqWU8nLeGPQLrS6gm3jLfoDui7vyln3xlv2AHtoXr2ujV0opdT5vPKJXSinViga9Ukp5Oa8J+vYmMHdnIvKiiJSKyO5Wy6JF5BMRyXX+jLKyRleJyEARWS4i+0Rkj4h8x7nco/ZHRIJEZJOI7HDuxy+dy1NFZKNzP950Dt3tEUTELiLbROQD52OP3BcRKRKRXSKyXUSyncs86vMFICKRIrJERPY7/79M7qn98Iqgd3ECc3f2Mi2Tp7f2KPCZMSYd+Mz52BM0Af9pjBkGXAF82/m78LT9qQeuMsaMBsYAs0XkClomvv+Dcz9OAAssrLGjvgO0ntHak/dlljFmTKs+5572+QL4I/CRMSYDGE3L76Zn9sMY4/E3YDLwcavHPwJ+ZHVdHdyHFGB3q8c5QD/n/X5AjtU1dnK/3geu9eT9AUKArbTMlVwO+DmXn/e5c+cbLbO7fQZcBXxAy2x4nrovRUDsBcs86vMF9AEKcXaI6en98IojetqewPyiScg9TF9jzFEA5894i+vpMBFJAcYCG/HA/XE2dWwHSoFPgHzgpDGmybmJJ33OngZ+ADicj2Pw3H0xwL9EZIuIPOhc5mmfrzSgDHjJ2Zz2goiE0kP74S1B79Ik5Kr3iEgY8A7wXWNMtdX1dIYxptkYM4aWo+GJwLC2NuvdqjpORG4CSo0xW1ovbmNTt98Xp6nGmHG0NNV+W0RmWF1QJ/gB44BnjTFjgRp6sLnJW4LeGychPy4i/QCcP0strsdlIuJPS8j/zRjzrnOxx+6PMeYksIKWcw6RInJ2Ck5P+ZxNBW4RkSLgDVqab57GM/cFY8wR589S4O+0fAl72uerBCgxxmx0Pl5CS/D3yH54S9C7MoG5p2k94fp8Wtq63Z6ICC1zCO8zxvy+1SqP2h8RiRORSOf9YOAaWk6WLQfucG7m9vsBYIz5kTFmgDEmhZb/G58bY+7FA/dFREJFJPzsfeA6YDce9vkyxhwDDonIUOeiq2mZW7tn9sPqkxLdeHLjBuAALe2oP7G6ng7W/jpwFGik5Zt+AS1tqJ8Buc6f0VbX6eK+TKOlCWAnsN15u8HT9gcYBWxz7sdu4DHn8jRgE5AHvA0EWl1rB/frSuADT90XZ807nLc9Z/+ve9rny1nzGCDb+Rl7D4jqqf3QIRCUUsrLeUvTjVJKqUvQoFdKKS+nQa+UUl5Og14ppbycBr1SSnk5DXqllPJyGvRKKeXl/j/1rBSumeyCYAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "<Figure size 432x288 with 1 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(train_md[['pos_idx',all_ich[0]]].groupby('pos_idx').mean())\n", + "plt.plot([0,60],[0,0])" + ] + }, + { + "cell_type": "code", + "execution_count": 72, + "metadata": {}, + "outputs": [], + "source": [ + "test_md['pred_any'] = predictions[:,1]" + ] + }, + { + "cell_type": "code", + "execution_count": 73, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "[<matplotlib.lines.Line2D at 0x7f8255e69ad0>]" + ] + }, + "execution_count": 73, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAD4CAYAAADlwTGnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deXiU5bn48e+dyZ6QlUBYEhJIQBJ2IiCIIFhAq1Jb2oq1arVuVWvr6c+j9hxP6zme03ra2kVtS7VWqy1aF6SK4oIsCgTCToCEkABJIGQPkJBt5vn9MYMnxoRMYJJ3lvtzXVzMvPO879yPjHPP+6xijEEppVTgCbI6AKWUUtbQBKCUUgFKE4BSSgUoTQBKKRWgNAEopVSACrY6gN4YOHCgSUtLszoMpZTyGdu2bas2xiR19ZpPJYC0tDTy8vKsDkMppXyGiBzp7jVtAlJKqQClCUAppQKUJgCllApQmgCUUipAaQJQSqkApQlAKaUClCYApZQKUD41D0B5h4amNvZXnOTA8ZNkDY1lWnqC1SEppc6DJgDlln/uOsaKHeUcqDhFef2Zz44HBwkv3jaNmaMGWhidUup8aBOQ6tFH+0/w/eU7KKw8xZQR8Ty4aAzPf+di1vzLHNIHRnH3S9sprjptdZhKqV4SX9oRLCcnx+hSEP2rqPIUX3l6IyMSI3ntrplEhNo+93ppbROLn/6UmPBg3vzeLOKjQi2KVCnVFRHZZozJ6eo1vQNQ3WpoauP2F7cRHhLEsptyvvDlD5CSEMmyb0/lWH0zd720jdZ2hwWRKqXOhyYA1SW7w3Df8h2U1TXx+xunMiwuotuyOWkJPLFkArkltTzy5h586a5SqUCmncCqSz9/7wDrC6v47+vGc3Faz6N8vjJ5GMXVjfz2o4NkDIrmrjmj+iFKpdSF0DsA9QVv7ihj2fpivj1jBDdMT3X7vB9ekcmi7GSe/KCQ6tMtfRihUsoTNAGoz6k53cK/r8hnWloCj16T1atzRYQHF42h1e7gL58e7psAlVIeowlAfc7v1hTR1NrOf391PCG23n88RiZFszArmRc3HeZ0S7vnA1RKeYwmAPWZ0tomXs49wjcvTiFjUPR5X+euuaM42dzO8i1HPRidUsrTNAGoz/zy/QJsQcL980df0HUmpcQxY2QCz24o0WGhSnkxTQAKgL3lDazYeYxbZ6WTHBt+wde7a84oKk4289bOcg9Ep5TqC5oAFABPrC4gLjKEOz00fHPO6CQuSh7AH9cX43DovAClvJEmAMWnRdWsL6zi3ssziI0I8cg1RYS75oyiqPI0aw5UeuSaSinP0gQQ4BwOw8/ePcCwuAhunDHCo9e+esIQhsVF8Id1hzx6XaWUZ7iVAERkkYgUiEiRiDzUxethIvKK6/VcEUnr8NrDruMFIrKww/HDIrJHRHaKiK7wZpFVe4+zp7yBB740mvCQL671cyGCbUHcPjudvCN15B2u9ei1lVIXrscEICI24GngSiALWCoinWcI3QbUGWMygCeBn7vOzQKuB7KBRcAzruuddbkxZlJ3K9WpvuVwGH75fiEXJQ/gK5OH9cl7fOPiFOIjQ/j9Wr0LUMrbuHMHMA0oMsYUG2NageXA4k5lFgMvuB6/BswXEXEdX26MaTHGlABFruspL7DxUA0l1Y3cPXcUtiDpk/eIDA3mu7NH8tGBStYWaF+AUt7EnQQwDCjt8LzMdazLMsaYdqABSOzhXAO8LyLbROSO7t5cRO4QkTwRyauqqnIjXOWu5VuPEhsRwsLs5D59n+/OTmdUUhT/tmIvTa06O1gpb+FOAujqp2HncX3dlTnXubOMMVNwNi3dIyKXdfXmxphlxpgcY0xOUlKSG+Eqd9Q1tvJ+/gmumzzM423/nYUF2/ifr06grO4MT35Q2KfvpZRynzsJoAxI6fB8OHCsuzIiEgzEArXnOtcYc/bvSuBNtGmoX725o5xWu4NvXpzSc2EPmJaewNJpqTz3SQl7yxv65T2VUufmTgLYCmSKSLqIhOLs1F3ZqcxK4GbX4yXAGuPcFWQlcL1rlFA6kAlsEZEoERkAICJRwAJg74VXR7nDGMMrW0uZmBLH2CEx/fa+D115EYnRYfzr67tpt+sSEUpZrccE4GrTvxdYDewHXjXG5IvIYyJyravYc0CiiBQBDwAPuc7NB14F9gHvAfcYY+zAYOATEdkFbAHeMca859mqqe7sLK2n4MQpvpnTP7/+z4qNCOEn12STf+wkz+ty0UpZzq0dwYwxq4BVnY492uFxM/D1bs59HHi807FiYGJvg1We8crWUiJCbFwzcUi/v/dV45O5YuwgfvVBIYvGJZOSENnvMSilnHQmcIBpbGnnn7uOcfWEIQwI98yyD70hIjy2eBxBAo+8uUebgpSykCaAAPPO7uM0ttr7rfO3K0PjInjky2PZcLCae/62nZZ2u2WxKBXINAEEmOVbjzIqKYqpI+ItjeNb00fw6NVZrM4/wXdfyNP5AUpZQBNAADl44hTbj9Zz/cWpOCdqW+vWS9N5YskEPi2q5tvPbaHhTJvVISkVUDQBBJBXtpYSYhOum9I36/6cj2/kpPDUDVPYXVbP0mWbqT7dYnVISgUMTQABos3u4I0d5VwxdjADo8OsDudzrho/hD/dlENx9Wm+8cdNVJ5stjokpQKCJoAAsfFQDbWNrVzXR6t+Xqi5Ywbx4q3TqWho5oZnc/VOQKl+oAkgQKzafZzosGAuG+296ylNS0/gz7dcTFldEzc+m0tdY6vVISnl1zQBBIA2u4PV+yqYP3ZQny/8dqFmjEx0NQc1ctOftWNYqb6kCSAAbDpUQ31TG1eN7/+Zv+djdmYSf7hxCgcqTnLL81s43aJDRJXqC5oAAsCqPceJCrUxx4ubfzqbd9Fgfrd0CrvLGrj1+a20tuuMYaU8TROAn2uzO1idX8H8sYO9vvmns0XjkvnfJRPYcriW17eXWR2OUn5HE4Cfyy2upc6Hmn86u27yMCamxPH0x0W06bpBSnmUJgA/986e40SG2pg7xneafzoSEe6fn0FZ3Rne3FFudThK+RVNAH6s3dX8M+8i7x/9cy6XjxnEuGExPPNxka4eqpQHaQLwY7kltdQ2tvJlH23+OUtEuG9eJodrmvjn7s67kSqlzpcmAD/2zp7jRITYmDtmkNWhXLAvjR3MRckD+N2aIuwOY3U4SvkFTQB+qt3uYPXeCuaNHUREqO82/5wVFCR8f34mxVWNvLPnuNXhKOUXNAH4qS2Ha6nxg+afjhZlJ5M5KJqn1hzEoXcBSl0wTQB+atWe44SHBPns6J+uBAUJ987LoPDEaVbnV1gdjlI+TxOAH7I7DO/tPcG8iwYRGRpsdTgedfWEoYwcGMVvPtK7AKUulCYAP7S3vIHq0y0szE62OhSPs7nuAg5UnOLjgkqrw1HKp2kC8EMbD9UAMHPUQIsj6RvXTBzK0Nhwlq0vtjoUpXyaJgA/tPFQNaMHR5M0wLt2/vKUEFsQt16aTm5JLbtK660ORymfpQnAz7S2O9h6uNZvf/2fdf20VAaEB7Nsg94FKHW+NAH4mZ2l9TS3ObhkVKLVofSp6LBgbpieyrt7jlNa22R1OEr5JE0AfmbjoWpEYEa6fycAgO/MTMcWJDz3SYnVoSjlk9xKACKySEQKRKRIRB7q4vUwEXnF9XquiKR1eO1h1/ECEVnY6TybiOwQkbcvtCLKaWNRDeOGxhIbGWJ1KH0uOTacaycO45WtpdQ36f7BSvVWjwlARGzA08CVQBawVESyOhW7DagzxmQATwI/d52bBVwPZAOLgGdc1zvrfmD/hVZCOTW1trOjtI6Zft7809Htl6Vzps3OS5uPWB2KUj7HnTuAaUCRMabYGNMKLAcWdyqzGHjB9fg1YL6IiOv4cmNMizGmBChyXQ8RGQ58GXj2wquhAPIO19FmN8zM8O8O4I4uSo5hzugk/rLxCM1tdqvDUcqnuJMAhgGlHZ6XuY51WcYY0w40AIk9nPtr4EHgnAu8i8gdIpInInlVVVVuhBu4Nh6qIThIuDgt3upQ+tUdl42k+nQLb+3UDWOU6g13EoB0cazzHPzuynR5XESuBiqNMdt6enNjzDJjTI4xJicpyX/WtekLmw5VMzk1zu+Wf+jJzFGJZA2JYdn6Yl0eQqlecCcBlAEpHZ4PBzrvyvFZGREJBmKB2nOcOwu4VkQO42xSmiciL51H/Mql4Uwbe8obuMTPx/93RUS4c85IDlU18klRtdXhKOUz3EkAW4FMEUkXkVCcnborO5VZCdzserwEWGOMMa7j17tGCaUDmcAWY8zDxpjhxpg01/XWGGNu9EB9AtaWklochoDqAO5oYXYy0WHBrNK9ApRyW48JwNWmfy+wGueInVeNMfki8piIXOsq9hyQKCJFwAPAQ65z84FXgX3Ae8A9xhjtqesDGw9VExYcxOTUOKtDsUR4iI35YwexOr9C9w1Wyk1uNRYbY1YBqzode7TD42bg692c+zjw+DmuvRZY604cqnsbi2q4OC2BsGDf3/3rfF01fghv7TxGbkktswJoJJRS50tnAvuBqlMtFJw4xcyMwGz+OWvO6CQiQ226ZaRSbtIE4Ac2F/v38s/uCg+xMe+iQazeW6EbxyvlBk0AfmDjoRoGhAUzbmiM1aFY7qrxQ6hpbGVLSa3VoSjl9TQB+IFNh6qZPjKBYJv+c84dk0R4SBDv7tVmIKV6ot8YPq68/gyHa5qYMTKw2//PigwN5vIxg3h3b4VOClOqB5oAfNyGQufyGJeN1lnSZ105fghVp1rYdrTO6lCU8mqaAHzcusIqhsSGkzko2upQvMa8iwYRGhykk8KU6oEmAB/WZnfwycFq5oxOwrn4qgLnbmFzRifxnjYDKXVOmgB82M7Sek61tGvzTxeuGp/M8YZmdpbppvFKdUcTgA9bX1iFLUh01msX5o8dTIhNeFebgZTqliYAH7ausIrJKXHERvj/9o+9FRMewuzMJFbtqcC5LqFSqjNNAD6q+nQLu8samKPNP926clwy5fVn2F3WYHUoSnklTQA+6pODznXvtf2/e/PHDgbg00O6R4BSXdEE4KPWF1aREBXK+GGxVofitRKiQhk5MIrtR7QjWKmuaALwQQ6HYf3BKmZnDiQoSId/nsvk1Hh2HK3TfgCluqAJwAftO36S6tOt2v7vhikj4qhpbOVobZPVoSjldTQB+KB1ruUfZmdqAujJ5JR4ALbrshBKfYEmAB+0rrCK7KExJA0IszoUrzcmeQBRoTbtB1CqC5oAfMzJ5ja2H6nT5h832YKEiSlx7CjVOwClOtME4GM2FtXQ7jA6/LMXpqTGs//4KZpa260ORSmvognAx6wrrCI6LJgpqfFWh+IzpoyIw+4wOiFMqU40AfgQYwzrC6uYOSqR0GD9p3OXdgQr1TX9FvEhh6oaKa8/w5wx2vzTG/E6IUypLmkC8CFrCyoBuEyHf/bapNQ4nRCmVCeaAHzIusIqRiVFkZIQaXUoPmdKajw1ja2U1p6xOhSlvIYmAB/R1NpObnEtc8cMsjoUn3S201z7AZT6P5oAfMSmQzW02h3M1fb/8/LZhDBNAEp9xq0EICKLRKRARIpE5KEuXg8TkVdcr+eKSFqH1x52HS8QkYWuY+EiskVEdolIvoj81FMV8ldrC6qICLExLT3B6lB80tkJYZoAlPo/PSYAEbEBTwNXAlnAUhHJ6lTsNqDOGJMBPAn83HVuFnA9kA0sAp5xXa8FmGeMmQhMAhaJyAzPVMn/GGNYW1jJzFGJhAXbrA7HZ+mEMKU+z507gGlAkTGm2BjTCiwHFncqsxh4wfX4NWC+iIjr+HJjTIsxpgQoAqYZp9Ou8iGuPzo8oxvF1Y2U1p7R5p8LNDlVJ4Qp1ZE7CWAYUNrheZnrWJdljDHtQAOQeK5zRcQmIjuBSuADY0xuV28uIneISJ6I5FVVVbkRrv9ZW+Cst3YAX5jJro7gHUd1PoBS4F4C6GrHkc6/1rsr0+25xhi7MWYSMByYJiLjunpzY8wyY0yOMSYnKSkwfwGvLahkpA7/vGAJUaGkD4zSfgClXNxJAGVASofnw4Fj3ZURkWAgFqh151xjTD2wFmcfgerkTKud3JJa5o7WX/+eMFknhCn1GXcSwFYgU0TSRSQUZ6fuyk5lVgI3ux4vAdYY5/9hK4HrXaOE0oFMYIuIJIlIHICIRABXAAcuvDr+Z3NxDa3tOvzTU6akxlN9WieEKQUQ3FMBY0y7iNwLrAZswJ+NMfki8hiQZ4xZCTwH/FVEinD+8r/edW6+iLwK7APagXuMMXYRGQK84BoRFAS8aox5uy8q6OvWFlTq8E8P6jghLDVRm9RUYOsxAQAYY1YBqzode7TD42bg692c+zjweKdju4HJvQ02EK0trOKSUYmEh+jwT08YkzyAyFAbO0vr+crkzmMZlAosOhPYi5VUN3KkpkmbfzzIFiRMGB7LDu0IVkoTgDc7u/qndgB71uTUePKPnaS5zW51KEpZShOAF1tbUMXIgVHaVu1hk1PiaHcY8o/phDAV2DQBeKnmNjubi2t085c+MCk1DtAJYUppAvBSm4praGl36OzfPjBoQDjD4iI0AaiApwnAS60rqCI8JIjpOvyzT5ydEKZUINME4KXWFVYxY6QO/+wrk1PjOdbQzImTzVaHopRlNAF4oSM1jZRUNzJ3tLb/95XJ2g+glCYAb7Su0Ln65xxt/+8z2UNjCLUFsaNUm4FU4NIE4IXWFVQxIjGS9IFRVofit8KCbWQNjdE7ABXQNAF4mZZ2OxsP1TBHm3/63KSUOHaX1dNud1gdilKW0ATgZbaW1HGmza4JoB9MTo2juc3BgYpTVoeilCU0AXiZdYWVhNqCuGRUotWh+L2zK4PuLNVmIBWYNAF4mbUFVUxLTyAy1K2FWtUFGB4fwcDoUO0HUAFLE4AXKa8/w8HK07r6Zz8RESalxOtIIBWwNAF4kXWuzd+1/b//TE6No7iqkfqmVqtDUarfaQLwIusKKxkaG07GoGirQwkYk1OcE8K0H0AFIk0AXqK13cGnRTXMGTMIEbE6nIAxISUOEZ0RrAKTJgAvsf1oHadb2rX5p59FhwUzZvAAvQNQAUkTgJdYW1BFcJAwK0OHf/a3yalx7Cytx+EwVoeiVL/SBOAl1hVWMXVEPAPCQ6wOJeBMSomj4UwbJTWNVoeiVL/SBOAFTpxsZv/xk7r7l0UmuyaEbT+iw0FVYNEE4AV083drZSRFkzQgjJW7jlkdilL9ShOAF3h3bwXD4yMYO2SA1aEEpKAg4Tuz0thwsJq95bpRvAocmgAs1nCmjU+LqrlyXLIO/7TQt6aPIDosmD+uL7Y6FKX6jSYAi320/wRtdsOV44dYHUpAi40I4Ybpqbyz+xhHa5qsDkepfqEJwGKr9lQwJDacScPjrA4l4N06Kx1bkPCnDXoXoAKDWwlARBaJSIGIFInIQ128HiYir7hezxWRtA6vPew6XiAiC13HUkTkYxHZLyL5InK/pyrkS063tLP+YBULs5MJCtLmH6slx4Zz3eRhvJpXSvXpFqvDUarP9ZgARMQGPA1cCWQBS0Ukq1Ox24A6Y0wG8CTwc9e5WcD1QDawCHjGdb124F+MMWOBGcA9XVzT7605UElru4OrtPnHa9xx2Sha7Q5e2HjY6lCU6nPu3AFMA4qMMcXGmFZgObC4U5nFwAuux68B88XZo7kYWG6MaTHGlABFwDRjzHFjzHYAY8wpYD8w7MKr41ve23ucpAFhTB0Rb3UoyiVjUDRfGjuYFzcdobGl3epwlOpT7iSAYUBph+dlfPHL+rMyxph2oAFIdOdcV3PRZCC3qzcXkTtEJE9E8qqqqtwI1zc0tbbz8YEqFmYPxqbNP17lrrmjaDjTxvKtpT0XVsqHuZMAuvp26rxoSndlznmuiEQDrwM/MMac7OrNjTHLjDE5xpicpCT/mSm7rqCKM212rhqnzT/eZkpqPNPSE3huQzFtumG88mPuJIAyIKXD8+FA5ymTn5URkWAgFqg917kiEoLzy/9lY8wb5xO8L3t3bwUJUaFMS0+wOhTVhbvnjOJYQzMrd+rsYOW/3EkAW4FMEUkXkVCcnborO5VZCdzserwEWGOMMa7j17tGCaUDmcAWV//Ac8B+Y8yvPFERX9LcZuej/SdYkDWYYJuOxPVGc8ckkTkomhc2HbY6FKX6TI/fPq42/XuB1Tg7a181xuSLyGMicq2r2HNAoogUAQ8AD7nOzQdeBfYB7wH3GGPswCzg28A8Ednp+nOVh+vmtT45WE1jq10nf3kxEeHGGSPYXdbA7jLdK0D5p2B3ChljVgGrOh17tMPjZuDr3Zz7OPB4p2Of0HX/QEBYtfc4sREhzByla/97s+umDONn7x7g5c1HmbBEJ+op/6PtD/2std3BB/tOcMXYwYRo849XiwkPYfGkoazcdYyGM21Wh6OUx+k3UD/79FA1p5rbuWp8stWhKDd8a/oIzrTZeXN7mdWhKOVxmgD62cubjxAfGcKsjIFWh6LcMH54LBOHx/Jy7lGc4xqU8h+aAPrRwROn+HB/JTfPTCM8xGZ1OMpN35oxgoOVp9lSUmt1KEp5lCaAfrRsfTHhIUHcdEma1aGoXrhmwlAGhAfzcu5Rq0NRyqM0AfSTioZmVuws55s5KSREhVodjuqFiFAbX5synHf3HtdVQpVf0QTQT57/tAS7w/Dd2SOtDkWdhxtnpNJmN/wjTzuDlf/QBNAPTja38XLuUb48YSgpCZFWh6POQ8agAUxPT+BvW47gcGhnsPIPmgD6wd9yj3K6pZ07L9Nf/77sxhkjKK09w/qD/rMqrQpsmgD6WEu7nT9/UsKlGQMZNyzW6nDUBViYnczA6DD+Z9UBGpp0YpjyfZoA+thbO45ReaqFO+for39fFxocxJPfnEhJdSO3/GVLrzeMMcbQrstLKy+iCaAPORyGP64/RNaQGC7ViV9+YXZmEr9dOpndZQ3c8dc8mtvsbp/74xV7WfDkemobW/swQqXcpwmgD324/wSHqhq5c85InCtgK3+waFwyT3xtAp8W1XDf33e49au+8MQp/r7lKMXVjdz39+16J6C8giaAPmKM4bdrDpKSEMGXddlnv/O1qcP56bXZfLDvBA++trvHkUG//rCQqNBgfnzVWD4tquGJ1QX9FKlS3XNrOWjVex/sO8He8pM8sWSCbvrip26emcap5jZ+8X4h8VGh/PvVWV2Wyz/WwKo9FXx/Xga3XzaS0romlq0vZtywWK6dOLSfo1bq/+g3Ux9wOAxPfniQEYmRfHXyMKvDUX3onsszuGVmGs99UsLKXV1vH/nkBweJCQ/mNtckwH/7chYXp8Xz4Gu72Hesy62w3eJwGI7UNJ73+UppAugD7++rYP/xk9w/P1N//fs5EeHHXx7L1BHxPPT6booqT33u9V2l9Xy4/wS3zx5JbEQI4BxN9PS3phAbEcKdL+VR39T7TmFjDD9esZc5/7uWFzcd9kBNVCDSbycPczgMT35wkJFJUXp7HyBCbEE8fcMUIkJs3P3S9s8ND/3VB4XER4bwnUvTP3fOoAHh/P7GqZxoaOHbz23h2Q3F7DhaR2u7e53Dv/noIH/fcpRhcRH8x8p83ttb4dE6qcCgCcDDVu09TsGJU/rrP8Akx4bz26WTKao6zY/f3IMxhm1HallXWMWdc0YRHfbF7rYpqfH84hsTqT/Tyn+9s5/rntnI+J+s5ht/3MTvPjrIqeauJ5u9nHuEX394kCVTh/PBA5cxKSWO7y/fwdbDuly16h3xpU0ucnJyTF5entVhdMvuMCz69XoMsPoHl2EL0qGfgeZ3Hx3klx8U8p9fGce7e45TeOIU6x+8nMjQc4+3OHGymW1H6sg7XMe2I7XsKmtgYHQY/7poDF+bMpwg12dpdX4Fd7+0jTmjk1h2Uw4htiBqG1tZ8vuN1DS28vrdl5AxaEB/VFX5CBHZZozJ6fI1TQCe89bOcu5fvpOnbpjM1RO0+ScQORyGW1/YyoaD1dgdhkevzuLWTs0/7thVWs9P/pnPjqP1TBwey39cm43dYbjx2VzGDonhb7dP/1xSKa1t4rpnNhIWHMQb35vJ4JhwT1ZL+TBNAP2g3e5gwZPrCbEF8e79sz/7xaYCT11jK1f/7hMcxvDxj+ae9+5vDodhxc5yfvbuASpPtRAeEsTQ2Aheu3tml3tK7C1v4Jt/3ERKQiSv3z2TqC6anVTgOVcC0EZqD1m56xjF1Y388EuZ+uUf4OKjQvnnfZfy5vdmXdDWn0FBwlenDGfNj+Zy99xRXJQcwwu3Tut2Q6Fxw2J5+ltTOFBxipdzj5z3+6rAoT8RPMDhMDz9cREXJQ9gQVay1eEoL+DJXd+iw4L510UXuVV27phBzByVyLMbSrh5Zhphwbr3tOqe3gF4wPv7KjhU1cj3Ls/QX//KcnfPHUXlqRZW7Ci3OhTl5TQBXCBjDM+sPcSIxEiuGqe//pX1Ls0YSPbQGP64rhi77l6mzkETwAX6tKiG3WUN3DVnlI77V15BRLhrziiKqxv5YJ9OEFPdc+sbS0QWiUiBiBSJyENdvB4mIq+4Xs8VkbQOrz3sOl4gIgs7HP+ziFSKyF5PVMQqT39cxOCYML46Rdf8Ud7jynHJjEiM5PfrivGlkX6qf/WYAETEBjwNXAlkAUtFpPOyh7cBdcaYDOBJ4Oeuc7OA64FsYBHwjOt6AH9xHfNZO47Wsam4hu9eOlI725RXCbYFcfvskewqrWdTcY3V4Sgv5c4dwDSgyBhTbIxpBZYDizuVWQy84Hr8GjBfnDugLAaWG2NajDElQJHrehhj1gM+PXf9mbWHiI0IYen0VKtDUeoLlkwdzsDoUP6wrtjqUJSXcicBDANKOzwvcx3rsowxph1oABLdPPecROQOEckTkbyqqqrenNqnCk+c4oN9J7hlZlqX67woZbXwEBvfmZXO+sIq8o81WB2O8kLuJICuxjV2blTsrow7556TMWaZMSbHGJOTlJTUm1P71O/XHiIy1MYtM9OsDkWpbt04YwTRYcF6F6C65E4CKANSOjwfDnTe+eKzMiISDMTibN5x51yfU1rbxMpdx1g6LZV4D074UTzbM8IAAA/RSURBVMrTYiNCuGF6Ku/sPkZpbZPV4Sgv404C2Apkiki6iITi7NRd2anMSuBm1+MlwBrjHHqwErjeNUooHcgEtngmdOs890kJQQLfnd37Rb6U6m+3zEzDYeh2xzIVuHpMAK42/XuB1cB+4FVjTL6IPCYi17qKPQckikgR8ADwkOvcfOBVYB/wHnCPMcYOICJ/BzYBY0SkTERu82zV+kZru4MVO8tZNG4IQ2IjrA5HqR4NjYtgYkocq/N1ToD6PLd6L40xq4BVnY492uFxM/D1bs59HHi8i+NLexWpl1hXWEV9U5vu9at8ysLswTzxXgHH6s8wNE5/uCgnnbraSyt2lJMQFcqlmQOtDkUpty3Mdi5T8r7eBagONAH0wsnmNj7cf4JrJgwhRJd9UD5kVFI0GYOiWZ1/ol/fd3V+BU9/XMS2I3W0293b71j1Hx3A3gvv7a2gpd3BV7T5R/mghdmD+cO6YuoaW/tl9Nrh6kbu+/uOzza6jw4LZnp6AjMzBnLV+GTtQ/MC+jO2F1bsKGdEYiSTUuKsDkWpXluYnYzdYfjoQGWfv5cxhn9/ay+hrh3ynr5hCosnDaW4upH/fHsfi5/6lJPdbHqv+o8mADdVNDSzqbiGr0wahnOVC6V8y/hhsQyJDe+X0UBv7z7OhoPV/GjBaMYOieHLE4bw+HXj+fhHc3ntrkuoPt3CL1cX9Hkc6tw0Abhp5a5yjEGbf5TPEhEWZA1mfWEVTa3tffY+J5vbeOztfYwfFsu3L0n7wus5aQncdEkaL24+wq7S+j6LQ/VME4CbVuw4xsSUONIHRlkdilLnbWF2Mi3tDtYX9t26Wr9YXUDN6RYev24ctm52yPuXBaMZNCCMR97co53DFtIE4IaCilPsO36S6yYNtToUpS7ItPQE4iJD+mw00K7Sev66+Qg3XZLGhOHd95UNCA/hP67JJv/YSV7YpBvYW0UTgBtW7CzHFiRcPVETgPJtwbYg5l80mI/2n6DNw7+82+0OHnlzD0nRYTywYHSP5a8cl8zcMUn86v0Cjjec8Wgsyj2aAHrgcBhW7jzG7MyBDIwOszocpS7YwuzBnGxuJ7fYc9txNLfZeerjIvKPneQ/rskmJjykx3NEhP9cPA67Mfx05T6PxaLcp/MAerD1cC3l9Wf4fwvHWB2KUh5x2egkIkJsrM6v+GxGe0u7nbd3HeeNHWUkRoUxLT2BaekJZCRFE9RNO35dYytrDlTy/r4K1hdWc6bNzhVjB3HV+GS3Y0lJiOT78zN54r0CPtp/gvljB3ukjso9mgB68Mb2ciJDbSzI1g+m8g/hITbmjE7i/X0V3Dc/g7/lHuWlzUepPt1CWmIkB0+c/mzl0PjIEKaOSCAmPJimVjtNbXbOtLZzqrmdg5WnsTsMyTHhLJk6nC9lDeaSUYm9HiZ9++yRrNhRzqNv5TMrYyDhIbq9an/RBHAOpbVNvLGjjCVTU4gM1f9Uyn8sHDeY9/IruOR/1mB3GC4fk8R3ZqUz23VHcLS2idySWraW1LLtSB2tdgeRoTYiQoOJCrUxPD6CK8YOZkH2YMYPi72guTEhtiB+eu04lv5pM89uKObeeZmeqqbqgX6rncMv3i/AFiTcP18/kMq/zB87mIvT4skaEsPNM9MYmRT9uddHJEYxIjGKb+SkdHMFz7pkVCKLspN5Zu0hvp6TwuCY8H5530CnncDd2FvewFs7j3HrrHSSY/XDqPxLTHgI/7hrJj9dPO4LX/5WeeSqsbTbDU+8pzOE+4smgG787N0DxEeGcNfcUVaHolRASE2M5NZL03l9exm7y3SGcH/QBNCF9YVVfFJUzb3zMt0azqaU8ox7Lh/FwOhQHvvnPpy7yp6/Cz0/EAREAnA43P8gOByGn717gOHxEdw4I7UPo1JKdTYgPIQfLRhD3pE6/rn7+HldY09ZA7e/mEfmj9/lhj9t5m+5R6ltbPVwpP7B7xPAyeY2bnwul3/klbpVfuWuY+w7fpIfLRhDWLAOR1Oqv309J4WsITH8bNV+mtvsbp+342gd33l+C9c89Qm5xTUsmTqcioZmHnlzDxc//iHffi6X5VuOcuJkcx9G71v8fhRQZIgNY+DHK/YydkgM44bFdlu2pd3OL94vIHtoDNfqsg9KWcIWJPz71Vks/dNmfvl+AV+bOpzwYBsRobbP5ghUnmym4mQzFQ3NnDjZTG5JLRsOVhMXGcL/WziGmy4ZwYDwEIwx7D9+ird3H+Pt3cd56I09AIwZPIDLRg9kdmYS09ITvGbuQW5xDc3tDuaMTuqX9xNfaifLyckxeXl5vT6v+nQL1/zuE2xBwj/vvbTb3ZCe3VDMf72zn7/eNo3Zmf3zD6CU6trdL23j3b3u7V2QHBPOLbPSuHHGCKLDuv5dezYZrD9YxYaDVWwtcc5viAix8dPF2f025LU7jS3tLPz1ekJtQaz+4WUe23ZWRLYZY3K6fC0QEgDAztJ6vvGHTcwYlcjzt1z8uWVqjTH8ZeNh/uud/czKGMiLt07zVMhKqfPU2u5g46FqzrTaOdPm/NPc5sAYQ9KAMAbHhJMcE87gmHAiQnv/C/5Mq53NJTU8u6GYT4tq+MEVmdw/P9OyDZ9+sjKfFzYd5h93XkJOWoLHrnuuBOD3TUBnTUqJ4yfXZvPIm3v4zYeFPLDAubZPc5udR97cwxvby1mQNZhffmOixZEqpQBCg4OYO2ZQn10/ItTG5WMGcWnGQB56fQ+//vAgFQ3N/NdXxhHsoV/f7tpSUstfNh7mlplpHv3y70nAJACApdNS2Flax2/XFDFheBxZQ2O486/b2FPewA+vGM198zK6XfhKKeWfQmxB/OLrExgWF85v1xRx4mQzT90whahumpI87UyrnQdf20VKQgQPLurfRScDKgGICI8tHsf+46f44as7CbUF0dLu4E835fClLF3sTalAJSI8sGAMybER/NuKPSz902Z+tGAMU0fE93kiePLDQg7XNPG3707v9zXHAioBgHMlxN/fOIVrn/qU2MgQln07h4xB3jEVXillrRumpzI4Jozv/30HN/15C7YgYdzQGNfy2ImMGTyAoXHhHmsi2nG0jmc3FHPD9FRmZgz0yDV7I2A6gTurb2olItSmY/2VUl/Q2NLO9qN1bCmpJbeklp2l9bS2O3dQCw4ShsVHkJoQyYjESLKHxjJ1RPw5907oSku7nat/+wmnW9p5/4eXMaCPVh244E5gEVkE/AawAc8aY37W6fUw4EVgKlADfNMYc9j12sPAbYAd+L4xZrU71+xrcZFdDwVVSqmosGBmZyZ9Nhy8uc3O3vIGDlWd5khNE0dqmyitbWLlzmO8tPkoADHhwUwZEc/U1HhGJkUTHxVCfGQoCVGhxEWGcKbVzuGaJo7UNHK0pokth2s5WHma579zcZ99+fekxwQgIjbgaeBLQBmwVURWGmM67uF2G1BnjMkQkeuBnwPfFJEs4HogGxgKfCgiZzcL7emaSinlFcJDbOSkJXxhhI4xhsM1TWw7Use2I869E9YWVLl1zUEDwrhvXgaX9+FIp564cwcwDSgyxhQDiMhyYDHQ8ct6MfAT1+PXgKfEOZh2MbDcGNMClIhIket6uHFNz3n3IajY0yeXVkoFLgHSXX+WAMRBe4yDVruDNruh3e6g3W5oczgIEiE8xEZ4cBBhITZsIlAOPO/GGyWPhys930jiTgIYBnRcSKcMmN5dGWNMu4g0AImu45s7nTvM9binawIgIncAdwCkpuribEop7xYcFERwUBD4wELC7iSArno1Ovccd1emu+NddaF32RttjFkGLANnJ3D3YZ5DH2ROpZTyde6MZSoDOi6SMRw41l0ZEQkGYoHac5zrzjWVUkr1IXcSwFYgU0TSRSQUZ6fuyk5lVgI3ux4vAdYY5/jSlcD1IhImIulAJrDFzWsqpZTqQz02Abna9O8FVuMcsvlnY0y+iDwG5BljVgLPAX91dfLW4vxCx1XuVZydu+3APcYYO0BX1/R89ZRSSnUnYCeCKaVUIDjXRDC/3xFMKaVU1zQBKKVUgNIEoJRSAUoTgFJKBSif6gQWkSrgyHmePhCo9mA4VvKXuvhLPUDr4o38pR5wYXUZYYzpcpNzn0oAF0JE8rrrCfc1/lIXf6kHaF28kb/UA/quLtoEpJRSAUoTgFJKBahASgDLrA7Ag/ylLv5SD9C6eCN/qQf0UV0Cpg9AKaXU5wXSHYBSSqkONAEopVSA8vsEICKLRKRARIpE5CGr4+kNEfmziFSKyN4OxxJE5AMROej6O97KGN0lIiki8rGI7BeRfBG533Xcp+ojIuEiskVEdrnq8VPX8XQRyXXV4xXXMuc+QURsIrJDRN52PffJuojIYRHZIyI7RSTPdcynPl9niUiciLwmIgdc/89c0hd18esE0GFD+yuBLGCpa6N6X/EXYFGnYw8BHxljMoGPXM99QTvwL8aYscAM4B7Xv4Wv1acFmGeMmQhMAhaJyAzg58CTrnrUAbdZGGNv3Q/s7/Dcl+tyuTFmUocx8772+TrrN8B7xpiLgIk4/308XxdjjN/+AS4BVnd4/jDwsNVx9bIOacDeDs8LgCGux0OAAqtjPM96vQV8yZfrA0QC23HuZ10NBLuOf+5z581/cO7G9xEwD3gb5zauvlqXw8DATsd87vMFxAAluAbp9GVd/PoOgK43tB/WTVlfMdgYcxzA9fcgi+PpNRFJAyYDufhgfVxNJjuBSuAD4BBQb4xpdxXxpc/Zr4EHAYfreSK+WxcDvC8i20TkDtcxn/t8ASOBKuB5V9PcsyISRR/Uxd8TgDsb2qt+JCLRwOvAD4wxJ62O53wYY+zGmEk4fz1PA8Z2Vax/o+o9EbkaqDTGbOt4uIuiXl8Xl1nGmCk4m3zvEZHLrA7oPAUDU4DfG2MmA430UdOVvycAf9x8/oSIDAFw/V1pcTxuE5EQnF/+Lxtj3nAd9tn6GGPqgbU4+zTiROTsFqu+8jmbBVwrIoeB5TibgX6Nb9YFY8wx19+VwJs4k7Mvfr7KgDJjTK7r+Ws4E4LH6+LvCcAfN59fCdzsenwzzrZ0rycignPv6P3GmF91eMmn6iMiSSIS53ocAVyBs4PuY2CJq5jX1wPAGPOwMWa4MSYN5/8ba4wx38IH6yIiUSIy4OxjYAGwFx/7fAEYYyqAUhEZ4zo0H+e+6p6vi9UdHv3QoXIVUIiznfbHVsfTy9j/DhwH2nD+KrgNZxvtR8BB198JVsfpZl0uxdmUsBvY6fpzla/VB5gA7HDVYy/wqOv4SGALUAT8AwizOtZe1msu8Lav1sUV8y7Xn/yz/6/72uerQ30mAXmuz9kKIL4v6qJLQSilVIDy9yYgpZRS3dAEoJRSAUoTgFJKBShNAEopFaA0ASilVIDSBKCUUgFKE4BSSgWo/w+sDzGjeKMR3wAAAABJRU5ErkJggg==\n", + "text/plain": [ + "<Figure size 432x288 with 1 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(test_md[['pos_idx','pred_any']].groupby('pos_idx').mean())\n", + "plt.plot([0,60],[0,0])" + ] + }, + { + "cell_type": "code", + "execution_count": 74, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0 [9.30e-05 1.15e-04 1.49e-04 1.64e-03 9.96e-01 9.98e-01 9.99e-01]\n", + "1 [6.76e-06 8.61e-06 1.12e-05 7.63e-05 5.17e-02 3.93e-01 8.82e-01]\n", + "2 [2.12e-05 2.46e-05 3.09e-05 2.84e-04 9.83e-01 9.93e-01 9.95e-01]\n", + "3 [1.40e-05 1.65e-05 1.97e-05 8.68e-05 9.80e-01 9.93e-01 9.95e-01]\n", + "4 [2.81e-05 3.21e-05 4.08e-05 4.00e-04 9.59e-01 9.90e-01 9.92e-01]\n", + "5 [4.51e-05 5.60e-05 7.04e-05 8.55e-04 9.71e-01 9.89e-01 9.91e-01]\n" + ] + } + ], + "source": [ + "# weighted models + weighted ensembling\n", + "#0 [2.14e-04 2.50e-04 3.15e-04 2.15e-03 9.88e-01 9.93e-01 9.94e-01]\n", + "#1 [4.46e-06 5.32e-06 6.88e-06 8.58e-05 1.34e-01 6.16e-01 9.24e-01]\n", + "#2 [4.88e-05 5.54e-05 6.88e-05 3.27e-04 9.65e-01 9.86e-01 9.90e-01]\n", + "#3 [1.78e-05 2.00e-05 2.42e-05 1.04e-04 9.52e-01 9.77e-01 9.81e-01]\n", + "#4 [6.56e-05 7.67e-05 9.50e-05 4.71e-04 9.41e-01 9.85e-01 9.89e-01]\n", + "#5 [9.93e-05 1.21e-04 1.53e-04 9.91e-04 9.42e-01 9.86e-01 9.92e-01]\n", + "\n", + "# weighted models + non-weighted ensembling\n", + "#0 [9.25e-05 1.11e-04 1.41e-04 1.60e-03 9.93e-01 9.97e-01 9.99e-01]\n", + "#1 [8.16e-06 9.69e-06 1.24e-05 9.28e-05 1.31e-01 5.91e-01 8.94e-01]\n", + "#2 [2.38e-05 2.66e-05 3.46e-05 2.46e-04 9.73e-01 9.91e-01 9.94e-01]\n", + "#3 [1.25e-05 1.40e-05 1.71e-05 8.06e-05 9.66e-01 9.90e-01 9.94e-01]\n", + "#4 [3.27e-05 3.80e-05 4.71e-05 3.55e-04 9.51e-01 9.91e-01 9.94e-01]\n", + "#5 [4.51e-05 5.74e-05 7.40e-05 7.90e-04 9.46e-01 9.89e-01 9.94e-01]\n", + "\n", + "# non-weighted models + non-weighted ensembling\n", + "#0 [1.10e-04 1.24e-04 1.55e-04 1.27e-03 9.93e-01 9.97e-01 9.98e-01]\n", + "#1 [8.61e-06 9.98e-06 1.23e-05 8.77e-05 1.36e-01 5.73e-01 8.74e-01]\n", + "#2 [2.34e-05 2.66e-05 3.41e-05 2.12e-04 9.73e-01 9.91e-01 9.95e-01]\n", + "#3 [1.08e-05 1.25e-05 1.50e-05 6.10e-05 9.67e-01 9.92e-01 9.96e-01]\n", + "#4 [3.18e-05 3.68e-05 4.48e-05 3.03e-04 9.51e-01 9.91e-01 9.94e-01]\n", + "#5 [4.72e-05 5.48e-05 6.86e-05 6.83e-04 9.41e-01 9.88e-01 9.92e-01]\n", + "\n", + "# STAGE2 non-weighted models + non-weighted ensembling\n", + "#0 [9.30e-05 1.15e-04 1.49e-04 1.64e-03 9.96e-01 9.98e-01 9.99e-01]\n", + "#1 [6.76e-06 8.61e-06 1.12e-05 7.63e-05 5.17e-02 3.93e-01 8.82e-01]\n", + "#2 [2.12e-05 2.46e-05 3.09e-05 2.84e-04 9.83e-01 9.93e-01 9.95e-01]\n", + "#3 [1.40e-05 1.65e-05 1.97e-05 8.68e-05 9.80e-01 9.93e-01 9.95e-01]\n", + "#4 [2.81e-05 3.21e-05 4.08e-05 4.00e-04 9.59e-01 9.90e-01 9.92e-01]\n", + "#5 [4.51e-05 5.60e-05 7.04e-05 8.55e-04 9.71e-01 9.89e-01 9.91e-01]\n", + "\n", + "np.set_printoptions(precision=2)\n", + "for k in range(6):\n", + " print(k,np.quantile(predictions[:,k],[0.0001,0.001,0.01,0.5,0.99,0.999,0.9999]))" + ] + }, + { + "cell_type": "code", + "execution_count": 75, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0.1376, 0.0029, 0.0464, 0.0378, 0.0449, 0.0591])" + ] + }, + "execution_count": 75, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# weighted models + weighted ensembling\n", + "#array([0.1361, 0.0056, 0.0429, 0.0295, 0.0468, 0.0569])\n", + "\n", + "# weighted models + non-weighted ensembling\n", + "#array([0.1335, 0.0055, 0.0423, 0.0298, 0.0466, 0.0556])\n", + "\n", + "# non-weighted models + non-weighted ensembling\n", + "#array([0.1313, 0.0057, 0.0421, 0.0297, 0.0464, 0.0544])\n", + "\n", + "# STAGE2 non-weighted models + non-weighted ensembling\n", + "#array([0.1376, 0.0029, 0.0464, 0.0378, 0.0449, 0.0591])\n", + "\n", + "# STAGE2 weighted models + weighted ensembling\n", + "#array([0.1373, 0.0028, 0.0464, 0.0379, 0.045 , 0.0589])\n", + "\n", + "np.set_printoptions(precision=4)\n", + "predictions.mean(0)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 76, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "0.13762015847552184" + ] + }, + "execution_count": 76, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sub.loc[range(0,len(sub),6), 'Label'].mean()" + ] + }, + { + "cell_type": "code", + "execution_count": 77, + "metadata": {}, + "outputs": [], + "source": [ + "sub = sub.sort_values('ID').reset_index(drop=True)\n", + "best_sub = pd.read_csv(PATH/'submission_stage2_3.csv').sort_values('ID').reset_index(drop=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 78, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "0.13749181676694883" + ] + }, + "execution_count": 78, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "best_sub.loc[range(0,len(sub),6), 'Label'].mean()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 79, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "SpearmanrResult(correlation=0.985190415749868, pvalue=0.0)" + ] + }, + "execution_count": 79, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sp.stats.spearmanr(sub.loc[range(0,len(sub),6), 'Label'], \n", + " best_sub.loc[range(0,len(sub),6), 'Label'])" + ] + }, + { + "cell_type": "code", + "execution_count": 95, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "SpearmanrResult(correlation=0.985190415749868, pvalue=0.0)" + ] + }, + "execution_count": 95, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sp.stats.spearmanr(sub.loc[range(0,len(sub),6), 'Label'], \n", + " best_sub.loc[range(0,len(sub),6), 'Label'])" + ] + }, + { + "cell_type": "code", + "execution_count": 78, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "0.9992765979750622" + ] + }, + "execution_count": 78, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.corrcoef(sub.sort_values('ID').reset_index(drop=True).loc[range(0,len(sub),6), 'Label'], \n", + " best_sub.sort_values('ID').reset_index(drop=True).loc[range(0,len(sub),6), 'Label'])[0,1]" + ] + }, + { + "cell_type": "code", + "execution_count": 96, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.999294961658725" + ] + }, + "execution_count": 96, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.corrcoef(sub.sort_values('ID').reset_index(drop=True).loc[range(0,len(sub),6), 'Label'], \n", + " best_sub.sort_values('ID').reset_index(drop=True).loc[range(0,len(sub),6), 'Label'])[0,1]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Submission" + ] + }, + { + "cell_type": "code", + "execution_count": 80, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "100%|██████████████████████████████████████| 32.1M/32.1M [00:02<00:00, 16.2MB/s]\n", + "Successfully submitted to RSNA Intracranial Hemorrhage Detection" + ] + } + ], + "source": [ + "!~/.local/bin/kaggle competitions submit rsna-intracranial-hemorrhage-detection -f ~/Hemorrhage/sub.csv -m \"GCP, safe final, take 2\"" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "!kaggle competitions submit rsna-intracranial-hemorrhage-detection -f C:/StudioProjects/Hemorrhage/sub.csv -m \"GCP, d161+d169+d201+s101+yd161, 8TTA, ensemble, bounds\"" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.4" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +}