Diff of /notebooks/EDA.ipynb [000000] .. [53d15f]

Switch to unified view

a b/notebooks/EDA.ipynb
1
{
2
 "cells": [
3
  {
4
   "cell_type": "code",
5
   "execution_count": 1,
6
   "metadata": {},
7
   "outputs": [],
8
   "source": [
9
    "CLOUD = False\n",
10
    "\n",
11
    "import sys\n",
12
    "\n",
13
    "from pathlib import Path\n",
14
    "from PIL import ImageDraw, ImageFont, Image\n",
15
    "from matplotlib import patches, patheffects\n",
16
    "import time\n",
17
    "from random import randint\n",
18
    "import numpy as np\n",
19
    "import pandas as pd\n",
20
    "import pickle\n",
21
    "\n",
22
    "from sklearn.model_selection import KFold, StratifiedKFold, GroupKFold\n",
23
    "from sklearn.preprocessing import LabelEncoder, OneHotEncoder, LabelBinarizer\n",
24
    "from sklearn.preprocessing import StandardScaler\n",
25
    "from sklearn.metrics import mean_squared_error,log_loss\n",
26
    "from scipy.stats import ks_2samp\n",
27
    "\n",
28
    "import pdb\n",
29
    "\n",
30
    "import scipy as sp\n",
31
    "from tqdm import tqdm, tqdm_notebook\n",
32
    "\n",
33
    "import os\n",
34
    "import glob\n",
35
    "\n",
36
    "import torch\n",
37
    "if not CLOUD: torch.cuda.current_device()\n",
38
    "\n",
39
    "import torch.nn as nn\n",
40
    "import torch.utils.data as D\n",
41
    "import torch.nn.functional as F\n",
42
    "import torch.utils as U\n",
43
    "\n",
44
    "import torchvision\n",
45
    "from torchvision import transforms as T\n",
46
    "from torchvision import models as M\n",
47
    "\n",
48
    "import matplotlib.pyplot as plt\n",
49
    "\n",
50
    "if CLOUD:\n",
51
    "    PATH = Path('/home/zahar_chikishev')\n",
52
    "    PATH_WORK = Path('/home/zahar_chikishev/running')\n",
53
    "else:\n",
54
    "    PATH = Path('C:/StudioProjects/Hemorrhage')\n",
55
    "    PATH_WORK = Path('C:/StudioProjects/Hemorrhage/running')\n",
56
    "\n",
57
    "if not CLOUD:\n",
58
    "    import lightgbm as lgb\n",
59
    "    from eli5.permutation_importance import get_score_importances\n",
60
    "\n",
61
    "from collections import defaultdict, Counter\n",
62
    "import random\n",
63
    "import seaborn as sn\n",
64
    "\n",
65
    "pd.set_option(\"display.max_columns\", 100)\n",
66
    "\n",
67
    "all_ich = ['any','epidural','intraparenchymal','intraventricular','subarachnoid','subdural']"
68
   ]
69
  },
70
  {
71
   "cell_type": "code",
72
   "execution_count": 2,
73
   "metadata": {},
74
   "outputs": [],
75
   "source": [
76
    "sys.path.insert(0, \"C:\\\\fastai\")\n",
77
    "from fastai import *\n",
78
    "from fastai.vision import *\n",
79
    "from fastai.tabular import *\n",
80
    "from fastprogress import *"
81
   ]
82
  },
83
  {
84
   "cell_type": "raw",
85
   "metadata": {},
86
   "source": [
87
    "Duplicated patient IDs, all labels zeros:\n",
88
    "['ID_a64d5deed','ID_921490062','ID_489ae4179','ID_854fba667']"
89
   ]
90
  },
91
  {
92
   "cell_type": "code",
93
   "execution_count": 9,
94
   "metadata": {},
95
   "outputs": [],
96
   "source": [
97
    "train_df = pd.read_csv(PATH_WORK/'train_df.csv')\n",
98
    "train_md = pd.read_csv(PATH_WORK/'train_md.csv')\n",
99
    "test_md = pd.read_csv(PATH_WORK/'test_md.csv')"
100
   ]
101
  },
102
  {
103
   "cell_type": "markdown",
104
   "metadata": {},
105
   "source": [
106
    "# Prepare meta data"
107
   ]
108
  },
109
  {
110
   "cell_type": "code",
111
   "execution_count": 7,
112
   "metadata": {},
113
   "outputs": [],
114
   "source": [
115
    "train_csv = pd.read_csv(PATH/'stage_1_train.csv')\n",
116
    "\n",
117
    "train_csv = train_csv.loc[~train_csv.ID.duplicated()].sort_values('ID').reset_index(drop=True)\n",
118
    "all_sop_ids = train_csv.ID.str.split('_').apply(lambda x: x[0]+'_'+x[1]).unique()\n",
119
    "train_df = pd.DataFrame(train_csv.Label.values.reshape((-1,6)), columns = all_ich)\n",
120
    "train_df['sop_id'] = all_sop_ids\n",
121
    "\n",
122
    "train_df.to_csv(PATH_WORK/'train_df.csv', index=False)"
123
   ]
124
  },
125
  {
126
   "cell_type": "code",
127
   "execution_count": 8,
128
   "metadata": {},
129
   "outputs": [],
130
   "source": [
131
    "train_md = pd.read_csv(PATH/'train_metadata.csv')\n",
132
    "test_md = pd.read_csv(PATH/'test_metadata.csv')\n",
133
    "test_md = test_md.sort_values('SOPInstanceUID')\n",
134
    "data_md = pd.concat([train_md, test_md], axis=0, sort=False).reset_index(drop=True)"
135
   ]
136
  },
137
  {
138
   "cell_type": "code",
139
   "execution_count": 9,
140
   "metadata": {},
141
   "outputs": [],
142
   "source": [
143
    "del data_md['Unnamed: 0']\n",
144
    "\n",
145
    "for i in range(6):\n",
146
    "    data_md['ImageOrientationPatient_{}'.format(i)] \\\n",
147
    "        = data_md['ImageOrientationPatient'].str.split('\\'').apply(lambda x: x[1+2*i])\n",
148
    "\n",
149
    "for i in range(3):\n",
150
    "    data_md['ImagePositionPatient_{}'.format(i)] \\\n",
151
    "        = data_md['ImagePositionPatient'].str.split('\\'').apply(lambda x: x[1+2*i])\n",
152
    "\n",
153
    "for i in range(2):\n",
154
    "    data_md['PixelSpacing_{}'.format(i)] \\\n",
155
    "        = data_md['PixelSpacing'].str.split('\\'').apply(lambda x: x[1+2*i])\n",
156
    "\n",
157
    "data_md['WindowCenter_0'] \\\n",
158
    "    = data_md['WindowCenter'].str.split('\\'').apply(lambda x: float(x[1]) if len(x) > 1 else float(x[0]))\n",
159
    "\n",
160
    "data_md['WindowCenter_1'] \\\n",
161
    "    = data_md['WindowCenter'].str.split('\\'').apply(lambda x: float(x[3]) if len(x) > 1 else np.nan)\n",
162
    "\n",
163
    "data_md['WindowCenter_1_NAN'] = data_md.WindowCenter_1.isnull()\n",
164
    "\n",
165
    "data_md.loc[data_md.WindowCenter_1.isnull(), 'WindowCenter_1'] \\\n",
166
    "    = data_md.loc[~data_md.WindowCenter_1.isnull(), 'WindowCenter_1'].mean()"
167
   ]
168
  },
169
  {
170
   "cell_type": "code",
171
   "execution_count": 30,
172
   "metadata": {},
173
   "outputs": [],
174
   "source": [
175
    "data_md['ImagePositionPatient_2'] = data_md['ImagePositionPatient_2'].astype(float)\n",
176
    "\n",
177
    "data_md = data_md.sort_values(['SeriesInstanceUID','ImagePositionPatient_2']).reset_index(drop=True)"
178
   ]
179
  },
180
  {
181
   "cell_type": "code",
182
   "execution_count": 31,
183
   "metadata": {},
184
   "outputs": [],
185
   "source": [
186
    "data_md['pos_max'] = data_md[['SeriesInstanceUID','ImagePositionPatient_2']]\\\n",
187
    "    .groupby('SeriesInstanceUID').transform(lambda x: max(x))\n",
188
    "data_md['pos_min'] = data_md[['SeriesInstanceUID','ImagePositionPatient_2']]\\\n",
189
    "    .groupby('SeriesInstanceUID').transform(lambda x: min(x))\n",
190
    "data_md['pos_size'] = data_md[['SeriesInstanceUID','ImagePositionPatient_2']]\\\n",
191
    "    .groupby('SeriesInstanceUID').transform(lambda x: len(x))\n",
192
    "\n",
193
    "data_md['pos_idx'] = data_md[['SeriesInstanceUID','ImagePositionPatient_2']]\\\n",
194
    "    .groupby('SeriesInstanceUID').transform(lambda x: np.arange(len(x)))\n",
195
    "\n",
196
    "data_md['pos_inc'] = data_md[['SeriesInstanceUID','ImagePositionPatient_2']]\\\n",
197
    "    .groupby('SeriesInstanceUID').transform(lambda x: np.concatenate([[0],np.diff(x.values)]))"
198
   ]
199
  },
200
  {
201
   "cell_type": "code",
202
   "execution_count": 32,
203
   "metadata": {},
204
   "outputs": [],
205
   "source": [
206
    "data_md['pos_range'] = (data_md['pos_max'] - data_md['pos_min'])\n",
207
    "data_md['pos_rel'] = (data_md['ImagePositionPatient_2'] - data_md['pos_min'])/data_md['pos_range']\n",
208
    "\n",
209
    "data_md['pos_zeros'] = data_md[['SeriesInstanceUID','ImagePositionPatient_2']]\\\n",
210
    "    .groupby('SeriesInstanceUID').transform(lambda x: (np.diff(x.values) <= 0.001).sum())\n",
211
    "\n",
212
    "data_md['pos_inc_rng'] = data_md[['SeriesInstanceUID','ImagePositionPatient_2']]\\\n",
213
    "    .groupby('SeriesInstanceUID').transform(lambda x: np.diff(x.values)[np.diff(x.values) > 0.1].max() /\n",
214
    "                                                      np.diff(x.values)[np.diff(x.values) > 0.1].min())\n",
215
    "data_md['pos_inc_rng'] = np.clip(data_md['pos_inc_rng'],0,6)\n",
216
    "\n",
217
    "data_md = data_md.sort_values('SOPInstanceUID').reset_index(drop=True)"
218
   ]
219
  },
220
  {
221
   "cell_type": "code",
222
   "execution_count": 36,
223
   "metadata": {},
224
   "outputs": [],
225
   "source": [
226
    "cols_cat = ['BitsStored','PixelRepresentation','RescaleIntercept','WindowCenter_1_NAN']\n",
227
    "cols_float = ['ImageOrientationPatient_0', 'ImageOrientationPatient_1',\n",
228
    "       'ImageOrientationPatient_2', 'ImageOrientationPatient_3',\n",
229
    "       'ImageOrientationPatient_4', 'ImageOrientationPatient_5',\n",
230
    "       'ImagePositionPatient_0', 'ImagePositionPatient_1','ImagePositionPatient_2',\n",
231
    "       'PixelSpacing_0', 'PixelSpacing_1', 'WindowCenter_0', 'WindowCenter_1',\n",
232
    "       'pos_max', 'pos_min', 'pos_size', 'pos_idx', 'pos_inc',\n",
233
    "       'pos_range', 'pos_rel', 'pos_zeros', 'pos_inc_rng']\n",
234
    "pickle.dump((cols_cat,cols_float), open(PATH_WORK/'covs','wb'))"
235
   ]
236
  },
237
  {
238
   "cell_type": "code",
239
   "execution_count": 37,
240
   "metadata": {},
241
   "outputs": [],
242
   "source": [
243
    "for col in cols_float:\n",
244
    "    data_md[col] = data_md[col].astype(float)\n",
245
    "\n",
246
    "for col in cols_cat:\n",
247
    "    data_md[col] = pd.factorize(data_md[col])[0]\n",
248
    "    data_md[col] = data_md[col].astype('category')"
249
   ]
250
  },
251
  {
252
   "cell_type": "code",
253
   "execution_count": 41,
254
   "metadata": {},
255
   "outputs": [],
256
   "source": [
257
    "data_md = data_md.join(train_df.set_index('sop_id'), on = 'SOPInstanceUID')"
258
   ]
259
  },
260
  {
261
   "cell_type": "code",
262
   "execution_count": 42,
263
   "metadata": {},
264
   "outputs": [
265
    {
266
     "name": "stdout",
267
     "output_type": "stream",
268
     "text": [
269
      "any          False  True \n",
270
      "BitsStored               \n",
271
      "0           341679  75369\n",
272
      "1           332579   3176\n",
273
      "any                   False  True \n",
274
      "PixelRepresentation               \n",
275
      "0                    343931  75429\n",
276
      "1                    330327   3116\n",
277
      "any                False  True \n",
278
      "RescaleIntercept               \n",
279
      "0                 662279  78457\n",
280
      "1                   6653     28\n",
281
      "2                   5276     60\n",
282
      "3                     50      0\n",
283
      "any                  False  True \n",
284
      "WindowCenter_1_NAN               \n",
285
      "0                   341679  75369\n",
286
      "1                   332579   3176\n"
287
     ]
288
    }
289
   ],
290
   "source": [
291
    "for col in cols_cat:\n",
292
    "    print(pd.crosstab(data_md[col], data_md['any'].isnull()))"
293
   ]
294
  },
295
  {
296
   "cell_type": "code",
297
   "execution_count": 43,
298
   "metadata": {},
299
   "outputs": [],
300
   "source": [
301
    "train_md = data_md.loc[~data_md['any'].isnull()].copy().reset_index(drop=True)\n",
302
    "for col in all_ich:\n",
303
    "    train_md[col] = train_md[col].astype(int)\n",
304
    "train_md.to_csv(PATH_WORK/'train_md.csv', index=False)\n",
305
    "\n",
306
    "test_md = data_md.loc[data_md['any'].isnull()].copy().reset_index(drop=True)\n",
307
    "test_md.to_csv(PATH_WORK/'test_md.csv', index=False)"
308
   ]
309
  },
310
  {
311
   "cell_type": "code",
312
   "execution_count": 47,
313
   "metadata": {},
314
   "outputs": [
315
    {
316
     "data": {
317
      "image/png": "iVBORw0KGgoAAAANSUhEUgAABWkAAAaOCAYAAAAgRL94AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzde7xsdV3/8ddbjkgKCsiRkNvRBC9Ykp6f1x8KogjeoEADLdEopDIzzUKtJM28lJL+NI3ygjcQLwSlKYSQmkiCIhdRQEQ4cgQEARFEwM/vj7W2LIaZvWefM3uvs/e8no/HeszMd90+850185n5rMukqpAkSZIkSZIk9eNufQcgSZIkSZIkSdPMIq0kSZIkSZIk9cgirSRJkiRJkiT1yCKtJEmSJEmSJPXIIq0kSZIkSZIk9cgirSRJkiRJkiT1yCKtlqQk/5nk4L7jAEjy/CQn9R3HoA2pj4ZJsnuSNX3HIUm6sw0pf5hj102SVUkqyYq+Y5EkNTak3GF+XTfmVy00i7RTIsmlSZ7SdxyDktwjyRuTXJbk5iQXJXllksw2X1XtU1VHT2D9L0zypXlMf5cP5ar6SFXtNYFYZpZ9YztcmuTwMec9IsmHu2199FEab05yTTu8Za7XcgLxrUpyapKbknxrtu283d7el+SGJD9I8vKB8Xu2y7ipXeaO48w75LW7MclfLcwzlrShMceOXL85du5lzyfH7tHmpuuTXLq+6x5znVsmOT7JT5J8L8nzZpl21u8ASXZNclabY89Ksus48ybZbSC/3ti+lvsv7LOX1Dfz68j1m1/nXvZ88usrk5yX5MdJvpvkleu7/jHW2Xt+bcdXG8PM6/evC/esNQ6r/+rbx4FfBp4OfAtYDXwI2B546eDE7QdKqurnixnkItu8qm5L8jjglCRnV9Vn+w5qTIcC+wGPAAo4GbgEeM8CrvMY4HSabejpwCeS7FRVVw+Z9ghgJ2BHmu3u1CTfrKrPJtkK+BTwe8C/A68HPgY8dq55O8vfvKpum/Dzk6R1ZY69q6WcY38CvI8m7716kdb5LuBnwNbArsCnk3yjqs4fMu3I7wBJNgZOAP4R+CfgxcAJbb7+2WzzVtUXgU1nVpJkd5o8vVReN0nLj/n1rpZyfg3wAuAc4FeAk5JcXlXHLuA6e8+vneU/oqounvxT1DqpKocpGIBLgae0918I/A9wJHAdzZv08W375cBVwMGdeZ8BfB24oR1/xMCyXwB8D7gG+KuBdd0NOBz4Tjv+OGDLdtyewE+B7QeW9xjgduBB7ePTgDe0Md8MPKht+73OPL8LXAD8CPgcsGNnXAGHARe1499F80H80Hb9twM3AtfN9XyBy9rl3dgOj2v77UudaR4PfBW4vr19fGfcaTTFv/8BfgycBGzVjlvVLntFZ/qvAn/W3n97G88NwFnAbm373jQf8Le2MX2js64F6aNZtrMvA4d2Hh8CfGXEtLsDazqPXwp8E9gO2Ar4D5rt81rgi8DdhixjZ+AWYLNO2xeBw0as8/vAXp3HrweObe8fCny5M+5eNNvbQ8aY9y6vnYODw/QMmGPNsYuQYzvLewpw6RzT3On5Avu3287DgU2AD7fbzHVtP2w9ZBn3ap/7zp22DwFvGrHOkd8BgL1o8mgGXu+955p3yHreD7y/7/e9g4PDwg+YX82vi5hfO8t9B/D/Roy70/NliefX9rk8qO/3usMdg5c7mF6PodlTdF/go8CxwP+hSR6/DbwzycxRCz+hSWKb03z4/0GS/QCSPIxmj83zgW2A+wDbdtbzUpo9N08C7s8dH54ATwXOqKrLu4FV1RnAGpoEOON3aIpom9Ek019oY3k18JvASpoi3TEDz/eZ7fN7BPBc4GlVdQHNh/rpVbVpVW0+1/MFntjebt7Oc/pALFsCn6b5YL8v8DaavWL37Uz2POBFwP2AjYE/G4h15rSEJwC70CRbaD7kdwW2pHnNPp5kk2r2UP4d8LE2pkcMWd6k+2iUXYBvdB5/o22bVZpLA7wQeFJVrQFeQbMNrKTZu/hqmgQybH2XVNWP51pnki1otsFR8d0p9qr6Cc0Xs13GmHfG95KsSfL+9shcSdPJHGuOXYgcu06SvAh4M03x4TzgYJptaXuafjyMpoAwaGfg9qq6sNM2W16f7TvALsA5VdXN5ecwIgePWk+SewIHAOt9KqykJcn8an5d0PzaHvW8GzDsiNbBaZdLfv1Cmsv5fSrJqhExaJFYpJ1e362q91fV7TSndG8PvK6qbqmqk2j27DwIoKpOq6pzq+rnVXUOzQfjk9rlHAD8e1V9qZrD6f+aOxfTXgy8pqrWVNUtNKeMH5DmejhbAWtHxLe2HT/jA1V1flXdVlW3Dkz7YuCNVXVBNaea/x2wazrXE6XZK3VdVV0GnEqTKIaa4/nO5RnARVX1oTbWY2hOgXlWZ5r3V9WFVXUzzV7ZwVh+SHP06L8Ch1fVKW1cH66qa9rlvhW4B/DgMeOaaB/NYlOava8zrgc27V73ZkCSvA14GrBH3XGJgltpvjDtWFW3VtUXBxLPqPXNrHOzEdPOjB827WzLmmveH9J8OdgReFTb/pEhMUiaDubYEcyx65Vj18XLgFcCu9cdpzLeSvPj8UFVdXtVnVVVNwyZdz45dtj03e8Acy1r3O8P+9O8hv89IgZJy5v5dQTz68Ty6xE0dbL3zzHdcsmvT6I5OvghwBXAf8Q/ReuVRdrpdWXn/s0AVTXYtilAksek+aOKq5NcT7NHaCb53J/m9AXaZdxEc3j/jB2B45Ncl+Q6mlMVbqc5OvKHNIW4YbZpx8+4fMR0M+t4e2cd19Kc5tDdG/qDzv2b6FzbbNAcz3cu92dgL2n7eD6xbFVVW1TVQ6vqHZ24XpHkgjR/GHIdzV66ceOaaB/N4kbg3p3H9wZuHFFghWZP76E0ybebPP4euJjmekCXZPTF5wfXN7POH4+Ydmb8sGlnW9as81bVjVV1Zvvl40rgJcBeSQaXJ2k6mGNHMMeOjGuhvBJ4VzVnqcz4EM0po8cmuSLNn4jcfci888mxw6bvfgeYa1njfn84GPjgLN8rJC1v5tcRzK8j4xpbkpfQHI38jLY4P5tlkV+r6gtV9bOqug74E+ABNJeLUE8s0mocHwVOpLnuzn1oLjI9s+dlLc01RAFI8ks0e49mXA7sU1Wbd4ZNqur7wH8Bj0myfXdlSR5Ns1f0853m2b6MXw68eGAdv1RVXx7juQ1b7mzPd64fBVfQJJOuHWiuE7POkuwG/AXNKRxbVHPKxvXziGvSfTTK+TSnmsx4BLOfKvIjmlNU3t+eGtOssOrHVfWKqnogzR7clyfZc8j85wMPTNLd6zh0nVX1I5rtdVR8d4o9yb1oLhx//hjz3mV1M4sZMV6SZphjzbELaS/gL5Ps/4sVNmeo/E1VPYzmGoTPpPlROuhCYEWSnTpts+W+2b4DnA/82sCRsb/GiBw8bD3ttrw78MER65ekLvOr+XU+sf4uzXWI9xwovI6ybPLrgMLfsL2ySKtxbAZcW1U/bZPP8zrjPgE8K8nj0/yz4N9w5zf1e4A3zJySkGRlkn0Bquq/gFOATybZJclGSR5Lc5r4u6vqojHjew/wqiS7tOu4T5LnjDnvlcB2bezjPN+rgZ8DDxyxvM8AOyd5XpIVSX4LeBjNn2Ctj82A29r1r0jy19x5j9iVwKoko97Tk+6jUT5IU1DdNsn9aa4t+4HZZqiq02iuB3V8kse08T0zyYPaZHMDzZ7r24fMeyFwNvDaJJsk+Q2apPTJWeL7yyRbJHkI8Pud+I4HHp5k/ySb0Jz2dE5VfWuueds91w9Ocrc01256B3DawNHBkjSMOfYO5thZtDlmE+DuzcNsMsZ859P8Ocu7kjy7Xc4eSX41yUY0OfZWhufYnwCfAl6X5F7tztR9aY4UGma27wCntet4aZJ7tEcrwR3FjHG+P/wOzR98fmeO5yxJYH41v46fX59PcymFp1bVJWMuf8nn13b73bXdhjcF3kpTmL9gzD7QArBIq3H8Ic0HyI9pClfHzYyoqvOBP6a5aPtamsPqrwJmTg94O80evZPa+b9Cc8H3GfvTXDvmszSH4n8YeG+7zLFU1fE0F+w+NskNwHnAPmPO/nmaD9gfJJk5NWW253sT7b90pjnt4rEDsVxDs8fsFTSnzPw58Myq6p72si4+B/wnzV6379H8W2X39JmPt7fXJPna4MwL0Eej/DPw78C57To+3bbNqqpOprkQ/YlJHgXsRLOX+kbgdOCf2mLuMAcCq2mOyn0TcEC117ZN8vwk3T2Fr6X5M7Dv0VzP7u+ruWg97Tz707y+P6LZTg8cZ16aLzyfpdn+z6PZ/g+a63lLEuZYc+z4OfaJNKfyfobmCKebaf5he1ZV9Q2afvuXJPsAv0xToLiB5ofYf9NsG8P8IfBLNNvdMcAftNslSXZLcmNn2pHfAaq55uN+NEcUXUfzb937te2zztvxAvzDMEnjM7/esS7z6+z+luZI6q8mubEd3jPXCpZBft2a5trONwCX0Fyb9pl11+snaxGlvKSTJqjdA3MdsFNVfbfveCRJWi7MsZIkTZ75VdKGwiNptd6SPCvJPdNcw/MfaPbSXNpvVJIkLX3mWEmSJs/8KmlDZJFWk7AvzcXGr6A5Tf3A8hDtZSvJ+Z3TQLrD8/uOTZKWIXPsFDHHStKiMb9OEfOrlgovdyBJkiRJkiRJPfJIWkmSJEmSJEnqkUVaSZIkSZIkSerRir4DGLTVVlvVqlWr+g5DkrSBOuuss35YVSv7jmMpMsdKkmZjjl135lhJ0mzGybEbXJF21apVnHnmmX2HIUnaQCX5Xt8xLFXmWEnSbMyx684cK0mazTg51ssdSJIkSZIkSVKPLNJKkiRJkiRJUo8s0kqSJEmSJElSjyzSSpIkSZIkSVKP5l2kTfK+JFclOa/TtmWSk5Nc1N5u0bYnyTuSXJzknCSPnGTwkiQtF+ZXSZIkSZpe63Ik7QeAvQfaDgdOqaqdgFPaxwD7ADu1w6HAu9ctTEmSlr0PYH6VJEmSpKk07yJtVX0BuHageV/g6Pb+0cB+nfYPVuMrwOZJtlnXYCVJWq7Mr5IkSZI0vVZMaDlbV9VagKpam+R+bfu2wOWd6da0bWu7Myc5lOZIIHbYYYcJhSRJ6t2pb7zj/h6v6i+OpWu98iuYY6WhZj6b/FySJGmijjz5QgD+9Kk79xyJtPQs9B+HZUhb3aWh6qiqWl1Vq1euXLnAIUmSFsvpl1zzi0ETNVZ+BXOsJEmSJC0FkyrSXjlzmmV7e1XbvgbYvjPddsAVE1qnJEnLnflVkiRJkqbApIq0JwIHt/cPBk7otL+g/RfqxwLXz5y2KUmS5mR+lSRJkqQpMO9r0iY5Btgd2CrJGuC1wJuA45IcAlwGPKed/DPA04GLgZuAF00gZkmSlh3zqyRJkiRNr3kXaavqoBGj9hwybQF/NN91SJI0bcyvkiRJkjS9FvqPwyRJkiRJkiRJs7BIK0mSJEmSJEk9skgrSZIkSVq2krwvyVVJzuu0fSzJ2e1waZKz2/ZVSW7ujHtPf5FLkqbJvK9JK0mSJEnSEvIB4J3AB2caquq3Zu4neStwfWf671TVrosWnSRJWKSVJEmSJC1jVfWFJKuGjUsS4LnAkxczJkmSBnm5A0mSJEnStNoNuLKqLuq0PSDJ15P8d5Ld+gpMkjRdPJJWkiRJkjStDgKO6TxeC+xQVdckeRTwb0l2qaobBmdMcihwKMAOO+ywKMFKkpYvj6SVJEmSJE2dJCuA3wQ+NtNWVbdU1TXt/bOA7wA7D5u/qo6qqtVVtXrlypWLEbIkaRmzSCtJkiRJmkZPAb5VVWtmGpKsTLJRe/+BwE7AJT3FJ0maIhZpJUmSJEnLVpJjgNOBBydZk+SQdtSB3PlSBwBPBM5J8g3gE8BhVXXt4kUrSZpWXpNWkiRJkrRsVdVBI9pfOKTtk8AnFzomSZIGeSStJEmSJEmSJPXIIq0kSZIkSZIk9cgirSRJkiRJkiT1yCKtJEmSJEmSJPXIIq0kSZIkSZIk9cgirSRJkiRJkiT1yCKtJEmSJEmSJPXIIq0kSZIkSZIk9cgirSRJkiRJkiT1yCKtJEmSJEmSJPXIIq0kSZIkSZIk9cgirSRJkiRJkiT1yCKtJEmSJEmSJPXIIq0kSZIkSZIk9cgirSRJkiRJkiT1yCKtJEmSJEmSJPXIIq0kSZIkadlK8r4kVyU5r9N2RJLvJzm7HZ7eGfeqJBcn+XaSp/UTtSRp2kysSJvkT5Ocn+S8JMck2STJA5KckeSiJB9LsvGk1idJ0rQwx0qStF4+AOw9pP3Iqtq1HT4DkORhwIHALu08/5Rko0WLVJI0tSZSpE2yLfBSYHVVPRzYiCaxvZkm8e0E/Ag4ZBLrkyRpWphjJUlaP1X1BeDaMSffFzi2qm6pqu8CFwOPXrDgJElqTfJyByuAX0qyArgnsBZ4MvCJdvzRwH4TXJ8kSdPCHCtJ0uS9JMk57eUQtmjbtgUu70yzpm2TJGlBTaRIW1XfB/4BuIzmh+P1wFnAdVV1WzuZyU2SpHkyx0qStCDeDfwKsCtNfn1r254h09awBSQ5NMmZSc68+uqrFyZKSdLUmNTlDragOS3kAcD9gXsB+wyZ1OQmSdI8mGMlSZq8qrqyqm6vqp8D/8IdlzRYA2zfmXQ74IoRyziqqlZX1eqVK1cubMCSpGVvUpc7eArw3aq6uqpuBT4FPB7YvD01E0xukiStC3OsJEkTlmSbzsPfAM5r758IHJjkHkkeAOwE/O9ixydJmj6TKtJeBjw2yT2TBNgT+CZwKnBAO83BwAkTWp8kSdPCHCtJ0npIcgxwOvDgJGuSHAK8Jcm5Sc4B9gD+FKCqzgeOo8m1nwX+qKpu7yl0SdIUWTH3JHOrqjOSfAL4GnAb8HXgKODTwLFJ/rZte+8k1idJ0rQwx0qStH6q6qAhzSPzZlW9AXjDwkUkSdJdTaRIC1BVrwVeO9B8CXdc20eSJK0Dc6wkSZIkLW+TutyBJEmSJEmSJGkdWKSVJEmSJEmSpB5ZpJUkSZIkSZKkHlmklSRJkiRJkqQeWaSVJEmSJEmSpB5ZpJUkSZIkSZKkHlmklSRJkiRJkqQeWaSVJEmSJEmSpB5ZpJUkSZIkSZKkHlmklSRJkiRJkqQeWaSVJEmSJEmSpB5ZpJUkSZIkSZKkHlmklSRJkiRJkqQeWaSVJEmSJEmSpB5ZpJUkSZIkSZKkHlmklSRJkiRJkqQeWaSVJEmSJC1bSd6X5Kok53Xa/j7Jt5Kck+T4JJu37auS3Jzk7HZ4T3+RS5KmiUVaSZIkSdJy9gFg74G2k4GHV9WvARcCr+qM+05V7doOhy1SjJKkKWeRVpIkSZK0bFXVF4BrB9pOqqrb2odfAbZb9MAkSeqwSCtJkiRJmma/C/xn5/EDknw9yX8n2a2voCRJ02VF3wFIkiRJktSHJK8BbgM+0jatBXaoqmuSPAr4tyS7VNUNQ+Y9FDgUYIcddliskCVJy5RH0kqSJEmSpk6Sg4FnAs+vqgKoqluq6pr2/lnAd4Cdh81fVUdV1eqqWr1y5crFCluStExZpJUkSZIkTZUkewN/ATy7qm7qtK9MslF7/4HATsAl/UQpSZomXu5AkiRJkrRsJTkG2B3YKska4LXAq4B7ACcnAfhKVR0GPBF4XZLbgNuBw6rq2qELliRpgizSSpIkSZKWrao6aEjze0dM+0ngkwsbkSRJd+XlDiRJkiRJkiSpRxZpJUmSJEmSJKlHFmklSZIkSZIkqUcWaSVJkiRJkiSpRxMr0ibZPMknknwryQVJHpdkyyQnJ7movd1iUuuTJGlamGMlSZIkaXmb5JG0bwc+W1UPAR4BXAAcDpxSVTsBp7SPJUnS/JhjJUmSJGkZm0iRNsm9gScC7wWoqp9V1XXAvsDR7WRHA/tNYn2SJE0Lc6wkSZIkLX+TOpL2gcDVwPuTfD3Jvya5F7B1Va0FaG/vN6H1SZI0LcyxkiRJkrTMTapIuwJ4JPDuqvp14CfM47TLJIcmOTPJmVdfffWEQpIkaVkwx0qSJEnSMjepIu0aYE1VndE+/gTND8ork2wD0N5eNWzmqjqqqlZX1eqVK1dOKCRJkpYFc6wkSZIkLXMTKdJW1Q+Ay5M8uG3aE/gmcCJwcNt2MHDCJNYnSdK0MMdKkiRJ0vK3YoLL+mPgI0k2Bi4BXkRTBD4uySHAZcBzJrg+SZKmhTlWkiRJkpaxiRVpq+psYPWQUXtOah2SJE0jc6wkSZIkLW+TuiatJEmSJEmSJGkdWKSVJEmSJEmSpB5ZpJUkSZIkSZKkHlmklSRJkiQtW0nel+SqJOd12rZMcnKSi9rbLdr2JHlHkouTnJPkkf1FLkmaJhZpJUmSJEnL2QeAvQfaDgdOqaqdgFPaxwD7ADu1w6HAuxcpRknSlLNIK0mSJElatqrqC8C1A837Ake3948G9uu0f7AaXwE2T7LN4kQqSZpmFmklSZIkSdNm66paC9De3q9t3xa4vDPdmrZNkqQFtaLvACRJkiRJ2kBkSFsNnTA5lOaSCOywww4LGZO09Jz6xjvu7/Gq/uKQlhCPpJUkSZIkTZsrZy5j0N5e1bavAbbvTLcdcMWwBVTVUVW1uqpWr1y5ckGDlSQtfxZpJUmSJEnT5kTg4Pb+wcAJnfYXpPFY4PqZyyJIkrSQvNyBJEmSJGnZSnIMsDuwVZI1wGuBNwHHJTkEuAx4Tjv5Z4CnAxcDNwEvWvSAJUlTySKtJEmSJGnZqqqDRozac8i0BfzRwkYkSdJdebkDSZIkSZIkSeqRRVpJkiRJkiRJ6pGXO5AkSdJUOvLkC+/0+E+funNPkUiSJGnaeSStJEmSJEmSJPXIIq0kSZIkSZIk9cgirSRJkiRJkiT1yCKtJEmSJEmSJPXIIq0kSZIkSZIk9cgirSRJkiRJkiT1yCKtJEmSJEmSJPXIIq0kSZIkSZIk9cgirSRJkiRJkiT1yCKtJEmSJEmSJPXIIq0kSZIkSZIk9cgirSRJkiRJkiT1yCKtJEmSJEmSJPXIIq0kSZIkSZIk9WiiRdokGyX5epL/aB8/IMkZSS5K8rEkG09yfZIkTQtzrCRJk5XkwUnO7gw3JHlZkiOSfL/T/vS+Y5UkLX+TPpL2T4ALOo/fDBxZVTsBPwIOmfD6JEmaFuZYSZImqKq+XVW7VtWuwKOAm4Dj29FHzoyrqs/0F6UkaVpMrEibZDvgGcC/to8DPBn4RDvJ0cB+k1qfJEnTwhwrSdKC2xP4TlV9r+9AJEnTaZJH0v4j8OfAz9vH9wWuq6rb2sdrgG0nuD5JkqaFOVaSpIV1IHBM5/FLkpyT5H1Jthg2Q5JDk5yZ5Myrr756caKUJC1bEynSJnkmcFVVndVtHjJpjZjf5CZJ0hDmWEmSFlZ7XfdnAx9vm94N/AqwK7AWeOuw+arqqKpaXVWrV65cuSixSpKWr0kdSfsE4NlJLgWOpTkF8x+BzZOsaKfZDrhi2MwmN0mSRjLHSpK0sPYBvlZVVwJU1ZVVdXtV/Rz4F+DRvUYnSZoKEynSVtWrqmq7qlpFc5rI56vq+cCpwAHtZAcDJ0xifZIkTQtzrCRJC+4gOpc6SLJNZ9xvAOctekSSpKkzyWvSDvMXwMuTXExz/bz3LvD6JEmaFuZYSZLWU5J7Ak8FPtVpfkuSc5OcA+wB/GkvwUmSpsqKuSeZn6o6DTitvX8JnhoiSdJEmGMlSZqsqrqJZmdnt+13egpHkjTFFvpIWkmSJEmSJEnSLCzSSpIkSZIkSVKPLNJKkiRJkiRJUo8s0kqSJEmSJElSjyzSSpIkSZIkSVKPLNJKkiRJkiRJUo8s0kqSJEmSJElSjyzSSpIkSZIkSVKPLNJKkiRJkiRJUo8s0kqSJEmSJElSjyzSSpIkSZIkSVKPLNJKkiRJkiRJUo8s0kqSJEmSJElSjyzSSpIkSZIkSVKPLNJKkiRJkiRJUo8s0kqSJEmSJElSj1b0HYAkSZIkSX1IcinwY+B24LaqWp1kS+BjwCrgUuC5VfWjvmKUJE0Hj6SVJEmSJE2zPapq16pa3T4+HDilqnYCTmkfS5K0oCzSSpIkSZJ0h32Bo9v7RwP79RiLJGlKWKSVJEmSJE2rAk5KclaSQ9u2ratqLUB7e7/eopMkTQ2vSStJkiRJmlZPqKorktwPODnJt8adsS3qHgqwww47LFR8kqQp4ZG0kiRJkqSpVFVXtLdXAccDjwauTLINQHt71Yh5j6qq1VW1euXKlYsVsiRpmbJIK0mSJEmaOknulWSzmfvAXsB5wInAwe1kBwMn9BOhJGmaeLkDSZIkSdI02ho4Pgk0v40/WlWfTfJV4LgkhwCXAc/pMUZJ0pSwSCtJkiRJmjpVdQnwiCHt1wB7Ln5EkqRp5uUOJEmSJEmSJKlHFmklSZIkSZIkqUcWaSVJkiRJkiSpRxZpJUmSJEmSJKlHEynSJtk+yalJLkhyfpI/adu3THJykova2y0msT5JkqaFOVaSJEmSlr9JHUl7G/CKqnoo8Fjgj5I8DDgcOKWqdgJOaR9LkqTxmWMlSZIkaZmbSJG2qtZW1dfa+z8GLgC2BfYFjm4nOxrYbxLrkyRpWphjJUmSJGn5m/g1aZOsAn4dOAPYuqrWQvMjE7jfpNcnSdK0MMdKkiRJ0vI00SJtkk2BTwIvq6ob5jHfoUnOTHLm1VdfPcmQJElaFsyxkiRJkrR8TaxIm+TuND8eP1JVn2qbr0yyTTt+G+CqYfNW1VFVtbqqVq9cuXJSIUmStCyYYyVJkiRpeZtIkTZJgPcCF1TV2zqjTgQObu8fDJwwifVJkjQtzLGSJEmStPytmNByngD8DnBukrPbtlcDbwKOS3IIcBnwnAmtT5KkaWGOlSRJkqRlbiJF2qr6EpARo/ecxDokSZpG5lhJkiRJWv4m+sdhkiRJkiRJkqT5sUgrSZIkSZIkST2ySCtJkiRJkiRJPbJIK0mSJEmSJEk9skgrSZIkSZo6SbZPcmqSC5Kcn+RP2vYjknw/ydnt8PS+Y5UkLX8r+g5AkiRJkqQe3Aa8oqq+lmQz4KwkJ7fjjqyqf+gxNknSlM8GojoAACAASURBVLFIK0mSJEmaOlW1Fljb3v9xkguAbfuNSpI0rbzcgSRJkiRpqiVZBfw6cEbb9JIk5yR5X5ItRsxzaJIzk5x59dVXL1KkkqTlyiKtJEmSJGlqJdkU+CTwsqq6AXg38CvArjRH2r512HxVdVRVra6q1StXrly0eCVJy5NFWkmSJEnSVEpyd5oC7Ueq6lMAVXVlVd1eVT8H/gV4dJ8xSpKmg0VaSZIkSdLUSRLgvcAFVfW2Tvs2ncl+AzhvsWOTJE0f/zhMkiRJkjSNngD8DnBukrPbtlcDByXZFSjgUuDF/YQnSZomFmklSZIkSVOnqr4EZMiozyx2LJIkebkDSZIkSZIkSeqRRVpJkiRJkiRJ6pFFWkmSJEmSJEnqkUVaSZIkSZIkSeqRRVpJkiRJkiRJ6pFFWkmSJEmSJEnqkUVaSZIkSZIkSeqRRVpJkiRJkiRJ6pFFWkmSJEmSJEnqkUVaSZIkSZIkSeqRRVpJkiRJkiRJ6pFFWkmSJEmSJEnqkUVaSZIkSZIkSeqRRVpJkiRJkiRJ6pFFWkmSJEmSJEnqkUVaSZIkSZIkSerRohRpk+yd5NtJLk5y+GKsU5Kk5c78KknSwjDHSpIW24IXaZNsBLwL2Ad4GHBQkoct9HolSVrOzK+SJC0Mc6wkqQ+LcSTto4GLq+qSqvoZcCyw7yKsV5Kk5cz8KknSwjDHSpIW3WIUabcFLu88XtO2SZKkdWd+lSRpYZhjJUmLbsUirCND2upOEySHAoe2D29M8u0JrHcr4IcTWM5yZf+MZt/Mzv6Znf0zyu+9dVJ9s+MElrEczJlfwRzbsdRiXmrxwpKM+dV3ivnlPUYyD0utn5davDDdMZtjG33m2A3JUnwvLCb7ZxYvv1P/vLrXWDZAbjuzW679M2eOXYwi7Rpg+87j7YAruhNU1VHAUZNcaZIzq2r1JJe5nNg/o9k3s7N/Zmf/jGbfTNyc+RXMsTOWWsxLLV4w5sWy1GJeavGCMQvoMcduSNyuZmf/zM7+Gc2+md00989iXO7gq8BOSR6QZGPgQODERVivJEnLmflVkqSFYY6VJC26BT+StqpuS/IS4HPARsD7qur8hV6vJEnLmflVkqSFYY6VJPVhMS53QFV9BvjMYqyrY9medjIh9s9o9s3s7J/Z2T+j2TcT1lN+haX5Wi61mJdavGDMi2WpxbzU4gVjFr3m2A2J29Xs7J/Z2T+j2Tezm9r+SdVdrn8uSZIkSZIkSVoki3FNWkmSJEmSJEnSCEu+SJtk7yTfTnJxksOHjL9Hko+1489Ismrxo+zPGP3z8iTfTHJOklOS7NhHnH2Yq2860x2QpJJM1b8LjtM/SZ7bbj/nJ/noYsfYlzHeVzskOTXJ19v31tP7iLMPSd6X5Kok540YnyTvaPvunCSPXOwYNZ4kz2nf2z+f7fNv1Puh/bOVM5Jc1ObhjRc43i2TnNyu7+QkWwyZZo8kZ3eGnybZrx33gSTf7YzbdSHjHTfmdrrbO3Gd2Glf1D4eN+YkuyY5vd1+zknyW51xi9bP6/MdMcmr2vZvJ3naQsU4z3hHfmcbtY1sADG/MMnVndh+rzPu4HY7uijJwRtQzEd24r0wyXWdcYvez+uTV/vqYy1d4+aldtp7J/l+kncuZox9Wt8cuBytT66dBuuT26fBXP3TmW56ajJVtWQHmou4fwd4ILAx8A3gYQPT/CHwnvb+gcDH+o57A+ufPYB7tvf/YFr6Z5y+aafbDPgC8BVgdd9xb0j9A+wEfB3Yon18v77j3oD65ijgD9r7DwMu7TvuReyfJwKPBM4bMf7pwH8CAR4LnNF3zA4jX8uHAg8GThv1+Tfb+wE4Djiwvf+emffEAsb7FuDw9v7hwJvnmH5L4NpODvwAcMAi9/FYMQM3jmhf1D4eN2ZgZ2Cn9v79gbXA5ovZz2N+Vg/9jth+bn8DuAfwgHY5G20A8Y78zjZqG9kAYn4h8M4h824JXNLebtHe32JDiHlg+j+m+cOoPvt5nfJqX33ssLSH+eRS4O3AR4e9x5frsL45cLkN65Nrp2FY39y+3IdxczJTVpNZ6kfSPhq4uKouqaqfAccC+w5Msy9wdHv/E8CeSbKIMfZpzv6pqlOr6qb24VeA7RY5xr6Ms+0AvJ4mGf90MYPbAIzTP78PvKuqfgRQVVctcox9GadvCrh3e/8+wBWLGF+vquoLNIWvUfYFPliNrwCbJ9lmcaLTfFTVBVX17TkmG/p+aPPsk2nyLjR5eL+Fixa4c74fZ30HAP/ZyYF9mG/Mv9BTH8MYMVfVhVV1UXv/CuAqYOUixNa1Pt8R9wWOrapbquq7wMXt8nqNdwP8zjbud6lhngacXFXXtt8jTgb2XqA4u+Yb80HAMYsQ10jrkVf76mMtbWPlpSSPArYGTlqkuDYUSyUHLhbrMbNbirl9MVmTGWKpF2m3BS7vPF7Ttg2dpqpuA64H7rso0fVvnP7pOoRmT/w0mLNvkvw6sH1V/cdiBraBGGfb2RnYOcn/JPlKkmn54j9O3xwB/HaSNTT/CvzHixPakjDfzyVt2Ea9nvcFrmvzbrd9IW1dVWsB2tv7zTH9gdy1+PKG9nSzI5PcYyGCHDBuzJskObP9rJ35QdhHH8M8+znJo2mOjvhOp3kx+nl9viP28Tm1vt/Zhm0jC23cmPdvX+9PJNl+nvNO2tjrbU85fQDw+U5zH/08l1HPyXyrdTHnZ3ySuwFvBV65yLFtCCaRA5cT6zGzsx4zO2syQ6zoO4D1NGwPTK3DNMvV2M89yW8Dq4EnLWhEG45Z+6b98nEkzWl602icbWcFzSUPdqfZ4/fFJA+vqusGZ1xmxumbg4APVNVbkzwO+FDbNz9f+PA2eNP8mbzBSfJfwC8PGfWaqjphnEUMaatZ2tfLbPHOcznbAL8KfK7T/CrgBzQ/po4C/gJ43bpFeqd1TSLmHarqiiQPBD6f5FzghiHTTeS9NOF+/hBwcOfzb0H6edjqh7SN+x2xj8+p9f3OdpdtpKoWuigwTsz/DhxTVbckOYzmaKonjznvQpjPeg8EPlFVt3fa+ujnuWxI27GWgAl8xv8h8Jmqunw5HhC5wDlwubEeMzvrMbOzJjPEUi/SrgG27zzejrueVjwzzZokK2hOPZ7tlKHlZJz+IclTaJLOk6rqlkWKrW9z9c1mwMOB09ovH78MnJjk2VV15qJF2Z9x31tfqapbge8m+TZN0farixNib8bpm0NoTymsqtOTbAJsRXO607Qb63NJi6OqnrKeixj1ev6Q5pTbFe1RExN5nWeLN8mVSbapqrXtD6PZ3m/PBY5vP79mlr22vXtLkvcDf7a+8U4q5vZ0SarqkiSnAb8OfJIF6ONJxZzk3sCngb9sT8GeWfaC9PMQ6/MdsY/PqfX6zjZiG1no4uGcMVfVNZ2H/wK8uTPv7gPznjbxCO9qPq/tgcAfdRt66ue5jHpOffWxNnAT+Ix/HLBbkj8ENgU2TnJjVY3805+lZCFz4DJkPWZ21mNmZ01miKV+uYOvAjul+XfjjWm+TA3+0+qJwMy/mR4AfL6qpmXPzZz90x4+/s/As6fomqIwR99U1fVVtVVVraqqVTTXh1nWHwYDxnlv/RvNhc5JshXN5Q8uWdQo+zFO31wG7AmQ5KHAJsDVixrlhutE4AVpPBa4vlO00dIz9P3Q5tlTafIuNHl4nCNz10c338+1vrtcZ3Lm2sjtddL2A4b+k/qEzRlzki1mLgnQftY+AfhmT30M48W8MXA8zXUyPz4wbrH6eX2+I54IHJjmH6kfQLMD8n8XKM6x4x31nW3UNrLA8Y4bc/ea488GLmjvfw7Yq419C2Av7nxke28xAyR5MM2fbZ3eaeurn+cyKq/21cda2ub8jK+q51fVDu1vpD+j+axfFgXaMaxXDlyGrMfMznrM7KzJDFMbwL+Xrc9A84+mF9LsxX5N2/Y6mhcPmuLIx2n+9OF/gQf2HfMG1j//BVwJnN0OJ/Yd84bSNwPTnsYU/JPgPLedAG+j+YFyLu0/jE/DMEbfPAz4H5p/qDwb2KvvmBexb46h+RfbW2n2jh4CHAYc1tlu3tX23bnT9r5aSgPwG+1reEubJz7Xtt+f5jTHmenu8n5o2x/Y5t2L2zx8jwWO977AKcBF7e2Wbftq4F87060Cvg/cbWD+z7fb5HnAh4FNF6GP54wZeHwb1zfa20P66uN5xPzb7WfA2Z1h18Xu5zE+q0d+R6Q5ouU7wLeBfRa6X8eMd+h3ttm2kQ0g5jcC57exnQo8pDPv77Z9fzHwog0l5vbxEcCbBubrpZ9Zj7zaVx87LN1hnM/4gelfCLyz77g3pP5hlhy4HIf1ybXTMKxrbp+WYZyc3Jn2NKbgt2PaJytJkiRJkiRJ6sFSv9yBJEmSJEmSJC1pFmklSZIkSZIkqUcWaSVJkiRJkiSpRxZpJUmSJEmSJKlHFmklSZIkSZIkqUcWaSVJkiRJkiSpRxZpJUmSJEmSJKlHFmklSZIkSZIkqUcWabUkJfnPJAf3HQdAkucnOanvOAZtSH00TJJVSSrJir5jkaS+bEif1eYzLbQ27z+o7zgkqQ8bUj4z56+bJLsnWdN3HFq+LNJOiSSXJnlK33EMSnKPJG9MclmSm5NclOSVSTLbfFW1T1UdPYH1vzDJl+Yx/V0Ki1X1karaawKxzCz7xna4NMnhY857RJIPd9v66KMkL0tySZIbklyR5MiFLsIm2TLJ8Ul+kuR7SZ43y7RJ8uYk17TDW7rbWpJdk5yV5Kb2dtd5zLtRkr9tn/ePk3w9yeYL98yl6WQ+G7l+89ncy55XH7XzbJzkW7P9IBv8wZbktPb5P2Jgun9r23dvHx+R5Na2j65L8uUkj+tMv12Sj7Q55ydJ/jfJMweWWe24G5N8P8nbkmzUjju/8xrcnuSnncevHoi/kvz5wLJnXsdPD7R/uI39+Z3l3Zzk553HN86nn+ejfa+9r/2u8YMkL59l2gOTfDvJ9UmuSnJ0knt3xj80yefb8Rcn+Y3OuMHt+MYkfzWw/Kck+Vr7Glye5LkL86yl6WTOH7l+c/7cy57Pb9huPp4ZHri+McyxzlVJTk3zu/Nbs23naX53Xt7mve8lec3A+GclOa+N+8tJHtYZN2se7ExzQZvLvpNkt8k/Y43LIq369nFgT+DpwGbA7wCHAm8fNnEay3273byqNgUOAv46yd59BzQP/w48sqruDTwceATw0gVe57uAnwFbA88H3p1klxHTHgrs18b1a8AzgRdD80McOAH4MLAFcDRwQts+67ytvwEeDzwOuDfNtvzTiTxDSUuB+eyulnI+m/FK4Kp1mO9C4AUzD5LcF3gscPXAdB9r+2gl8CXgU+22sWX7+GfALsBWwJHAR5McMLCMR7TLeBLwW8DvAlTVLlW1aTvui8BLZh5X1d915j8YuLa9HeaxSZ4w2Nj+wJ9Z/j7AFZ3lbzpH/6yPI4CdgB2BPYA/n2Xb+h/gCVV1H+CBwArgbwHaYsUJwH8AW9K8Xz+cZOeBZWzeeV6vn2lsfwR/FHgNcB9gV+CsiTxDSRs6c/5dLfWc/7FuDquqSxZ4fccAXwfuS5NHPpFk5Yhp3ws8pP2N/XjgeUl+EyDJTsBHgMOAzWl+j5/YKciPzIPt/E8F3gy8iGZbfiKw0M9ds6kqhykYgEuBp7T3X0jzZj0SuI7mTfj4tv1ymh8jB3fmfQbNB8gN7fgjBpb9AuB7wDXAXw2s627A4cB32vHHAVu24/akKWJtP7C8xwC3Aw9qH58GvKGN+WbgQW3b73Xm+V3gAuBHwOeAHTvjiuZD66J2/LuAAA9t1387cCNw3VzPF7isXd6N7fC4tt++1Jnm8cBXgevb28d3xp0GvL59Lj8GTgK2asetape9ojP9V4E/a++/vY3nBpofAbu17XvT/Ii7tY3pG511LUgfjbnN3Rf4L+CfRoy/0/MF9m+3nYcDm9AUS6+h2Ua/Cmw9ZBn3ap/7zp22DwFvGrHOLwOHdh4fAnylvb8X8H0gA6/33mPMu0XbP7/S93vdwWG5D5jPzGeLlM+AB7Tr2QdYM8t0u3fHt/H+NbAG2Khtewnw7rZt97btCODDnfl2aePfqu3b84C7DazrL2i20XSe74M6448D3jUkxjv1Yaf9nu3rd2Db96s742Zex78ATu20f5i7vnfu1Aez9NUv4gX+b7sd7NG+RkfSvGevB84BHj5iGd8H9uo8fj1w7Bjr3hT4IPCZ9vHD222hm/dPAl4/ajseWN5HZ6Z1cHBYmAFzvjl/EXI+A/l4jml35845/6XAN4HtaPL3f9Bsn9fS7CC925Bl7AzcAmzWafsicNgY698WOBf48/bxS4BPd8bfrd3e9hwy753yYNv2ZeCQvt/rDncMy31vjkZ7DM0X4PvSfMk8Fvg/NMnjt4F3Jpk5CuInNElsc5oP/z9Ish/84iiCf6I5gnEbmiMJtu2s56U0Rx8+Cbg/d3x4AjwVOKOqLu8GVlVn0PyI2bPTPLN3cjOaZPoLbSyvBn6T5kiUL9Lsmep6Zvv8HgE8F3haVV1A86F+ejV7y2ZOTR/5fGn2LMEdR1WcPhDLlsCngXfQ9O3bgE+3R9DMeB7Nnqr7ARsDfzYQ68ze1ifQ/GD7etv8VZqjNLakec0+nmSTqvos8HfcsffvEUOWN+k+GinJ85LcAPywXdY/jzHPi2j24D2lqs6jOZrnPsD2NP14GE2yGbQzcHtVXdhp+wZNvw2zSzt+2LS7AOdUm61a5wyMHzXvrwK3AQekOfXywiR/NCIGSZNlPjOfLUg+A/5fu65h+WcuV9D8aJs5lfQFND+MhkpyD5ofzGuq6oc029Qnq+rnA5MeB+xAk/8Gl/EQYDfg4nnEuT/ND9iP0/z4fcGQad4F7DzbqZjzleRpNK/b/lV1Kk0/PZHmeW1Oc0TwNUPm24Lm/TcqHw9b1/9Ncj1NYWF/4B9nRg2bnKZ42/W9JGuSvD/JVp32x7bLPzfJ2jSXgdhyVBySJsKcb85fqJz/rCTXprlU0B+MMT1pLoHzQuBJVbUGeAXNNrCS5izPV9MUkgftAlxSVT/utM2Vyw5PcymhNTQHKn10ZhR3zmczjx/emXdoHkxzeaTVwMo0l/xZk+SdSX5pnOevhWGRdnp9t6reX1W3Ax+jKYa9rqpuqaqTaPZqPQigqk6rqnOr6udVdQ7NB+OT2uUcAPx7VX2pqn5Gc+RI94PoxcBrqmpNVd1Cs5fqgPbw+62AtSPiW9uOn/GBqjq/qm6rqlsHpn0x8MaquqCqbqP5sN81yY6dad5UVddV1WXAqTSJYqg5nu9cngFcVFUfamM9BvgW8KzONO+vqgur6maaH1uDsfyQZs/bvwKHV9UpbVwfrqpr2uW+FbgH8OAx45poH82mqj5azakYOwPvAa6cY5aX0ZxOuntVzfywvJXmC8KDqur2qjqrqm4YMu+mNHt7u66n+SI0zOD01wObJskYy5pt3u1ovtztTHPk1QHAEe3pI5IWlvlsBPPZuuezNNcmXVFVx8933o4PAi9I8mCaH8anD5nmuUmuoznK6FE0RQEYvU2t7Yyf8bUkP6E50ug0msLDuA6m+YF8O80PvoOS3H1gmp/SHA32t4Mzr6PnAEcBT6+q/23bbqXJtw+hObL1gqoa9vxnii+D+XhU3qd9T9+HJlf/Pc3RctBsz1cBr0xy9yR70bw/7tmO/yHND/8daV6bzWhOKZ2xHU0BZn+ayy/8Ek1hX9LCMeePYM5fr9+wx9EcfbsS+H2ayzUcNMv0SfI24GnAHlU1cymjW2mK/jtW1a1V9cWqGlakne9vWKrqTe34R9KcOToz/8nAk9JcX35jmsLwxtyRy2bLg1sDd6d5P+xG03e/DvzlLM9dC8wi7fTqFs5uBqiqwbZNAZI8Js1Fra9u98Acxh3J5/40Pyxol3ETdz7yYUfg+DR/iHEdzQ+I22k+EH5I8yE2zDbt+BmXj5huZh1v76zjWpq9R929oT/o3L+JO77k38Ucz3cu92dgL2n7eD6xbFVVW1TVQ6vqHZ24XpHmgt7Xt8/zPvOIa6J9NI6qugg4n7l/LL6S5tTM7p+yfIjmiJ5j0/wR11uG/GiE5uifew+03ZtmL+Ewg9PfG7ixTZ5zLWu2eWeOsnpdVd3cfjE6luY6VZIWlvlsBPPZyLhmleRewFuAP57PfEN8Cnhyu5wPjZjmuKravKruV1VPrqqZa5qO2qa26Yyf8Uia5/hbNEeZ3Wuc4JJsT3OpgZnC4wk0lxt6xpDJ/wXYOsmzhoybr5fRPO9zZxqq6vPAO2mOVLsyyVEZ+GOT1swfkg3m41F5/xeq6vvAZ2nyM23BZD+a5/sDmiOgjqM5SomqurGqzmwLC1fSnFK6Vyeum7mjaHEjTfHAvC8tLHP+COb8kXHNqaq+WVVXVHNw0JdpLtEweP33rs1pjpB+Y1V1i61/T3M2y0lp/kx71B+o/X/27jxOsqo8+PjvkRFRRNkGgiwOJGBEI6gTHOR1AURFEfAVFGNgTDBoNOIaBTfcEiEaUaIRR1FxBUSNuKEIQ9S8QBgEWWVxRBgHmBEBwQUFnvePc3rmTlHVXd1d3be76/f9fOrTVXd96tTte+597rnnjvccdiTOzMyLKdv5u+qwn1IuuH6EtRcJrqTWZR3zr1MPsvYc9j8y86Ysd/J8EOuyVpmkVT++CJxB6Xfn4ZTWkSNN6m+iXJEBoDaNb94WcSOwbz0BGXltUHcQ3weeVE8SaCxjN8pV0XMag7tdgWqu4+Ud63hw3cGOpdtyR/u+o8UB5fbGR3YM247Sf9qERXnC4pspt3BskuWWjTvGEdegy6hf84A/H2OaZwJvi4gXrFlhufL4rszcmdI/0n50vwXzGmBelA7TR+xCSQ53c0Ud323aK4DH1ZaxIx7XMb7XvJeOhN5jvZJmBusz67N+7EjpY++HEXEzJdm6VZTubBb0uYyRk/7vAP9I7yRtL98HXhD3f9DMCyll0OzmZ+TE7TTgPEqLsH4cSjkX+Eb9nsspSdr71bc1ofkuSp+Eoz69vA8HAwdGxGs71nFCZj6RcrvnTpSLuJ1x3Eb5X+1VH49lneOSzLw0M5+WmZtl5rMoD1X53x7zjmw/I9//Uqz3pZnMOt86f6KS0eu62yjnp5+OxoM1M/POzHxDZu5AaYX8+ojYu8v8VwA7RESz5exk6rLTM/OxmbkZcAzlt7xwrHlrnboC67IZxSSt+rER8OvM/EOtfP6mMe50Sv8tT67N69/Fuju0E4F/GbklISLmR8QBAJn5feBs4CsR8ZiIWC8iFlFadHystsTsx4nA0RHxmLqOh0fEwX3OewuwTY29n++7GriPchDfzbcp/bb9TUTMi4gXATtTOhCfjI0ofZ6upiQl38G6V99uARZ0OZkbMegy6ioiXhYRW9T3OwNHU37j0VxB6Tj+oxGxf513z4j4qyj95PyGcuvIvZ0zZuZvKSfP746IDWsleQC9T4Y/S6kst46IR1BazXymjju3ruPIiHhQRPxTHX7OWPNm5s8ofSS9tc77aEqLpsn+7pIGy/psLeuz3i6nnGjvWl8vq/Puyuitorp5C6WvuuvHOd/xlHI5KSL+LCI2iHLr5VuBf87sevskwLHAERHxZ32s4zDKdr5r4/UC4Lmxbj+EIz5HuU11sk/sXknps/HIiHglQET8dW0F9kBKv4ojD3zp5rOUi7ubROmH9x9YW5evIyJeEhHbRfFISrcNZzfGP66W7UMi4o2UVnCfqeOeFBGPiogH1PI4ATi30Wrq08DfRcQOEfEQSiLCel+aOazz17LOH0VEHFDrlKhldyTl7pKeMvNcSp/GX4uIJ9Xl7BcRfxERQTmHvZfu57DXAJcAx9Q66PmUxkFf6RLbAyLi5R3xvYp167In1u1wPuV5MN+oLWzHrAcpddmrI2KLKP2+vxbrslaZpFU/XklJgt1JaZ1x2siIzLyCchvfKZQrkndS+ve6u07yYcoVve/V+c+n3Io34gWUvmPOpDT7/zxwEuO4xTBLf3HHUW6N/w3l5GrfPmc/h5IkvDkiRm5NGe37/o76lM4ot10s6ojlVspVtTdQbpl5E7BfvXVgMr5LaY1zDeXWkz+w7onil+vfWyPix50zT0EZ9bIHcFmUvvG+XV9vGWsFmfkTSrl9IiL2Bf6McvD0G8rtRf9N2Ta6eSWlH7hVlL6X/rFul0TEU6J0sD7i48A3KE/EvJzSQf7Hawx/pNz2eBjliZx/DxxYh486b/ViylXLW+u4t2fti0nSjGF9tnZd1mc9ZLm9/eaRF+X2yvvq516Jw17LWpmZPxrPPHW+W4H/Q2nZeiXlN3g9cGhmnjrKfJdR6sz7tUJtqr/3Akp3Qzc3XmdQbtW8X1989bsfQ3n4y6Rk6Ttwb+DNEfEyykn7Jyitk0aetv6BHrMfQ3ni+i8o3/X9WR5AQz0RvSsitqvT7kx5cvVdlKeSX01J6o44lPL/vqrGs0+W/iehJDPOpOwLLqfsC9aUS2Z+ipIwvqDGcjflxF7SzGCdv3Zd1vmjO4RS991J2a8fl5knj7WCzDyL8jC1MyLiiZQ7cb5P2SbOA/6zJnN7rXMhpd47Fjgoa9+2NbHabFX7fEq9dydlW/sP1u0D/cOU89er699mPTdWPfgeSqvbayjn3RdTthW1JHpfiJfGL8rTNG8HdszMn7cdjyRJE2F9JknScLDOlzRT2JJWkxYRz6u3iW1IafVwGWufGChJ0qxgfSZJ0nCwzpc0E5mk1SAcQOlfbCWlif8ho/SVplkuIq6otxJ2vl7SdmySNEnWZ0PE+kyShpp1/hCxztdsYXcHkiRJkiRJktQiW9JKkiRJkiRJUotM0kqSJEmSJElSi+a1HUCnzTffPBcsWNB2GJKkGeqiiy76VWbObzuO2cg6VpI0GuvYibOOlSSNpp86dsYlaRcsWMCyZcvaDkOSasMR0AAAIABJREFUNENFxC/ajmG2so6VJI3GOnbirGMlSaPpp461uwNJkiRJkiRJapFJWkmSJEmSJElqkUlaSZIkSZIkSWqRSVpJkiRJkiRJapFJWkmSJEmSJElqkUlaSZIkSZIkSWqRSVpJkiRJkiRJatG8tgOQNIal7yt/9zy63TgkSZI0Ixx/1jXrfH7dPju1FIkkzUzN/aT7SM0W425JGxGfiohVEXF5Y9imEXFWRFxb/25Sh0dEnBAR10XEpRHxhEEGL0mSJEmSJEmz3US6O/gM8OyOYUcBZ2fmjsDZ9TPAvsCO9XUE8LGJhSlJkiRJkiRJc9O4k7SZ+QPg1x2DDwBOru9PBg5sDP9sFucDG0fEVhMNVpIkSZIkSZLmmkE9OGzLzLwJoP7dog7fGrixMd2KOkySJPUpIq6PiMsi4pKIWFaHde1qSJIkSZI0+wwqSdtLdBmW95so4oiIWBYRy1avXj3FIUmSNCvtmZm7ZubC+rlXV0OSJEmSpFlmUEnaW0a6Mah/V9XhK4BtG9NtA6zsnDkzl2TmwsxcOH/+/AGFJEnSnNarqyFJkiRJ0iwzqCTtGcDi+n4x8PXG8MOiWATcMdItgiRJ6lsC34uIiyLiiDqsV1dDkiRJkqRZZt54Z4iILwFPBzaPiBXAMcCxwGkRcThwA3BwnfzbwHOA64DfAX83gJglSRo2e2TmyojYAjgrIn7a74w1qXsEwHbbbTdV8UmSJEmSJmHcSdrMfHGPUXt3mTaBV413HZIkaa3MXFn/roqIrwG7UbsaysybOroa6px3CbAEYOHChffrF16SJEmS1L6pfnCYJEmahIjYMCI2GnkPPBO4nN5dDUmSJEmSZplxt6SVJEnTakvgaxEBpd7+YmaeGREX0r2rIUmSJEnSLGOSVpKkGSwzlwO7dBl+K126GpIkSZIkzT52dyBJkiRJkiRJLTJJK0mSJEmSJEktMkkrSZIkSZIkSS0ySStJkiRJkiRJLTJJK0mSJEmSJEktmtd2AJIkSZIktSEirgfuBO4F7snMhRGxKXAqsAC4HnhhZt7WVoySpOFgS1pJkiRJ0jDbMzN3zcyF9fNRwNmZuSNwdv0sSdKUMkkrSZIkSdJaBwAn1/cnAwe2GIskaUiYpJUkSZIkDasEvhcRF0XEEXXYlpl5E0D9u0W3GSPiiIhYFhHLVq9ePU3hSpLmKvuklSRJkiQNqz0yc2VEbAGcFRE/7XfGzFwCLAFYuHBhTlWAkqThYEtaSZIkSdJQysyV9e8q4GvAbsAtEbEVQP27qr0IJUnDwiStJEmSJGnoRMSGEbHRyHvgmcDlwBnA4jrZYuDr7UQoSRomdncgSZIkSRpGWwJfiwgo58ZfzMwzI+JC4LSIOBy4ATi4xRglSUPCJK0kSZIkaehk5nJgly7DbwX2nv6IJEnDzO4OJEmSJEmSJKlFJmklSZIkSZIkqUUmaSVJkiRJkiSpRSZpJUmSJEmSJKlFJmklSZIkSZIkqUUmaSVJkiRJkiSpRSZpJUmSJEmSJKlFJmklSZIkSZIkqUUmaSVJkiRJkiSpRSZpJUmSJEmSJKlFJmklSZIkSZIkqUUDS9JGxOsi4oqIuDwivhQRG0TE9hFxQURcGxGnRsT6g1qfJEmSJEmSJM0FA0nSRsTWwJHAwsx8LLAecAhwHHB8Zu4I3AYcPoj1SZIkSZIkSdJcMcjuDuYBD46IecBDgJuAvYDT6/iTgQMHuD5JkoZGRKwXERdHxDfrZ+9WkSRJkqQ5YiBJ2sz8JfAB4AZKcvYO4CLg9sy8p062Ath6EOuTJGkIvQa4qvHZu1UkSZIkaY4YVHcHmwAHANsDjwA2BPbtMmn2mP+IiFgWEctWr149iJAkSZozImIb4LnAJ+vnwLtVJEmSJGnOGFR3B88Afp6ZqzPzT8BXgScDG9fuDwC2AVZ2mzkzl2TmwsxcOH/+/AGFJEnSnPEh4E3AffXzZni3iiRJkiTNGYNK0t4ALIqIh9TWPXsDVwJLgYPqNIuBrw9ofZIkDYWI2A9YlZkXNQd3mdS7VSRJkiRplhpUn7QXUG65/DFwWV3uEuDNwOsj4jpKq5+TBrE+SZKGyB7A/hFxPXAKpZuDD+HdKpIkSZI0Z8wbe5L+ZOYxwDEdg5cDuw1qHZIkDZvMPBo4GiAing68MTNfEhFfptytcgrerSJJkiRJs9qgujuQJEnTy7tVJEmSJGmOGFhLWkmSNLUy81zg3Preu1UkSZIkaY4wSStJkiRJkgZr6fvW/bzn0e3EIUmzhN0dSJIkSZIkSVKLTNJKkiRJkoZWRKwXERdHxDfr5+0j4oKIuDYiTo2I9duOUZI095mklSRJkiQNs9cAVzU+Hwccn5k7ArcBh7cSlSRpqJiklSRJkiQNpYjYBngu8Mn6OYC9gNPrJCcDB7YTnSRpmJiklSRJkiQNqw8BbwLuq583A27PzHvq5xXA1m0EJkkaLiZpJUmSJElDJyL2A1Zl5kXNwV0mzR7zHxERyyJi2erVq6ckRknS8DBJK0mSJEkaRnsA+0fE9cAplG4OPgRsHBHz6jTbACu7zZyZSzJzYWYunD9//nTEK0maw0zSSpIkSZKGTmYenZnbZOYC4BDgnMx8CbAUOKhOthj4ekshSpKGiElaSZIkSZLWejPw+oi4jtJH7UktxyNJGgLzxp5EkiRJkqS5KzPPBc6t75cDu7UZjyRp+NiSVpIkSZIkSZJaZEtaSZIkSRqUpe9b9/OeR7cThyRJmlVsSStJkiRJkiRJLTJJK0mSJEmSJEktMkkrSZIkSZIkSS0ySStJkiRJkiRJLTJJK0mSJEmSJEktMkkrSZIkSZIkSS0ySStJkiRJkiRJLTJJK0mSJEmSJEktMkkrSZIkSZIkSS0ySStJkiRJkiRJLTJJK0mSJEmSJEktMkkrSZIkSZIkSS0ySStJkiRJkiRJLRpYkjYiNo6I0yPipxFxVUTsHhGbRsRZEXFt/bvJoNYnSZIkSZIkSXPBIFvSfhg4MzP/EtgFuAo4Cjg7M3cEzq6fJUmSJEmSJEnVQJK0EfEw4KnASQCZ+cfMvB04ADi5TnYycOAg1idJ0rCIiA0i4n8j4icRcUVEvKsO3z4iLqh3q5waEeu3HaskSZIkaWIG1ZJ2B2A18OmIuDgiPhkRGwJbZuZNAPXvFgNanyRJw+JuYK/M3AXYFXh2RCwCjgOOr3er3AYc3mKMkiRJkqRJGFSSdh7wBOBjmfl44LeMo2uDiDgiIpZFxLLVq1cPKCRJkma/LO6qHx9YXwnsBZxeh3u3iiRJkiTNYoNK0q4AVmTmBfXz6ZSk7S0RsRVA/buq28yZuSQzF2bmwvnz5w8oJEmS5oaIWC8iLqHUo2cBPwNuz8x76iQrgK17zOuFUEmSJEma4QaSpM3Mm4EbI+JRddDewJXAGcDiOmwx8PVBrE+SpGGSmfdm5q7ANsBuwKO7TdZjXi+ESpIkSdIMN2+Ay3o18IX64JLlwN9RksCnRcThwA3AwQNcnyRJQyUzb4+Ic4FFwMYRMa+2pt0GWNlqcJIkSZKkCRtYkjYzLwEWdhm196DWIUnSsImI+cCfaoL2wcAzKA8NWwocBJyCd6tIkiRJ0qw2yJa0kiRp8LYCTo6I9ah3qGTmNyPiSuCUiHgvcDFwUptBSpIkSZImziStJEkzWGZeCjy+y/DllP5pJUnSBETEBsAPgAdRzo1Pz8xjImJ7yp0qmwI/Bg7NzD+2F6kkaRgM5MFhkiRJkiTNMncDe2XmLsCuwLMjYhGlW6HjM3NH4Dbg8BZjlCQNCZO0kiRJkqShk8Vd9eMD6yuBvYDT6/CTgQNbCE+SNGRM0kqSJEmShlJErBcRlwCrgLOAnwG3Z+Y9dZIVwNZtxSdJGh4maSVJkiRJQykz783MXYFtKH29P7rbZN3mjYgjImJZRCxbvXr1VIYpSRoCJmklSZIkSUMtM28HzgUWARtHxMhDtrcBVvaYZ0lmLszMhfPnz5+eQCVJc5ZJWkmSJEnS0ImI+RGxcX3/YOAZwFXAUuCgOtli4OvtRChJGibzxp5EkiRJkqQ5Zyvg5IhYj9KA6bTM/GZEXAmcEhHvBS4GTmozSEnScDBJK0mSJEkaOpl5KfD4LsOXU/qnlSRp2tjdgSRJkiRJkiS1yCStJEmSJEmSJLXIJK0kSZIkSZIktcg+aaUZ7rzltwJw/j3XAPC6fXZqMxxJkiRJkiQNmC1pJUmSJEmSJKlFJmklSZIkSZIkqUUmaSVJkiRJkiSpRSZpJUmSJEmSJKlFJmklSZIkSZIkqUUmaSVJkiRJkiSpRSZpJUmSJEmSJKlFJmklSZIkSZIkqUUmaSVJkiRJkiSpRSZpJUmSJEmSJKlFJmklSZIkSZIkqUUmaSVJkiRJkiSpRSZpJUmSJEmSJKlFJmklSZIkSZIkqUUDTdJGxHoRcXFEfLN+3j4iLoiIayPi1IhYf5DrkyRJkiRJkqTZbtAtaV8DXNX4fBxwfGbuCNwGHD7g9UmSNKdFxLYRsTQiroqIKyLiNXX4phFxVr0QelZEbNJ2rJIkSZKkiRlYkjYitgGeC3yyfg5gL+D0OsnJwIGDWp8kSUPiHuANmfloYBHwqojYGTgKOLteCD27fpYkSZIkzUKDbEn7IeBNwH3182bA7Zl5T/28Ath6gOuTJGnOy8ybMvPH9f2dlDtWtgYOoFwABS+ESpIkSdKsNpAkbUTsB6zKzIuag7tMmj3mPyIilkXEstWrVw8iJEmS5pyIWAA8HrgA2DIzb4KSyAW2aC8ySZIkSdJkDKol7R7A/hFxPXAKpZuDDwEbR8S8Os02wMpuM2fmksxcmJkL58+fP6CQJEmaOyLiocBXgNdm5m/GMZ8XQiVJkiRphhtIkjYzj87MbTJzAXAIcE5mvgRYChxUJ1sMfH0Q65MkaZhExAMpCdovZOZX6+BbImKrOn4rYFW3eb0QKkmSJEkz3yD7pO3mzcDrI+I6Sh+1J03x+iRJmlPqgzhPAq7KzA82Rp1BuQAKXgiVJGncImLbiFgaEVdFxBUR8Zo6fNOIOCsirq1/N2k7VknS3Ddv7EnGJzPPBc6t75cDuw16HZIkDZE9gEOByyLikjrsLcCxwGkRcThwA3BwS/FJkjRb3QO8ITN/HBEbARdFxFnAS4GzM/PYiDgKOIrSAEmSpCkz8CStJEkanMz8Ed0fxgmw93TGIknSXFIfvDnyEM47I+IqYGvgAODpdbKTKY2QTNJKkqbUVHd3IEmSJEnSjBYRC4DHAxcAW9YE7kgid4se8/hwTknSwJiklSRJkiQNrYh4KOUBna/NzN/0O58P55QkDZJJWkmSJEnSUIqIB1IStF/IzK/WwbdExFZ1/FbAqrbikyQND5O0kiRJkqShExEBnARclZkfbIw6A1hc3y8Gvj7dsUmSho8PDpMkSZIkDaM9gEOByyLikjrsLcCxwGkRcThwA3BwS/FJkoaISVpJkiRJ0tDJzB8B0WP03tMZiyRJdncgSZIkSZIkSS0ySStJkiRJkiRJLTJJK0mSJEmSJEktMkkrSZIkSZIkSS0ySStJkiRJkiRJLTJJK0mSJEmSJEktMkkrSZIkSZIkSS0ySStJkiRJkiRJLTJJK0mSJEmSJEktMkkrSZIkSZIkSS0ySStJkiRJkiRJLZrXdgCSJEmSNFect/zWdT7vvufg17HohiUdQz4w+JVIkqRpZZJWkiRJkiQNzPFnXcOiG8oFi9132KzlaCRpdrC7A0mSJEmSJElqkUlaSZIkSZIkSWqRSVpJkiRJkiRJapFJWkmSJEmSJElqkUlaSZIkSZIkSWqRSVpJkiRJkiRJapFJWkmSJEmSJElqkUlaSZIkSZIkSWrRQJK0EbFtRCyNiKsi4oqIeE0dvmlEnBUR19a/mwxifZIkDYuI+FRErIqIyxvDrF8lSZIkaQ4ZVEvae4A3ZOajgUXAqyJiZ+Ao4OzM3BE4u36WJEn9+wzw7I5h1q+SJEmSNIcMJEmbmTdl5o/r+zuBq4CtgQOAk+tkJwMHDmJ9kiQNi8z8AfDrjsHWr5IkSZI0hwy8T9qIWAA8HrgA2DIzb4KSyAW2GPT6JEkaQtavkiRNkl0KSZJmkoEmaSPiocBXgNdm5m/GMd8REbEsIpatXr16kCFJkjTUrGMlSerpM9ilkCRphhhYkjYiHkhJ0H4hM79aB98SEVvV8VsBq7rNm5lLMnNhZi6cP3/+oEKSJGmu6qt+BetYSZJ6sUshSdJMMpAkbUQEcBJwVWZ+sDHqDGBxfb8Y+Pog1idJ0pCzfpUkaWrYpZAkqRXzBrScPYBDgcsi4pI67C3AscBpEXE4cANw8IDWJ0nSUIiILwFPBzaPiBXAMVi/StLct/R9637e8+h24lBPEXEEcATAdttt13I0koA1+85FN9wKwPnbHdFmNNK4DCRJm5k/AqLH6L0HsQ5JkoZRZr64xyjrV0mSBu+WiNgqM2/qp0shYAnAwoULc7oClCTNTQN9cJgkSZIkSbOYXQpJklphklaSJEmSNHRql0LnAY+KiBW1G6FjgX0i4lpgn/pZkqQpN6g+aSVJkiRJmjXsUkiSNJPYklaSJEmSJEmSWmRLWkmSJEmaKvVJ4wDseXTvcd3GS5KkoWFLWkmSJEmSJElqkUlaSZIkSZIkSWqR3R1IkiRJ0kzQ2f2BJEkaGraklSRJkiRJkqQW2ZJWkiRJkqbDOFrKnrf81nU+746tbCVJmstsSStJkiRJkiRJLbIlrSRJkiTNAJ2tZyVJ0vCwJa0kSZIkSZIktcgkrSRJkiRJkiS1yO4OJEmSJGmKNLsw2H2HzXqOkyRJw80krSRJkiTNcCZ0JUma2+zuQJIkSZIkSZJaZJJWkiRJkiRJklpkklaSJEmSJEmSWmSSVpIkSZIkSZJa5IPDJEmSJGka+PAvaZKWvm/t+z2Pbi8OSZoCJmklSZIkSZKamglhMCksacqZpJUkSZIkSXNHZ4K1yWSrpBnKJK0kSZIkSZo+o3VbMFqCdZo1uyjZfc/GCFvZSpoCJmklSZIkSdLUmkHJ1zVMtkqaQUzSSpIkSdJ4zMRkkzRb9fn/1PngvXVato6ynLHmW6e1LAP43x4t8dtvC+LRksUmlqU5yyStJEmSJI1llERSZxJImlN6JAWPP+uaNYNet89OfS9unaToDpv1HNdtfK+4JjrfZDTXef4916xTBqON6ysOE7HSUDJJK0mSJEnjYFJWw2hkuz//nmvGmLL7fLPBqLGOklRddMMSWDpKYniUdTQTyuNKNnfTb2tcSTPStCRpI+LZwIeB9YBPZuax07FeSZLmMutXSZo+synRpMlrrY5tOck20jp20Q1L+koQLrphSXkzkqAcZ8xj/V+NNn4qxk00lsksdzyOP+saFt1Q1rPm9+mVPB6tpe5Eu1qQNKWmPEkbEesBHwX2AVYAF0bEGZl55VSvW5Kkucr6VZIGwMSEumizjl2nK4DOPlf7NdF+T5e+b00CcDRrErOjrLuf5QyTtcnv+5dLXwnl5W8s8/c531iafe+O2ddvU7/dMNhdgzQh09GSdjfgusxcDhARpwAHAJ5ESpI0cdavkjRJ6yQnahJEYibWseNpFdkxX89k3vI3jtpadjxJQFuazy6jJoZP6m9feL/+hEeZr7OLjPH0YSwNk+lI0m4N3Nj4vAJ40jSsV5LUhqXv82r59Gitfm0ehO9++AemY5WSJE2nGXEO22+ybDIXGEyuajp0tr4+76T+5jt/uyN6LmM8mt149Fp+p+a0o8Ux2jL61e8yR5turHHrJNU7ztWaDwGEASfR2+x2Y5QW3RN98OFUi8yc2hVEHAw8KzNfVj8fCuyWma9uTHMEMLIFPQq4egCr3hz41QCWM52MeXrMtphnW7xgzNNltsU8qHgfmZnzB7CcWa2f+rUOt46dfpZPb5bN6Cyf3iyb0VnHDlDLdexs4f/k4Fmmg2eZDp5lOnFj1rHT0ZJ2BbBt4/M2wMrmBJm5BJj4ZZEuImJZZi4c5DKnmjFPj9kW82yLF4x5usy2mGdbvLPAmPUrWMe2wfLpzbIZneXTm2UzOstn4FqrY2cLt7nBs0wHzzIdPMt0aj1gGtZxIbBjRGwfEesDhwBnTMN6JUmay6xfJUmaGtaxkqRpN+UtaTPznoj4J+C7wHrApzLziqleryRJc5n1qyRJU8M6VpLUhuno7oDM/Dbw7elYV8NsvO3EmKfHbIt5tsULxjxdZlvMsy3eGa+l+hX8Lcdi+fRm2YzO8unNshmd5TNgLdaxs4Xb3OBZpoNnmQ6eZTqFpvzBYZIkSZIkSZKk3qajT1pJkiRJkiRJUg+zOkkbEQdHxBURcV9E9Hy6XEQ8OyKujojrIuKoxvDtI+KCiLg2Ik6tncJPdcybRsRZdZ1nRcQmXabZMyIuabz+EBEH1nGfiYifN8btOhNirtPd24jrjMbwaS3nPst414g4r24/l0bEixrjpq2Me22bjfEPqmV2XS3DBY1xR9fhV0fEs6YqxgnE/PqIuLKW69kR8cjGuK7bSMvxvjQiVjfiellj3OK6HV0bEYunI94+Yz6+Ee81EXF7Y1wbZfypiFgVEZf3GB8RcUL9PpdGxBMa41opY/VnMvuouW4y+8JhMFb5NKY7KCIyRjmOm2v6KZuIeGHdfq6IiC9Od4xt6uN/a7uIWBoRF9f/r+e0EWcbJlPfSpMVfZ4T1mkfFhG/jIiPTGeMs00/ZRqjnLdqLY9ZB89j3ZZk5qx9AY8GHgWcCyzsMc16wM+AHYD1gZ8AO9dxpwGH1PcnAv84DTH/G3BUfX8UcNwY028K/Bp4SP38GeCgaS7nvmIG7uoxfFrLuZ94gZ2AHev7RwA3ARtPZxmPtm02pnklcGJ9fwhwan2/c53+QcD2dTnrzZCY92xsr/84EvNo20jL8b4U+EiXeTcFlte/m9T3m8yEmDumfzXlYRatlHFd51OBJwCX9xj/HOA7QACLgAvaLGNfff+uE95HzfXXZPeFc/3V734M2Aj4AXA+PY7j5tqrz21nR+Dikf0hsEXbcc+w8llCPZakHA9d33bc01g+E6pvffkaxItxnMcCHwa+2O0Y29f4ypRRzlt9rSkjj1nbKdOhPdadytesbkmbmVdl5tVjTLYbcF1mLs/MPwKnAAdERAB7AafX6U4GDpy6aNc4oK6r33UeBHwnM383pVGNbrwxr9FSOY8Zb2Zek5nX1vcrgVXA/CmOq1PXbbNjmuZ3OR3Yu5bpAcApmXl3Zv4cuK4ur/WYM3NpY3s9H9hmGuLqpZ8y7uVZwFmZ+evMvA04C3j2FMXZNN6YXwx8aRri6ikzf0C5mNTLAcBnszgf2DgitqK9MlZ/JrOPmutm275wuvW7H3sP5QT1D9MZXMv6KZt/AD5a94tk5qppjrFN/ZRPAg+r7x8OrJzG+Fo1ifpWGoS+zgkj4onAlsD3pimu2Wy2nLfOdB6zDp7Hui2Z1UnaPm0N3Nj4vKIO2wy4PTPv6Rg+1bbMzJsA6t8txpj+EO6fgPmX2qT8+Ih40FQE2aHfmDeIiGURcX7U7hlop5zHVcYRsRvl6tDPGoOno4x7bZtdp6lleAelTPuZdyqMd72HU1p0jOi2jUylfuN9Qf29T4+Ibcc576D1vd56S8n2wDmNwdNdxv3o9Z3aKmP1ZzL7qLlusvvCuW7M8omIxwPbZuY3pzOwGaCfbWcnYKeI+J+6Lx+mi1f9lM87gb+NiBXAtyl3lKiwXtVUGvMcKyIeAPw78M/THNtsNYjzVnnMOhU81m3JvLYDGEtEfB/4sy6j3pqZX+9nEV2G5SjDJ220mMe5nK2AvwK+2xh8NHAzZee8BHgz8O6JRbrOugYR83aZuTIidgDOiYjLgN90mW7S5TzgMv4csDgz76uDp6SMu62+y7DOspn27XcMfa83Iv4WWAg8rTH4fttIZk7lQUY/8X4D+FJm3h0Rr6BcYd2rz3mnwnjWewhwembe2xg23WXcj5m2Has/k9lHzXWT3RfOdaOWTz2JP57S3cyw6WfbmUfp8uDplFYpP4yIx2bm7Z0zzkH9lM+Lgc9k5r9HxO7A52r53Ndl3mEzrPtkDcgAzrFeCXw7M2+0kWIxxeetKjxmHTyPdVsy45O0mfmMSS5iBbBt4/M2lNuifkW5BWhevZIyMnzSRos5Im6JiK0y86a6ox3tFrYXAl/LzD81ln1TfXt3RHwaeONMibnefkFmLo+Ic4HHA19hCsp5EPFGxMOAbwFvq7eEjSx7Ssq4i17bZrdpVkTEPMptfb/uc96p0Nd6I+IZlAOPp2Xm3SPDe2wjU5lAHDPezLy18fETwHGNeZ/eMe+5A4/w/sbz2x4CvKo5oIUy7kev79RWGas/k9lHzXWT2hcOgbHKZyPgscC59ST+z4AzImL/zFw2bVG2o9//q/Pr8d/PI+JqStL2wukJsVX9lM/h1K5xMvO8iNgA2JzRj6mHRVvHh5ojBnCOtTvwlIh4JfBQYP2IuCszez5Acq6byvNWreEx6+B5rNuSYeju4EJgx4jYPiLWpyQ1zsjMBJZS+nwFWAz00zJ3ss6o6+pnnffra3KkX6naf8qBQNenuw7YmDFHxCYj3QJExObAHsCVLZVzP/GuD3yN0m/XlzvGTVcZd902O6ZpfpeDgHNqmZ4BHBLlKZXbU07e/neK4hxXzPUW1o8D+zf70eu1jcyAeJt9te0PXFXffxd4Zo17E+CZrNuqvbWYASLiUZSHbZ3XGNZGGffjDOCwKBYBd9SLIW2VsfozmX3UXDfhfeGQGLV8MvOOzNw8Mxdk5gJKP2bDkKCF/v6v/ovyMI6RfflOlAcrDoN+yucGYG+AiHg0sAGwelqjnLl61bfSIIx5jpWZL8nM7eq+/Y2Uc62hTdD2YVLnrVrDY9bB81i3LTkDnl420RfwfEqG/27gFuC7dfgjKLdZjEz3HOAaSmuytzaG70BJbF0UXaNjAAAgAElEQVQHfBl40DTEvBlwNnBt/btpHb4Q+GRjugXAL4EHdMx/DnAZJXH4eeChMyFm4Mk1rp/Uv4e3Vc59xvu3wJ+ASxqvXae7jLttm5SuFfav7zeoZXZdLcMdGvO+tc53NbDvVG8H44j5+/X/caRczxhrG2k53vcBV9S4lgJ/2Zj372vZXwf83Uwp4/r5ncCxHfO1VcZfojxp9k+UffLhwCuAV9TxAXy0fp/LaDzFva0y9jWYbXG0fdRcf010Xzgsr372Y41pz23uF+b6q49tJ4APUi6yXQYc0nbMM6x8dgb+p9Z1lwDPbDvmaSybCde3vnxN9kWf57GN6V8KfKTtuGfyq58yZZTzVl/rlKXHrNNfpkN9rDtVr6iFK0mSJEmSJElqwTB0dyBJkiRJkiRJM5ZJWkmSJEmSJElqkUlaSZIkSZIkSWqRSVpJkiRJkiRJapFJWkmSJEmSJElqkUlaSZIkSZIkSWqRSVpJkiRJkiRJapFJWkmSJEmSJElqkUlaTbmIeElEfG+U8U+JiKunM6Z+RMSJEfH2tuPQ5EXE9RHxjLbjkKRBs45V2yLi3Ih4WdtxSNIwsN6fOhGREfEXbceh4WaStkUzMXEUEQvqzumu+ro+Io6azDIz8wuZ+czGOtbZ+WXmDzPzUZNZR8eyf1tj/2VEfDAi1utjvpdGxI864n5FZr5nADE9PSJWjGP610XEzRFxR0R8KiIe1GO6kd9qXv38mfp5/47pPlSHv7R+fmlE3FvL6DcRcUlE7NeYfuOI+FiN4XcRcVlE/F3HMq+PiN/XZdxc1/3QOu47je3nTxHxx8bnExvL2D4i7ouI/+zy3bKu9wGNYe+t63lKY3m/7dhe74qI7fot6/GI4riIuLW+/i0iose0z42IH0XE7bV8PhERGzXGfyAiro2IOyPipxFxWGPc5hHxP3Udt0fEeRGxR2P84oi4qP52K2oc86biO0uzmXXsmvHWsWunfWxEfDcifhUR2cf0a8oyIt5ZPx/ZMc1r6/B3NuK5r5bRnRFxdbMOjYgHRcT7IuKGWo9eGxH/3KxPoiQ9/1CX8auI+GpEbFXHndjYfv5Y69mRz99pLGPDOuzbXb7X9RFxS0Rs2Bj2srre7Trq1OZvfldEPKWfsp6I6PP4p2OeY2qM9/tfj4hNI2J1c9uLktxofr/f1fmfWMf3XddLmlms99eMt95fO+20nzfVev5TdZ03R8TrR5l21OOSjvrqrijn8P/RGP/CiLiqHm9cGREHNsZFlPPnX9Z69dyIeMzgv7EGzSStetk4Mx8KvBh4R0Q8u+2AxmGXGvvewN8A/9ByPH2LiGcBR1FiXwDsALxrHIu4BljcWN484GDgZx3TnVfLaGPgJOC0ejKzPvB94JHA7sDDgX8Gju1SwTyvLmNX4PHA0QCZuW9mPrSO+wLwbyOfM/MVjfkPA24DDulxIvYI4JDOgfXAY2T5IxXNxo113DB6EU3YEcCBwC7A44D9gJf3mPbhwHsp3+HRwDbA+xvjfws8r063GPhwRDy5jrsL+HtgPrAJcBzwjcYBxUOA1wKbA0+ibCtvnPzXkzSNrGPb8SfgNODwCc6/Th1bHVaHN62sZfQw4M3AJyJi5zruy5Syew6wEXAopX75cMcy/qku4y+AhwIfgDUnuSN14L8Cpzbqv30b8x8E3A08cyTB22Ee8JrOgZl5Q2N5D62Dd2kM+2G3gpmsiRz/RMSfU77nTT0mOQ64qjmgJjea3++VwHLgx3WS8dT1ktQv6/12tHHe9E5gR8r59J7Am0b5vUc9Lumor7YEfk85jiAitgY+D7yecrzxz8AXI2KLOvvBlHPKpwCbAucBn5vsl9PUM0k7Q9SrTf8TEcdHaT23PCKeXIffGBGrIqKZfHtuRFxcr9DcGLUFR2P8YRHxi9oK4O3NK4sR8YCIOCoiflbHnxYRm3aLKzPPA64AHlvnfXJEXFivxlzYSCyNfIfl9UrOzyPiJY3hP6rvf1An/0m9GvSizqthEfHoeqXn9oi4IhotQ6O0pPxoRHyrrueCepDeLfafAj9sxD7ynUeuND1/ZH3AicDuNabbG+t6b2Pd+0VpdXp7RPy/iHhcY9z1EfHGiLi0ls2pEbFBlFYq3wEe0bgC9ohu8VaLgZMy84rMvA14D/DSUabv9A1gj4jYpH5+NnApcHOPMroP+BTwYMoJ0aHAdsDBmfnzzPxTZp4JHAm8OyIe1mUZNwPfpSRrx+Mw4G2Uyul5Xcb/G/CuGPDVzoj4y7p9HlI/v7leYRxp8bR3j1kXA/+emSsy85fAv9Pjt8nML2bmmZn5u/o7fgLYozH+mMz8aWbel5kXULbT3eu4P2Tm1fW3CeBeSrJ20zr+YzVR/ccaxxeay5Z0f9ax1rE15qsz86Ra5hNxIfCQqC1R6t8H1+Hd1peZ+V+UC5I71/rlmcALMvPyzLwnM88H/hZ4VXS5xTIzbwf+i/HXsYsp5X4p8JIu498PvDEiNh7nckcVEVvV3+mN9XPX7bZHvOM9/vkIJQn+xy5x7E7ZNj89xjIWA5/NzGx87quulzRzWe9b79eYJ3zeFBH/p24Le0ZxfN1u7qhxPbbHrIcB78nM2zLzKsp54Et7xDee45KDgFWU3wBKI6DbM/M79XjjW5SGQCO/3/bAjzJzeWbeS0no7ty5UM08JmlnlidRDqY3A74InAL8NaUVxd8CH4l6SznlH/AwSkvI5wL/GLV5e5TWGv9JOSjfitJab+vGeo6ktBJ4GqWl323ARzuDqTujPSitFS+ulc23gBNqjB8EvhURm9Ud5gnAvpm5EfBk4JLOZWbmU+vbkVYZp3as84GUROP3gC2AVwNfiIjmLRsvprSu2AS4DviXboVZy+EpwMV10M/q54fX+T8fEVvVnecrqK1LM/N+JywR8QRKMvPl9bt/HDgj1m0B+kJKUnR7SuuLl2bmb4F9qa1q6mtlt3irxwA/aXz+CbBlRGw2yjxNfwDOYG0L1MOAz/aaOEoC9GWU1pvXAvsA36lxN30F2ICaSOxYxjaU73hdnzES5XbJbSjb+Gk1zk5fBX7DAE+O6u/4PeDVmXlK3a7+Cfjrut0+C7i+x+zdfpt+bxl5Kj0q34h4MOX//IqO4Zey9vf8ZGauGu+yJa3DOtY6dhA+x9o6azGj17EPqCetGwOXUerYCzLzxuZ09WLdCkoLn85lbAb8X8ZXx24HPJ1yMvoFutexy4BzGWCLoohYAPw38JHM/EC/2201ruOfiDgY+GNmduvOYT3K/9w/AT27tYiIR1Lq0OZvOJm6XtLMYr1vvd+pr/OmKHd3fIlyUXUp5QLrU4GdKNvIi4Bbu8y3CWUbmIp6pPOi4jLgqojYPyLWq9vr3ZRtHsr2/hcRsVPdDhYDZw4gDk0xk7Qzy88z89P1SsepwLbAuzPz7sz8HqWlwF8AZOa5mXlZbYl3KWUn8rS6nIOAb2TmjzLzj8A7WPcg9eXAW2srgbspTfIPinVbLP4K+DXwSeCozDybUmFdm5mfq60/vgT8lLWtIO8DHhsRD87MmzJzIomjRZTb+o6tV7zOAb5JqTxGfDUz/zcz76GcfHS2LvlxRNxGqZA+SW1FkZlfzsyVtcxOpSQld+szrn8APp6ZF2TmvZl5MmUnuKgxzQl1+b+u6x5vqxco3/2OxueR9xt1mbaXzwKHRcTDKdvEf3WZZlG9qnkzpWyfn5l3UG4Fud9tg7Wsf1XHj/iviLgTuJFyVe+YccS4mJIMvo1y0LRvrL01Y81qgbdTbgkas1+6PjyFkvBcnJnfrMPuBR5EaeH0wMy8PjM7u4YY0e23eWjE6H3VRcQ+lO/7jh6TnEipvL/bHJiZj6PcuvI3wI+6zEeUfg4XUm+DlTQq61jr2EH4PPDiesJzSP3c6RG1jv0VpW48NDOvpkcdW93EunXsCRFxB2vr3lePI8bDgEsz80rKtvuYiHh8l+neAbw6IuaPY9m97ExJ+h6TmUsaw/vdbvs+/qlJlX+l3MLazZGUZPhFY8R8GPDDzPz5GHGMWddLmpGs96331xjHedPBwBLgOZn5v3XYnyj10V8CkZlXZWa3+nwk6d9Zj4znXP5+6sXXpwEnjwyr2/VnKefSd9e/L8+1ja1uorS6vZrSTcLBwOsmE4emh0nameWWxvvfA2Rm57CRhzM9KSKWRnkgwh2Uq1UjB/ePoCTOqMv4Hete6Xkk8LUotxbcTumv615KPycjNs/MTTLz0Zl5QmO5v+iI+RfA1nVn8KIax01Rbpn4y3F+/zWxZ7nVe511ND43b93/HWt3hiOeUGP/88x828iyotymcknjez+WdU+IRvNI4A0j89b5t63x9htXP+6iJOZGjLy/s98FZOaPKP2Zvg34Zmb+vstk52fmxpm5eWYuyszv1+G/olwhXkc9yNi8jh9xYJYru0+nVFh9lWVtOXow5SBg5LafGyjJyM7v8u067oh+lj2GVwD/L8vV0JHlX0c5yXsnsCoiTonet8x0+23uyszRWuksolSYB2VmZ5+FRMT7KdvhC7stJ0vXB18CjoqIXTrmPRA4lnKF/Ved80q6H+tY69hJy9Lv+XWUJOG12dEqtlpZ69hNM3PXzDylDu9ax1ZbsW4de2RmPpzSemgTyt0n/TqMtXXsSkrr1s6+dMnMyykn65N6iE31EuCXwOmN5Y9nux3P8c+7gM91JFcBqHX4kcBb+4j5MBonvKPEMWpdL2nGst633qfGOp7zptcCp2XmZSMDanL7I5QW0rdExJLo0g0gpQ6B+9cjfZ/L93AYpeuCNfVelO42/o1yLr4+JYn7yYgYSWYfQ2k5vi3ljth3AedExEMmGYummEna2euLlFaB29aD+BMp/VdCuWqy5mC+JsWat4vdSNlBbdx4bZCln5bRrKTsUJu2oxyUk5nfzcx9KCcaP6X0vzJeK4FtI6K5ba5Zx0TVW9o+Qbn1bbMst11cztoyG+vg+0bgXzrK7CE1gTaW8RzYX0F5WMWIXYBbMvN+t1OM4fPAGxjlNswevk9p1bphx/AXUK7Qnd85Q2b+N/AZ+m/N+XxKZfWfUZ54eTPlQKHb7ZhQks1vpXT8PhmvALaLiOObA7P0H/t/KNt2Uh400k2336bnFe3aaukM4O/r1fLO8e+i3K7zzMz8zRixP5DSZ/DIvM+mbM/Pax5ASBoY69hxmEV17KB8lonXsU+KiG2bAyNiN8pJ1DmdM9R9/HuBj/bTmjNKf4Y7Akc36tgnUVr/duvj/RhKi6atu4wbj3dSksxfjMaTv8ex3Y7n+Gdv4MjG99uW8gDUN1NacW0FXFnHfRjYrU67Jq4otxw/gkZSeZQ47FJImvus98dhNtX7EzhvOhg4MCLWuVsjM0/IzCdSui7YifKgLjqmuY2yvQy6Hul2UXFX4AeZuSxLa+YLgQuAZzTWe2qWFt73ZOZnKBd97Zd2hjNJO3ttBPw6M/9QD+6brRBPB54XpSPy9SlXTZoH9icC/1J3rkTE/Ig4oI91fhvYKSL+JiLmRcSLKP/k34yILaP0h7IhJZl3F+UKYje30Eg4dbiA0ifQmyLigRHxdMotH6f0mL5fG1J26Kthze0Ozc6+bwG2qeXVzSeAV9SrrBERG0bpYL6fWxduATaL0v3AWD4LHB4RO0fp0+ZtlAToeJ1A6fvuB2NN2OFzlH7xvhwRC+pv8Ky6vHdm6RKhmw8B+zSu3I1mMaUPor+iVC67Ujpw3zUi/qpz4sw8l9KX3/1aAY3TnZR+jZ4aEccCRMSjImKvKN0p/IFyRb3XdvtZ4PURsXVtqfMGevw2UTqSP5PS9+03uow/mvI/u0/nCWhELIrSUf36EfHgetK5JeV/g4jYi9JC6gW59hYcSYNlHTs+s6KOrcvegNLihCgPIZlIdzqnUvqnO208M9W7Vs4GvhIRj4nSh9wiyj79Y5l5bY9ZT6b0Jbh/j/FNi4GzKNvOSB37WMqFzn27xHRd/T5Hjue7dPEnyonthsDnovTHO57tdjzHP3tTvtPI91tJud34o5QHyixojHsHpf/EXbPcGjpiMfCVzOxs3dR3XS9pTrHeH5/ZUu9P5LxpJWsvBr6yLueva6wPpJTnHxi9PntbRGwSpfXzP9D7nHHM45IoF1+3Br7cMfuFwFNGzr+jNBB6Cmv7pL0QOLhuSw+IiEMpDX/67uNe7TBJO3u9Enh3lD5B30HjRCFLfzWvpux8b6Ikp1ZRdvBQWhWcAXyvzn8+pZXFqGoyaT/KAeutwJuA/eotAw+ow1dS+tt5Wo2xm3cCJ0e5teGFHev4I+UkZF9Ki4z/BA7L8jTJCcvSL9u/A+dRdux/BfxPY5JzKFe4bo6I+90CkZnLKDvYj1A6g7+OPh9oVWP/ErC8fufRnkB5JuW2haWUW1F+wfj6eh1Zzq8z8+zx3p6XpR+lZ1Cubl5AeXDXByn9LL1/lPlWUyqkt4+2/IjYmlLpfSgzb268LqIkNXslYt8GdH1K6nhkeUr2PpTWwu+h9Ed7LGVbu5lyEvyWHrN/nNIf0mWUK8XfqsNGvttdUR6IBuV/YT5wUqx98mjzCuq/Uq5iX9sYP7LeB1FONG+lXOV+DvDcXNsp/tspHfR/uzHvdyZYJJK6s44dh9lSx1JaLP2etS1afk/pq21cMvP3mfn97N6d0FheQKnjz6ScdH8eOIlR+pytv9sJjF3HbkB50Mp/dNSxP6dchO1Vx76bcsI9KTXO/0upSz8FzKPP7Xas458oTyR/SZ321ub3o5wo35aZd2Xpa7I57g7gT/X9yLJGyqmzVRKMUddLmrOs98dhFtX7EzpvytK10d7AmyPiZZS7QD9RY/0F5ffqdRfpMZSHqv2C0t3Q+2sdR0RsV2PYrk7bz3HJYkq/wetcVKx3s74TOL1ud18B/jVLf8tQ7g79CeWBc7dT+qN9QT0f1gwW48zhaBaK8oCF24Eds0v/XZIkaWKsYyVJGh7W+5Kmki1p56iIeF5EPKTeIvEBSouA69uNSpKk2c86VpKk4WG9L2m6mKSduw6g3B6xkvIAiUPGe+u7pkZEfKdxu0Xz1es2e0nSzGIdO0NZx0qSpoD1/gxlva+5xu4OJEmSJEmSJKlFtqSVJEmSJEmSpBbNazuATptvvnkuWLCg7TAkSTPURRdd9KvMnN92HLORdawkaTTWsRNnHStJ+v/s3Xu4XVV97//3x0RiqxU0xlYJESjBI9Cj1RTx2IuIaPRniT5CiVrBljanVtpztDdSK4dDpRT7q7T+pLapUJGqgdLS7tNGEQscq78AiRUvAbHbgLCNLeEiB7RAg9/zx5obVhZr37L22muvvd+v51nPnnPMMcccY13m2Ou7xhxzMtPpY+ddkPbggw9m+/btg66GJGmeSvKNQddhWNnHSpImYx+77+xjJUmTmU4f63QHkiRJkiRJkjRABmklSZIkSZIkaYAM0kqSJEmSJEnSAPUUpE1yUZI7k3xlgu1J8v4ko0m+lOSFvRxPkiRJkiRJkhaaXkfSfhhYO8n2VwOrm8cG4IM9Hk+SJEmSJEmSFpSegrRV9RngnkmyrAM+Ui3XAQckeVYvx5QkSZIkSZKkhaTfc9IeCNzRtj7WpO0lyYYk25Ns3717d5+rJEmSJEmSJEnzR7+DtOmSVo9LqNpUVWuqas2KFSv6XCVJkuZWkrVJbmnmaD+jy/ZlSS5ttl+f5OAm/egkNzaPLyZ5fds+tyX5crNt+9y1RpIkSZI025b2ufwx4KC29ZXArj4fU4vRNefCsRsHXQtJepwkS4ALgONp9YvbkoxU1U1t2U4D7q2qw5KsB84DTga+Aqypqj3NdEFfTPK/qmpPs9+xVXXX3LVGanPNuY8t2wdLktQ/9rnSotDvkbQjwClpOQa4r6q+1edjSpI0nxwNjFbVzqp6GNhMa872duuAi5vly4HjkqSqvtsWkH0SXa5GkSRJkiQNv55G0ib5OPAy4BlJxoD/ATwRoKr+FNgCvAYYBb4L/Fwvx5MkaQh1m5/9xRPlaUbN3gcsB+5K8mLgIuA5wFvagrYFfCpJAX9WVZv62AZJkiTNB46qlRasnoK0VfXGKbYX8PZejiFJ0pCbzvzsE+apquuBI5M8D7g4ySeq6kHgpVW1K8kzgauSfLWqPvO4gycbgA0Aq1at6qUdkiRJkqQ+6fd0B5IkLXbTmZ/90TxJlgL7A/e0Z6iqm4HvAEc167uav3cCV9CaVuFxvDmnJEmSJM1/BmklSeqvbcDqJIck2Q9YT2vO9nYjwKnN8onA1VVVzT5LAZI8B3gucFuSJyf5gSb9ycArad1kTJKkRSXJ2iS3JBlNckaX7cuSXNpsvz7JwW3bNjbptyR5VVv6AUkuT/LVJDcnecnctEaStJj1NN2BJEmaXDPH7OnAlcAS4KKq2pHkbGB7VY0AFwKXJBmlNYJ2fbP7jwNnJPkP4HvAL1fVXUkOBa5IAq2+/GNV9cm5bZkkSYOVZAlwAXA8ratStiUZqaqb2rKdBtxbVYclWQ+cB5yc5Aha/e2RwLOBTyc5vKoeAf4Y+GRVndj8wPr9c9gsSdIiZZBWkqQ+q6ottG6m2Z52Ztvyg8BJXfa7BLikS/pO4PmzX1NJkobK0cBo0y+SZDOwDmgP0q4DzmqWLwc+kNavnOuAzVX1EHBr80Pp0Ul2AD8JvBWgqh4GHu5/UyRJi53THUiSJEmShtGBwB1t62NNWtc8VbUHuA9YPsm+hwK7gb9I8oUkH2qmFpIkqa8M0kqSJEmShlG6pNU080yUvhR4IfDBqvpRWjftfNxctwBJNiTZnmT77t27p19rSZK6MEgrSZIkSRpGY8BBbesrgV0T5Wluxrk/rfnfJ9p3DBirquub9MtpBW0fp6o2VdWaqlqzYsWKHpsiSVrsDNJKkiRJkobRNmB1kkOaG3ytB0Y68owApzbLJwJXV1U16euTLEtyCLAauKGq/hW4I8lzm32OY+85biVJ6gtvHCZJkiRJGjpVtSfJ6cCVwBLgoqrakeRsYHtVjQAXApc0Nwa7h1YglybfZbQCsHuAt1fVI03RvwJ8tAn87gR+bk4bJklalAzSSpIkSZKGUlVtAbZ0pJ3ZtvwgcNIE+54DnNMl/UZgzezWVJKkyTndgSRJkiRJkiQNkEFaSZIkSZIkSRogg7SSJEmSJEmSNEAGaSVJkiRJkiRpgAzSSpIkSZIkSdIAGaSVJEmSJEmSpAEySCtJkiRJkiRJA7R00BWQJEmSJEnSDF1z7mPLx24cXD0kzQqDtJIkSZqe9i+DkiRJkmaN0x1IkiRJkiRJ0gAZpJUkSZIkSZKkATJIK0mSJEmSJEkDZJBWkqQ+S7I2yS1JRpOc0WX7siSXNtuvT3Jwk350khubxxeTvH66ZUqSJEmShodBWkmS+ijJEuAC4NXAEcAbkxzRke004N6qOgw4HzivSf8KsKaqXgCsBf4sydJplilJkiRJGhJLB10BSZIWuKOB0araCZBkM7AOuKktzzrgrGb5cuADSVJV323L8ySgZlCmNDuuOXfQNZAkSZIWPEfSSpLUXwcCd7StjzVpXfNU1R7gPmA5QJIXJ9kBfBn4pWb7dMqUJEmSJA0Jg7SSJPVXuqTVdPNU1fVVdSTwY8DGJE+aZpmtgpMNSbYn2b579+4ZVFuSJEmSNFcM0kqS1F9jwEFt6yuBXRPlSbIU2B+4pz1DVd0MfAc4applju+3qarWVNWaFStW9NAMSZIkSVK/OCetJEn9tQ1YneQQ4JvAeuBNHXlGgFOBrcCJwNVVVc0+d1TVniTPAZ4L3AZ8explSpIkabFon0P+2I2Dq4ekfdbTSNoka5PckmQ0yRldtq9Kck2SLyT5UpLX9HI8SZKGTTOH7OnAlcDNwGVVtSPJ2UlOaLJdCCxPMgq8ExjvU38c+GKSG4ErgF+uqrsmKnPuWiVJkiRJmk37PJI2yRLgAuB4WpddbksyUlXtd5b+HVpfHD+Y5AhgC3BwD/WVJGnoVNUWWn1ge9qZbcsPAid12e8S4JLplilJkiRJGk69jKQ9Ghitqp1V9TCwGVjXkaeApzbL+zPBfHmSJEmSJM3UNK7uXJbk0mb79UkObtu2sUm/Jcmr2tJvS/LlJDcm2T43LZEkLXa9zEl7IHBH2/oY8OKOPGcBn0ryK8CTgVf0cDxJkiRJkoBpX915GnBvVR2WZD1wHnByc6XneuBI4NnAp5McXlWPNPsdW1V3zVljJEmLXi8jadMlrTrW3wh8uKpWAq8BLknyuGMm2ZBke5Ltu3fv7qFKkiRJkqRFYjpXd64DLm6WLweOS5ImfXNVPVRVtwKjTXmSJA1EL0HaMeCgtvWVPH46g9OAywCqaivwJOAZnQVV1aaqWlNVa1asWNFDlSRJkiRJi0S3qzsPnChPc+PN+4DlU+xbtK4I/XySDX2otyRJj9NLkHYbsDrJIUn2o3WpyEhHntuB4wCSPI9WkNahspIkSZKkXk3n6s6J8ky270ur6oXAq4G3J/nJrgf3ilBJ0iza5yBt8yvk6cCVwM3AZVW1I8nZSU5osv0a8ItJvgh8HHhrVXV2mpIkSZIkzdR0ru58NE+SpbRuaH3PZPtW1fjfO4ErmGAaBK8IlSTNpl5uHEZVbQG2dKSd2bZ8E/DSXo4hSZIkSVIXj17dCXyT1tWdb+rIMwKcCmwFTgSurqpKMgJ8LMn7aN04bDVwQ5InA0+oqvub5VcCZ89NcyRJi1lPQVpJkiRJkgahqvYkGb+6cwlw0fjVncD2qhoBLqR1A+tRWiNo1zf77khyGXATsAd4e1U9kuQHgSta9xZjKfCxqvrknDdOkrToGKSVJEmSJA2laVzd+SBw0gT7ngOc05G2E3j+7NdUmkPXnPvY8rEbB1cPSTPSy43DJEmSJEmSJEk9MkgrSZIkSZIkSQPkdAeSJEnaW/tlkpIkSZL6zpG0kiRJkiRJkjRABmklSZIkSZIkaYAM0kqSJEmSJBUnEokAACAASURBVEnSADknrSRJkiRJ0nzi/PDSouNIWkmSJEmSJEkaIIO0kiT1WZK1SW5JMprkjC7blyW5tNl+fZKDm/Tjk3w+yZebvy9v2+fapswbm8cz565FkiRJkqTZ5HQHkiT1UZIlwAXA8cAYsC3JSFXd1JbtNODeqjosyXrgPOBk4C7gp6tqV5KjgCuBA9v2e3NVbZ+ThkiSJEmS+saRtJIk9dfRwGhV7ayqh4HNwLqOPOuAi5vly4HjkqSqvlBVu5r0HcCTkiybk1pLkiRJkuaMQVpJkvrrQOCOtvUx9h4Nu1eeqtoD3Acs78jzBuALVfVQW9pfNFMdvDtJZrfakiRJkqS5YpBWkqT+6hY8rZnkSXIkrSkQ/mvb9jdX1Y8AP9E83tL14MmGJNuTbN+9e/eMKi5JkiRJmhsGaSVJ6q8x4KC29ZXAronyJFkK7A/c06yvBK4ATqmqr4/vUFXfbP7eD3yM1rQKj1NVm6pqTVWtWbFixaw0SJIkSZI0u7xxmCRJ/bUNWJ3kEOCbwHrgTR15RoBTga3AicDVVVVJDgD+AdhYVZ8bz9wEcg+oqruSPBF4LfDp/jdFkiRJ88HWnXfvtf6SQztnypI0bBxJK0lSHzVzzJ4OXAncDFxWVTuSnJ3khCbbhcDyJKPAO4EzmvTTgcOAdzdzz96Y5JnAMuDKJF8CbqQV/P3zuWuVJEmSJGk2OZJWkqQ+q6otwJaOtDPblh8ETuqy33uA90xQ7Itms46SJEkaXu0jax1VKw0nR9JKkiRJkiRJ0gAZpJUkSZIkSZKkAXK6A0mSJPXmmnMfWz524+DqIUmSJA0pR9JKkiRJkiRJ0gAZpJUkSZIkDaUka5PckmQ0yRldti9Lcmmz/fokB7dt29ik35LkVR37LUnyhSR/3/9WSJJkkFaSJEmSNISSLAEuAF4NHAG8MckRHdlOA+6tqsOA84Hzmn2PANYDRwJrgT9pyhv334Cb+9sCSZIeY5BWkiRJkjSMjgZGq2pnVT0MbAbWdeRZB1zcLF8OHJckTfrmqnqoqm4FRpvySLIS+H+AD81BG6Rp27rz7kcfkhYeg7SSJEmSpGF0IHBH2/pYk9Y1T1XtAe4Dlk+x7x8Bvwl8b/arLElSdwZpJUmSJEnDKF3Sapp5uqYneS1wZ1V9fsqDJxuSbE+yfffu3VPXVpKkSRiklSRJkiQNozHgoLb1lcCuifIkWQrsD9wzyb4vBU5Ichut6RNenuQvux28qjZV1ZqqWrNixYreWyNJWtR6CtJOdSfNJs/PJLkpyY4kH+vleJIkSeqP86/62qMP57qTNCS2AauTHJJkP1o3AhvpyDMCnNosnwhcXVXVpK9PsizJIcBq4Iaq2lhVK6vq4Ka8q6vqZ+eiMZKkxW3pvu7YdifN42n9CrktyUhV3dSWZzWwEXhpVd2b5Jm9VliSJEmSpKrak+R04EpgCXBRVe1IcjawvapGgAuBS5KM0hpBu77Zd0eSy4CbgD3A26vqkYE0RJple/3YuvPXecmhy+HYjYOrkKRp2ecgLW130gRIMn4nzZva8vwicEFV3QtQVXf2cDxJkiRJkh5VVVuALR1pZ7YtPwicNMG+5wDnTFL2tcC1s1FPSZKm0kuQttvdMF/ckedwgCSfo/XL5llV9ckejilJkqQ+OOb2TYOugiRJkrRo9RKknc6dNJfSmtvnZbQmYv+nJEdV1bf3KijZAGwAWLVqVQ9VkiRJkiRJkqTh0suNw6Z7J82/q6r/qKpbgVtoBW334l0xJUmSJEmSJC1WvQRpp3Mnzb8FjgVI8gxa0x/s7OGYkiRJkiRJkrSg7HOQtqr2AON30rwZuGz8TppJTmiyXQncneQm4BrgN6rq7u4lSpIkSZIkSdLi08tIWqpqS1UdXlU/3NwZk6o6s6pGmuWqqndW1RFV9SNVtXk2Ki1J0jBJsjbJLUlGk5zRZfuyJJc2269PcnCTfnySzyf5cvP35W37vKhJH03y/iTd5oqXJEmSJA2BnoK0kiRpckmWABcArwaOAN6Y5IiObKcB91bVYcD5wHlN+l3AT1fVjwCnApe07fNBWjfdXN081vatEZIkSZKkvjJIK0lSfx0NjFbVzqp6GNgMrOvIsw64uFm+HDguSarqC1U1flPOHcCTmlG3zwKeWlVbq6qAjwCv639TJEmSJEn9YJBWkqT+OhC4o219rEnrmqeZ8/0+YHlHnjcAX6iqh5r8Y1OUKUmSJEkaEksHXQFJkha4bnPF1kzyJDmS1hQIr5xBmeP7bqA1LQKrVq2aqq6SJEmSpAFwJK0kSf01BhzUtr4S2DVRniRLgf2Be5r1lcAVwClV9fW2/CunKBOAqtpUVWuqas2KFSt6bIokSZIkqR8M0kqS1F/bgNVJDkmyH7AeGOnIM0LrxmAAJwJXV1UlOQD4B2BjVX1uPHNVfQu4P8kxSQKcAvxdvxsiSZIkSeoPg7SSJPVRM8fs6cCVwM3AZVW1I8nZSU5osl0ILE8yCrwTOKNJPx04DHh3khubxzObbW8DPgSMAl8HPjE3LZIkSZIkzTbnpJUkqc+qaguwpSPtzLblB4GTuuz3HuA9E5S5HThqdmsqSZIkSRoER9JKkiRJkiRJ0gAZpJUkSZIkSZKkATJIK0mSJEmSJEkDZJBWkiRJkiRJkgbIIK0kSZIkSZIkDZBBWkmSJEmSJEkaIIO0kiRJkiRJkjRABmklSZIkSUMpydoktyQZTXJGl+3LklzabL8+ycFt2zY26bckeVWT9qQkNyT5YpIdSf7n3LVG2tvWnXfv9ZC0sC0ddAUkSZIkSZqpJEuAC4DjgTFgW5KRqrqpLdtpwL1VdViS9cB5wMlJjgDWA0cCzwY+neRw4CHg5VX1QJInAp9N8omqum4OmybNqq077+a6PV97dP0dxx8+wNpImohBWkmSJPXHNec+tnzsxsHVQ9JCdTQwWlU7AZJsBtYB7UHadcBZzfLlwAeSpEnfXFUPAbcmGQWOrqqtwANN/ic2j+p3QyRJcroDSZIkSdIwOhC4o219rEnrmqeq9gD3Acsn2zfJkiQ3AncCV1XV9X2pvSRJbQzSSpIkSZKGUbqkdY56nSjPhPtW1SNV9QJgJXB0kqO6HjzZkGR7ku27d++eQbUlSXo8g7SSJEmSpGE0BhzUtr4S2DVRniRLgf2Be6azb1V9G7gWWNvt4FW1qarWVNWaFStW7HsrJEnCIK0kSZIkaThtA1YnOSTJfrRuBDbSkWcEOLVZPhG4uqqqSV+fZFmSQ4DVwA1JViQ5ACDJ9wGvAL46B22RJC1y3jhMkiRJM7J1592PLr/k0OUDrImkxayq9iQ5HbgSWAJcVFU7kpwNbK+qEeBC4JLmxmD30Ark0uS7jNZNxvYAb6+qR5I8C7g4yRJag5ouq6q/n/vWSZIWG4O0kiRJkqShVFVbgC0daWe2LT8InDTBvucA53SkfQn40dmvqSRJk3O6A0mSJEmSJEkaIIO0kiRJkiRJkjRABmklSeqzJGuT3JJkNMkZXbYvS3Jps/36JAc36cuTXJPkgSQf6Njn2qbMG5vHM+emNZIkSZKk2eactJIk9VFz45ELgOOBMWBbkpGquqkt22nAvVV1WJL1wHnAycCDwLuBo5pHpzdX1fa+NkCSJEmS1HeOpJUkqb+OBkaramdVPQxsBtZ15FkHXNwsXw4clyRV9Z2q+iytYK00p7buvPvRhyRJkqT+6ilIO9Xlm235TkxSSdb0cjxJkobQgcAdbetjTVrXPFW1B7gPWD6Nsv+imerg3UnSLUOSDUm2J9m+e/fumddeYu+ArUFbSZIkafbtc5C27fLNVwNHAG9MckSXfD8A/Cpw/b4eS5KkIdYteFr7kKfTm6vqR4CfaB5v6ZapqjZV1ZqqWrNixYopKytJkiRJmnu9jKSdzuWbAL8LvBcv1ZQkLU5jwEFt6yuBXRPlSbIU2B+4Z7JCq+qbzd/7gY/R6pclSZIkSUOolyDtlJdvJvlR4KCq+vsejiNJ0jDbBqxOckiS/YD1wEhHnhHg1Gb5RODqqppwJG2SpUme0Sw/EXgt8JVZr7kkSZIkaU4s7WHfSS/NTPIE4HzgrVMWlGwANgCsWrWqhypJkjS/VNWeJKcDVwJLgIuqakeSs4HtVTUCXAhckmSU1gja9eP7J7kNeCqwX5LXAa8EvgFc2QRolwCfBv58DpslTeyacwddA0mSJGno9BKkneryzR8AjgKube5l8kPASJITqmp7e0FVtQnYBLBmzZqp5uCTJGmoVNUWYEtH2pltyw8CJ02w78ETFPui2aqfJEmSJGmwepnuYNLLN6vqvqp6RlUd3HzBvA54XIBWkiRJkiRJkhazfQ7SVtUeYPzyzZuBy8Yv30xywmxVUJIkSZIkSZIWsl6mO5jy8s2O9Jf1cixJkiRJkqQFrU9zux9z+6a2tf+3L8eQ1JtepjuQJEmSJEmSJPXIIK0kSZIkSZIkDZBBWkmSJEmSJEkaoJ7mpJUkSdKQ69Pcd5IkSZKmz5G0kiRJkiRJkjRAjqSVJEmSJElaJM6/6muPLr/j+MMHWBNJ7RxJK0mSJEmSJEkDZJBWkiRJkjSUkqxNckuS0SRndNm+LMmlzfbrkxzctm1jk35Lklc1aQcluSbJzUl2JPlvc9caSdJiZpBWkiRJkjR0kiwBLgBeDRwBvDHJER3ZTgPurarDgPOB85p9jwDWA0cCa4E/acrbA/xaVT0POAZ4e5cyJUmadQZpJUmS1H/XnNt6SNLsORoYraqdVfUwsBlY15FnHXBxs3w5cFySNOmbq+qhqroVGAWOrqpvVdU/A1TV/cDNwIFz0BZJ0iJnkFaSJEmSNIwOBO5oWx/j8QHVR/NU1R7gPmD5dPZtpkb4UeD6WayzJEldGaSVJEmSJA2jdEmraeaZdN8kTwH+GvjvVfV/uh482ZBke5Ltu3fvnmaVJUnqbumgKyBJkqQ55rQDkhaGMeCgtvWVwK4J8owlWQrsD9wz2b5JnkgrQPvRqvqbiQ5eVZuATQBr1qzpDA5LkjQjBmklSZIkScNoG7A6ySHAN2ndCOxNHXlGgFOBrcCJwNVVVUlGgI8leR/wbGA1cEMzX+2FwM1V9b45aocEwPlXfY1jbr970NWQNCBOdyBJUp8lWZvkliSjSc7osn1Zkkub7dc3c+CRZHmSa5I8kOQDHfu8KMmXm33e33yplCRp0WjmmD0duJLWDb4uq6odSc5OckKT7UJgeZJR4J3AGc2+O4DLgJuATwJvr6pHgJcCbwFenuTG5vGaOW2YJGlRciStJEl9lGQJcAFwPK1LK7clGamqm9qynQbcW1WHJVkPnAecDDwIvBs4qnm0+yCwAbgO2AKsBT7Rz7ZIkjTfVNUWWv1ge9qZbcsPAidNsO85wDkdaZ+l+3y1kiT1lSNpJUnqr6OB0araWVUPA5uBdR151gEXN8uXA8clSVV9p/my+GB75iTPAp5aVVurqoCPAK/rayskSZIkSX1jkFaSpP46ELijbX2sSeuap7l08z5g+RRljk1RpiRJkiRpSDjdgSRJ/dXtksnOO0BPJ88+5U+ygda0CKxatWqSIrXgXXPuoGugATj/qq/ttf6O4w8fUE0kSZI0GUfSSpLUX2PAQW3rK4FdE+VJshTYH7hnijJXTlEmAFW1qarWVNWaFStWzLDqkiRJkqS54EhaSZL6axuwOskhwDeB9cCbOvKMAKcCW4ETgaubuWa7qqpvJbk/yTHA9cApwP/Xj8pLWrgcZStJkjR/GKSVJKmPqmpPktOBK4ElwEVVtSPJ2cD2qhoBLgQuSTJKawTt+vH9k9wGPBXYL8nrgFdW1U3A24APA98HfKJ5SJIkSZKGkEFaSZL6rKq2AFs60s5sW34QOGmCfQ+eIH07cNTs1VLaN1t33r3X+ksOneyed+w9N+6xG/tQI0mSJGn4OCetJEmSJEmSJA2QI2klSZIWqvZRq5IkSZLmLYO0kiRJ0hDrvAGYJEmSho/THUiSJEmSJEnSADmSVpIkSbNmxjcSkyRJkuRIWkmSJEmSJEkapJ5G0iZZC/wxsAT4UFX9fsf2dwK/AOwBdgM/X1Xf6OWYkiRJkmZf59y27zj+8AHVRJIkafHZ5yBtkiXABcDxwBiwLclIVd3Ulu0LwJqq+m6StwHvBU7upcKSJEmS9o03GZMkSZqfepnu4GhgtKp2VtXDwGZgXXuGqrqmqr7brF4HrOzheJIkSZIkSZK04PQy3cGBwB1t62PAiyfJfxrwiR6OJ0mSJGmOtI+6deoDSVqYnOpGmj96CdKmS1p1zZj8LLAG+KkJtm8ANgCsWrWqhypJkiRJC5tTFkiSJC08vUx3MAYc1La+EtjVmSnJK4B3ASdU1UPdCqqqTVW1pqrWrFixoocqSZIkSZIkSdJw6WUk7TZgdZJDgG8C64E3tWdI8qPAnwFrq+rOHo4lSZKkWbR1592DrgJcc+5jy8duHFw9JEmSpAHb5yBtVe1JcjpwJbAEuKiqdiQ5G9heVSPAHwBPAf4qCcDtVXXCLNRbAh673O+Y2+/muj1fc/4cSZIkSZIkDZ1eRtJSVVuALR1pZ7Ytv6KX8iVJkjRD7aNTJWmBS7IW+GNaA4c+VFW/37F9GfAR4EXA3cDJVXVbs20jrRtcPwL8alVd2aRfBLwWuLOqjpqjpkiSFrle5qSVJEmSJGkgkiwBLgBeDRwBvDHJER3ZTgPurarDgPOB85p9j6A1Zd+RwFrgT5ryAD7cpEmSNGcM0kqSJEmShtHRwGhV7ayqh4HNwLqOPOuAi5vly4Hj0pqLbx2wuaoeqqpbgdGmPKrqM8A9c9EASZLGGaSVJEmSJA2jA4E72tbHmrSueapqD3AfsHya+0qSNGd6mpNWkiRNrU/z5d0G3N+k76mqNXPSGGmGtu68+9Hllxy6fIA1US/Gb9Y6zpu1ap5Il7SaZp7p7Dv5wZMNwAaAVatWzWRXSZIexyCtJEl91DZf3vG0RulsSzJSVTe1ZXt0vrwk62nNl3dyx3x5zwY+neTwqnqk2e/Yqrprzhoj9ag9YAsdQdv2G54du3GOaiRpyI0BB7WtrwR2TZBnLMlSYH9aUxlMZ99JVdUmYBPAmjVrZhTglSSpk9MdSJLUX32ZL0/aF1t33v3oQ5IWgG3A6iSHJNmP1g+bIx15RoBTm+UTgaurqpr09UmWJTkEWA3cMEf1liTpcQzSSpLUX/2aL6+ATyX5fHO5pSRJi0rTZ54OXAncDFxWVTuSnJ3khCbbhcDyJKPAO4Ezmn13AJcBNwGfBN4+fqVKko8DW4HnJhlLctpctkuStDg53YEkSf3Vr/nyXlpVu5I8E7gqyVebu1HvXbDz5S0O7VMFSNIiUlVbgC0daWe2LT8InDTBvucA53RJf+MsV1OaUOec33PhmNs3Pbp83Sp/65fmC4O0kiT1V1/my6uq8b93JrmC1jQIjwvSOl+etDAM4ku8JGlutAdNJS1eBmklSeqvR+fLA75Ja768N3XkGZ8vbytt8+UlGQE+luR9tG4cthq4IcmTgSdU1f3N8iuBs+emOZLmgkFZSZKkxcUgrSRJfVRVe5KMz5e3BLhofL48YHtVjdCaL++SZr68e2gFcmnyjc+Xt4dmvrwkPwhc0bq3GEuBj1XVJ+e8cZr3hvYGYe3TNxy7cXD1kCRJkuaIQVpJkvpstufLq6qdwPNnv6aSJEmSpEF4wqArIEmSJEmSJEmLmSNpJUmSFpBhmuKgva4vOXT5AGuimWqfM/cdxx8+wJpIkmaT53dpcAzSSpIkDQvnapUkSZIWJKc7kCRJkiRJkqQBciStJEmSpH3WfmkseHmsJEnSvjBIK0mSJM0DncFOSZIkLR4GaSVJkuaz9nlopSHgTWckSZJmziCtJEnSMDJ4K0mSJC0YBmklSZKG2Naddw+6Cv01UTD62I1zWw/tE+erlSRJmh6DtJIkSRq4zmDzSw5dPqCazB3noJWkxcdzv6SJGKSVJEmS5ohfziVJw8KrIaS5ZZBWkiRJ0pyYrSC1gQJJkrTQGKSVJEmS+sSRs5KkhaK9T/PHMmn2GaSVJEnSvNM+R+18n5/WQKwkaTILsZ9wKgRp9hmklSRJmo+uOffRxc6bai02i/GmYprcTAIeBg4k9UOvgddjbt80SzXpTXs9rlu1YYA1kWSQVpIkSeqwEEc9SZL2nf3C5BxZK/XOIK0kSdIgtY2Y5diNg6vHsPF5mzULfRSVcyhK2lcGZiXNpZ6CtEnWAn8MLAE+VFW/37F9GfAR4EXA3cDJVXVbL8eUJGnY9NJfJtkInAY8AvxqVV05nTI13M6/6mscc/vinuJgRvYxYLvQvnxPJ9g61eW1E5Wx0AO5Gl72sdL85A9k0sztc5A2yRLgAuB4YAzYlmSkqm5qy3YacG9VHZZkPXAecHIvFZYkaZj00l8mOQJYDxwJPBv4dJLx/3KnKlPzjSM/Z81kc9RuvfDXH79tET7fg5jrcBgCuV6Ou7DYx2q2LbQf72ZqGM7jmlg/3r/2k3Orl5G0RwOjVbUTIMlmYB3Q3nmtA85qli8HPpAkVVU9HFfay0RfQvb1BOVJSNIs2+f+sknfXFUPAbcmGW3KYxplaj5oD8xOkb51592wsxVgPKafdVqAJrux2tadd3PdnsF+6Z7of5WZfAGeT1+cZ1qXbu2frVG64/vu63PiSK+hZx+rGRtkIHa+3CxsOmaz35nsOR/mc+9iCOov1NduvuolSHsgcEfb+hjw4onyVNWeJPcBy4G7ejiuFrHOE0RnJ9fLSfKY2zdx3aoNjrCQNNt66S8PBK7r2PfAZnmqMjWXpjlKdrJgovpntr5oThUQnI1gY7t9nbJgLk1Ul9mo43SmXpjqeDMJBk/2f2Tnaz8v/j90dD7Yx6rRa7BsJuebxWiq56GXvnUxBDoXKgO4s6+XIG26pHWOkJ1OHpJsAMY/1Q8kuaWHeo17BgsjGGw7pu0P+1LGO/deXQivx0JoA9iO+WYu2/GcOTrObOmlv5wo/QnTKLNVcH/62HbD/B7uU91/e/aL7M7nfp/0/P/CM+APp1H36Rxnqjyz8b/N48zgue/L8acoe9L0fXjfzPQ40yvvnVPk6qLP7/lZO+/Yxw62jx3m8/psmCft7+e5b0rz5DmYqVl7zoa0/bNmwbR/H/pJWEDtn8CUfWwvQdox4KC29ZXArgnyjCVZCuwP3NNZUFVtAmb1J6ok26tqzWyWOQi2Y35ZCO1YCG0A2zHfLJR29Ekv/eVk+05VJtCfPrbdML/2w1x3GO76W/fBGeb6W3d1saD62MX+Plns7QefA9tv+xdz+6H7r4TTtQ1YneSQJPvRmnR9pCPPCHBqs3wicLXz0UqSFple+ssRYH2SZUkOAVYDN0yzTEmSFjr7WEnSgrHPI2mb+XxOB64ElgAXVdWOJGcD26tqBLgQuKSZhP0eWh2cJEmLRi/9ZZPvMlo3K9kDvL2qHgHoVuZct02SpEGyj5UkLSS9THdAVW0BtnSkndm2/CBwUi/H6MFCmeHbdswvC6EdC6ENYDvmm4XSjr7opb+sqnOAc6ZT5oAM82s/zHWH4a6/dR+cYa6/ddfjLLA+drG/TxZ7+8HnwPYvbou9/cTZByRJkiRJkiRpcHqZk1aSJEmSJEmS1KMFEaRN8gdJvprkS0muSHJAk35wkn9PcmPz+NO2fV6U5MtJRpO8P0kG14JH69S1Hc22jU1db0nyqrb0tU3aaJIzBlPzxyQ5KcmOJN9LsqYtfdhei67taLYNxWvRKclZSb7Z9hq8pm1b1zbNV/P9uZ5Mktua9/uNSbY3aU9PclWSf2n+Pm3Q9eyU5KIkdyb5Slta13qn5f3N6/OlJC8cXM01m4a5vx3mPnbY+9aF0qcOez86H5/TyQxbf2k/qemYzfNhWjc2u755f12a1k3Ohsa+nFOH7Tw2Ewu5be1mcm5fCOfK2eobkpza5P+XJKd2O9Z8NEH7/exPpqqG/gG8EljaLJ8HnNcsHwx8ZYJ9bgBeAgT4BPDqedyOI4AvAsuAQ4Cv05rEfkmzfCiwX5PniAG34XnAc4FrgTVt6cP2WkzUjqF5Lbq06Szg17ukd23ToOs7STvm/XM9Rf1vA57RkfZe4Ixm+Yzxz/58egA/Cbyw/XM8Ub2B1zSf5QDHANcPuv4+Zu19MLT97TD3scPety6UPnWY+9H5+pxOUeeh6i/tJ31M830ya+dD4DJgfbP8p8DbBt2+GT4XMzqnDuN5bAbPxYJtW5e2TvvcvhDOlbPRNwBPB3Y2f5/WLD9t0G3rof1+9id5LIiRtFX1qara06xeB6ycLH+SZwFPraqt1Xo3fAR4XZ+rOaVJ2rEO2FxVD1XVrcAocHTzGK2qnVX1MLC5yTswVXVzVd0y3fzz+LWYqB1D81rMwERtmq+G+bmeyDrg4mb5YubBZ6BTVX2G1h2R201U73XAR6rlOuCA5rOuITfM/e0w97HD3rcugj51GPrRYXtOJzJv+0v7SU3HbJ0PkwR4OXB5s/+8+jz0aKH0DTOxkNs2HQv2XDlLfcOrgKuq6p6quhe4Cljb/9r3boL2T2QxfvYfZ0EEaTv8PK1fH8YdkuQLSf53kp9o0g4ExtryjDVp80l7Ow4E7mjbNl7fidLnq2F9LdoN+2txenPpxEV57BLBYan7uGGrb6cCPpXk80k2NGk/WFXfAmj+PnNgtZuZieo97K+RpmeY+9uF1McO0/PeaRif+2HtR4ehjp0WQn9pP6npmun5cDnw7bYfH4f1PTSTc+pC/tws5LZ1msm5faE+LzNt70J8HvzsT2DpoCswXUk+DfxQl03vqqq/a/K8C9gDfLTZ9i1gVVXdneRFwN8mOZLW8PFO1YdqP84+tmOi+nYLsve9HdNpQxdD+Vp0261L2sBei06TtQn4IPC7tOr1u8Af0gpUDOw12EfDVt9OL62qXUmeCVyV5KuDrlAfQE0QcgAAIABJREFUDPtrtKgNc387zH3ssPetC6VPXcD96DDUsdNC7i+H8fXQNM3R+XAo3kOzfE6dF9+3+mQoXs9ZMpNz+2J6XmDi9i6058HP/iSGJkhbVa+YbHszefJrgeOaS/uoqoeAh5rlzyf5OnA4rch7+yWaK4Fd/ah3p31pB636HtSWrb2+E6X3zVRtmGCfoXstJjCvXotO021Tkj8H/r5ZnaxN89Gw1XcvVbWr+XtnkitoXb7xb0meVVXfai5puXOglZy+ieo91K/RYjfM/e0w97HD3rculD51Afejw1DHvSyQ/tJ+chGao/PhXbQuhV7ajKadl++hPpxTF+rnZtGcE2Z4bl+oz8tM2zsGvKwj/do5qGdfVNW/jS/72X+8BTHdQZK1wG8BJ1TVd9vSVyRZ0iwfCqwGdjZDyu9Pckwzn88pwES/as6ZidoBjADrkyxLcgitdtwAbANWp3Vnz/2A9U3eeWfYXotJDO1r0TF/z+uB8TssTtSm+WreP9cTSfLkJD8wvkzrRkZfoVX/8bt0nsr8/gy0m6jeI8ApaTkGuG/8kh4Nt2HubxdiHzsMz/sUhuq5H/J+dF4+pxNZQP2l/aSma0bnw+aHxmuAE5v9h+HzsJd9OKcO1XlshhZy2x61D+f2hXqunGl7rwRemeRpaU0N8MombSj52Z9CzYO7l/X6oDWh8B3Ajc3jT5v0NwA7aN397Z+Bn27bZw2tN8PXgQ8Ama/taLa9q6nrLbTdoZnWHQC/1mx71zxow+tp/QLyEPBvwJVD+lp0bccwvRZd2nQJ8GXgS7ROas+aqk3z9THfn+tJ6n1o8xn4YvN5eFeTvhz4R+Bfmr9PH3Rdu9T947Qurf6P5rNx2kT1pnWpygXN6/Nl2u5e7GO4H8Pc3w5zHzvsfetC6VOHvR+dj8/pJHUduv7SftLHNN8ns3Y+bD4nNzT9218Bywbdvhk+FzM+pw7TeWwfno8F27a2Ns7o3L4QzpWz1TfQmg5gtHn83KDb1WP7/exP8kjTYEmSJEmSJEnSACyI6Q4kSZIkSZIkaVgZpJUkSZIkSZKkATJIK0mSJEmSJEkDZJBWkiRJkiRJkgbIIK0kSZIkSZIkDZBBWkmSJEmSJEkaIIO0kiRJkiRJkjRABmklSZIkSZIkaYAM0i5yST6R5NRZKOe2JK+YjTrt4/HfnORTgzq+9k2Sg5NUkqWDroskzTb7WA1a08ceNuh6SJIkaWoGaReB5svdvyd5IMm/JfmLJE8BqKpXV9XFs3y8A5JclORfk9yf5GtJfms2j9Gpqj5aVa/s5zGSLGva9X+atr1zkrxvTfLZtvXbkjyc5Bkd+W5svkAd3Kx/uMn3QJJ7klyV5D+15T8iyUiS+5rn9pok/6Vt+3jQ84HmcVuSM9q2P9D2+F7b++KBJG/uqH8l+ZmO+r6sSb+gI/2zzT6/3Vbeg0keaVvfMZPneyaSPD3JFUm+k+QbSd40Sd7fSPKV5vm7NclvdGx/QZJ/ap7jsSRnTlDO/2iei1e0pbW/fuOPJbPXUknzjX3s7EjyM0n+/yTfTXLtFHlflmSsbf3a5nz8/I58f9ukv6xZPyvJfzSv1beb472kLf/KJB9NcnfTn9yQ5LUdZVaz7YEk30zyvvHzfJIdbef+R5p+cHz9tzvqX0l+s6Ps8T78HzrS/7Kp+5vbyvv3ph9/tL+Z7nM9U5nZ/z+nJvl8k3csyXvT9kNs08YtSe5tyvpAuvxQ25RTSX6hLa399Rt/HDr7LZY0n/Xy2W/6i1+YOqc0c3EAkmaBQdrF46er6inAC4EfA36nj8c6H3gK8Dxgf+AE4Ot9PN5cOQtYDTwHOBb4zSRrZ7D/rcAbx1eS/AjwfV3yvbd5rVYCdwIfbvL/MPA54MvAIcCzgSuAT7V/yWwc0JRxIvDuJMcDVNVTxh/A7TTvi+bx0bb9TwXuaf52+g5wSprAcruq+r228n8J2NpW/pGTPDe9ugB4GPhB4M3AB5NMdLwApwBPA9YCpydZ37b9Y8BngKcDPwW8LckJexXQei1OBL7Vpfz3tj/PVfVID+2SNBzsY3t3D/BHwO/v4/5fo3VuByDJcuAYYHdHvkub12oF8Fngb9Ly9Gb9YeBI4Bm0nuuPJTmxo4znN2X8FHAy8PMAVXVkWx/4T8DpbX3B77XtP1kfC3BMkpd2JjbB8vHyXw3s6ujX++Uspv//z/cD/53W8/di4Djg19u2/wmt/22eBbyA1nP4y+0FJHkasBHo9uPupR197M59bZSkwUuyMcmWjrR/mSBtPTz6fWbefPaTPDXJHyW5vQkgjzbrz5h67ynL7tuVNDP8Ac4BSPN3ANKkP2AmWZLkPUl2Nc/xF5Ic0Gx7a0ebHshjP2w/M8nHm/3uS/K5JC/uV5v1GIO0i0xVfRP4BHAU7P1rYpIPJrl8PG+S85L8Y5I0669tTrzjo0/+8wSH+THgY1V1b1V9r6q+WlXt5VaSX02yM8ldSf4gyROabT+c5Oq0RrHcldaIlgPa9j0oyd8k2d3k+UCT3tlxVJJfSqtDvzfJBW3tWJLkD5vyb01yeqb3i9cpwO827boZ+HPgrdN64lsuoe0LJK0vZx+ZKHNVfZdWwPCoJuksWkHPd1XVPVV1f1W9vyn3vAnK2E7rS84LplvJJM+h9aVpA/CqJD/YkeXbtALH/2O6Zc7g2G9oOt+jkjwprdFDdzfvuW1d6kKSJwNvAN5dVQ9U1WeBEeAt3Y5RVe+tqn+uqj1VdQvwd0D7l+GDgY9W1SNV9XVaX9o7A74fAH6L1pd5SQLsY5tt+9THVtWnq+oyYNcMnvJ2HwVOzmNXL7yR1g+ZXc/TVfUfwMXADwHLgXcADwCnVdW/VtW/V9XHgXOAPxxvX0cZo7R+PJ1JH/v9tH7kezuwOsmaLtneC7xnumXO4Ng/nuSOJMem5fwkdzZfvr6U5KgJdp32/z9V9cGq+qeqerj5PHyUvfvYQ4DLqurBqvpX4JM8vo89F3g/cNe+t1bSkPgM8NI8dkXCDwFPBF7YkXZYk3deSbIf8I+0zmNrgacC/wW4Gzh6gFWjOc9PFu85CwcgwfAPQILJf8D8n7Teky+h9f58C/Bg2/atHfte26Q/BdgGvIjW4KWLgX9Ic7WY+scg7SKT5CDgNcAXumz+NeA/N1/GfgI4DTi1qirJC4GLgP9K68vMnwEjSZZ1Kec64JwkP5dk9QRVeT2whtaoo3U0o1BojXI8l9ZJ+nnAQbQ6EJqO+u+Bb9AKpB0IbJ6kua+l9WX2+cDPAK9q0n+R1giUFzTHf90kZdAc+2lNnb7YlvxFHv/FYjLXAU9N8rymLScDfznJMZ9C66Q8/lodD/xVl6yX0frn5vu7lHEMrWDB6AzqeQqwvar+Gri5qUOnc4A3JHnuDMqdVJKfoxVsfkVVfYVWJ7o/rffAclod47932fVw4JGq+lpb2rRem+ZL90+w92idP6LVUT+xad9LgE+37XMS8HBV7fULf5tfTuuX4s8necNUdZC0cNjHAvvQx86SXcBNwPi0DKcwyQ+hzXP7VmCsqu6i1cf+dVV9ryPrZcAqWn1NZxn/iVYfMpM+9g20gsF/BVzJ3j/ejrsAODyzOHoqyauAjwNvqKpraD1PP0mrXQfQ+p/k7i779fr/z0+ydx/7x8D6JN+f5EBa75VPth3vaFrv3T+doLyfbvrYHUneNs06SJq/ttEKyo7/2PWTwDXALR1pX6+qXbD3XNtpjdS8IMk/pDVK8Pom+Eez/fgkX21+jPoArX5wfNsTkvxOWiMV70zykST7N9suTvJrzfKBzTF/uVk/rDkPjV+dtwp4fVXd1Px4emdV/e74d4Ukz07y12n9AHprkl9tq8NZSS5rjn1/c25b02y7pCn7f6U1wvE3m/Rj0vox99tJvphm5GOz7dok5yT5HPBdYLJpIRyA1DLUA5CmOP7TaF3d8otV9Y1q+UpVPTjVvlW1s6reV1XfagYvbQL2A2bt+7+6M0i7ePxtkm/TGhX4v4Hf68zQnDh/FngfreDhr1TV+Jxvvwj8WVVd33xILwYeonUpYadfoTVy4nTgprQu+Xh1R57zmpPx7bSCYm9s6jBaVVdV1UNVtbupy081+xxN64vCb1TVd5pRGJ9lYr9fVd9ujnENj53Mf+b/snfvcbPW8+L/X+9tUXTQaUnnshUS0Q5tREooVJSUqOxoO2zknLCdiW3L7qfNr3a2Dg6lopBDRZGtKDqKzrWW1fkoQuX9/ePzmda1Zs3ca+Ze931fc896PR+Pedwzn+uaaz7XzNzzvq7353AB/5WZ8zPzDgYbWtlpMbqrUXYXsNIAz23qBLPtgd8Bf+ixzrvqZ3Vlfd19a/ka9B5efwPlf3nVRtmtEXEv8AvK0MJvD1HHvSkBlPp3sRbH2vvlS8BHh9juRA4A3g1sU3smAdxHSVY8tn7nzs/Mu3s8d0UW/Vxg8M/mw5T37n8bZd+ltNLeS/mMjszMX8GDifNP1vr2ciilRfpRwAeBr0SPIauSxo4xduli7FQ5mtLI9jhKr5tf9Fhn9/pZzaP0DukkkSeKsZ3lHb+OiD9RGjLPpMTZQe1D6fHyACXG7hkRD+1a5y+UxtCp6k37CuBwYMfM/GUtu48SJx8PRGZelpm99n/Sxz+18XVL4LON4rMoCd67gfnAedRjlNpQ8N+U/43uZDmUhPkTKFNVvB7494jYs8d6kmaJzPwbcC4lEUv9+zNKPG2WTdSLdk9Kb8FVKedPnwCIMhT/RMoURGtQpgZqHpfvW2/PoyQzV6SMloPyW7VNvf9c4GoWxsvnAD/LzASeD/wgM3vOCx6lJ+t3KI1b61CmgDmgNpx17ERpFF2Fkoz7Qn1vXsOivUM/Uxu3vkeJD6tRppM5MSLmNrb3GkpCciVKw2uvetkBaVGzvQNSvwbMJwH3A7tFmdLi8oh4c9dznxpl9NPlEfHB6DPyKSKeQknSDvPeaxJM0i47dsnMVTJzg8x8U2b2+kGgHrxfTWllPL6xaAPgnbXV5856grMe5ce9exv31qEB/0T5AToe+GaU+d465jXuX9fZTpS5T74R5WIcd1N+6DsnRusB12Xm/QPu842N+39m4YnG2l2v37zfTyfwrtwoWxn444B16TgGeBXlgKBfS+Nn62f16MzcKcuQeyjD/tbqsf5awN+BOxpla1D2912UA4zuE8CeakJxIxb2nvoa8KT6o9zt05TWyM17LBvWu4HDGgkLKO/VD4FvRJkL5zM9TmShfDYrd5Ut8bOJiH+jBO0XZ+Zfa9lqlB49HwWWp3znXthpOaccAB6Tmdf02maWaRRuyzKVwqmURMrLJ6qHpLFgjF26GDtVTgK2pSSyj+mzzvH1s3pUZm6bmefX8olibGd5xxaU/X0lZd7VFQapXJSe1s+jxAYo0+0sD7y4x+pHAGtGxEsH2fYSHEDZ74s7BZn5Y0oi4DDgpog4PCK6YylM8vgnInahJOh3qD2VO8mKH1I+pxUo371VWdhj6k3ARX2S69ReagtqQ8b/UXrlds8XLGn2OYuFCdmtKUnan3WVnTXB80/KzF/W+PVVFjYa7gj8NjNPyDLFzedZNHbtBXyu9hi8hzIX9h41SXUWsHX93XoOZRqaToL3uY36rE7vBr6OpwFzM/OjWaaBuZry+968HsbZmXlqbbw7hjJCpZ9XA6fW9f+emadRGrt2bKzzlcy8tJ6P3NdnO3ZAapjlHZAmasBcl5IY3oRyjr8b8OGo00VQGj82o3Qw2pXS4LHIRbWhzLtM+aw/kpndddMUM0mrRdSWleUowwabVx2eB3yinth0bo/IMl9bX/WH55OUg/GNGovWa9xfn4Vz0H0KSODJmbkyJRB1hqXMA9bv17ozhBsoP1i96tJT7Q10A4sGzc3pfVGLibZzHWX+nh0pJynDOJ3SG6bb7pShIn/ueq0HMvM/KT1y3tTjeb3sQ3m/L4iIGykt29BjOGZm3kY52PnYgNueyAuAD0RjeoDMvC8zP5KZm1Lm0XlJr3pQLhYzJxYd9jvhZxMR/wIcCGzXlRh+DKXl8uh6YDOfkrDuHPhsB7y1tkTeSPnuHB/9r6yeNIZVSVq2GWOnV42D3wfeSP8kbT+nU3rRdB8b7055b5o9WsjieMoJ478P+BqvoRx7f6fGkKspSdpeMfY+SsPgx1j6OPIKYJeIWGQUSGYeWpP9T6ScwC12YjaZ458ocxoeQen9dXFj0WqU78MXsvTmvo0ykqUZY1/WiLHPpMwH/AV6M8ZK4+GnwLNr7865mXkF8H/AM2vZZkzck3agRsPa87XZcLg2i/Y0vQ6YA6xZO8ncQ0n4bk0Zabeg9rRsJmlvo3cDX8cGwNpdjbAHUeYa7Vf/5SeIxRsAr+ja3rO76mAHpGpZ6IC0hAbMTqeBj9ZG/otonNvWBoprasL/YkqSepHGz4h4OKU3+DmZ+anBdl9LwyStHhQRm1CGTryaciLxnsYP2BHAGyLiGVGsEBEvjojFWnRqN/mnRcTDImJ54G2UuV5+31jt3RGxau1V8jbguFq+EuWH6c46nKN5wvBLyonCwfX1l5/kUPLjgbdFmV9oFcoFoAZxNCWRuGqUeeheT534fEj7Adtm5p+GfN5HKAcrn4hyxceVIuItlJO7ifbhYMpnufxEG6/Ld6cMj3lK4/YWYK8+Bwufo5xEPWHIfel2KWWy/cMiYqdan+dFxJPq8Jm7Ka2PD3Q/sb6PJwEfrd+LZ1HmYOx5gh7lSp+fBLbPxa8Me3lZJV4VZZ6qR1N6SnWGAm1HOVDsvDcLKHNIHla3vVtErFif+wLK/9Ipk3tLJI0TY+zEolxwbHnKCfI/1Ncf6CSsy0HAczPz2iGfdwjlJOjIiHh0ff09gfdTpoDIPs87GNi/xosl2ZsSy5sxdlfgxRGxeo/1j6Ek9Ye5kEsvC1jYyNiZU/Fp9fv2UMpFU/5CjxhbDXz8ExHbUnqy7ZoLp1YAoPaovQZ4Y0TMqd+PfVgYY/elHE903pvzKO/X++u2d651iChz176V0htZ0uz2C0pvv/0pF5LqNEIuqGUL+o1iW4IbaDQURkSwaMPhAkrSs2N9ytDwm+rjsygJq4dluRDiWZTf8VWBC+o6p1MSe/1GVMwDrulqhF0pM3fss3637tgzjzKqr7m9FTLz4Ames/hG7YA0Vh2QujQbMC9qlA373M78/d+m9JD+1wG3oaVkklYA1ATcsZR57C6sLZgHAcdExHJZJul+PWVo3B2U4Qr79tlcUnpG3EoJfttThpQ35+o5GTifEuC+BxxZyz9CGUZ4Vy1/8Me+DgF5KeXqntdT5jJ75SR29wjgR5Qfrd8Ap1ICcr+Tk44PUeYyuo4SpP8jM38w8VMWl5lX1fdz2OddQWkp3Ry4lhJYdwVemJk/n+Cp36N8Zq9fwkvsQmltOzrLla1vrEM/jgQeQo+TxHoA9RlK75ilkpkXUoLVEVHmV3w0cAIlQXsZ5T3vN8/RmyhXE72ZcmGUN2bmpQARsXVENL97H6cMNflVlEn474mILzX25+WUq3zfQfl+XkKd2yrLVAbN9+YB4I7Gd/ttlCB2J/AflEnaz1y6d0bSbGeMHSjGvoYSg75I6bV0b93WUGpvkonm0u33vNsoMXZ5ygXIbgPeAbwmM4+b4HkXU+LTYr1Qm6LMo7chpWfNjY3bKZTPe7G5Vetn8iGmJsZeT0nUvjciXkdJSB9B+b5dR9nfz/Z5et/jn4hYv8bR9eu6H6QkW05txNjvN7b1csrxxC2U/b6fEnPJMsdxM8b+Dbg7Fw6t3KM+54+UxPGns8zfLGkWyzJF0HmU39yfNRadXcsm6kU7ke8BT4yIl9c4/FbK+UXH14G3R8RGsfC6E8flwml/zqLM/955/TMpnVfOrr/PUBrT5lHmhX187aixekQcFBE7UhpA746I90bEw2uD5GYR8bQB9+EmFr3417GU+Udf2GncjIhtImLdPs+fiB2QFjcbOyD1bcCsvZZ/Brw/IpaLiCdQju2+W5+7Q9SLl9XvwAc7z62NuCdQjsf2zt5zxWs6ZKY3bzN6o5xgPrbtejTqswNlHr7W6+LNmzdv3rwtzc0Y682bN2/eZtuNhdPxbNEo272W/WvXug/GOUpS8eONZdsA8xuPX0TpmXgXpSH0LOB1ddk/UKarmUdpODoWWLXx3MfV19qnPn4kpWHpvV31eSSlB+Y8ymiVqyjJvtXr8rUpCeEbKQ1j51AuJgXlIsbHNra1YX3NOfXxzpSG0zuBd9WyZ9T9uL3W+3vA+nXZmZ39G+A9Xw74MiVheBPwjgnW3ZeSnO48vrazD13rzan137DX59Nj/c0oCcO763t3JvDsfu9HLQtKEvQtXdtapE6Uhr0bgId2rbc8paH7Jd3fl7r8PfU1953oPeizP92f35b1vd2B0hj7e8rolZsoF5ye02c7q1F6sP6pfv6vaizbGrin8fjrlIbWeyjzAr+1a1vrUK65cg9lmqV/bSz7bK3Ln+qyj3beL8q0HkmZguOexm3rtn8vxv0W9QOQZkxEJLBxLpxEe6Zf/+GUC3f8iDIf0ImUOVYOmPCJkiSNOGOsJEmSNDs53YGWRUEZXnEHZSjmZdSLfjSG5nXftm6xvpIkzRbGWEmSJGkS7EkrSZIkSZI0Rrquy9G0Q2b+rM8ySS0ySStJkiRJkiRJLXK6A0mSJEmSJElq0Zy2K9BtjTXWyA033LDtakiSRtT5559/a2bObbses5ExVpI0EWPs5BljJUkTGSTGjlySdsMNN+S8885ruxqSpBEVEde1XYfZyhgrSZqIMXbyjLGSpIkMEmOd7kCSJEmSJEmSWmSSVpIkSZIkSZJaZJJWkiRJkiRJklpkklaSJEmSJEmSWmSSVpIkSZIkSZJaZJJWkiRJkiRJklpkklaSJEmSJEmSWmSSVjPrJ59quwaSJI0f46skSZI0q5mklSRJkiRJkqQWmaSVJEmSJEmSpBYNnaSNiGsj4uKIuCAizqtlq0XEaRFxRf27ai2PiDg0Iq6MiIsiYoup3gFJksaFMVaSpNHQKyZLkjSdJtuT9nmZ+ZTM3LI+PhA4IzM3Bs6ojwF2ADaut/2BLy5NZSVJWgYYYyVJGg3dMVmSpGkzVdMd7AwcVe8fBezSKD86i3OAVSJirSl6TUmSlgXGWEmSJEkac5NJ0ibwo4g4PyL2r2VrZuYNAPXvo2r5OsC8xnPn1zJJkrQ4Y6wkSaOhV0yWJGnazJnEc56VmQsi4lHAaRHxuwnWjR5ludhKJejtD7D++utPokqSJI0FY6wkSaNhsZicmT9trmCMlSRNpaF70mbmgvr3ZuBbwNOBmzpDLOvfm+vq84H1Gk9fF1jQY5uHZ+aWmbnl3Llzh62SJEljwRgrSdJo6BOTu9cxxkqSpsxQSdqIWCEiVurcB14AXAKcAuxTV9sHOLnePwXYu16Beivgrs6QTUmStJAxVpKk0TBBTJYkadoMO93BmsC3IqLz3K9l5g8i4lfA8RGxH3A98Iq6/qnAjsCVwJ+B105JrSVJGj/GWEmSRkPPmNxulSRJ426oJG1mXg1s3qP8NmC7HuUJvHnStZMkaRlhjJUkaTT0i8mSJE2noeeklSRJkiRJkiRNHZO0kiRJkiRJktQik7SSJEmSJEmS1CKTtJIkSZIkSZLUIpO0kiRJkiRJktQik7SSJEmSJEmS1CKTtJIkSZIkSZLUIpO0kiRJkiRJktQik7SSJEmSJEmS1CKTtJIkSZIkSZLUIpO0kiRJkiRJktQik7SSJEmSJEmS1CKTtJIkSZIkSZLUIpO0kiRJkiRJktQik7SSJEmSJEmS1CKTtJIkSZIkSZLUIpO0kiRJkiRJktQik7SSJEmSJEmS1CKTtJIkSZIkSZLUIpO0kiRJkiRJktQik7SSJEmSJEmS1CKTtJIkSZIkSZLUIpO0kiRJkiRJktQik7SSJEmSJEmS1CKTtJIkSZIkSZLUIpO0kiRJkiRJktQik7SSJEmSJEmS1CKTtJIkSZIkSZLUokklaSPiIRHxm4j4bn28UUScGxFXRMRxEfGwWr5cfXxlXb7h1FVdkqTxY4yVJGk0dMdkSZKm02R70r4NuKzx+NPAIZm5MXAHsF8t3w+4IzMfCxxS15MkSf0ZYyVJGg3dMVmSpGkzdJI2ItYFXgz8T30cwLbACXWVo4Bd6v2d62Pq8u3q+pIkqYsxVpKk0dAdkyVJmm6T6Un7eeA9wN/r49WBOzPz/vp4PrBOvb8OMA+gLr+rrr+IiNg/Is6LiPNuueWWSVRJkqSxYIyVJGk0dMdkSZKm1VBJ2oh4CXBzZp7fLO6xag6wbGFB5uGZuWVmbjl37txhqiRJ0lgwxkqSNBr6xORe69kQKkmaMnOGXP9ZwE4RsSOwPLAypYVxlYiYU3vyrAssqOvPB9YD5kfEHOCRwO1TUnNJksaLMVaSpNGwWEyOiGMz89XNlTLzcOBwgC233HKxhlJJkoYxVE/azHxfZq6bmRsCewA/zsy9gJ8Au9XV9gFOrvdPqY+py3+cmQYvSZK6GGMlSRoNfWLyq5fwNEmSlspk5qTt5b3AOyLiSsp8eEfW8iOB1Wv5O4ADp+j1JElaVhhjJUmSJGnMDTvdwYMy80zgzHr/auDpPdb5C/CKyb6GJEnLImOsJEmjoRmTJUmaTlPVk1aSJEmSJEmSNAkmaSVJkiRJkiSpRSZpJUmSJEmSJKlFJmklSZIkSZIkqUUmaSVJkiRJkiSpRSZpJUmSJEmSJKlFJmklSZIkSZIkqUUmaSVJkiRJkiSpRSZpJUmSJEmSJKlFJmklSZIkSZIkqUUmaSVJkiRJkiSpRSZpJUmSJEmSJKlFJmklSZIkSZIkqUUmaSVJkiRJkiSpRSZpJUmSJEmSJKlFJmklSZIkSZIkqUUmaSVJkiRJkiSpRSZpJUmSJEmSJKlFJmklSZIkSZIkqUUmaSVJkiRJkiSpRSZpJUlA+OvjAAAgAElEQVSSJEmSJKlFJmklSZIkSZIkqUUmaSVJkiRJkiSpRSZpJUmSJEmSJKlFJmklSZIkSZIkqUUmaSVJkiRJkiSpRSZpJUmSJEmSJKlFQyVpI2L5iPhlRFwYEZdGxEdq+UYRcW5EXBERx0XEw2r5cvXxlXX5hlO/C5IkzX7GWEmSJEladg3bk/avwLaZuTnwFOBFEbEV8GngkMzcGLgD2K+uvx9wR2Y+FjikridJkhZnjJUkaQT0aziVJGk6DZWkzeKe+vCh9ZbAtsAJtfwoYJd6f+f6mLp8u4iIpaqxJEljyBgrSdLI6NdwKknStBl6TtqIeEhEXADcDJwGXAXcmZn311XmA+vU++sA8wDq8ruA1Ze20pIkjSNjrCRJ7Zug4VSSpGkzdJI2Mx/IzKcA6wJPB57Qa7X6t1ePnsWCW0TsHxHnRcR5t9xyy7BVkiRpLBhjJUkaDd0Np5l5bo91jLGSpCkzdJK2IzPvBM4EtgJWiYg5ddG6wIJ6fz6wHkBd/kjg9h7bOjwzt8zMLefOnTvZKkmSNBaMsZIktau74TQiNuuxjjFWkjRlhkrSRsTciFil3n848HzgMuAnwG51tX2Ak+v9U+pj6vIfZ6bDRCRJ6mKMlSRp9DQaTl/UclUkSWNuzpJXWcRawFER8RBKgvf4zPxuRPwW+EZEfBz4DXBkXf9I4JiIuJLSu2ePKaq3JEnjxhgrSdIIiIi5wH2ZeWej4fTTLVdLkjTmhkrSZuZFwFN7lF9NmTuvu/wvwCsmXTtJkpYRxlhJkkZGz4bTluskSRpzw/aklSRJkiRpbPVrOJUkaTpN+sJhkiRJkiRJkqSlZ5JWkiRJkiRJklpkklaSJEmSJEmSWmSSVpIkSZIkSZJaZJJWkiRJkiRJklpkklaSJEmSJEmSWmSSVpIkSZIkSZJaZJJWkiRJkiRJklpkklaSJEmSJEmSWmSSVpIkSZIkSZJaZJJWkiRJkiRJklpkklaSJEmSJEmSWmSSVpIkSZIkSZJaZJJWkiRJkiRJklpkklaSJEmSJEmSWmSSVpIkSZIkSZJaZJJWkiRJkiRJklpkklaSJEmSJEmSWmSSVpIkSZIkSZJaZJJWkiRJkiRJklpkklaSJEmSJEmSWmSSVpIkSZIkSZJaZJJWkiRJkiRJklpkklaSJEmSJEmSWmSSVpIkSZIkSZJaZJJWkiRJkiRJklpkklaSJEmSJEmSWjRUkjYi1ouIn0TEZRFxaUS8rZavFhGnRcQV9e+qtTwi4tCIuDIiLoqILaZjJyRJmu2MsZIkjYZ+MVmSpOk0bE/a+4F3ZuYTgK2AN0fEpsCBwBmZuTFwRn0MsAOwcb3tD3xxSmotSdL4McZKkjQa+sVkSZKmzVBJ2sy8ITN/Xe//EbgMWAfYGTiqrnYUsEu9vzNwdBbnAKtExFpTUnNJksaIMVaSpNEwQUyWJGnaTHpO2ojYEHgqcC6wZmbeACWgAY+qq60DzGs8bT4GN0mSJmSMlSRpNHTFZEmSps2kkrQRsSJwInBAZt490ao9yrLH9vaPiPMi4rxbbrllMlWSJGksGGMlSRoNS4rJxlhJ0lQaOkkbEQ+lBKqvZuZJtfimzhDL+vfmWj4fWK/x9HWBBd3bzMzDM3PLzNxy7ty5w1ZJkqSxYIyVJGk09InJizDGSpKm0lBJ2ogI4Ejgssz8XGPRKcA+9f4+wMmN8r3rFai3Au7qDNmUJEkLGWMlSRoNE8RkSZKmzZwh138W8Brg4oi4oJYdBBwMHB8R+wHXA6+oy04FdgSuBP4MvHapayxJ0ngyxkqSNBp6xuTMPLXFOkmSxtxQSdrMPJvec+ABbNdj/QTePIl6SZK0TDHGSpI0GpYQkyVJmhaTunCYJEmSJEmSJGlqmKSVJEmSJEmSpBaZpJUkSZIkSZKkFpmklSRJkiRJkqQWmaSVJEmSJEmSpBaZpJUkSZIkSZKkFpmklSRJkiRJkqQWmaSVJEmSJEmSpBaZpJUkSZIkSZKkFpmklSRJkiRJkqQWmaSVJEmSJEmSpBaZpJUkSZIkSZKkFpmklSRJkiRJkqQWmaSVJEmSJEmSpBaZpJUkSZIkSZKkFpmklSRJkiRJkqQWmaSVJEmSJEmSpBaZpJUkSZIkSZKkFpmklSRJkiRJkqQWmaSVJEmSJEmSpBaZpJUkSZIkSZKkFpmklSRJkiRJkqQWmaSVJEmSJEmSpBaZpJUkSZIkSZKkFpmklSRJkiRJkqQWmaSVJEmSJEmSpBaZpJUkSZIkSZKkFg2dpI2IL0fEzRFxSaNstYg4LSKuqH9XreUREYdGxJURcVFEbDGVlZckaVwYXyVJkiRp2TWZnrRfAV7UVXYgcEZmbgycUR8D7ABsXG/7A1+cXDUlSRp7X8H4KklS63o1nEqSNN2GTtJm5k+B27uKdwaOqvePAnZplB+dxTnAKhGx1mQrK0nSuDK+SpI0Mr7C4g2nkiRNq6mak3bNzLwBoP59VC1fB5jXWG9+LZMkSUtmfJUkaYb1aTiVJGlazZnm7UePslxspYj9KcM1WX/99ae5SmrDIaddDsBW19/GOfdfztu336TlGknSrDZQfAVj7LLgkNMufzC+AsZYSZohxlhJ0lSaqp60N3WGWda/N9fy+cB6jfXWBRZ0PzkzD8/MLTNzy7lz505RlSRJmvWWKr6CMVaSpOlijJUkTaWpStKeAuxT7+8DnNwo37tehXor4K7OsE1JkrRExldJkiRJWgYMPd1BRHwd2AZYIyLmAx8CDgaOj4j9gOuBV9TVTwV2BK4E/gy8dgrqLEnS2DG+SpIkSdKya+gkbWbu2WfRdj3WTeDNw76GJEnLGuOrJEmjoVfDaWYe2W6tJEnjbrovHCZJkiRJ0qwxQcOpJEnTZqrmpJUkSZIkSZIkTYJJWkmSJEmSJElqkUlaSZIkSZIkSWqRSVpJkiRJkiRJapFJWkmSJEmSJElqkUlaSZIkSZIkSWqRSVpJkiRJkiRJapFJWkmSJEmSJElqkUlaSZIkSZIkSWqRSVpJkiRJkiRJapFJWkmSJEmSJElqkUlaSZIkSZIkSWqRSVpJkiRJkiRJapFJWkmSJEmSJElqkUlaSZIkSZIkSWqRSVpJkiRJkiRJapFJWkmSJEmSJElqkUlaSZIkSZIkSWqRSVpJkiRJkiRJapFJWkmSJEmSJElqkUlaSZIkSZIkSWqRSVpJkiRJkiRJapFJWkmSJEmSJElqkUlaSZIkSZIkSWqRSVpJkiRJkiRJapFJWkmSJEmSJElqkUlaSZIkSZIkSWrRjCRpI+JFEfH7iLgyIg6cideUJGncGV8lSZoexlhJ0kybM90vEBEPAQ4DtgfmA7+KiFMy87fT/doaXYecdvkij9++/SYt1USSZifjq7ptdf3hnLP+/ovEWOOrJA1vVGKs50yStGyZ9iQt8HTgysy8GiAivgHsDHgS2aKJTuBm6mCgczIpSZoU4+uIGjTGTufJtjFWkpZKazG2+1xMkrTsmIkk7TrAvMbj+cAzZuB1lwlTEcSXtI3JvoYtvZI0rYyv02iqTpIn2s7SvIYxVpKmlTFWkjTjZiJJGz3KcpEVIvYHOt097omI309DPdYAbp2G7bZl5PfnHX2X/Odi9+u6I79PQ3J/Rt+47dO47Q/03qcN2qjICFpifAVj7CSN/P4MGmPHNL7C+O2T+zP6xm2f+u2PMbaYyhg7Zd+d/r/902K2fudna71h9tbdes8s6z3zpqruS4yxM5GknQ+s13i8LrCguUJmHg4cPp2ViIjzMnPL6XyNmTRu+wPjt0/uz+gbt30at/2B8dynKbTE+ArG2Mlwf0bfuO2T+zP6xm2fxm1/psGUxdjZ+l5b75k3W+tuvWeW9Z55M1n3f5iB1/gVsHFEbBQRDwP2AE6ZgdeVJGmcGV8lSZoexlhJ0oyb9p60mXl/RPwb8EPgIcCXM/PS6X5dSZLGmfFVkqTpYYyVJLVhJqY7IDNPBU6dideawLQO9WzBuO0PjN8+uT+jb9z2adz2B8Zzn6bMiMRXGL/Pyf0ZfeO2T+7P6Bu3fRq3/ZlyUxhjZ+t7bb1n3mytu/WeWdZ75s1Y3SNzsfnPJUmSJEmSJEkzZCbmpJUkSZIkSZIk9TF2SdqIeFFE/D4iroyIA3ssf0NEXBwRF0TE2RGxaRv1HNSS9qex3m4RkREx0lfLG+Dz2TcibqmfzwUR8bo26jmMQT6jiNg9In4bEZdGxNdmuo7DGOAzOqTx+VweEXe2Uc9hDLBP60fETyLiNxFxUUTs2EY9BzXA/mwQEWfUfTkzItZto56DiogvR8TNEXFJn+UREYfW/b0oIraY6Tpq/OIrGGNHPcaOW3yF8Yux4xZfYbxirPG1XYPGmLb0+n5ExGoRcVpEXFH/rlrLR+a7EhHr1d+Vy+pv/9tmQ90jYvmI+GVEXFjr/ZFavlFEnFvrfVyUC9UREcvVx1fW5Ru2Ue9G/R9Sf8u/O1vqHRHXxsJj0/Nq2Uh/Txp1XyUiToiI39Xv+j+Pet0j4nGx8Bjmgoi4OyIOGPV617q8vf5fXhIRX6//r+18xzNzbG6USd2vAh4DPAy4ENi0a52VG/d3An7Qdr2XZn/qeisBPwXOAbZsu95L+fnsC3yh7bpO8T5tDPwGWLU+flTb9V6a/ela/y2UCym0Xvel/IwOB95Y728KXNt2vZdyf74J7FPvbwsc03a9l7BPzwG2AC7ps3xH4PtAAFsB57Zd52XtNm7xddB9qusZY0d3f2ZNfB10n7rWH+kYO27xdYh9mjUx1vg62t+ltm+9vh/AZ4AD6/0DgU+P2ncFWAvYot5fCbi8/r6MdN3r669Y7z8UOLfW53hgj1r+pcZv5puAL9X7ewDHtfx9eQfwNeC79fHI1xu4Flijq2ykvyeNeh4FvK7efxiwymype63TQ4AbgQ1Gvd7AOsA1wMPr4+Mpx8ytfMfHrSft04ErM/PqzPwb8A1g5+YKmXl34+EKwChPyrvE/ak+Rvni/2UmKzcJg+7PbDLIPr0eOCwz7wDIzJtnuI7DGPYz2hP4+ozUbPIG2acEVq73HwksmMH6DWuQ/dkUOKPe/0mP5SMlM38K3D7BKjsDR2dxDrBKRKw1M7VTNW7xFYyxo27c4iuMX4wdt/gKYxZjja+tGvnf5D7fj50pySHq310a5SPxXcnMGzLz1/X+H4HLKEmWka57ff176sOH1ltSGntOqOXd9e7szwnAdhERM1TdRUQZMfBi4H/q42AW1LuPkf6eAETEypRGlCMBMvNvmXkns6DuDdsBV2XmdcyOes8BHh4Rc4BHADfQ0nd83JK06wDzGo/n17JFRMSbI+IqyknXW2eobpOxxP2JiKcC62Xmd2eyYpM00OcD7Fq7u58QEevNTNUmbZB92gTYJCJ+HhHnRMSLZqx2wxv0MyIiNgA2An48A/VaGoPs04eBV0fEfMpVfN8yM1WblEH250Jg13r/ZcBKEbH6DNRtugz8vdS0Gbf4CsbYUY+x4xZfYfxi7LjFV1j2YqzxdfrM1vd2zcy8AUoyFHhULR/J/anDjJ9K6ZU68nWvUwZcANwMnEbpbX1nZt7fo24P1rsuvwto67fm88B7gL/Xx6szO+qdwI8i4vyI2L+Wjfz3hNID/xbgf6NMMfE/EbECs6PuHXuwsKF5pOudmX8APgtcT0nO3gWcT0vf8XFL0vbKXi/WkyczD8vMfwTeC3xg2ms1eRPuT0T8A3AI8M4Zq9HSGeTz+Q6wYWY+GTidhS0Uo2qQfZpDGZK5DaVXzP9ExCrTXK/JGuh/qNoDOCEzH5jG+kyFQfZpT+ArmbkuZdjFMfX/axQNsj/vAp4bEb8Bngv8Abh/sWfNHsN8LzU9xi2+gjF21GPsuMVXGL8YO27xFZa9GGt8nT7j9t6O3P5ExIrAicABXaN5Flu1R1krdc/MBzLzKcC6lN7WT+i1Wv07EvWOiJcAN2fm+c3iHquOVL2rZ2XmFsAOwJsj4jkTrDtK9Z5DmYrki5n5VOBPlGkC+hmlulPnbt2JMj3QhKv2KGvjO74qpXfsRsDalBGBO/RYdUa+46N8kDQZ84Fmr5B1mXhY1TdY2GV5FC1pf1YCNgPOjIhrKfN4nBKje2GTJX4+mXlbZv61PjwC+KcZqttkDfKdmw+cnJn3ZeY1wO8pJ5WjaJj/oWbr2CgbZJ/2o8w5Q2b+AlgeWGNGaje8Qf6PFmTmy2tQf38tu2vmqjjlhv1t19Qbt/gKxthRj7HjFl9h/GLsuMVXWPZirPF1+szW9/amznDj+rczjcxI7U9EPJSSoP1qZp5Ui2dF3QHq0PUzKccWq9Qh1rBo3R6sd13+SCaevmS6PAvYqR4LfYMyBPzzjH69ycwF9e/NwLcoifHZ8D2ZD8zPzHPr4xMoSdvZUHcoCc5fZ+ZN9fGo1/v5wDWZeUtm3gecBDyTlr7j45ak/RWwcb0K28MoB7inNFeIiObB+4uBK2awfsOacH8y867MXCMzN8zMDSkXNdkpM89rp7pLNMjn05yDZCfKHEOjbIn7BHwbeB5ARKxBGZ559YzWcnCD7A8R8ThgVeAXM1y/yRhkn66nzJtDRDyBchJ5y4zWcnCD/B+t0eip9D7gyzNcx6l2CrB3FFsBd3WGzGjGjFt8BWPsqMfYcYuvMH4xdtziKyx7Mdb4On0G+n8fQacA+9T7+wAnN8pH4rsSEUGZq/OyzPxcY9FI1z0i5nZGe0TEwymJocsoc1vvVlfrrndnf3YDfpyZM97LMDPfl5nr1mOhPWo99mLE6x0RK0TESp37wAuASxjx7wlAZt4IzKvHA1Di6G+ZBXWvuufUH/V6Xw9sFRGPqL8vnfe7ne94tnzVt6m+UYZSXU6Z3+X9teyjlBMrgP8CLgUuqG/6E9uu89LsT9e6ZzLCV54e8PP5VP18Lqyfz+PbrvMU7FMAn6P8o19MvULgqN4G+c5R5pg7uO26TuFntCnw8/q9uwB4Qdt1Xsr92Y2SILucMsH/cm3XeQn783XK/D/3UVom9wPeALyhLg/gsLq/F4/679y43sYtvg6yT13rGmNHb39mVXwd9Ds3m2LsuMXXAfdp1sRY42vr7/9i36VRuvX5fqxOuTDeFfXvaqP2XQGeTRlafFH9XbmgvtcjXXfgycBvar0vAf69lj8G+CVwJWV4+HK1fPn6+Mq6/DEj8J3ZBvjubKh3rd+F9XZp4/d8pL8njfo/BTivfl++TWm8Hfm6Uy66dRvwyEbZbKj3R4Df1f/NY4Dl2vqOR30RSZIkSZIkSVILxm26A0mSJEmSJEmaVUzSSpIkSZIkSVKLTNJKkiRJkiRJUotM0kqSJEmSJElSi0zSSpIkSZIkSVKLTNJKkiRJkiRJUotM0kqSJEmSJElSi0zSSpIkSZIkSVKLTNJKkiRJIyIiNoyIjIg5bddFkjT9IuLSiNim7XqMs4g4MyJe13Y9pCUxSbsMi4h7IuIxk3yuP3KaVvUE9bFt10OSNDUiYt+IOLvx+NqI+FtErNG13gU1BmxYH3+lrndPRNweEadFxOMb628aEadExF0R8ceI+ElEPLOxvJP0vKfero2IAxvL72nc/h4R9zYe79VV/4yI3bvqu00tP6yr/Oz6nIMa2/tLRDzQeHzp0r+zvUXEahHxrYj4U0RcFxGvmmDdAyLi6oi4OyIWRMQhzSRxfQ9/EhF/jojfRcTzG8uWq+sviIg7IuK/I+KhXc89tS67MSK+YAJakhbKzCdm5pmTeW7znCkiPlwfv7VrnQNq+Yfr421qvLunxs3fR8RrG+svFxGfiojra0y8IiLeHRHRWOfMGtPuiYhbI+KkiFirLvtSI879LSLuazz+fmMbK9SyU3vs17URcVNErNAoe1193fW7YnfWWNd5vPVk3stBRMTbayy7KyK+HBHL9Vlvq3q8cntE3BIR3+y8P3X5KhFxVETcXG8f7rOd59b9+3hX+WMi4rv187s1Ij4zpTuq1pikHRMR8b7uH7f6Y9qrbA+AzFwxM6+eyXpOJCJWjojP12BwT0RcWR+vseRnL3Hb1zZPKKZSROweEf9XT1zOXMK620TE/MbjM+uP7uZd6327lm9TH3+4EdzurK/3z431142Ir0bEbTVA/TIiXtK1zWbw+kNEfC4iHlKXXdoIag80Au49EXFQV/0zIt7Tte3OCfD3usqPrXXfq7G9e2PhQcE9EXHPoO/1sKIcYHw5yknnjRHxjgnW3SPKAcpdNVAeFREr91hv4/r+HNsoe3GUk/E76+scERErNZYP/B2RpGXMNcCenQcR8STg4T3W+0xmrgisC9wMfKWu/4/Az4GLgY2AtYFvAT9qxslqlbqN3YAPRsT28ODx0Ip12fXASxtlX208fx/g9vq325+AvaMmlpsy85ON7b8B+EVj+0+c4L1ZWocBfwPWBPYCvhgR/V7vO8AWmbkysBmwOdA8yf868BtgdeD9wAkRMbcuOxDYsj5vE2AL4AON5/435TNbC3gK8FzgTUu7c5Kkni5n8Ti1dy1vWlDj0srAe4EjImLTuuybwHbAjsBKwGuA/YH/6trGv9VtPBZYEfgsQGa+oRH3Pgkc14h7OzSevxvwV+AFzQRmwxzgbd2FmXl9V+wG2LxR9rNeb8zSiogXUmLedsCGwGOAj/RZfVXg8LreBsAfgf9tLD8EeERd/nTgNdFIlNfXeyjlPT+3q/xhwGnAj4FHU46NjkVjwSTt+Pgp8KxG0u3RwEOBLbrKHlvXHSn1h+YM4InAiyjB4pnAbZQfrdZEMdH/yu3A54GDJ/kSl1MCZ+f1Vge2Am7pWu+4GoTmAmcDJ9W6rVYf/43y/q1B+dH/WkTs1rWNzes2ngu8EvgXeLD1thPkfkYNuPX2ycbzJzpBBdgqIp7VXZiZX21sfwfqQUFXYJ0OHwY2pgTG5wHviYgX9Vn358CzMvORlIA7B/h4j/UOA37VVfbIuu7awBMogfI/GsuX9jsiaczVxsT3RcRvo/Q4/N+IWL6x/PW18fL2KL1G167lEaUX4821kemiiNhsCa/1lSi9Hb9fG8t+HhGPjtIwekeUnpJPbax/YERcFaW3xm8j4mWNZV+MiBMajz8dEWdELOxtswTH0IiBlPhydL+VM/PPwNcoCUEov/O/yMz3Z+btmfnHzDy0bvfTfbZxHnApJWE4kIjYgBI79wdeGBFrdq1yJyVx/KFBtznEa+9avx+bRcTytQH0ttow+KsedSFKz6NdgQ9m5j2ZeTZwCuVEezGZeVVm3tl5OvB3yjEjEdFJvH4oM+/NzBMpSfFd6/ovBQ6t7/8twKHU44tqI+D4zPxLZt4I/IByvCJJM2bE4+yDHYqidHA5PiKOrnH30ojYcohd/RXwiE6jXP37cBY/fwEgi28DdwCbRsR2wAuAXTPzksy8PzPPAV4NvDl6jHSs8ePbDBFXq32ALwEXURoTu/0H8K6IWGXI7U4oItaqn+O76uN9o4wm+WNEXBONUTQ96ntkZl6amXcAHwP27bViZn4/M7+ZmXfXY5cvAM3z5JdSGqD/nJnXAkeyaOwEeCfwI+B3XeX7Us6nP5eZf6rx9aJB91+jzSTt+PgVJSnb+WF8DvAT4PddZVdl5gJYbGjEVyLisIj4Xv1xOjdK7xTq8u1rMLkrIr5AOYDvLPuHiPhAlKF0N9eA8si67KiIeGe9v059zTfVx4+tQTAoJ2jrAy/LzN9m5t8z8+bM/FhmnlrXXzsiTowyXOCaaAzjmCiYRcQxddvfqUHyPbV8qyi9G++MiAujMQ9QlB6un4iInwN/piTtesrM0zPzeGDB4B/XIr4KvDJqMp3So+hblKRrr9e7DziK0mq2OvB24B5gv8y8sZ5AfR34BPCfvU6UM/NKSlJymBPUR1BaO98MbNznYOEz9E5sLpWIeHZEzIuI5w15oLQ38LHMvCMzLwOOoH8gnZeZtzaKHqCeoDbqsQflRPyMrud+LTN/UIPsHfV1ntVYvrTfEUnLhr2AFwL/SOmR+AGAiNgW+BSwO6U34nXAN+pzXkCJ75sAq1Aa4G4b4LV2r9tfg9KL5RfAr+vjE4DPNda9Ctia0iD1EeDYWNjj5Z3Ak+sJztbAfsA+mZkD7vM5wMoR8YQaB1/JBL1BImJFyvv0m1q0PaXHT7fjKY3Xj+ixja0oSd4rB6wjlHhyXk1QXkbvk8lPALtGxOOG2O6EovSq+TTw/My8hHKC+EhgPcoxwBuAe3s8dRPggcxs9py6kAmSoxHxqoi4G7iV0pP2/6+LnghcnZl/7LOtoHFcWO+v2zkWpPQC2iMiHhER61Aaa38w4Y5L0vQY1Tjbbaf6+qtQGti+MOD+dTQbQCds/Kzn8i+rr3UxJa6em5nzmutl5rnAfEov0u5trA68nCHiakSsD2xDORf+Kos22HacB5wJvGvQ7Q7wuhsCZwFfyMzPRmnUPBTYITNXonQUu6DP059IiX8dFwJr1v1fkudQGogXqU7X/QfPaaM0Dv8L8NEe29oKuLY2AtxacxdPGqAOmgVM0o6JzPwbpRv8c2rRcyg9Is/uKpuoF+2elJOvVSk/sJ8AiDLdwIksDDJXsWgr0L719jxKMnNFFgaSsyg/vlB6oFxd/z5Yx3oi93zgB5nZc+h7lJ6s36H8EK5DCQ4HRBly0NEzmGXma1h0+OJn6knC9ygJxdUoP/wnxsKhe7BwWMdKlEA9XRYAv6UcAEAJUBMF0uUo7/f8mlTcHjgxM//eterxlOT0Jj228XjKCfcwJ6i7UpLB3wR+SO9AehiwSUzh1BL1M/46pTX3Jwx4oBQRq1J6tnYH0olOUJ8dEXdRhqPsSun92lm2MiVIvnOAavcKwpK0JF+oDUa3U2JwZxqAvYAvZ+avM/OvwPuAf64nGvdR4tTjgcjMyzLzhgFe61uZeX5m/oXSMPiXzDw6Mx8AjgMe7OFTe4IsqA2oxwFXUEe51N4hr6acbB4LvCUz59dqF7MAACAASURBVHe/2BJ0Tia3p/QW+UOPdd4VEXdS4taKLGxwWwPotb83UI5zV22U3RoR91JOlP+b0utnUHtTevBS/y42oqT2Ev0SvU+oJuMA4N3ANrVxFcrnvTrw2Mx8oH6Gd/d47orAXV1ld1G+Kz3VBseVKfH1S8BNA27r+8DbImJulFFbnUb0ToL8LErsvZtygn8ew733kjRVRjLO9nB2Zp5a1z2G0nA2jGOBPaMMl9+D3o2fa9e4eitlFMhrMvP39I+r1PLmVISH1nOnW2v5W4ao497ARZn5W8q53hOj0bu44d+Bt3Sdp0/WppSk74cy8/BG+d+BzSLi4Zl5Q2b2O4/rjoed+31jK0BEPJmyH+9uFP8AODAiVqod5/6FhXETSuL4g33yI+tSPtdDKee73wNOjjI6WbOcSdrxchYLE7JbU5K0P+sqO2uC55+Umb/MzPsprVmdXpY7Ar/NzBNqL87PAzc2nrcX8LnMvLr+iLyP0mNiTn29rWuS9TmUnpadBO9zG/VZnf7BAOBpwNzM/Ghm/i3LXLpHUH6cOoYJZq8GTq3r/z0zT6OcNOzYWOcrdSjD/XW/p9PRlLnsHkeZM+8XPdbZvQbSecA/AbvU8olOUDvLO34dEX+i9AI6k3KSOqh9KFMuPEA5Qe0E/qa/UA54pqo37Ssoc/nsmJm/rGWDHih1plHoDqQTnaCenWW6g850Bdc2Fn+MMrxlXq/ndkSZ43AfSiCWpGE0f1+uoxx4U/8+2FhYY+1twDqZ+WNKo+RhwE0RcXj0mE+7h5sa9+/t8fjBqWgiYu8oF/O6s8ahzWjElvr7fDWlF8jxA7x2t2OAV1ESr/0aKT+bmatk5qMzc6fMvKqW30rp9dRtLcpJ1x2NsjXqfr2L0oDcHcN6ijKNz0Ys7FX1NeBJEdFrNMqnKdMhDHtC3cu7gcO6kt7HUBpKvxHlQl2f6RGLoTSqdn8PVqY0Qk4oM6+gNDR2jhGWtK1PUHo2XwD8HyUBex9wcz3++yFwErAC5TNYlT5TUUjSNBvJONtD81z7z8DyMcQFFzPzekqj5ieBK/qcvyyocXW1zHxKZnZiXL+4Si1vjjx8az13ejLlt33dQetISdJ+tdZ3ASUv0KsB9BLgu5S5YJfWXpSG4AenacrMP1E6/bwBuCHKyOLH93l+dzzs3O8bW2sC9vvA23LRuXLfSvkeXAGcTElUz6/PeSmwUm0Y7+VeSu7j+7Wz3mcp+ZQn9KuHZg+TtOPlp8Czaw/CufUg+/+AZ9ayzZi4J213MOgEjrVpBLTa87X5Q79IUKv35wBr1pOoeygJ360pP7ALajKymaS9jf7BAMqcomt3ThDrSeJBlIth9Kv/RMFsA+AVXdt7dlcdJkzGTbGTgG0prY/H9Fnn+BpIH5WZ22bm+bV8ohPUzvKOLSif6yuBZ1BOmJYoItaj9JTuXEDlZGB54MU9Vj+CMuzjpYNsewkOoOz3xZ2CIQ6UOq2O3YF0kBPUP1BaN78BUE/En0+Z67evOoT2a8BuXUNMJWkQ6zXur8/CKVIWUOIW8OB8o6tTe5xm5qGZ+U+U3oqbsGhPjaVSh9sdAfwbsHpmrgJcwqLTHr0ZWK7W8z29tjORzLyOcgGxHSnxcBinUxr0uu1Omav2z12v9UBm/ielUXHQi1ftQ9nfCyLiRhZewGOxESWZeRulMftjA257Ii8APhARnblfycz7MvMjmbkpZUjmS3rVgzLf/ZyI2LhRtjmDj/KYQxkOTH3OY6JxQczmtrJMs/RvmblOZj6Gckx3fm3UXY3yvf5CZv61vj//y6KN4pI0U0Yuzk6joykjAPuO0OzjdOAZ9fzvQRHxdMr79+PuJ9RztY8Dh0UseU76iHgm5boh74ty0eUbKeeme/Y5f/8Q8HrKiNql8WHKufHXYuFUg2TmDzNze8r58+8oxz29XMqiHcE2B26qsW0x9RjqdMr0e4uc42eZx32v2vj8REpurtMpaTtgy8Z780rKKOKT6/KLgEGnldIsY5J2vPyCMk/Z/pT5RqlD4BbUsgWZec0ktnsDjYBWf3ibP9qLBDVKwLufha2FZ1HmMn1YTX6dRTmhWJWF872cTul50i9pOA+4piYpO7eVMnPQg/zuH7F5wDFd21shMw+e4DnTpp5Efh94I/2TtP2cTpkDr/v/eXfKfi6SLMzieMr3ZdDenq+h/F58pwaKqylJ2l4nqPdRps34GIvOszMZrwB2iYgDul5jiQdKWeaGvYHFA+lkTlC3oVx58/q6/++ivOe/7qxch+ecAvxLZp6BJA3vzRGxbpQLQh5EGQ4JpfHntRHxlDrlzScp88VdGxFPi4hn1N6Uf6IkHx+YwjqtQImHt8CDc6Q250zbhHJi9mpKrHhPnx6mS7IfsG3t0TKMj1Aaoz8REavVYYNvocSn907wvINrXZefYB3q8t0px1FPadzeAuzV52Tyc5QE6tL2aLmUcjHVwyJip1qf50XEk+rJ5d2UHquLfd71fTwJ+GhErFB7A+9Mn2OMiHhdRDyq3t+UMirqjLqtyynHax+KcuGyl1F6TZ1Y118nynUDojZWfpB6AbUs0zJdA7wxIuZEufjLPiw6FZEkzZRRjLPT5ThKY99QI1wy83TK7/+JEfHEiHhI/W3/KvDF2hGsl6OAR1GmIFySfYDTKNMPdOLqZpTh/jv0qNOVdX/e2r1sSPdRzi9XAI6JMh/vmhGxU81D/JXS0aff53s0sF9EbFo7wX2ActHQxUSZXvHHlBExX+qx/B8jYvX6/u5AOc7ojEb9IOUct/PenEJJHL+2Lj+WcsHu59fjgQMoyefLhngvNKJM0o6RzLyXMmT/HZRpDjrOrmUT9aKdyPcoc8S8vJ6MvJVy0aqOrwNvj4iNolzQ45OUYfH31+VnUXrgdF7/TMrJzdm1lwWUk4Z5lGDw+PqDuXpEHBQRO1Jale6OiPdGxMPrj9lmEfG0AffhJha9+NexwEsj4oV1W8tHxDYRMcwQDQA6z6ck9f6hbmugIZRdDgKem+XqjsM4hNJD9MgoVw1dPiL2BN4PvLv2fO7lYGD/KPPHLcnelBPh5gnqrsCLo/dE6cdQelW9aLhdWcwCSkviW2PhBeeGOVA6mtILadUow1ZeT/9AuldErF9PMjegDN/sJFsPpyRsO/v+Jcr/xQvrczej9Lx9S2Z+p8e2p+o7Imm8fY1yFd+r6+3jALXh54OUpNgNlN+jznQ/K1MO3O+gjGS5jTLsbUpkmSvuPykNezcBT6I2BNdjgmOBT2fmhfXE7SDKic9yQ77OVZl53iTqdwVlJMzmlClqbqDEpxdm5s8neOr3KO/Z65fwErtQhhUeneXinDdmmXv2SOAh9IhztYH8M5RepEslMy+k9JY9op7EPZoyTPNuysnYWfS/0NqbKFf0vplyrPbGrPPsRcTWEdGc5+5ZwMVRpkQ6td4OaizfA9iS8p4dTBkxcktd9o+UkVt/opykH5iZP2o89+WU9+kWyvDb+ykXPZWkmTZycXa61FEOp9ccwbB2pVyE/AeUpOWxlLjXd87ZOuz+UMr72Fej8fP/a8bV2pnsGHpMeVB9lAFHgU6k1vPllITylynnZ++knHfe/v/Yu/94O+r63vevdxOJPwENOa0QaGIJaPSe+iOXorZeK6LBtsZ7hBKOVrR4OO2V+qvUC6dX5FKpxWpRD1RvCigiNdhoa45FUQv0llMFAlo1IJoCQgQ1AkZBAYOf88fMjisra/8Ke621196v5+Mxj8x85zsz3+9k7fWd+cx3fYfm1749f2lTVZ+had+voPksfIv2oWRbt81Jxl4s+lqa+MPb0ry8/N6udvdZNC9q+xHNS+teMdZGV9WPuq45fgLcV81YylQzdvArae5J76F5CPvStm4adVXlNIcmmj/wAp7Zkfa7bdp/7cpbNC+egCZw9faOdc+neTHV2PJqmh6Z22l+av7PwGvbdb9A0yPzdpoL8I8Aj+/Y9tD2WMe3y/vQXKD/313l2YfmJ4K30zQG/07TG2Vxu35/mpuM79B8GX2R5m3H0Px04SMd+1rWHnNhu7yG5uVhPwBObtN+ra3H3W25/xE4qF135Vj9pnDOX90eq3P60Dh5u8/ruMehGZPm+b3q1yPvQe25uZvmJulaYM14/98daZ8G3t2VtkuZaN4eeT/NEBrdx91ME4Df5Xx3fe5On+gcTFCnzs/ncppG8LU0QduvtJ+R79M81X3sOPtYRNP4/pAmuPDmrnN2b8f/+ZntOb+v/Xfd2Gevx367P28fpBn78N6OafOefEacnJzm50QTYHzhsMvh5OTk5OQ0FyfbWScnp1GYUuVQFpIkScOU5FaaB2SfH3ZZJEmaa2xnJY0ChzuQJEmaY9qf3N3bY3rF5FtLkqSJ2M5K6gd70kpT0DV+TKejqupfxlknSZIkSZIkTcogrSRJkiRJkiQNkcMdSJIkSZIkSdIQLRx2Abrtt99+tWzZsmEXQ5I0S1133XXfr6olwy7HKLKNlSRNxDZ2z9nGSpImMpU2dtYFaZctW8amTZuGXQxJ0iyV5FvDLsOoso2VJE3ENnbP2cZKkiYylTbW4Q4kSZIkSZIkaYgM0kqSJEmSJEnSEBmklSRJkiRJkqQhMkgrSZIkSZIkSUNkkFaSJEmSJEmShsggrSRJkiRJkiQNkUFaSZIkSZIkSRoig7SSJEnqnyve0UySJGnm2c5Kc8bCYRdAkiRJc4w3i5IkSdK02JNWkiRJkiRJkobIIK0kSZIkaSQlWZ3kpiRbkpzSY/2iJJe0669OsqxNX5zkiiT3JjlnnH1vTPK1/tZAkqSGQVpJkiRJ0shJsgA4FzgKWAkcl2RlV7YTgHuq6mDgbOCsNv1+4K3AyePs+z8B9/aj3JIk9WKQVpIkSZI0ig4DtlTVzVX1ILAeWNOVZw1wYTu/ATgiSarqvqq6iiZYu4skjwXeDLy9f0WXJGlXBmklSZIkSaPoAOD2juWtbVrPPFW1A9gOLJ5kv38GvBv48USZkpyYZFOSTdu2bZtOuSVJ2o1BWkmSJEnSKEqPtNqDPD/PnDwdOLiq/n6yg1fVuqpaVVWrlixZMll2SZImZJBWkiRJkjSKtgIHdiwvBe4YL0+ShcA+wN0T7PPZwLOS3ApcBRyS5MoZKq8kSeMySCtJkiRJGkXXAiuSLE+yF7AW2NiVZyNwfDt/NHB5VY3bk7aq3l9V+1fVMuDXgW9U1fNnvOSSJHVZOOwCSJIkSZI0XVW1I8lJwGXAAuCCqtqc5AxgU1VtBM4HLkqyhaYH7dqx7dvesnsDeyV5GfCiqrph0PWQJAkM0kqSJEmSRlRVXQpc2pV2Wsf8/cAx42y7bJJ93wo87WEXUpKkKRjIcAdJ3pRkc5KvJflokkcO4riSJEmSJEmSNNv1PUib5ADg9cCqqnoazc9Q1k68lSRJkiRJkiTND4N6cdhC4FHt2zQfze5v3JQkSZIkSZKkeanvQdqq+jbwLuA24E5ge1V9tt/HlSRptkiyOslNSbYkOaXH+kVJLmnXX51kWZu+OMkVSe5Nck5H/kcn+cckX2+HE/qLwdVGkiRJkjTTBjHcweOBNcByYH/gMUle2ZXnxCSbkmzatm1bv4skSdLAJFkAnAscBawEjkuysivbCcA9VXUwcDZwVpt+P/BW4OQeu35XVT0ZeAbw3CRH9aP8kiRJkqT+G8RwBy8EbqmqbVX1U+ATwHM6M1TVuqpaVVWrlixZMoAiSZI0MIcBW6rq5qp6EFhP8/Cy0xrgwnZ+A3BEklTVfVV1FU2wdqeq+nFVXdHOPwhcDyztZyUkSZIkSf0ziCDtbcDh7U8zAxwB3DiA40qSNBscANzesby1TeuZp6p2ANuBxVPZeZJ9gd8B/ulhl1SSJEmSNBSDGJP2appeQdcDX22Pua7fx5UkaZZIj7Tagzy777h5IedHgfdV1c3j5HFIIUmSJEma5QbRk5aqeltVPbmqnlZVv1dVDwziuJIkzQJbgQM7lpcCd4yXpw287gPcPYV9rwO+WVXvGS+DQwpJkiRJ0uw3kCCtJEnz2LXAiiTLk+wFrAU2duXZCBzfzh8NXF5VE/akTfJ2mmDuG2e4vJIkSZKkAVs47AJIkjSXVdWOJCcBlwELgAuqanOSM4BNVbUROB+4KMkWmh60a8e2T3IrsDewV5KXAS8Cfgj8KfB14PpmyHfOqarzBlczSZIkSdJMMUgrSVKfVdWlwKVdaad1zN8PHDPOtsvG2W2vcWwlSZIkSSPI4Q4kSZIkSZIkaYjsSStJkiRJkjQqrnjHsEsgqQ/sSStJkiRJkiRJQ2SQVpIkSZIkSZKGyCCtJEmSJEmSJA2RQVpJkiRJ0khKsjrJTUm2JDmlx/pFSS5p11+dZFmbvjjJFUnuTXJOR/5HJ/nHJF9PsjnJXwyuNpKk+cwgrSRJkiRp5CRZAJwLHAWsBI5LsrIr2wnAPVV1MHA2cFabfj/wVuDkHrt+V1U9GXgG8NwkR/Wj/JIkdTJIK0mSJEkaRYcBW6rq5qp6EFgPrOnKswa4sJ3fAByRJFV1X1VdRROs3amqflxVV7TzDwLXA0v7WQlJksAgrSRJkiRpNB0A3N6xvLVN65mnqnYA24HFU9l5kn2B3wH+6WGXVJKkSRiklSRJkiSNovRIqz3Is/uOk4XAR4H3VdXN4+Q5McmmJJu2bds2aWElSZqIQVpJkiRJ0ijaChzYsbwUuGO8PG3gdR/g7insex3wzap6z3gZqmpdVa2qqlVLliyZVsElSepmkFaSJEmSNIquBVYkWZ5kL2AtsLErz0bg+Hb+aODyqpqwJ22St9MEc984w+WVJGlcC4ddAEmSJEmSpquqdiQ5CbgMWABcUFWbk5wBbKqqjcD5wEVJttD0oF07tn2SW4G9gb2SvAx4EfBD4E+BrwPXJwE4p6rOG1zNJEnzkUFaSZIkSdJIqqpLgUu70k7rmL8fOGacbZeNs9te49hKktRXDncgSZIkSZIkSUNkkFaSJEmSJEmShsggrSRJkiRJkiQNkUFaSZIkSZIkSRoig7SSJEmSJEmSNEQGaSVJ6rMkq5PclGRLklN6rF+U5JJ2/dVJlrXpi5NckeTeJOd0bfOsJF9tt3lfEt9ELUmSJEkjyiCtJEl9lGQBcC5wFLASOC7Jyq5sJwD3VNXBwNnAWW36/cBbgZN77Pr9wInAinZaPfOllyRJkiQNgkFaSZL66zBgS1XdXFUPAuuBNV151gAXtvMbgCOSpKruq6qraIK1OyV5IrB3VX2hqgr4MPCyvtZCkiRJktQ3BmklSeqvA4DbO5a3tmk981TVDmA7sHiSfW6dZJ+SJEmSpBFhkFaSpP7qNVZs7UGePcqf5MQkm5Js2rZt2wS7lCRJkiQNi0FaSZL6aytwYMfyUuCO8fIkWQjsA9w9yT6XTrJPAKpqXVWtqqpVS5YsmWbRJUmSJEmDYJBWkqT+uhZYkWR5kr2AtcDGrjwbgePb+aOBy9uxZnuqqjuBHyU5PEmAVwGfnPmiS5IkSZIGYeGwCyBJ0lxWVTuSnARcBiwALqiqzUnOADZV1UbgfOCiJFtoetCuHds+ya3A3sBeSV4GvKiqbgD+EPgQ8Cjg0+0kSZIkSRpBBmklSeqzqroUuLQr7bSO+fuBY8bZdtk46ZuAp81cKSVJkiRJw+JwB5IkSZIkSZI0RAZpJUmSJEmSJGmIDNJKkiRJkiRJ0hANJEibZN8kG5J8PcmNSZ49iONKkiRJkuauJKuT3JRkS5JTeqxflOSSdv3VSZa16YuTXJHk3iTndG3zrCRfbbd5X5IMpjaSpPlsUD1p3wt8pqqeDPwqcOOAjitJkiRJmoOSLADOBY4CVgLHJVnZle0E4J6qOhg4GzirTb8feCtwco9dvx84EVjRTqtnvvSSJO2q70HaJHsDzwPOB6iqB6vqB/0+riRJkiRpTjsM2FJVN1fVg8B6YE1XnjXAhe38BuCIJKmq+6rqKppg7U5JngjsXVVfqKoCPgy8rK+1kCSJwfSkfRKwDfhgki8lOS/JYwZwXEmSJEnS3HUAcHvH8tY2rWeeqtoBbAcWT7LPrZPsU5KkGTeIIO1C4JnA+6vqGcB9wC5jBSU5McmmJJu2bds2gCJJkiRJkkZcr7Fiaw/y7FF+72MlSTNpEEHarcDWqrq6Xd5AE7TdqarWVdWqqlq1ZMmSARRJkiRJkjTitgIHdiwvBe4YL0+ShcA+wN2T7HPpJPsEvI+VJM2svgdpq+o7wO1JDm2TjgBu6PdxJUmSJElz2rXAiiTLk+wFrAU2duXZCBzfzh8NXN6ONdtTVd0J/CjJ4UkCvAr45MwXXZKkXS0c0HH+CLi4bThvBl4zoONKkiRJkuagqtqR5CTgMmABcEFVbU5yBrCpqjbSvMD6oiRbaHrQrh3bPsmtwN7AXkleBryoqm4A/hD4EPAo4NPtJElSXw0kSFtVXwZWDeJYkiRJkqT5oaouBS7tSjutY/5+4Jhxtl02Tvom4GkzV0pJkiY3iDFpJUmSJEmSJEnjGNRwB5IkSZrLrnjHsEsgSZIkjSx70kqSJEmSJEnSEBmklSRJkiRJkqQhMkgrSZIkSZIkSUNkkFaSJEmSJEmShsggrSRJkiRJkiQNkUFaSZIkSZIkSRoig7SSJPVZktVJbkqyJckpPdYvSnJJu/7qJMs61p3apt+U5MUd6W9KsjnJ15J8NMkjB1MbSZIkSdJMM0grSVIfJVkAnAscBawEjkuysivbCcA9VXUwcDZwVrvtSmAt8FRgNfDXSRYkOQB4PbCqqp4GLGjzSZIkSZJGkEFaSZL66zBgS1XdXFUPAuuBNV151gAXtvMbgCOSpE1fX1UPVNUtwJZ2fwALgUclWQg8Grijz/WQJEmSJPWJQVpJkvrrAOD2juWtbVrPPFW1A9gOLB5v26r6NvAu4DbgTmB7VX22L6WXJEmSJPWdQVpJkvorPdJqinl6pid5PE0v2+XA/sBjkryy58GTE5NsSrJp27Zt0yi2JEmSJGlQDNJKktRfW4EDO5aXsvvQBDvztMMX7APcPcG2LwRuqaptVfVT4BPAc3odvKrWVdWqqlq1ZMmSGaiOJEmSJGmmGaSVJKm/rgVWJFmeZC+aF3xt7MqzETi+nT8auLyqqk1fm2RRkuXACuAammEODk/y6Hbs2iOAGwdQF0mSJElSHywcdgEkSZrLqmpHkpOAy4AFwAVVtTnJGcCmqtoInA9clGQLTQ/ate22m5N8DLgB2AG8rqoeAq5OsgG4vk3/ErBu0HWTJEmSJM0Mg7SSJPVZVV0KXNqVdlrH/P3AMeNseyZwZo/0twFvm9mSSpIkSZKGweEOJEmSJEkjKcnqJDcl2ZLklB7rFyW5pF1/dZJlHetObdNvSvLijvQ3Jdmc5GtJPprkkYOpjSRpPjNIK0mSJEkaOUkWAOcCRwErgeOSrOzKdgJwT1UdDJwNnNVuu5JmeKGnAquBv06yIMkBwOuBVVX1NJqhitYOoj6SpPnNIK0kSZIkaRQdBmypqpur6kFgPbCmK88a4MJ2fgNwRPvSzTXA+qp6oKpuAba0+4NmWMBHJVkIPBq4o8/1kCTJIK0kSZIkaSQdANzesby1TeuZp6p2ANuBxeNtW1XfBt4F3AbcCWyvqs/2pfSSJHUwSCtJkiRJGkXpkVZTzNMzPcnjaXrZLgf2Bx6T5JU9D56cmGRTkk3btm2bRrElSdqdQVpJkiRJ0ijaChzYsbyU3Ycm2JmnHb5gH+DuCbZ9IXBLVW2rqp8CnwCe0+vgVbWuqlZV1aolS5bMQHUkSfOZQVpJkiRJ0ii6FliRZHmSvWhe8LWxK89G4Ph2/mjg8qqqNn1tkkVJlgMrgGtohjk4PMmj27FrjwBuHEBdJEnz3MJhF0CSJEmSpOmqqh1JTgIuAxYAF1TV5iRnAJuqaiNwPnBRki00PWjXtttuTvIx4AZgB/C6qnoIuDrJBuD6Nv1LwLpB102SNP8YpJUkSZIkjaSquhS4tCvttI75+4Fjxtn2TODMHulvA942syWVJGliBmklSZIkSZJmsyveMewSSOozx6SVJEmSJEmSpCGyJ60kSZIkSdIo6+xp+5unDq8ckvaYPWklSZIkSZIkaYgM0kqSJEmSJEnSEBmklSRJkiRJkqQhMkgrSZIkSZIkSUNkkFaSJEmSJEmShsggrSRJkiRJkiQN0cCCtEkWJPlSkk8N6piSJEmSJEmSNNsNsiftG4AbB3g8SZJmhSSrk9yUZEuSU3qsX5Tkknb91UmWdaw7tU2/KcmLO9L3TbIhydeT3Jjk2YOpjTQ9X7j5Lr5w812c/blvDLsokiRJ0qy1cBAHSbIU+C3gTODNgzimJEmzQZIFwLnAkcBW4NokG6vqho5sJwD3VNXBSdYCZwHHJlkJrAWeCuwPfD7JIVX1EPBe4DNVdXSSvYBHD7Ba0h7pDtS+6chDhlQSSZIkaXYZSJAWeA/wFuBxAzqeJEmzxWHAlqq6GSDJemAN0BmkXQOc3s5vAM5JkjZ9fVU9ANySZAtwWJLNwPOAVwNU1YPAg/2vijS5L9x817CLIEnSnNfd3j77SYuHVBJJM6Xvwx0k+W3ge1V13QR5TkyyKcmmbdu29btIkiQN0gHA7R3LW9u0nnmqagewHVg8wbZPArYBH2zHez8vyWP6U3xJkiRJUr8NYkza5wIvTXIrsB54QZKPdGaoqnVVtaqqVi1ZsmQARZIkaWDSI62mmGe89IXAM4H3V9UzgPuA3ca6BR+ESpIkSdIo6HuQtqpOraqlVbWMZly9y6vqlf0+riRJs8RW4MCO5aXAHePlSbIQ2Ae4e4JttwJbq+rqNn0DTdB2Nz4IlSRJkqTZbxA9aSVJms+uBVYkWd6+4GstsLErz0bg+Hb+aJoHmtWmr02yKMlyYAVwTVV9B7g9yaHtNkew6xi3kiRJmke+cPNdOydJo2lQLw4DoKquBK4c5DElbH0E1QAAIABJREFUSRqmqtqR5CTgMmABcEFVbU5yBrCpqjYC5wMXtS8Gu5smkEub72M0AdgdwOuq6qF2138EXNwGfm8GXjPQiknTdPht63bOf/GgE4dYEklzSZLVwHtp2tjzquovutYvAj4MPAu4Czi2qm5t150KnAA8BLy+qi5r0/cFzgOeRjPM0O9X1RcGUiFpAgZgpbltoEFaSZLmo6q6FLi0K+20jvn7gWPG2fZM4Mwe6V8GVs1sSSVJGh1JFgDnAkfSDAV0bZKNVdX565ITgHuq6uAka4GzgGOTrKR5KPpUYH/g80kOaR+Gvhf4TFUd3T4MffQAqyVJmqcc7kCSJEmSNIoOA7ZU1c1V9SDNi6rXdOVZA1zYzm8AjkiSNn19VT1QVbcAW4DDkuwNPI/mVy5U1YNV9YMB1EWSNM8ZpJUkSZIkjaIDgNs7lre2aT3zVNUOYDuweIJtnwRsAz6Y5EtJzkvymP4UX5KknzNIK0mSJEkaRemRVlPMM176QuCZwPur6hnAfcApPQ+enJhkU5JN27Ztm3qpJUnqwSCtJEmSJGkUbQUO7FheCtwxXp4kC4F9aF7SOd62W4GtVXV1m76BJmi7m6paV1WrqmrVkiVLHmZVJEnznUFaSZIkSdIouhZYkWR5+4KvtcDGrjwbgePb+aOBy6uq2vS1SRYlWQ6sAK6pqu8Atyc5tN3mCOAGJEnqs4XDLoAkSZIkSdNVVTuSnARcBiwALqiqzUnOADZV1UaaF4BdlGQLTQ/ate22m5N8jCYAuwN4XVU91O76j4CL28DvzcBrBloxSdK8ZJBWkiRJkjSSqupS4NKutNM65u8Hjhln2zOBM3ukfxlYNbMllSRpYg53IEmSJEmSJElDZJBWkiRJkiRJkobIIK0kSZIkSZIkDZFBWkmSJEmSJEkaIoO0kiRJkiRJkjREBmklSZIkSZIkaYgM0kqSJEmSJEnSEBmklSRJkiRJkqQhMkgrSZIkSZIkSUNkkFaSJEmSJEmShsggrSRJkiRJkiQNkUFaSZIkSZIkSRoig7SSJEmSJEmSNEQGaSVJ6rMkq5PclGRLklN6rF+U5JJ2/dVJlnWsO7VNvynJi7u2W5DkS0k+1f9aSJIkSZL6ZeGwCyBJ0lyWZAFwLnAksBW4NsnGqrqhI9sJwD1VdXCStcBZwLFJVgJrgacC+wOfT3JIVT3UbvcG4EZg7wFVR5IkSbPc2Z/7xi7LbzrykCGVRNJ0GKSVJKm/DgO2VNXNAEnWA2uAziDtGuD0dn4DcE6StOnrq+oB4JYkW9r9fSHJUuC3gDOBNw+iIlIvYzeCh99215BLIkmSJI0uhzuQJKm/DgBu71je2qb1zFNVO4DtwOJJtn0P8BbgZzNfZEmSJEnSIBmklSSpv9IjraaYp2d6kt8GvldV10168OTEJJuSbNq2bdvkpZUkaYQ47rskaa4wSCtJUn9tBQ7sWF4K3DFeniQLgX2AuyfY9rnAS5PcCqwHXpDkI70OXlXrqmpVVa1asmTJw6+NJEmzRMe470cBK4Hj2vHcO+0c9x04m2bcd7rGfV8N/HW7vzFj475LkjQQBmklSeqva4EVSZYn2YvmhnBjV56NwPHt/NHA5VVVbfrathfQcmAFcE1VnVpVS6tqWbu/y6vqlYOojCRJs8jOcd+r6kGaB5druvKsAS5s5zcAR3SP+15VtwBj477TMe77eQOogyRJgC8OkySpr6pqR5KTgMuABcAFVbU5yRnApqraCJwPXNS+GOxumsArbb6P0bxkbAfwuqp6aCgVkfqg8+3Tvnla0h7oNXb7r42Xp22TO8d9/2LXtt3jvj+uD2WWJKkng7SSJPVZVV0KXNqVdlrH/P3AMeNseyZw5gT7vhK4cibKKUnSiOnruO9Jnj/hwZMTgRMBDjrooMlLK0nSBBzuQJIkSZI0ihz3XZI0ZxiklSRJkiSNIsd9lyTNGQ53IEmSJEkaOY77LkmaSwzSSpIkSZJGkuO+S5Lmir4Pd5DkwCRXJLkxyeYkb+j3MSVJkiRJkiRpVAyiJ+0O4I+r6vokjwOuS/K5qrphAMeWJEmSJEmSpFmt7z1pq+rOqrq+nf8RcCNwQL+PK0mSJEmSJEmjYKBj0iZZBjwDuHqQx5UkSVIfXPEODr/trmGXQpIkSRp5fe9JOybJY4GPA2+sqh92rTsxyaYkm7Zt2zaoIkmSJEmSJEnS0A0kSJvkETQB2our6hPd66tqXVWtqqpVS5YsGUSRJEmSJEmSJGlW6HuQNkmA84Ebq+qv+n08SZIkSZIkSRolg+hJ+1zg94AXJPlyO71kAMeVJEmSJEmSpFmv7y8Oq6qrgPT7OJIkSZIkSZI0igb24jBJkiRJkiRJ0u763pNWkiRJkiRJ03P2576xc/7w2+4aYkkkDYI9aSVJkiRJkiRpiAzSSpIkSZIkSdIQGaSVJEmSJEmSpCEySCtJkiRJkiRJQ2SQVpKkPkuyOslNSbYkOaXH+kVJLmnXX51kWce6U9v0m5K8uE07MMkVSW5MsjnJGwZXG0mSJEnSTDNIK0lSHyVZAJwLHAWsBI5LsrIr2wnAPVV1MHA2cFa77UpgLfBUYDXw1+3+dgB/XFVPAQ4HXtdjn5IkSZKkEWGQVpKk/joM2FJVN1fVg8B6YE1XnjXAhe38BuCIJGnT11fVA1V1C7AFOKyq7qyq6wGq6kfAjcABA6iLJEmSJKkPFg67AJIkzXEHALd3LG8Ffm28PFW1I8l2YHGb/sWubXcJxrZDIzwDuHomCy1N5OzPfQOAw2+7a8glkTTfJVkNvBdYAJxXVX/RtX4R8GHgWcBdwLFVdWu77lSaX7M8BLy+qi5LcmCb/5eAnwHrquq9A6qOtIvDb1s37CJIGiCDtJIk9Vd6pNUU80y4bZLHAh8H3lhVP+x58ORE4ESAgw46aCrllSRpJHQMKXQkzYPMa5NsrKobOrLtHFIoyVqaIYWO7RpSaH/g80kO4edDCl2f5HHAdUk+17VPaaSMPVwd86YjDxlSSSRNxOEOJEnqr63AgR3LS4E7xsuTZCGwD3D3RNsmeQRNgPbiqvrEeAevqnVVtaqqVi1ZsuRhVkWSpFnFIYUkSXOGQVpJkvrrWmBFkuVJ9qLptbOxK89G4Ph2/mjg8qqqNn1tkkVJlgMrgGvam8vzgRur6q8GUgtJkmafXkMKdQdUdxlSCOgcUmjCbScbUijJiUk2Jdm0bdu2Pa6EJElgkFaSpL5qbwhPAi6j6Y3zsaranOSMJC9ts50PLE6yBXgzcEq77WbgY8ANwGeA11XVQ8Bzgd8DXpDky+30koFWTJKk4RvqkEL+WkWSNJMck1aSpD6rqkuBS7vSTuuYvx84ZpxtzwTO7Eq7it43l5IkzSfTGVJo60wPKSRJ0kyyJ60kSZIkaRQ5pJAkac6wJ60kSZKGzjdPS5quqtqRZGxIoQXABWNDCgGbqmojTcD1onZIobtpArm0+caGFNpBO6RQkl+nGVLoq0m+3B7qv7W/ipEkqW8M0kqSJEmSRpJDCkmS5gqHO5AkSZIkSZKkITJIK0mSJEmSJElDZJBWkiRJkiRJkobIMWklSZI0UIfftm7n/BcPOnGIJZEkSZJmB3vSSpIkSZIkSdIQGaSVJEmSJEmSpCFyuANJkiRN3RXv4PDb7hp2KSRJmnPO/tw3dlk+fA/347BC0mgySCtJkiRJkjQLdAZYJc0vDncgSZIkSZIkSUNkT1pJkiRJkqR5onNYhTcdecgQSyKpkz1pJUmSJEmSJGmI7EkrSZKkCXX2uPGlYZIkSdLMM0grSZI0R3W/JdqfNEqSJEmzk0FaSZIkzTqOlydJkqT5xCCtJEmSRpoBXUmSJI06g7SSJEnzxGwMZh5+27qd81886MQpbdM9jMNE62ZLPSVJc8tcbW8mamPnSh2l2cogrSRJkma1iW4YJUkahH61RcNu46Zz/Nn4sFeaSwYSpE2yGngvsAA4r6r+YhDHlSRpNpisHUyyCPgw8CzgLuDYqrq1XXcqcALwEPD6qrpsKvvU/NWPm73O3q6jxhtKaW6zjdVsMVvbmz35xcpUzNWexNIw9T1Im2QBcC5wJLAVuDbJxqq6od/HHo9fJpKkQZliO3gCcE9VHZxkLXAWcGySlcBa4KnA/sDnk4w1WrOqbdXomU4w9/A+lmOX4/TpRlLS3GQbq37b0wef0x0yYFAPQ21npdltED1pDwO2VNXNAEnWA2uAgTZyw/4JgSRp3ppKO7gGOL2d3wCckyRt+vqqegC4JcmWdn9MYZ8aMXt6rTJXb7hmol7d+5jsHM+3B/eDOB+z7Rp8vv0fzwO2sZrUbPsemi3lmaydHW/9eOmOZburYXQOHPZnaz7+P8+0QQRpDwBu71jeCvxaZ4YkJwJjf933JrmpY/V+wPf7WcA393PnU9P3Os4C86GOMD/qaR3njlGt5y8PuwDTNGk72JmnqnYk2Q4sbtO/2LXtAe38ZPsEJm1j54tR/azvgXdPNeOInZMp12tP97Ef8P1ZcE04W8zZ8/Ew6jRifzN7zDa2Maw2dr58zqbDc7KrPp2PydrZ8dZPrX3uc3syEp+RAbapQzsfs/S6YTZ9PiZtYwcRpE2PtNploWod0LN/f5JNVbWqHwWbLazj3DEf6mkd5475Us9ZYNJ2cII846X/whT22SRO0MbOF37Wd+c52ZXnY1eej915TmatOdXG+jnbnedkV56P3XlOduX52NWonY9eDdBM2woc2LG8FLhjAMeVJGk2mEo7uDNPkoXAPsDdE2xr2ypJkm2sJGkOGUSQ9lpgRZLlSfaiGZx94wCOK0nSbDCVdnAjcHw7fzRweVVVm742yaIky4EVwDVT3KckSXOdbawkac7o+3AH7bg/JwGXAQuAC6pq8zR2MR9+omkd5475UE/rOHfMl3oO1XjtYJIzgE1VtRE4H7iofWnJ3TQ3hLT5PkbzspIdwOuq6iGAh9m2zjd+1nfnOdmV52NXno/deU5moTnYxvo5253nZFeej915Tnbl+djVSJ2PNA8RJUmSJEmSJEnDMIjhDiRJkiRJkiRJ4zBIK0mSJEmSJElDNGuDtElWJ7kpyZYkpwy7PA9HkguSfC/J1zrSnpDkc0m+2f77+DY9Sd7X1vsrSZ45vJJPXZIDk1yR5MYkm5O8oU2fM/VM8sgk1yT5t7aO/2+bvjzJ1W0dL2lfMED7EoJL2jpenWTZMMs/HUkWJPlSkk+1y3Oxjrcm+WqSLyfZ1KbNmc8rQJJ9k2xI8vX2b/PZc62OUrckpyf5dvu3/eUkL+lYd2r7Gb8pyYs70ufMNcdk5lNdu82H7/2JZIauR5Mc3+b/ZpLjex1rFIxzPvz+UF8lOSbNfcTPkqzqWjetz9h41+ejyr+/yc23+o6x/bb97jan2/CqmnUTzQDt/w48CdgL+Ddg5bDL9TDq8zzgmcDXOtLeCZzSzp8CnNXOvwT4NBDgcODqYZd/inV8IvDMdv5xwDeAlXOpnm1ZH9vOPwK4ui37x4C1bfoHgD9s5/8v4APt/FrgkmHXYRp1fTPwt8Cn2uW5WMdbgf260ubM57Ut94XAa9v5vYB951odnZy6J+B04OQe6Svb64lFwPL2OmPBXLvmmOTczJu6jlP/Of+9P0n9H/b1KPAE4Ob238e3848fdt1m8Hz4/eHU1wl4CnAocCWwqiN92p8xxrk+H9XJv79Jz8+8qm9X3W2/bb+nck7mxHfIbO1JexiwpapurqoHgfXAmiGXaY9V1f9P8ybRTmtoAii0/76sI/3D1fgisG+SJw6mpHuuqu6squvb+R8BNwIHMIfq2Zb13nbxEe1UwAuADW16dx3H6r4BOCJJBlTcPZZkKfBbwHntcphjdZzAnPm8JtmbpvE6H6CqHqyqHzCH6ihN0xpgfVU9UFW3AFtorjfm1DXHJOZTXadq3nwnztD16IuBz1XV3VV1D/A5YHX/Sz/zxjkf4/H7QzOiqm6sqpt6rJrWZ2yS6/O5xr+/xnyr72Rsv+dp+w1zuw2frUHaA4DbO5a3tmlzyS9W1Z3QBDiB/9Cmj3zd0/zk/Rk0PU3nVD3TDAPwZeB7NF9s/w78oKp2tFk667Gzju367cDiwZZ4j7wHeAvws3Z5MXOvjtAE2D+b5LokJ7Zpc+nz+iRgG/DBNENXnJfkMcytOkrjOan9idcFYz//YvzP+Hz67M+nuvYy17/398R06z8fzovfHxqG6X7GJro+H2X+/Y1vvtW3k+337my/exv575DZGqTt1ROvBl6K4Rjpuid5LPBx4I1V9cOJsvZIm/X1rKqHqurpwFKaJy9P6ZWt/Xfk6pjkt4HvVdV1nck9so5sHTs8t6qeCRwFvC7J8ybIO4r1XEjzE5D3V9UzgPtofgoznlGso+apJJ9P8rUe0xrg/cCvAE8H7gTePbZZj13VBOlz0Xyqay9z/Xt/Js3Xvxe/P/SwTdJGjbtZj7SJPmMj+dmz/X5Y5lt9O9l+T918/nuZE98hC4ddgHFsBQ7sWF4K3DGksvTLd5M8sarubLuff69NH9m6J3kETYD24qr6RJs85+oJUFU/SHIlzTgv+yZZ2D7J7qzHWB23JlkI7MPUu+QPy3OBl7aDbD8S2JumZ+1cqiMAVXVH++/3kvw9TdB9Ln1etwJbq+rqdnkDTZB2LtVR81RVvXAq+ZL8DfCpdnGiz/h8+ezP67/zefC9vyemW/+twPO70q8cQDkHoqq+Ozbv94f21FTbqC7T/Yx9n/Gvz2ct2++HZb60S7ux/e7J9rvLXGnDZ2tP2muBFWneWLkXzQuJNg65TDNtIzD2Rr3jgU92pL8qjcOB7WPd2Gezdlyk84Ebq+qvOlbNmXomWZJk33b+UcALacbevQI4us3WXcexuh8NXF5VQ38yM5GqOrWqllbVMpq/u8ur6hXMoToCJHlMkseNzQMvAr7GHPq8VtV3gNuTHNomHQHcwByqo9RL17hj/yfN3zY0n/G1SRYlWQ6sAK5hflxzjJlPdd3FfPje30PTrf9lwIuSPL79GeGL2rQ5we8PDdG0PmPt9fZ41+cjyb+/Sc23+gK23xOw/e4yZ75Daha8ma3XRPNWum/QjPn5p8Muz8Osy0dpulv/lCaKfwLNOEL/BHyz/fcJbd4A57b1/iodb/2czRPw6zRdw78CfLmdXjKX6gn8R+BLbR2/BpzWpj+J5o98C/B3wKI2/ZHt8pZ2/ZOGXYdp1vf5wKfmYh3b+vxbO20e+46ZS5/XttxPBza1n9l/oHmT55yqo5NT9wRc1H6Gv0JzofXEjnV/2n7GbwKO6kifM9ccUzg/86auXfWeF9/7k5yDGbkeBX6/bfe3AK8Zdr1m+Hz4/eHU14kmcLAVeAD4LnBZx7ppfcYY5/p8VCf//qZ0juZVfds6237bfk/1nMyJ75C0BZMkSZIkSZIkDcFsHe5AkiRJkiRJkuYFg7SSJEmSJEmSNEQGaSVJkiRJkiRpiAzSSpIkSZIkSdIQGaSVJEmSJEmSpCEySCtJkiRJkiRJQ2SQVpIkSZIkSZKGyCCtRk6S30hy07DLMR8lWZakkiwcdlkkSTMjyQeSvHWC9ZXk4EGWaT5J8uokVw27HJKkmTdZG6v+8hpGo8YgrUZOVf1LVR06k/vsvkFKcmuSB5Ps15Xvy+0X/bJ2+UNtvnuT3J3kc0me3JF/ZZKNSbYn+VGSK5I8p2P9WNDz3na6NckpHevv7Zh+luQnHcuv6Cp/JfndrvI+v00/tyv9qnab/9axv/uTPNSxvPnhn9nekjwhyd8nuS/Jt5L85wny/mZ73rYnubXH+uckuaY9v19J8utd2341yQ+S3NUe84CO9Zu7zvGOJP9jxissSbNYVf1BVf3ZTO+3bSPf3s6PtXfXd+XZr21Hb+1Iu7Wjvftukg8meWzH+t9uv/fva7/bL06ytGP9qzvasx8m+bckv92u+42O7/z7utrge5Mc1FX+HUn27yrz6e12x3SkLRy7Pkjy6Y79/bTjOuHeJB+YwVO8iyRPT3Jdkh+3/z59grzjtsNJfqu9TvhBku8k+Zskj+tYP27bmeSQJJ9Msi3NddFlSWb0mk2SRkk/2tj2Hm9rx/KVbRv0q135/qFNf367fHrbLt3bfsf/a5Jnd+Rf2rapd7XtwzVj7WdHnmrX3Zvk20n+KsmCdl1n+/BQmvvLseX/1lX+SvKWrn2PXSv8Y1f6R9qyv6Jjfz9Jc3+8sz2agVPbU5JFSS5orym+k+TNE+Q9vm2Df5hka5J3pqODU1f7OXae/nu7bq8kG9JcB+38f+vY9k+SfC3Nfe8tSf6kX3XW8BiklcZ3C3Dc2EKS/w14VI9876yqxwJLge8BH2rz/wrwP4GvAsuB/YG/Bz7b2Ri29m33cTTw1iRHAlTVY8cm4DbgdzrSLu7Y/njg7vbfbvcBr0obWO5UVX/esf8/AL7Qsf+nTnBuHq5zgQeBXwReAbw/yXjHuw+4ANitEUryBGAj8JfAvsA7gf+R5PFtlhuAF1fVvjTn/5vA+8e2r6qndtT/cTTn+O8efvUkSeN4TJKndSz/Z5r2ttvvtN/NzwT+d+D/AUhyNPC3wHuB/YCnAg8AV3V890PbntG0DX8NrE+yb/ugd+x7f6zd2bej7butPc5jgJcD22naqW53A2eM3Zh2qqqjOo5xMe11Qjv9wRTO0bQl2Qv4JPAR4PHAhcAn2/ReJmqH9wHeTtNuPoXm+uYvxzacpO3cl6ZdPrTd9zVtuSRJ/fUN4FVjC0kWA4cD27ryXdJ+fy8BrgI+kcYT2uUHadrH/YCzgb9t295Ov9ru4/8AjgV+H3ZrH/4FOKmj/fvzju0nuncFODzJc7sTq+rijv0fBdzRdb/cL6cDK4BfBn4TeEuS1ePkfTTwRprz92vAEcDJHXXoLO8vAj9h1/vPq4BXAt/pse/Q/B8/HlgNnJRk7Z5XS7ORQVpNS/tU59QkNyS5J03vlkd2rP8vSba0vSc2pu190n7xn53ke2l6RH6l6yat17Fe0h7nR+1TupPb9J1PDpMc2/Uk6oEkV7brFiV5V5Lb0vTE+UCSXkHW8VxER0NH04h8eLzMVfVjmhvHsXqdTnOT+KdVdXdV/aiq3tfu96xx9rEJ2AyM2/ulW5JfpmkgTwRenOQXu7L8gCZw/Lap7nMax355+5l4WpJHtk8570rzZPbaHmXpvPF9a1XdW1VX0dzQ/V6vY1TVNVV1EXBzj9XPAb5bVX9XVQ9V1UdoLkT+U7vtd6vqjo78DwHj/dzlecB/AD4+tdpLUv8MuL3d2eO1Xf6TJHcmuSPJ73ek75XmFyV/1C4vSPI/k5w2japdxK43Za9i4rb128CngaclCfBu4O3tjdpPquo7wGuBe4E39dj+Z+0xH0NzgzVVL6dpP8+g903kZ2huZF85jX1OSZK/TNOTdZ8kByf55/b/8vtJLhlns+cDC4H3VNUD7fVGgBf02P+E7XBV/W1VfaaqflxV9wB/A+x2s9zape1s2+zz2+uen9Lc4B/aBgskaVYYVhs7dh+b5I/bfdyZ5DUdeR+V5N1pfuGwvW0Lpnr/ejFwbH7+8PA4mg5CD/bK3H5HXwj8ErCYpg29Fzihqr7TtrEfBc4E3t22wd372ELTKWk6966PpumY9DpgRZJVPbK9k+Zh4YxK8utJbk/za8vp/F++Cvizqrqnqm6kaRdf3StjVb2/fSD8YHsNczHjt6FH03Ty+pd22wer6j1tu/xQj32/s6qur6odVXUTzUPQ8fatEWWQVnviFcCLgV8BDuHnvVteALwD+F3gicC3gPXtNi+iuZA/hKaXxbHAXZMc53zgv1bV42gCn5d3Z6iqSzqeRO1PE8j7aLv6rPZ4T6cJzB0ATOdG8ovA3kme0jZ2x9L0UOkpzU8xXwF8qU06kt69Mj8GPLdtoLr3cThNXbdMo5yvAjZV1ceBG+nd4+dM4OWZwZ8cthcUZwEvrKqv0dzE7gMcSNPQ/wHNk8FuhwAPVdU3OtL+jZ/3aJpWMdqpO21nA5vkoCQ/aMtyMk2j38vxwIaqum8PyiFJ/TCo9nanND1DTqZpw1YALxxbV1VjQckzkjwFOAVYQNPGTNVHgLVtgPcpND0xr56gPAcCL6FpWw8FDqKrbW0DsR9vy9y9/QLgNcBPac7TVB1Pcz2xHnhykmd2rS/grcDbkjxiGvsdV5JfSPI3wH8EXlRV24E/Az5L02tmKfDfx9n8qcBXqqo60r5C77Z1uu3w82geIPcyWdv5POA7VTXlz6AkDcjA29jWL9HcMx0AnACcm5//EuRdwLNoOqI8AXgL8LMp7vcOml8RvqhdnvAhaJJFNIHGrVX1fZo29ONtm9rpYzRt7yE99vFk4DeY3r3ry2mCwX8HXMaunaLGnAsckuSFPdbtkSQvpmnXX15VVzDF/8v2/2Z/mnZyzHTuXSdrQz/c1XZPSRs0/40J9q0RZZBWe+Kcqrq9qu6muTEbGxLgFcAF7dOdB4BTgWen+Zn9T2luxJ4MpKpurKo7JznOT4GVSfZun1pdP17GJL9A04v1yqr6/9ovrf8CvGmsFyvw58B0fw4w1pv2SODrwLd75Dm5DQJuAR7Lz5+q7Qf0quOdNH97nT/L/H6SnwBfoPlZ5j9Mo4yvoqk77b+79fhpexp9gKZH0Ex4I83wA89vn6BC8/+1GDi47dV6XVX9sMe2j6X5+Win7TSfj+n6V2D/JMcleUSS42kutHYGwKvqtna4g/1oLr6+3r2Tjie6H9qDMkhSvwyqve30u8AHq+prbeDt9M6V7UO5t9P0zjkZ+L2q2q23xwS2AjfRBH8n+oXKP7Rt61XAP9O04WPjxI/XtnaOI394u/39NDe9r6yq702lgGnGpf1N4G+r6rvAP9G7bd1I8+uN105lv5N4BM3N4xNohnr4cZv+U5qfV+5fVfe3vWt6mU7bOuW8aYZfOp4eD7knazvTjBN8LjDu2H2SNERcr9ErAAAgAElEQVTDaGNp93FGVf20qi6lCVge2t7P/j7whqr6dns/9a9tGabqwzTD3B1KM5TPF3rk+d22fbydJiD8sjZ9onvXsfVjrk9yH00HoStp7l+n6niaIRceorl3Pa7Hw877af5PZqo37THAOuAlVXVNmzbV/8uxYRQ6280p3bu2nZpW0VyHdK87iObXsBdOtRJdTqeJKXxwD7fXLGWQVnvi9o75b9E8WaL9d2cvlaq6l+Zp1AFVdTlwDs3F+neTrEuy9yTHeTlN75lvtT/16x7HtdOZNF+Ur2+Xl9AE6q5L89P7H9D8NHHJVCrY4SKa8fJezfg3ku+qqn2r6peq6qVV9e9t+vdpnr52eyLNE9F7OtL2o2kATv5f7N19nFxlfffxz1ci2PosxFZ5CirYglW0kYLaalQUtCW0ogZRscWmraJ3abVCraho6+PdtFaqxkKhtoKID41tFFFQby3QRAUxIBgjQkRLDBTFJ4z+7j/O2TiZzG52d3Z3ZnY/79drXjvnOtc55zdnd+ea85vrug7NkMVJ9cpJM1fPAfz82933Ar+W3jcLeRPNdAiP6LFuql4OnFlVmzvK3kPzbej5aYbIvnmc3kV3AN2/+3sB35tqEG3PnOU0F4D/QzM3zydokgDddW/l53P0Lepa/Xs08yJ9eqoxSNIsmqv2ttMDexy327nAEmBtVX11Cvse8y807erxjD9C5di2bd2/ql5UVT+kaVdh/Lb1Ox3Ll7df0N2XZij/b04hvucB11bVle3yvwHPGadN+yvglcDdeqybiofQtGevbXssj/kLmhEi/53mhix/0HPrqbWtk6rbju55L3BcV6/bMeO2nUkW0/QA/sd2uKwkDZtBtLEAW6tqW8fyD2iuA/eiaUu+1nOryfkgzTQ3L6G5NuvlgrZ9vX9VPbGqPt+WT3TtOrZ+zKPamJ9NM+/q3ScTXDs6ZhlNuwrNcP27AU/vUf3dwC8l+Z3J7HsX/pTmdV89VjCF3+XYDck61+3y2jXJscAbgaPbnsrdng98tqp6zcs/oSQnt9s/fYpJfI0Ak7Sajn07nu9HM7SC9uf+YyvSzHm2J23v06p6W1X9Os3QgIPocSOoTlW1rqqW08x19mGaoRY7STNZ9vE0FxE/aYu/QzO8/ZC2EbpPVd27pjiheFV9g+aGJk+jafSm4hM039p1exbNXLU/6Cxsvy39vzTfHL5oksc4kebi7cok3+bnQ0Z3GjbSJjT/jmboZL+eAvxVkmd07P8nVfXaqjqYZojOb/eKg2ZS+0VJOucGfATTHKpRVZ+uqkdX1f1oLqwfSnOjkl4W0fw9dTfA0x5qIkmzaE7a2y7f6nHcbv8I/AfNF3+Pm8K+x3yA5oJsU9vOTtZ1NF/C7dC2tr2PnkHT43UH7cX1i4DnJXnkJI/zfOBBae7g/G3gb2kuno/usf+LaUbSTLbdHs+1NNMyfLRzaqJq5gX8w6p6IPBHwD8m6TW3+gbg4V1zBj6c3m3rLtvh9lytAf6gqnY6r62ebWc7NPTjwJqqmspUGJI0lwbRxk7kOzTXgQ+e7g7a68uPAn/C+Ena8XyCZnq87hzRs2gS2jt8WVeNC2hGgk52SsHn0eSgPtK2r5tokrS9rl1/AryW5tp1p/lwp+iZwLFJ/rTrGLv8XVYzN/u3aNrJMRNeu7ZTR72bZmTM1eNUez7T6EXbfll7KvCkrg5TmidM0mo6XpxknzR3gPxLYOwmFu8Ffj/Joe0cN38DXFFVNyR5dJLfaHuhfJ+mARp3eGSam5OckOTe7Rv0d3vVby8i/oGmx832O1dWM5fOu4FVSe7f1t27nYtmqk4CnlhTn6v0tcBjkvx1kvsluWeam608H3jFBNu9keaOkRP2ymnXP4vmhmGHdjxeApzQo7coNBeaj6G5W3M/NtD0Wj0zyTFtPMuS/Fo7/993aYaQ9Jrw/Ps0Ce8zkty97Q28nHE+SLRz9N2Npndx0tygbPeO9Y9spzq4F81Qks1VdVG77veSPLTdx+L29X+x7VU7tv0+NN/oTneoiSTNlllvb3u4AHhBkoPb4ew73HQyyfNohke+gGb0yrlp5mSftLYdeCJTnCagTQa+jOZLwuekucHKLwP/RPPl26pxttva1tnlRWQ7aufBwGH8vF19GONMJ9R6JU2P1760PU7/EvhEkge38TyzbaegGYFT9P59fqotf2maG6ee3Jb3ms9/wnY4zY1TPga8pKo+0ivW8drOti2+CPhcVZ062dcuSQMwiDZ2XO3169nA3yZ5YJq5249oY5iKvwQeX1U3THG7VTRt6VlJfrm95jqepo17+QSdWd4IrGzb4115Ps01cue16zOAp6f3DSbfA+xBc93Zj5uBJ9G0kS8CmOLv8l9oPnvcN808vH/I+FP9PJGmp/AzOqZW6K7zGJo5iXe6f03bho/lAXZvfw9p151A8/d4ZFX1uqm25gGTtJqO99L0kNjUPl4P0Pa0eBVND5lv0VzkjM0Bey+apOltNMNHttJjbpYuzwNuSPJdmptQ9bqD8nKaoYyfTXJH+/hou+4VNL1bLm/38QmaXpZTUlVfq6r109juq8DjaL5pu4HmnDwDeGpVfW6CTf+T5jz94S4OcSxNb+F/aXvafLuauWfPormRy06NWTVzxL6ZZs67vlTVVTS9Zd+d5GiaSfAvpEnQXksz/HG8YawvAn6B5m6W5wF/UlUbAJL8ZpI7Our+Vvs619J8y/1Dmr+/MX9B883zTTTDcX63Y93eNBea3wOupplmonM9NH9nl3VMUyFJw2Ku2tvtquqjNKMuLqFpQ7cn+dLMn/Z3wPOr6o6qei+wnnGSo7s4zvrpvO9W1fto3rdPoXnvv4amPXlsTXxzqr8Dnpbk4bs4xInAv1fV1V1t698Dv91ezHfH9DnGH8ExJVV1Ls388Zekmf/w0cAVbbu4hmauwp2GRrZTJBxLcwH8vzTzGh47NnVCkr/s+HwEE7TDwJ/TTA91Vsdnq+4eQ+O1nb/bxvz7Hdve0f7tSNIwmfM2dhJeRnPNso5mOpk3McWcTVXdXOPPXz7Rdltprl3vRtO2bqWZUu55bds73nZX01z3TdijOM0UOktopsz7dsdjDc3njeO7t6lm3tpXMzPXrjfSJGpfkeSFTO13+WqaaSi+QfNa31JVH2tf135d7dyraG4Mt7ZHfmLMicAHq7lvTrfraK5396b50vOH/Lxn9+tpenWv69j3O6d0IjT04uheTUWSG4AXVtUnBh2LJEnzle2tJEmzwzZW0rCyJ60kSZIkSZIkDZBJWg1UmjsV39HjccKgY5Mkab6wvZUkaXbYxkqaKU53IEmSJEmSJEkDZE9aSZIkSZIkSRogk7SSJEmSJEmSNECLBh1At7322quWLFky6DAkSUPq85///HeqavGg4xhFtrGSpInYxk6fbawkaSKTaWOHLkm7ZMkS1q9fP+gwJElDKsk3Bh3DqLKNlSRNxDZ2+mxjJUkTmUwb63QHkiQNSJKjklyXZGOSU3us3yPJ+9r1VyRZ0pYvSfLDJFe2j3fOdeySJEmSpJkzdD1pJUlaCJLsBpwJHAlsBtYlWVNV13RUOwm4raoekmQF8Cbg2e26r1XVoXMatCRJkiRpVtiTVpKkwTgM2FhVm6rqTuB8YHlXneXAue3zC4EnJckcxihJkiRJmgN9JWknMUxzVcdQzOuT/G8/x5MkaR7ZG7ipY3lzW9azTlVtA24H9mzXHZDki0k+neQ3ZztYSZIkSdLsmfZ0B5MZpllVp3TUfwnwyD5ilSRpPunVI7YmWedbwH5VtTXJrwMfTnJIVX13p4MkK4GVAPvtt1+fIUuSJEmSZkM/PWknM0yz0/HAeX0cT5Kk+WQzsG/H8j7AzePVSbIIuDdwa1X9uKq2AlTV54GvAQf1OkhVra6qpVW1dPHixTP8EiRJGj5Jzk5yS5Ivj7P+5R0jPr+c5KdJ7teuuyHJ1e269XMbuSRpIesnSTuZYZoAJNkfOAC4ZJz1K5OsT7J+y5YtfYQkSdLIWAccmOSAJLsDK4A1XXXWACe2z48DLqmqSrK4HdFCkgcBBwKb5ihuSZKG3TnAUeOtrKq3VNWh7Q04TwM+XVW3dlRZ1q5fOstxSpK0XT9J2skM0xyzAriwqn7aa6W9fCRJC007x+zJwEXAtcAFVbUhyRlJjmmrnQXsmWQj8GfA2PzvvwV8KclVNDcU++Oui0tJkhasqvoMMNl20RGfkqShMO05aZncMM0xK4AX93EszXeXvuHnz5edNrg4hlHnuQHPjzSPVNVaYG1X2ekdz38EPLPHdh8APjDrAY5j1cXXj7vulCN3nHWhs+5E6+ZiP9315mI/wxzrRPuYrf1I0jBJ8os0PW5P7igu4ONJCnhXVa0eSHCTsOri632PlaR5pJ8k7fZhmsA3aRKxz+mulOShwH2By/o4liRJkkbcVJK9U0laS9I0/Q7wua7RKI+tqpuT3B+4OMlX2p65O/HmnJKkmTTtJG1VbUsyNkxzN+DssWGawPqqGptX73jg/KoabyoESZIkadJM2kqaISvomuqgqm5uf96S5EM0N8zumaRte9muBli6dKnXu5KkvvTTk3aXwzTb5df0cwxJkiRJkmZSknsDjwee21F2d+AuVfW99vlTgDMGFKIkaYHpK0krSZIkSdIwSXIe8ARgrySbgVcDdwWoqne21X4X+HhVfb9j018CPpQEmmvl91bVx+YqbknSwmaSVpIkTcnhN050D5W3TlB3onWzv5+d683FfoY31on3MQz7md4xJKmqjp9EnXOAc7rKNgGPmJ2oJEma2F0GHYAkSZIkSZIkLWQmaSVJkiRJkiRpgEzSSpIkSZIkSdIAmaSVJEmSJEmSpAEySStJkiRJkiRJA2SSVpIkSZIkSZIGyCStJEmSJEmSJA2QSVpJkiRJkiRJGiCTtJIkSZIkSZI0QCZpJUmSJEmSJGmATNJKkiRJkiRJ0gCZpJUkSZIkSZKkATJJK0mSJEmSJEkDZJJWkiRJkiRJkgZo0aADkCRJkmbKqouv32H5lCMPGlAkkiRJ0uTZk1aSJEmSJEmSBqivJG2So5Jcl2RjklPHqfOsJNck2ZDkvf0cT5IkSZIkSZLmm2lPd5BkN+BM4EhgM7AuyZqquqajzoHAacBjq+q2JPfvN2BJkiRpOpwKQZIkScOqn560hwEbq2pTVd0JnA8s76rzh8CZVXUbQFXd0sfxJEmSJEnapSRnJ7klyZfHWf+EJLcnubJ9nN6xbpcjRiVJmmn9JGn3Bm7qWN7clnU6CDgoyeeSXJ7kqD6OJ0mSJEnSZJwD7Or68/9V1aHt4wzYYcTo0cDBwPFJDp7VSCVJor8kbXqUVdfyIuBA4AnA8cA/JbnPTjtKViZZn2T9li1b+ghJkiRJkrTQVdVngFunselkRoxKkjTj+knSbgb27VjeB7i5R51/r6qfVNXXgetokrY7qKrVVbW0qpYuXry4j5AkSZIkSZqUI5JcleSjSQ5pyyYzYlSSpBnXT5J2HXBgkgOS7A6sANZ01fkwsAwgyV400x9s6uOYkiRJkiT16wvA/lX1COAfaK5dYXIjRpuKjgiVJM2gaSdpq2obcDJwEXAtcEFVbUhyRpJj2moXAVuTXANcCry8qrb2G7QkSZIkSdNVVd+tqjva52uBu7YdiyYzYnRsH44IlSTNmEX9bNw2Zmu7yk7veF7An7UPSZIkSZIGLskvA/9TVZXkMJoOTFuB/6UdMQp8k2bE6HMGF6kkaaHoZ7oDacZctmnr9ockLSRJjkpyXZKNSU7tsX6PJO9r11+RZEnX+v2S3JHkZXMVsyRJwy7JecBlwEOTbE5yUpI/TvLHbZXjgC8nuQp4G7CiGj1HjA7iNUiSFpa+etJKkqTpS7IbcCZwJM3wynVJ1lTVNR3VTgJuq6qHJFkBvAl4dsf6VcBH5ypmSZJGQVUdv4v1bwfePs66nUaMSpI02+xJK0nS4BwGbKyqTVV1J3A+sLyrznLg3Pb5hcCTkgQgybE0N+S0h48kSZIkjTB70kqSNDh7Azd1LG8GfmO8OlW1LcntwJ5Jfgi8gqYXrlMdSNOw6uLrd1g+5ciDBhSJJEmSFjqTtJIkDU56lNUk67wWWFVVd7Qda3sfIFkJrATYb7/9phmmNDoOv3F1V8lbx113+X4r5yAiSZIkaddM0kqSNDibgX07lvcBbh6nzuYki4B7A7fS9Lg9LsmbgfsAP0vyo3aOve2qajWwGmDp0qXdCWBJkiRJ0hAwSStJ0uCsAw5McgDwTWAF8JyuOmuAE2nuUH0ccElVFfCbYxWSvAa4oztBK0mSJEkaDSZpJUkakHaO2ZOBi4DdgLOrakOSM4D1VbUGOAt4T5KNND1oVwwuYml+mWhqBC59w46rlp026/FIkiRp4TJJK0nSAFXVWmBtV9npHc9/BDxzF/t4zawEJy1gl23ausPyEcsGFIgkSZIWhLsMOgBJkiRJkiRJWshM0kqSJEmSJEnSAJmklSRJkiRJkqQBMkkrSZIkSZIkSQNkklaSJEmSJEmSBsgkrSRJkiRJkiQNkElaSZIkSZIkSRogk7SSJEmSJEmSNEAmaSVJkiRJkiRpgPpK0iY5Ksl1STYmObXH+hck2ZLkyvbxwn6OJ0mSJEmSJEnzzaLpbphkN+BM4EhgM7AuyZqquqar6vuq6uQ+YpQkSZIkSZKkeaufnrSHARuralNV3QmcDyyfmbAkSZIkSZq6JGcnuSXJl8dZf0KSL7WP/0ryiI51NyS5uh0Jun7uopYkLXT9JGn3Bm7qWN7clnV7Rtv4XZhk3z6OJ0mSJEnSrpwDHDXB+q8Dj6+qhwOvA1Z3rV9WVYdW1dJZik+SpJ30k6RNj7LqWv4IsKRt/D4BnNtzR8nKJOuTrN+yZUsfIUmSJEmSFrKq+gxw6wTr/6uqbmsXLwf2mZPAJEmaQD9J2s1AZ8/YfYCbOytU1daq+nG7+G7g13vtqKpWV9XSqlq6ePHiPkKSJEmSJGnSTgI+2rFcwMeTfD7JygHFJElagKZ94zBgHXBgkgOAbwIrgOd0VkjygKr6Vrt4DHBtH8eTJEmSJGlGJFlGk6R9XEfxY6vq5iT3By5O8pW2Z26v7VcCKwH222+/WY9XkjS/TbsnbVVtA04GLqJJvl5QVRuSnJHkmLbaS5NsSHIV8FLgBf0GLEmSJElSP5I8HPgnYHlVbR0rr6qb25+3AB+iuWF2T44IlSTNpH560lJVa4G1XWWndzw/DTitn2NIkiRJkjRTkuwHfBB4XlVd31F+d+AuVfW99vlTgDMGFKYkaYHpK0krSZIkSdIwSXIe8ARgrySbgVcDdwWoqncCpwN7Av+YBGBbVS0Ffgn4UFu2CHhvVX1szl+AJGlBMkkrSZIkSZo3qur4Xax/IfDCHuWbgEfMVlySJE1k2nPSSpIkSZIkSZL6Z5JWkiRJkiRJkgbIJK0kSZIkSZIkDZBJWkmSJEmSJEkaIJO0kiRJkiRJkjRAJmklSZIkSZIkaYBM0kqSJEmSJEnSAJmklSRJkiRJkqQBMkkrSZIkSZIkSQNkklaSJEmSJEmSBsgkrSRJA5TkqCTXJdmY5NQe6/dI8r52/RVJlrTlhyW5sn1cleR35zp2SZIkSdLMMEkrSdKAJNkNOBM4GjgYOD7JwV3VTgJuq6qHAKuAN7XlXwaWVtWhwFHAu5IsmpvIJUmSJEkzySStJEmDcxiwsao2VdWdwPnA8q46y4Fz2+cXAk9Kkqr6QVVta8vvBtScRCxJkiRJmnEmaSVJGpy9gZs6lje3ZT3rtEnZ24E9AZL8RpINwNXAH3ckbbdLsjLJ+iTrt2zZMgsvQZIkSZLUL5O0kiQNTnqUdfeIHbdOVV1RVYcAjwZOS3K3nSpWra6qpVW1dPHixX0HLEmSJEmaeSZpJUkanM3Avh3L+wA3j1ennXP23sCtnRWq6lrg+8DDZi1SSZIkSdKs6StJu6s7UnfUOy5JJVnaz/EkSZpn1gEHJjkgye7ACmBNV501wInt8+OAS6qq2m0WASTZH3gocMPchC1JkiRJmknTvgt0xx2pj6Tp5bMuyZqquqar3j2BlwJX9BOoJEnzTVVtS3IycBGwG3B2VW1IcgawvqrWAGcB70mykaYH7Yp288cBpyb5CfAz4EVV9Z25fxWSJEmSpH5NO0lLxx2pAZKM3ZH6mq56rwPeDLysj2NJkjQvVdVaYG1X2ekdz38EPLPHdu8B3jPrAUqSNIKSnA38NnBLVe00HVCSAH8PPA34AfCCqvpCu+5E4K/aqq+vqnPnJmpJ0kLWz3QHu7wjdZJHAvtW1X/0cRxJkiRJkqbiHOCoCdYfDRzYPlYC7wBIcj/g1cBv0HRMenWS+85qpJIk0V+SdsI7Uie5C7AK+PNd7ihZmWR9kvVbtmzpIyRJkiRJ0kJXVZ+h60abXZYD/1KNy4H7JHkA8FTg4qq6tapuAy5m4mSvJEkzop8k7a7uSH1PmrtMfyrJDcDhwJpeNw+rqtVVtbSqli5evLiPkCRJkiRJ2qXxRobucsSoJEmzoZ8k7YR3pK6q26tqr6paUlVLgMuBY6pqfV8RS5IkSZLUn/FGhk44YnSHHTgiVJI0g6adpK2qbcDYHamvBS4YuyN1kmNmKkBJkiRJkmbYeCNDdzVidDtHhEqSZtKifjbe1R2pu8qf0M+xJEmSJEmaIWuAk5OcT3OTsNur6ltJLgL+puNmYU8BThtUkJKkhaOvJK0kSZIkScMmyXnAE4C9kmwGXg3cFaCq3knT2ehpwEbgB8Dvt+tuTfI6mun9AM6oqoluQCZJ0owwSStJkiRNwaqLr99h+ZQjDxpQJJLGU1XH72J9AS8eZ93ZwNmzEZckSePp58ZhkiRJkiRJkqQ+maSVJEmSJEmSpAEySStJkiRJkiRJA2SSVpIkSZIkSZIGyCStJEmSJEmSJA2QSVpJkiRJkiRJGiCTtJIkSZIkSZI0QCZpJUmSJEmSJGmAFg06AEmSJGmUHH7j6h2WLzvr58+POOmtcxyNJEmS5gN70kqSJEmSJEnSANmTVpIkSZotl75hx+Vlpw0mDkmSJA01k7SSJEnSIJjAlSRJUsvpDiRJkiRJkiRpgEzSSpIkSZIkSdIAmaSVJEmSJEmSpAEySStJkiRJkiRJA+SNwxaqzhtVeJMKSZIkSZIkaWD66kmb5Kgk1yXZmOTUHuv/OMnVSa5M8tkkB/dzPEmSJEmSJEmab6adpE2yG3AmcDRwMHB8jyTse6vq16rqUODNwN9OO1JJkiRJkiZhEh2KVrWdia5Mcn2S/+1Y99OOdWvmNnJJ0kLVz3QHhwEbq2oTQJLzgeXANWMVquq7HfXvDlQfx5MkSZIkaUIdHYqOBDYD65KsqarOa9VTOuq/BHhkxy5+2HY0kiRpzvQz3cHewE0dy5vbsh0keXGSr9H0pH1prx0lWZlkfZL1W7Zs6SMkSZIkSdICt71DUVXdCYx1KBrP8cB5cxKZJEnj6CdJmx5lO/WUraozq+rBwCuAv+q1o6paXVVLq2rp4sWL+whJkqTRMYmhmHskeV+7/ookS9ryI5N8vp33/fNJnjjXsUuSNMQm1aEIIMn+wAHAJR3Fd2s7EV2e5NjxDmJnI0nSTOpnuoPNwL4dy/sAN09Q/3zgHX0cT5oTqy6+foflU448aECRNC7btHWH5SOWDSgQSTNqMkMxgZOA26rqIUlWAG8Cng18B/idqro5ycOAixjn4lOSpAVoUh2KWiuAC6vqpx1l+7Vt7IOAS5JcXVVf22mHVauB1QBLly51aj9JUl/6SdKuAw5McgDwTZrG7TmdFZIcWFVfbRefDnwVacgdfuPqrpK3DiQOSfPeLud2b5df0z6/EHh7klTVFzvqbKDp8bNHVf149sOWNBV+2SoNxFQ6FK0AXtxZUFU3tz83JfkUzXy1OyVpJUmaSdOe7qCqtgEn0/TeuRa4oKo2JDkjyTFttZOTbEhyJfBnwIl9RyxJ0vwwmaGY2+u07e7twJ5ddZ4BfNEErSRJ223vUJRkd5pE7JruSkkeCtwXuKyj7L5J9mif7wU8lh2/QJUkaVb005OWqloLrO0qO73j+f/pZ/+SJM1jkxmKOWGdJIfQTIHwlHEPkqwEVgLst99+U49SkqQRU1Xbkox1KNoNOHusQxGwvqrGErbHA+dXVWf7+6vAu5L8jKZT0xu7piKSJGlW9JWklSRJ0zaZoZhjdTYnWQTcG7gVIMk+wIeA5/eaJ2+M8+VJkhaiXXUoapdf02O7/wJ+bVaDkySph2lPdyBJkvoymaGYa/j5VEHHAZdUVSW5D/CfwGlV9bk5i1iSJEmSNCtM0kqSNACTnNv9LGDPJBtp5nY/tS0/GXgI8KokV7aP+8/xS5AkSZIkzRCnO5AkaUAmMbf7j4Bn9tju9cDrZz1ASZIkSdKcsCetJEmSJEmSJA2QSVpJkiRJkiRJGiCnO5AkSZIG4LJNW3dYPmJZx8Klb9ix8rLTZj8gSZIkDYxJWkmSJGnYdSZtTdhKkiTNO053IEmSJEmSJEkDZJJWkiRJkiRJkgbIJK0kSZIkSZIkDZBz0kqSJEmjbKKbjHkDMkmSpJFgT1pJkiRJkiRJGiCTtJIkSZIkSZI0QCZpJUmSJEmSJGmATNJKkiRJkiRJ0gCZpJUkSZIkSZKkATJJK0mSJEmSJEkD1FeSNslRSa5LsjHJqT3W/1mSa5J8Kcknk+zfz/EkSZIkSZIkab6ZdpI2yW7AmcDRwMHA8UkO7qr2RWBpVT0cuBB483SPJ0mSJEnSZEyiQ9ELkmxJcmX7eGHHuhOTfLV9nDi3kUuSFqpFfWx7GLCxqjYBJDkfWA5cM1ahqi7tqH858Nw+jidJkiRJ0oQ6OhQdCWwG1iVZU1XXdFV9X1Wd3LXt/YBXA0uBAj7fbnvbHIQuSVrA+pnuYG/gpo7lzW3ZeE4CPtrH8SRJknqdPzQAACAASURBVCRJ2pXtHYqq6k5grEPRZDwVuLiqbm0TsxcDR81SnJIkbddPkjY9yqpnxeS5NN9EvmWc9SuTrE+yfsuWLX2EJEmSJEla4CbboegZ7f1TLkyy7xS39TpWkjSj+knSbgb27VjeB7i5u1KSJwOvBI6pqh/32lFVra6qpVW1dPHixX2EpMm6bNPW7Q9JkiRJmkcm06HoI8CS9v4pnwDOncK2TeEQXMeuuvj6gRxXkjTz+pmTdh1wYJIDgG8CK4DndFZI8kjgXcBRVXVLH8eSJqXzQ8opRx40wEgkSZIkDcguOxRVVWdvlXcDb+rY9gld235qxiPs16Vv4PAb25dw6Z6w7LTBxiNJ6tu0e9JW1TbgZOAi4FrggqrakOSMJMe01d4C3AN4f3vHzDV9RyxJkiRJ0vi2dyhKsjtNh6IdrkWTPKBj8Riaa1porm+fkuS+Se4LPKUtkyRpVvXTk5aqWgus7So7veP5k/vZvyRJkiRJU1FV25KMdSjaDTh7rEMRsL6q1gAvbTsXbQNuBV7QbntrktfRJHoBzqiqW+f8RUiSFpy+krSSJEmSZl73fQOOeNCeA4pEGk2T6FB0GtBzjoCqOhs4e1YDlCSpSz83DpMkSZIkSZIk9ckkrSRJkiRJkiQNkElaSZIkSZIkSRogk7SSJEmSJEmSNEDeOEySJEkacp03Ejti2QADkSRJ0qywJ60kSZIkSZIkDZBJWkmSBiTJUUmuS7Ixyak91u+R5H3t+iuSLGnL90xyaZI7krx9ruOWJEmSJM0sk7SSJA1Akt2AM4GjgYOB45Mc3FXtJOC2qnoIsAp4U1v+I+BVwMvmKFxJkiRJ0ixyTlpJU3PpG3ZcXnbaYOKQRt9hwMaq2gSQ5HxgOXBNR53lwGva5xcCb0+Sqvo+8NkkD5nDeCVJkiRJs8SetJIkDcbewE0dy5vbsp51qmobcDuw55xEJ0mSJEmaMyZpJUkajPQoq2nUmfggycok65Os37Jly1Q2lSRJkiTNEac7kCRpMDYD+3Ys7wPcPE6dzUkWAfcGbp3KQapqNbAaYOnSpVNK8EoaDZdt2rrD8hHLBhSIJEmSps2etJIkDcY64MAkByTZHVgBrOmqswY4sX1+HHBJVZlolSRJkqR5xp60kiQNQFVtS3IycBGwG3B2VW1IcgawvqrWAGcB70mykaYH7Yqx7ZPcANwL2D3JscBTquqa7uNIkiRJkoafSVpJkgakqtYCa7vKTu94/iPgmeNsu2RWg5M0LzgVgiRJ0mgwSau+rLr4+u3PTznyoAFGIkmSJEmSJI0mk7RaMEwoS5IkSZIkaRj1deOwJEcluS7JxiSn9lj/W0m+kGRbkuP6OZYWrlUXX7/9IUmSJEm7Molr1T9Lck2SLyX5ZJL9O9b9NMmV7aP7pp6SJM2KaSdpk+wGnAkcDRwMHJ/k4K5qNwIvAN473eNIkiRJkjRZk7xW/SKwtKoeDlwIvLlj3Q+r6tD2ccycBC1JWvD66Ul7GLCxqjZV1Z3A+cDyzgpVdUNVfQn4WR/HkSRJkiRpsiZzrXppVf2gXbwc2GeOY5QkaQf9JGn3Bm7qWN7clkmSJEmSNChTvVY9Cfhox/LdkqxPcnmSY2cjQEmSuvVz47D0KKtp7ShZCawE2G+//foISZIkSZK0wE36WjXJc4GlwOM7iverqpuTPAi4JMnVVfW1Htt6HStJmjH99KTdDOzbsbwPcPN0dlRVq6tqaVUtXbx4cR8hSZIkSZIWuEldqyZ5MvBK4Jiq+vFYeVXd3P7cBHwKeGSvg3gdK0maSf30pF0HHJjkAOCbwArgOTMSlTQPrLr4+h2WTznyoAFFIkmSJC0ou7xWTfJI4F3AUVV1S0f5fYEfVNWPk+wFPJYdbyomSdKsmHZP2qraBpwMXARcC1xQVRuSnJHkGIAkj06yGXgm8K4kG2YiaEmSJEmSepnMtSrwFuAewPuTXJlkTVv+q8D6JFcBlwJvrKpr5vglSJIWoH560lJVa4G1XWWndzxfh3fJlCRJkiTNoUlcqz55nO3+C/i12Y1OkqSd9ZWklbTwXLZp6w7LRywbUCBjLn3Dz58vO21wcUiSJEmSJE2TSVppijrnmnWeWUmSJEmSJPVr2nPSSpIkSZIkSZL6Z09aSZIkaaGYaJqgznW91kuSJGnW2JNWkiRJkiRJkgbInrSSJEmSJtbdy7aTPW4lSZL6ZpJWs8YbbEmSJEmSJEm7ZpJWkiRJWiAu27R1+/Mjlg0wEEmSJO3AJK00Sw6/cXVXyVsHEockSdJkdCZwwSSuJEnSXDJJK0mSJEnSsOmeC9r5nyVpXjNJKw2Ic/ZKkqRRsVMv2wftOaBIJEmS5ieTtNpJZ/IQTCBKkiRpR85tK82dyzZt9YsRSVoA7jLoACRJkiRJ0vi6e7NLkuYfe9JKC8RlZ71sh+UjTvJGZpIkSZIkScPAJK36cviNqzuWBp/0G7Z4NPuGbrhl5w0evLmDJGkhmqgt7L4RUqeJ6tqmSpKkec4krSTNV94RWJIkSZKkkWCSVpIkSdKMmWiUS/e8mt4MSZIkqWGSVhphqy6+foflU448aECRTN0oxz6RoZt+QZKkIWa7KUmS1LhLPxsnOSrJdUk2Jjm1x/o9kryvXX9FkiX9HE8aBoffuHr7Q5L61U9bmuS0tvy6JE+dy7glabZdtmnr9oc0VbavkqRRM+2etEl2A84EjgQ2A+uSrKmqazqqnQTcVlUPSbICeBPw7H4CHlXztdfgKPGmYlpodhpSOogeSt70ZUL9tKVJDgZWAIcADwQ+keSgqvrp3L4KSZp7l531sh2WjzjpreOv65xSwZuTLQgj3b5OdHM9SdK81s90B4cBG6tqE0CS84HlQGfDtxx4Tfv8QuDtSVJV1cdxtcDM1+TqML2umfoSYSr72bkn8s/PgV9qzB8OY92labelbfn5VfVj4OtJNrb7u2yOYpekkTDZOXJ3aqcmSpZNJdlrIngQbF8lSSOnnyTt3sBNHcubgd8Yr05VbUtyO7An8J0+jjuSJkpITcVEvQZmykzFqtk3X39XM/W6ppLs7azbXW82kti72sdU6mqk9dOW7g1c3rXt3rMXqiQtLBNNszCVZO8O6+hK/Jq0nS3zsn0d+3zY/dnwsk1buXzb9X5mlKQRl+l2ak3yTOCpVfXCdvl5wGFV9ZKOOhvaOpvb5a+1dbZ27WslsLJdfChw3bSC2tFejF4y2JjnxqjFPGrxgjHPlVGLeabi3b+qFs/Afgaun7YUOAO4rKr+tS0/C1hbVR/oOoZt7MxYaK95ob1e8DUvBAvt9cLUX/O8aGPnon1t19nG/pxxzy3jnlvGPbdGNW6YOPZdtrH99KTdDOzbsbwPcPM4dTYnWQTcG7i1e0dVtRqY0bswJVlfVUtncp+zzZjnxqjFPGrxgjHPlVGLedTinSP9tKWT2dY2doYstNe80F4v+JoXgoX2emFhvubWrLevYBvbybjnlnHPLeOeW6MaN/Qf+136OPY64MAkByTZnWZy9TVdddYAJ7bPjwMucT5aSZK266ctXQOsaO9OfQBwIPDfcxS3JEnDzPZVkjRypt2Ttp2352TgImA34Oyq2pDkDGB9Va0BzgLe0062fitN4yhJkuivLW3rXUBzE5RtwIvn7M7TkiQNMdtXSdIo6me6A6pqLbC2q+z0juc/Ap7ZzzH6MKPDTuaIMc+NUYt51OIFY54roxbzqMU7J/ppS6vqr4G/ntUAe1uIv8uF9poX2usFX/NCsNBeLyzM1wyMbPsKo/s7M+65Zdxzy7jn1qjGDX3GPu0bh0mSJEmSJEmS+tfPnLSSJEmSJEmSpD7NiyRtkn2TXJrk2iQbkvyftvx+SS5O8tX2530HHStMGO9rknwzyZXt42mDjnVMkrsl+e8kV7Uxv7YtPyDJFe05fl87Mf9QmCDmc5J8veM8HzroWDsl2S3JF5P8R7s8tOd4TI+Yh/0c35Dk6ja29W3ZUL5fjBkn5qF9zwBIcp8kFyb5Svt+d8Swn2dNLMlRSa5LsjHJqYOOZzYkOTvJLUm+3FE2r/9uR+1zVL9G8TPNTBnFzxj9GMX2vh+2u6NtVNrYUW8zRvF9cFT/t5Oc0v6NfDnJeW37O5Tneyqf/9J4W/u/+qUkjxqyuN/S/q18KcmHktynY91pbdzXJXnqYKLuHXfHupclqSR7tctDfb7b8pe053RDkjd3lE/5fM+LJC3NhO5/XlW/ChwOvDjJwcCpwCer6kDgk+3yMBgvXoBVVXVo+1g7/i7m3I+BJ1bVI4BDgaOSHA68iSbmA4HbgJMGGGO38WIGeHnHeb5ycCH29H+AazuWh/kcj+mOGYb7HAMsa2Nb2i4P6/tFp+6YYXjfMwD+HvhYVf0K8Aiav5FROM/qIcluwJnA0cDBwPEdbdd8cg5wVFfZfP+7HbXPUf0axc80M2UUP2P0axTb++my3R1RI9bGjnqbMYrvgyP3v51kb+ClwNKqehjNDfxWMLzn+xwm//nvaODA9rESeMccxdjLOewc98XAw6rq4cD1wGkA7f/pCuCQdpt/bN97BuEcdo6bJPsCRwI3dhQP9flOsgxYDjy8qg4B3tqWT+t8z4skbVV9q6q+0D7/Hs2b1t40J+rcttq5wLGDiXBHE8Q7tKpxR7t41/ZRwBOBC9vyoTnHMGHMQyvJPsDTgX9ql8MQn2PYOeYRNpTvF6Mqyb2A36K5czJVdWdV/S+e51F2GLCxqjZV1Z3A+TS/z3mlqj5Dc5fvTvP673bUPkf1axQ/08yEUfyMMUvm5d+17e7IG5k2dpTbjFF8Hxzx/+1FwC8kWQT8IvAthvR8T/Hz33LgX9rPE5cD90nygLmJdEe94q6qj1fVtnbxcmCf9vly4Pyq+nFVfR3YSPPeM+fGOd8Aq4C/YMe8zVCfb+BPgDdW1Y/bOre05dM63/MiSdspyRLgkcAVwC9V1begaUyA+w8ust664gU4ue3CffawDVloh4ZcCdxC8+3M14D/7XgD2MyQJZu7Y66qsfP81+15XpVkjwGG2O3vaN6UftYu78mQn2N2jnnMsJ5jaN70P57k80lWtmXD/n7RK2YY3veMBwFbgH9OM6Tsn5LcneE/zxrf3sBNHcvD+H40WxbM3+2ofY6arlH8TDMDRvEzRr9Gsb2fLtvd0TaSbewIthmj+D44kv/bVfVNmh6FN9IkZ28HPs/wn+9O453jUfp//QPgo+3zoY47yTHAN6vqqq5VQx03cBDwm2mm8fh0kke35dOKe14laZPcA/gA8KdV9d1Bx7MrPeJ9B/BgmqF33wL+7wDD20lV/bSqDqX5JuYw4Fd7VZvbqCbWHXOSh9F09/8V4NHA/YBXDDDE7ZL8NnBLVX2+s7hH1aE5x+PEDEN6jjs8tqoeRTN04sVJfmvQAU1Cr5iH+T1jEfAo4B1V9Ujg+wzZMCxN2VC/H6l/o/Y5qh+j+JmmH6P4GWOGjGJ7P122u6Nt5P4fR63NGOH3wZH83247jywHDgAeCNyd5r2427Cd78kYhb8bkrySZnqSfxsr6lFtKOJO8ovAK4HTe63uUTYUcbcWAfelmf7l5cAFbS/9acU9b5K0Se5K00j8W1V9sC3+n7Fu0O3PW8bbfq71ireq/qe9aPgZ8G4G1PV8V9rhFZ+i+SO8Tzt8AZoLnZsHFddEOmI+qh2iU2139H9meM7zY4FjktxAM8TpiTTf9g7zOd4p5iT/OsTnGICqurn9eQvwIZr4hvb9AnrHPOTvGZuBzR291y+k+YA51OdZE9oM7NuxPGzvR7Np3v/djtrnqJkyip9ppmkUP2P0bRTb+z7Y7o62kWpjR7TNGNX3wVH9334y8PWq2lJVPwE+CDyG4T/fncY7x0P//5rkROC3gROqaiwxOMxxP5gmoX9V+z+6D/CFJL/McMcNTXwfbPMf/03TU38vphn3vEjStlnqs4Brq+pvO1atAU5sn58I/Ptcx9bLePF2zavxu8BOd7oblCSL094VMMkv0LzpXgtcChzXVhuacwzjxvyVjjfa0MwrMxTnuapOq6p9qmoJzQTTl1TVCQzxOR4n5ucO6zkGSHL3JPccew48hSa+oXy/gPFjHub3jKr6NnBTkoe2RU8CrmGIz7N2aR1wYJq78u5O8z+/ZsAxzZV5/Xc7ap+j+jWKn2n6NYqfMfo1iu19P2x3R97ItLGj2maM6vvgCP9v3wgcnuQX27+ZsbiH+nx3Ge8crwGen8bhwO1j0yIMgyRH0YxkPaaqftCxag2wIskeSQ6guRHXfw8ixm5VdXVV3b+qlrT/o5uBR7V//0N9voEP03zpQ5KDgN2B7zDd811VI/8AHkfTbfhLwJXt42k0c8x8Evhq+/N+g451F/G+B7i6LV8DPGDQsXbE/HDgi21sXwZOb8sf1P6hbQTeD+wx6FgnEfMl7Xn+MvCvwD0GHWuP2J8A/Mewn+MJYh7ac9yez6vaxwbglW35UL5f7CLmoX3PaOM7FFjfxvdhmmEgQ3uefUzqd/o0mrvEfm3s73C+PYDzaKYP+QnNB8ST5vvf7ah9jpqB1ztyn2lm+PWP3GeMab7OkWvvZ+A12+6O8GNU2tj50GaM2vvgqP5vA68FvtK2te8B9hjW8z2Vz380w9jPbP9XrwaWDlncG2nmQh37/3xnR/1XtnFfBxw9THF3rb8B2GtEzvfuNDmPLwNfAJ7Yz/lOu6EkSZIkSZIkaQDmxXQHkiRJkiRJkjSqTNJKkiRJkiRJ0gCZpJUkSZIkSZKkATJJK0mSJEmSJEkDZJJWkiRJkiRJkgbIJK0kSZIkSZIkDZBJWkmSJEmSJEkaIJO0kiRJkiRJkjRAJmmlEZTknCSvH3QckiQNiyRPSLJ5gvWV5CFzGZMkSYIkr0nyr4OOQxp2JmmlBSzJc5J8I8n3k3w4yf0mqLs6yXVJfpbkBV3rXpDkp0nu6Hg8oWP9DUl+2LHu4+Mc45L2InrRTL1GSZJmSpI9kpyd5LtJvp3kz3ZR/5S23u3tdnv0qPP4tu17fUfZirbNvT3JLUnOTXKvjvV3dD1+muQfZvbVSpI0XJI8KclXkvwgyaVJ9p+g7pK2zg/abZ7cse5hSS5K8p0k1WPb+yX5UHud/I0kz+laP+nraGkqTNJKk5Rkt0HHMJOSHAK8C3ge8EvAD4B/nGCTq4AXAV8YZ/1lVXWPjsenutb/Tse6p/SI5wTA5KwkqachaYdfAxwI7A8sA/4iyVG9KiZ5KnAq8CRgCfAg4LVdde4K/D1wRdfmnwMeW1X3brdbBGxP4na2tzRt+A+B9/f52iRJ2m7YOs4k2Qv4IPAq4H7AeuB9E2xyHvBFYE/glcCFSRa3634CXACcNM62ZwJ30rSxJwDvaK+fp3MdLU2aSVqNlLZH5mlJrklyW5J/TnK3jvV/mGRjkluTrEnywLY8SVa1vVFuT/KlJA/bxbHOSfKOJGuTfB9YluTpSb7Y9qC5KclrOuovaXvCnJjkxvZbuVd2rP+FtifMbUmuTfIX6RiWmeSBST6QZEuSryd56STPyT3bbwjf1r7Op7Xn53tJvpnkZeNsegLwkar6TFXdQdPY/V6Se/aqXFVnVtUngR9NJq6pSHJv4NXAX8z0viVJM2cI2uE9kry1bWf/J8k7k/zCNF7H49p2fNkUY3s+8Lqquq2qrgXeDbxgnLonAmdV1Yaqug14XY+6fw58HPhKZ2FV3VRV3+ko+ikw3lQNxwG3AP9vnPWSpCEwV21oe13ZOdriB+noLZrkD9rr0dvS9Cbdv2NdJXlxkq8CX23LHpNkXXvsdUke01H/BUk2tdeeX0/T8WZX5+GuSc5rr313T3JYkvVprrH/J8nfjrPp7wEbqur9VfUjmi9OH5HkV3oc4yDgUcCrq+qHVfUB4GrgGQBVdV1VnQVs6LHt3dt6r6qqO6rqs8AamqQsTPE6WpoKk7QaRScATwUeDBwE/BVAkicCbwCeBTwA+AZwfrvNU4DfauvfB3g2sHUSx3oO8NfAPYHPAt+nuUC7D/B04E+SHNu1zeOAh9L0nDk9ya+25a/m5z1pjgSeO7ZBkrsAH6Hprbp3u+2fpumFM64kewKfBD5XVS+tqgLOAv6oqu4JPAy4ZJzND2mPB0BVfY3m28KDJjrmBB6ZJjF9fZJXZedvXv+tTUB/PMkjutb9DfAO4NvTPLYkae4Msh1+U7uPQ2mSlnsDp08l+LZtPQ94RlVdOtnYktwXeCAdbWf7/JBxDnVIj7q/1LbdtBfFfwCcMU6cj0tyO/A9movFvxvnOCcC/9J+BpAkDbdZb0Or6uauERcfGttXe+36lzQJz8U0X/Cd17WLY4HfAA5OM4z/P4G30fRI/VvgP5Ps2SYz3wYc3V57Pga4cqIX336x+mHgx8CzqupOmhElf19V92rPywXjbN59/fp94Gv0bocPATZV1fc6yiZqszsdBPy0qq4fZ9uZvo6WtjNJq1H09raHya00F27Ht+UnAGdX1Req6sfAacARSZbQDGe4J/ArQKrq2qr61iSO9e9V9bmq+llV/aiqPlVVV7fLX6Jp0B7ftc1r22/rrqJ58x5LSD4L+Ju2981mmgZtzKOBxVV1RlXdWVWbaHrnrJggtgcCnwbeX1V/1VH+E5oG9V7tscabnuAewO1dZbfTnKep+gxNQvj+NBeSxwMv71h/Ak2Cen/gUuCiJPcBSLIUeCzgXHqSNBoG0g7TXND9IXBKVd3aXnj9DRO3ld2eCawGnlZV/92WTTa2e7Q/O9vOidrN7nZ27PlY/bfR9tLptXFVfbad7mAf4C3ADd11kuxH8znk3HFikCQNl7lsQ0nyina7P2iL/gh4Q7uPbTTt6KHZcW7XN7Tt7A9pOiZ9tareU1Xbquo8mtEfv9PW/RnwsCS/UFXfqqqdeqZ2uBfwMZrE6u9X1U/b8p8AD0myV9tz9fJxtp/K9Ws/17q72nYmr6OlHZik1Si6qeP5N2iSlf+/vbuPlqyu73z//vAgGkXIQMco0IIjzASdXB862FxvckWDQcdIsoSxTTTGRaYTlRklmijeRB0mXjTxyjULJ0wrjs+igxp7TCtBacfRAUKL+NCiTKdFaCHSNghyFU2b7/1j74bqos45dbrr1K6H92uts3rX3r+q+v527dO/s7/1299N+++392xoT3p2AUdV1RXAhTS1Zb6b5iZYD2Vpve9FkielKS2ws53d8gfAkX3P6Z0N+kPuO6l7RN/r9S4/EnhEku/v+aH5hvNhi8T2r4EHARf1rX8O8Ezg20n+e5KTF3j+3TQDZa+H0szYWZaq2l5V32qT11+lmRV0Rs/2L7SJ6x9W1fnA94FfbmcQ/yfgZe0fCZKkydfVOLwK+Bngiz1j5afa9cN6OfDhdqzaE+ewse1JpvZuW2zc7B9n9yz/IMmvA4dW1WK19PbE9x2afl4yYPPvAJ+vqm8t9TqSpIkwtjE0yTOAlwG/0SZcoTnvfGvPOHo7EJorUwbFuFdcPXEf1c5kfS7NOfGtSf5mUOmBHmuBXwTe2Hf1x1k0s1C/0ZZTeNYCz1/O+ev+nOsu9dyRnUdL/UzSahod07O8GrilXb6FZtAB7q0lcwTwHYCq+suqeiLN5QknsPdMz4X0Xzr4AZp6NMe0s1suohnUhnErzWyYQf24GfhWVR3e83NoVT1zkdd7O81J26a2r03AVddU1ek0s1r/moUvF9nKfbN8SfIo4BDghgXaL0ex+H7Zs/2hwBrgQ0n+Abim3b4jyS+PIA5J0uh1NQ5/j+YGWY/pGSsPay/lHNaZwG8keflebzJEbNXUlb2VnrGzXV5o1tDWAW2/W1W7aMoarUnyD+3491yaMkcfX+C1DqK5BLTf7+AsWkmaJmMZQ5P8C5rx4d9UVf9Eod/vO+98UFX9z542vWPvXnH1xL0nrsuq6lSaEg3foDlHXcjf0pR0+EySeycjVdX/qqrn0Zy/vonmBl8PHvD8/vPXB9OMjYPG4a3Ao/rqxC42Zve6ATgoyfELPHclz6M150zSahq9NMnRbX2c13DfHR0/ALwoyeOSHEJz6cbVVXVjkl9qZ8EeTFNX9h6am3As16HA7VV1T5KTaGrlDevDwLlJfjbJUcDZPdv+DrgryavS3GDswCSPTfJLS7zm2cA3gU+0z3tAkt9OclhV/SNwFwv38/3Aryf55XaAOw/4aF/dnnu1r/1AmuTqwUke2M6EJckz9gy07benfwp8vH28OsmT9zw/yR/RzD7+As1lIY+gqS34OJoZwABP5P53upYkTYZOxuG25MHbgQuS/BxAkqOWqt/e5xaaBOm/T/KS9jWWE9t7gD9px/J/SVN+4V2LtD0ryYltPds/6Wn7p9xXW/dxNF8Avx14URvTb7fjZ9pLUN9AU4P+Xmlu3HIU8F+X0X9JUrdWfAxtZ9l+HPiTam561esimnPSx7RtD0ty5iLxbgJOSPJbSQ5K8lzgRJrzz4cleXZ7Lvljmhmmi47tVfXnbV8/k+TINobnJ1nVjvPfb5sOep2P0ZRWeE57Xvpa4CtV9Y3+hm092euA17XnoL9JM4v3I+17pn2NB7SPH9ju9z21bj8KnJfkwUmeDJwOvLd9+WWdR0vLYZJW0+gDNN/CbW9//gygqj5Dc9LzEZqZLv+c++rUPZTm5OcOmsszdgFv3of3fgnNf9Y/oBkUFpqlOsh5wA7gW8CngUtpBjPaejy/TnOi9i2a2ULvAA5b7AXby0TW03wj+nHggTR3nbwxyV00l548f4Hnbm23v5/mrtCHtv0DIMknk7ym5yl/SzOD6X+nqef3I5oC9tCc8H4lzd23N9EMav93u+1QmpuC3UHzjetpNMXld1XjH/b8ADvb53y3miLykqTJ0+U4/CpgG3BVO859muZmnUOrqptoxq1XJfm9Zcb2Oppaet+mqQv/F1X1Kbj3S8m709SJpV3/5zS12L/d/ryu3faDvvHvR8D/19YohOYEXhQoygAAIABJREFU+H/SnPB+geYL2X/bF8sL8aRQkqbNOMbQJ9CMjW9px6W7k9zdvs/HaGarXtKOo18DnrHQC7VXfzwLeEX7vn8MPKuqvkeTT3oFzRegt9PUSH/JAi/V+5r/keaKz0+3yerTgK1tjG8F1lXVPQOet5OmtN8b2n3xJHrq0ie5KElvKcB1NFdt3gG8ETijfQ1oZgf/iPtmx/6IZqzd4yU0pQVvo7kPzYv31Ntd6jxa2h8pbwSrKZLkRuD3qurTXceyv5K8mGYA6r/xmCRJE2mWxmFJksbJMVTSUpxJK41Jkoe3l/0fkKZG0CtoLtmQJEmSJEnSHDNJq7mWZGvvJSA9P7+9Am/3AOA/09z18Qqa8gT/aQXeR5KkqTDmcViSpJnhGCrNHssdSJIkSZIkSVKHnEkrSZIkSZIkSR0ySStJkiRJkiRJHTqo6wD6HXnkkXXsscd2HYYkaUJ98Ytf/F5Vreo6jpWU5IHA54BDaMbqS6vqdX1tDgHeAzwR2AU8t6puXOx1HWMlSYuZhzF2pTjGSpIWM8wYO3FJ2mOPPZYtW7Z0HYYkaUIl+XbXMYzBj4GnVtXdSQ4GPp/kk1V1VU+bs4A7qurRSdYBbwKeu9iLOsZKkhYzJ2PsinCMlSQtZpgxduKStJIkzbtq7up5d/vw4Pan/06fpwOvb5cvBS5MkvKOoJIk7bckNwI/AH4K7K6qNd1GJEmaddaklSRpAiU5MMl1wG3A5VV1dV+To4CbAapqN3AncMSA11mfZEuSLTt37lzpsCVJmiWnVNXjTNBKksbBJK0kSROoqn5aVY8DjgZOSvLYviYZ9LQBr7OhqtZU1ZpVqywzKEmSJEmTyCStJEkTrKq+D3wWOK1v0w7gGIAkBwGHAbePNThJkmZXAX+b5ItJ1ncdjCRp9pmklSRpwiRZleTwdvlBwK8C3+hrthF4Ybt8BnCF9WglSRqZJ1fVE4BnAC9N8iv9DSwpJEkaJZO0kiRNnocDm5N8BbiGpibtJ5Kcl+TZbZuLgSOSbAP+EHh1R7FKkjRzquqW9t/bgI8BJw1oY0khSdLIHNR1AJIkaW9V9RXg8QPWv7Zn+R7gzHHGJUnSPEjyYOCAqvpBu/x04LyOw5IkzTiTtNLm8+9bPuXc7uKQpClxweU33Lt8zqkndBiJJEkr4mHAx5JAc878gar61Fjeec+5ieclkjR3TNJKkiRJ0hTp/bIM/MJs1KpqO/C/dR2HJGm+WJNWkiRJkiRJkjpkklaSJEmSJEmSOmSSVpIkSZIkSZI6ZE1aSZK0LGtv2tDz6M2dxSFJkiRJs8IkrSRJkiRNkb2/LAO/MJMkafpZ7kCSJEmSJEmSOmSSVpIkSZIkSZI6NFSSNslpSb6ZZFuSVw/YfkiSD7Xbr05ybLv+4CTvTvLVJNcnOXe04UuSJEmSJEnSdFsySZvkQOBtwDOAE4HnJTmxr9lZwB1V9WjgAuBN7fozgUOq6l8BTwR+f08CV5IkSZIkSZI03Ezak4BtVbW9qn4CXAKc3tfmdODd7fKlwNOSBCjgwUkOAh4E/AS4aySRS5IkSZIkSdIMOGiINkcBN/c83gE8aaE2VbU7yZ3AETQJ29OBW4GfAc6pqtv3N2hJkiRp5Daff9/yKVbpkiRJ0vgMM5M2A9bVkG1OAn4KPAI4DnhFkkfd7w2S9Um2JNmyc+fOIUKSJEmSJEmSpNkwzEzaHcAxPY+PBm5ZoM2OtrTBYcDtwG8Bn6qqfwRuS/IFYA2wvffJVbUB2ACwZs2a/gSwJEnSbHCmpiRJkqQBhplJew1wfJLjkjwAWAds7GuzEXhhu3wGcEVVFXAT8NQ0HgysBb4xmtAlSZIkSZIkafotmaStqt3A2cBlwPXAh6tqa5Lzkjy7bXYxcESSbcAfAq9u178NeAjwNZpk73+pqq+MuA+SJEmSJEmSNLWGKXdAVW0CNvWte23P8j3AmQOed/eg9ZIkSdJYWGJCkiRJU2CYcgeSJEmSJEmSpBViklaSJEmSJEmSOjRUuQNJkiSNUe8l+uBl+pIkSdKMcyatJEmSJEmSJHXIJK0kSZIkSZIkdchyB5IkTZgkxwDvAX4e+CdgQ1W9ta/NU4CPA99qV320qs4bZ5xD6b1s30v2JUmSJGkgk7SSJE2e3cArquraJIcCX0xyeVV9va/d/6iqZ3UQnyRpJfjFliRJc8tyB5IkTZiqurWqrm2XfwBcDxzVbVSSJEmSpJViklaSpAmW5Fjg8cDVAzafnOTLST6Z5DFjDUySJEmSNDKWO5AkaUIleQjwEeDlVXVX3+ZrgUdW1d1Jngn8NXD8gNdYD6wHWL169QpHLEmSJEnaF86klSRpAiU5mCZB+/6q+mj/9qq6q6rubpc3AQcnOXJAuw1Vtaaq1qxatWrF45YkSZIkLZ8zaSVJmjBJAlwMXF9Vb1mgzc8D362qSnISzRevu8YYpiTtP2+UJUmSBJiklSRpEj0ZeAHw1STXteteA6wGqKqLgDOAFyfZDfwIWFdV1UWwkiRJkqT9Y5JWkqQJU1WfB7JEmwuBC8cTkSRJkiRpJVmTVpIkSZKkPkkOTPKlJJ/oOhZJ0uxzJq0kSZKk0bHOrGbHy4DrgYd2HYgkafY5k1aSJEmSpB5Jjgb+NfCOrmORJM0Hk7SSJEmSJO3t/wX+GPinrgORJM0Hk7SSJEmSJLWSPAu4raq+uES79Um2JNmyc+fOMUUnSZpVJmklSZIkSbrPk4FnJ7kRuAR4apL39Teqqg1Vtaaq1qxatWrcMUqSZoxJWkmSJEmSWlV1blUdXVXHAuuAK6rq+R2HJUmacSZpJUmSJEmSJKlDB3UdgCRJkiRJk6iqPgt8tuMwJElzwJm0kiRJkiRJktQhZ9JKkiRJur/N59+3fMq53cUhSZI0B5xJK0mSJEmSJEkdciatJEmSBFy5fde9yyef0mEgkiRJmjvOpJUkSZIkSZKkDpmklSRJkiRJkqQOWe5AkiRJM8sSBpIkSZoGzqSVJEmSJEmSpA6ZpJUkSZIkSZKkDlnuQJIkSZImgOU5JEmaX86klSRJkiRJkqQOOZNWkiStGGeFSZIkSdLSTNJKkiRJkjQB9ny5edXuGzjn1BM6jkaSNE5DlTtIclqSbybZluTVA7YfkuRD7farkxzbs+0Xk1yZZGuSryZ54OjClyRJkiRJkqTptmSSNsmBwNuAZwAnAs9LcmJfs7OAO6rq0cAFwJva5x4EvA/4g6p6DPAU4B9HFr0kSZIkSZIkTblhZtKeBGyrqu1V9RPgEuD0vjanA+9uly8FnpYkwNOBr1TVlwGqaldV/XQ0oUuSNJuSHJNkc5Lr2ytRXjagTZL8ZXsVy1eSPKGLWCVJkiRJ+2+YJO1RwM09j3e06wa2qardwJ3AEcAJQCW5LMm1Sf540BskWZ9kS5ItO3fuXG4fJEmaNbuBV1TVLwBrgZcOuIrlGcDx7c964K/GG6IkSZIkaVSGSdJmwLoass1BwP8B/Hb7728medr9GlZtqKo1VbVm1apVQ4QkSdLsqqpbq+radvkHwPXc/wvS04H3VOMq4PAkDx9zqJIkSZKkEThoiDY7gGN6Hh8N3LJAmx1tHdrDgNvb9f+9qr4HkGQT8ATgM/sZtyRJc6G9Gefjgav7Ni10pcutYwlsWmw+/77lU87tLg5JkiRJWsQwM2mvAY5PclySBwDrgI19bTYCL2yXzwCuqKoCLgN+McnPtMnb/xP4+mhClyRptiV5CPAR4OVVdVf/5gFP6b/SxZJCkiRJkjQFlkzStjVmz6ZJuF4PfLiqtiY5L8mz22YXA0ck2Qb8IfDq9rl3AG+hSfReB1xbVX8z+m5IkjRbkhxMk6B9f1V9dECTYa50saSQJEmSJE2BYcodUFWbgE19617bs3wPcOYCz30f8L79iFGSpLmSJDRfgF5fVW9ZoNlG4OwklwBPAu6sKksdyBIPkiRJ0hQaKkkrSZLG6snAC4CvJrmuXfcaYDVAVV1E8+XpM4FtwA+BF3UQZzd6k5BgIlKSJEnS1DNJK0nShKmqzzO45mxvmwJeOp6I5lDHieArt+/a6/HJp4z17SVJkiSNmUlaSZIkaTmczS1JkqQRW/LGYZIkSZIkSZKkleNMWkmS1D1nJkqSJEmaYyZpJUmSJGml9H4J5RdQkiRpASZpJUmSNF2ceS1JkqQZY5JWkiRpTK7cvuve5ZNP6TAQSdKCkjwQ+BxwCM0586VV9bpuo5IkzTqTtJIkSZIk3efHwFOr6u4kBwOfT/LJqrqq68AkSbPLJK0kSZK6Ya1OSROoqgq4u314cPtT3UUkSZoHJmklSZL2h/VRJWnmJDkQ+CLwaOBtVXV1xyFJkmbcAV0HIEmSJEnSJKmqn1bV44CjgZOSPLa/TZL1SbYk2bJz587xBylJmikmaSVJkiRJGqCqvg98FjhtwLYNVbWmqtasWrVq7LFJkmaLSVpJkiRJklpJViU5vF1+EPCrwDe6jUqSNOusSStJkjp35fZdez0++ZSOApE0Vr2/+7P6ez8PfZxBDwfe3dalPQD4cFV9ouOYJEkzziStJEmSJC2HNwycaVX1FeDxXcchSZovJmklSZLm0UolmUxezT1njkqSJC2fSVpJkiRpXHqT2Cawh2fyX5IkzTiTtJIkSZJkIliSJHXIJK0kSZI0zZaTXHQmryRJ0kQySStJkqTFOcNw/CZgn09tbdkJ2HeSJEnLZZJWkiRJWobe5CVMWQJTkiRJE+mArgOQJEmSJEmSpHnmTFpJkjQ7+i5zXvRybS+JnlrOZJUkSdKsMUkrSZKmigk6SZIkSbPGcgeSJE2YJO9McluSry2w/SlJ7kxyXfvz2nHHKEmSJEkaHWfSSpI0ed4FXAi8Z5E2/6OqnjWecDRNFi3xIEmSJGkiOZNWkqQJU1WfA27vOg5JkiRJ0ng4k1aSpOl0cpIvA7cAr6yqrV0HJC2Xs341rayNLUmSRs0krSRJ0+da4JFVdXeSZwJ/DRw/qGGS9cB6gNWrV48vQkmSJEnS0Cx3oLl1weU3cMHlN9xvJoQkTbqququq7m6XNwEHJzlygbYbqmpNVa1ZtWrVWOOUJEmSJA3HmbSSJE2ZJD8PfLeqKslJNF+6+o2TNAUs8SBJkqRBTNJKkjRhknwQeApwZJIdwOuAgwGq6iLgDODFSXYDPwLWVVV1FK4kzQTrzEqSpC6ZpJUkacJU1fOW2H4hcOGYwpEkSZIkrTBr0kqSJEmSJElSh4ZK0iY5Lck3k2xL8uoB2w9J8qF2+9VJju3bvjrJ3UleOZqwJUmSJEmSJGk2LFnuIMmBwNuAU4EdwDVJNlbV13uanQXcUVWPTrIOeBPw3J7tFwCfHF3YkiRJK8falJIkSZLGaZiZtCcB26pqe1X9BLgEOL2vzenAu9vlS4GnJQlAkt8AtgNbRxOyJEmSJEmSJM2OYW4cdhRwc8/jHcCTFmpTVbuT3AkckeRHwKtoZuEuWOogyXpgPcDq1auHDl6SJEn7xtnCs8PPUpIkafoNk6TNgHU1ZJv/AFxQVXe3E2sHqqoNwAaANWvW9L+2tF8uuPyGe5fPOfWEDiORJGk6mQRU1zwGJUnSrBsmSbsDOKbn8dHALQu02ZHkIOAw4HaaGbdnJPlz4HDgn5LcU1UX7nfkkiRJkiRJkjQDhknSXgMcn+Q44DvAOuC3+tpsBF4IXAmcAVxRVQX88p4GSV4P3G2CVpIkaXY543Gy9X4+fjaSJEmTY8kkbVtj9mzgMuBA4J1VtTXJecCWqtoIXAy8N8k2mhm061YyaEmSJEmSJEmaFcPMpKWqNgGb+ta9tmf5HuDMJV7j9fsQn7Qka85KkrrkzFGtBI8rSZKk+TJUklaSJEmSpoEJbkmSNI0O6DoASZIkSZIkSZpnJmklSZIkSWolOSbJ5iTXJ9ma5GVdxyRJmn2WO5AkSZIk6T67gVdU1bVJDgW+mOTyqvp614FJkmaXM2klSZIkSWpV1a1VdW27/APgeuCobqOSJM06Z9Jqdm0+H4C1N+3iqtXr77dt7U27BjxJkiRJkhpJjgUeD1zdbSSSpFnnTFpJkiRJkvokeQjwEeDlVXXXgO3rk2xJsmXnzp3jD1CSNFOcSSsBV25vZtVetfsGzjn1hI6jkSTtqz3/n0+l9goQSVL3khxMk6B9f1V9dFCbqtoAbABYs2ZNjTE8SdIMciatJEmSJEmtJAEuBq6vqrd0HY8kaT44k1aSJO27/tmfp5zbTRz7oH/W7cmndBSIJGnSPBl4AfDVJNe1615TVZs6jEmSNONM0kqSJI1Sb+J6ipLWkqRGVX0eSNdxSJLmi+UOJEmSJEmSJKlDzqSVJElairNj1bELLr/h3mVvcipJkjR7TNJKkiRpn/UmDwHWdhSHJEmSNM0sdyBJ0oRJ8s4ktyX52gLbk+Qvk2xL8pUkTxh3jJIkSZKk0TFJK0nS5HkXcNoi258BHN/+rAf+agwxzbUrt++690eSJEmSRs1yB5IkTZiq+lySYxdpcjrwnqoq4Kokhyd5eFXdOpYAu9BbE1aSJEmSZoxJWkmSps9RwM09j3e062Y3STsHnKUrSZIkzS+TtJIkTZ8MWFcDGybraUoisHr16pWMaW4sdaOs3mTryaeMISBJkiRJU88krSRJ02cHcEzP46OBWwY1rKoNwAaANWvWDEzkSvtj7U0bug5hLuy9n9/cWRySJElaGSZpJUmaPhuBs5NcAjwJuHOm69FOGJOSkiRJkkbNJK0kSRMmyQeBpwBHJtkBvA44GKCqLgI2Ac8EtgE/BF7UTaTSeFx58Su7DkGSJElaUSZppSH11iA859QTOoxE0qyrquctsb2Al44pHEmaOP21of3bTJIkTTuTtFIfk7GSJEmSJEkaJ5O0mi2bzx+4+t76gZuPGGMwkqRRuXL7rq5DkBbkF7yzydm6kiRpnEzSSpIk6X51X08+680jf4/+pNfakb+DtLjlHOf3v0ng6H8nJEmS9jBJq8nVOyv2lHO7i0OSNH4LXBmh6Xb/pNds2Ltfk5XIMzEuSZI0HQ7oOgBJkiRJkiRJmmfOpJUkSePRPzvWqySkmWddV0mSpOGYpJUkSZK6MIYvLma1xIQkSdKsMUkrSZI60TvDzjqZkpbDm3pJkqRZY5JWkiRpyvQmuL18XPJLH0mSNP1M0kqSpJHxTvLjt1L73KSXJEmSND4maSVJkqaYNUclSZKk6WeSVpIkaYVM2sxiZ8eOXxfHgJ+zJEnS9BkqSZvkNOCtwIHAO6rqjX3bDwHeAzwR2AU8t6puTHIq8EbgAcBPgD+qqitGGL8kSZI0la7cvmuvxyef0lEgmkj9CX7rT0uSNNuWTNImORB4G3AqsAO4JsnGqvp6T7OzgDuq6tFJ1gFvAp4LfA/49aq6JcljgcuAo0bdCUmSJGnajXsGrEnAFbL5/K4jkCRJU+iAIdqcBGyrqu1V9RPgEuD0vjanA+9uly8FnpYkVfWlqrqlXb8VeGA761aSJEmSJEmSxHDlDo4Cbu55vAN40kJtqmp3kjuBI2hm0u7xHOBLVfXjfQ9XkiRJs8hZndOl9/Pys5IkSdp/wyRpM2BdLadNksfQlEB4+sA3SNYD6wFWr149REjS4vprvEmSpov/j0vzx0S9JEmaZ8MkaXcAx/Q8Phq4ZYE2O5IcBBwG3A6Q5GjgY8DvVNXfD3qDqtoAbABYs2ZNfwJYkiRpv/UngLzrvaRxMxE9HZK8E3gWcFtVPbbreCRJ82GYmrTXAMcnOS7JA4B1wMa+NhuBF7bLZwBXVFUlORz4G+DcqvrCqIKWJEmSJGmFvAs4resgJEnzZcmZtG2N2bOBy4ADgXdW1dYk5wFbqmojcDHw3iTbaGbQrmuffjbwaOBPk/xpu+7pVXXbqDui2bFnhsHam3Zx8qOO6DgaSdK86J3h5ixbSZpfVfW5JMd2HYckab4MU+6AqtoEbOpb99qe5XuAMwc878+AP9vPGKWJ5o0zJEmS5tteX/LcZE1tSZK0fEMlaSVJkiaVM2DHz30+f/prqc4Kj2XtD2+ALUkaJZO0mineDVySpsfamzZ0HYLGwCSYpFnlDbAlSaNkklaSpAmU5DTgrTT14N9RVW/s2/67wF8A32lXXVhV7xhrkJp4szr7UfPBBL8kSZonJmk13Tafb90vSTMnyYHA24BTgR3ANUk2VtXX+5p+qKrOHnuAkjRFTPZquZJ8EHgKcGSSHcDrquribqOSJM06k7SSJE2ek4BtVbUdIMklwOlAf5JWc8pSEfOtf4b0qBKPK/W60rSpqud1HYMkaf6YpFVnek8Ezjn1hJG3nxQD4958/t6NTjl3jBFJmgJHATf3PN4BPGlAu+ck+RXgBuCcqrp5QBtJkiRJ0oQzSau54o3FJE2JDFjXf0OS/wZ8sKp+nOQPgHcDT73fC3nnaUkaCcsmSJKklWSSVuPRO3PUWaOStJQdwDE9j48GbultUFW93zq9HXjToBfyztPSwry8X5IkSZPCJK3Gr03Yrr1pF1etXj9wvSTNuWuA45McB3wHWAf8Vm+DJA+vqlvbh88Grh9viJKGYf1gSZIkDcMkrSRJE6aqdic5G7gMOBB4Z1VtTXIesKWqNgL/Psmzgd3A7cDvdhawpoYJQ0mSJGkymaSVJGkCVdUmYFPfutf2LJ8LdF4/5n61vi17uyK6uCy/64Tuvtb/7LqEQdfvL0mSpOlkklaSJI2FN2+UJEmSpMFM0kqSpLnQ9czQfs64HJ3+fbnS7+FntTePZUmSpP1nklaSJEnSVJu0L2EkSZKWyyStJEnSCjFxpC5M8nHnrFtJkqTBTNJKkiRJfcZRQkGSJEnawyStVtwFl9/A2puam8Wc/KgjOo5mcb0zT65avb7DSCRJwxrVrMFJnn04D/r3v+Pwypv0fe7vpCRJmicHdB2AJEmSJEmSJM0zk7SSJEmSJEmS1CHLHahT917GtnmyyyBIkiTpPpaIkiRJGi2TtFJHrty+697lk0/pMBBJGiFrSE6Wlfo8/Jznz75+5pNe91aSJGlSmKTVWPUmJiVJknQfk9/jN8n7/P6xvbmTOCRJ0niYpJWGtPcfym9ecr0kSZLUy8SrJElaiElaTbQ9M2+v2n1Dx5GMzwWX39fXc049ocNIJEmSNIxJnpErSZKmg0larYzN59+7uPampUscWAZBkiRJkiRJ88okrbSAtTdtgM1HDN7Yk4Rejj2zZIdJXEuSNAvGPcPQGY1aKR5bkiRpJZmklSRJkqbISiULTUJKkiR1xyStNEr9M2xPObebOCRJM8Xk2Wj01n2XJEmSJolJWk2lcZUNWKhWrjV0JUmSRssZwpIkaZ6ZpNVU8I9rSZKkyeTfaZIkSfvPJK005Xov3Tzn1BM6jESStBwmtiRJkiTtYZJWGpP9PRk3GStJkjRb+uskr+0oDkmS1D2TtNJK2nz+itfNlSRpFnU907j//a9avb6jSCRJkjQPTNJKGoozeSVJWlrXyeVJ5/6RJEkazCStNEJXbr9v1uzJjzqiw0iWZtJVkjQr9jXxt5znmVyUJEnSSjpgmEZJTkvyzSTbkrx6wPZDknyo3X51kmN7tp3brv9mkl8bXejSZLty+669krbDWnvThnt/RmLz+Vx58Su58uJXjub1JI3F/oy9kiRp/yw1DkuSNGpLzqRNciDwNuBUYAdwTZKNVfX1nmZnAXdU1aOTrAPeBDw3yYnAOuAxwCOATyc5oap+OuqOSBoNZ9hK3dufsXf80UrTw9mwkoYx5DgsSdJIDVPu4CRgW1VtB0hyCXA60DtAnQ68vl2+FLgwSdr1l1TVj4FvJdnWvt6VowlfmhGbz1+yyV4nlpuPgFPOXcGAloih5/2HSeruadO7faHnLTdJbFJZM2qfx96qqnEGKknad35xMLGGGYclSRqpYZK0RwE39zzeATxpoTZVtTvJncAR7fqr+p571D5HO4/6k3crmZjrfa8B79ObDFvIniTZvlzmP88W2l8LlSi4cvsu2N5sW9u7YXN3dXDX3rThvvfvPX42n8/am9r+7UdyednJ2J7j+YLdz7nfc0eVJNYSlvh/RQvan7H3e2OJUJI0Vr1/o6xdpJ1GYphxeDL4t9Z47NnPs7CPZ+mYmYW+zNKxpf2WpSbcJDkT+LWq+r328QuAk6rq3/W02dq22dE+/nuabx/PA66sqve16y8GNlXVR/reYz2wvn34L4BvLhH3kcz3Saj9t//2f37Zf3hwVa3qOpCVtD9jb1Xt6nut5Y6xw5j343Ap7p+FuW8W5/5ZmPtmcaPaP4+c9TF2GMOMw+16x9jRmue+g/23//Z/1vu/5Bg7zEzaHcAxPY+PBm5ZoM2OJAcBhwG3D/lcqmoDMPS1Pkm2VNWaYdvPGvtv/+2//e86jq60/T+26zjGYH/G3r0sd4wdxrwfh0tx/yzMfbM498/C3DeLc/+M3Iqcxw5jnj/Lee472H/7b//nuf97HDBEm2uA45Mcl+QBNDcC29jXZiPwwnb5DOCKtibeRmBdewfq44Djgb8bTeiSJM2s/Rl7JUnS/hlmHJYkaaSWnEnb1rk7G7gMOBB4Z1VtTXIesKWqNgIXA+9tbwx2O80gRtvuwzQF1ncDL62qn65QXyRJmgn7M/ZKkqT9s9A43HFYkqQZN0y5A6pqE7Cpb91re5bvAc5c4LlvAN6wHzEOMu+3QbX/883+zzf7Pyf2Z+wdg7n5HPaR+2dh7pvFuX8W5r5ZnPtnxAaNw2Myz5/lPPcd7L/9n2/z3n9giBuHSZIkSZIkSZJWzjA1aSVJkiRJkiRJK2Tik7RJbkzy1STXJdnSrvtnSS5P8r/af3+26zhHJck7k9yW5Gs96wb2N42/TLItyVeSPKG7yEdjgf6/Psl32mPguiTP7Nl2btv/byb5tW6iHp0kxyTZnOT6JFuTvKxdPxfHwCL9n4tjIMkDk/xdki+3/f8P7frjklzdfv4uGHFEAAAH0klEQVQfam9gQXtTxg+1/b86ybFdxr+/Fun/u5J8q+fzf1y7fqaO/0mU5LT2d2tbklcP2D5Tx+ByDLFv/jDJ19tj8zNJHtlFnF1Zav/0tDsjSSWZm7v5DrNvkvyb9vjZmuQD446xS0P8bq1u/1b4Uvv79cxBrzOLBv2d3LfdcXGKDfv/5qzKgPP+WTbo93mhc75ZtED/FzznmzWLnPfOxTGwSP/n5hhYUFVN9A9wI3Bk37o/B17dLr8aeFPXcY6wv78CPAH42lL9BZ4JfBIIsBa4uuv4V6j/rwdeOaDticCXgUOA44C/Bw7sug/72f+HA09olw8Fbmj7ORfHwCL9n4tjoP0cH9IuHwxc3X6uHwbWtesvAl7cLr8EuKhdXgd8qOs+rFD/3wWcMaD9TB3/k/ZDc6OUvwceBTyg/V07sa/NTB2DI943pwA/0y6/eF72zbD7p213KPA54CpgTddxT8q+AY4HvgT8bPv457qOe8L2z4aecfBE4Mau4x7j/rnf38l92x0Xp/Rn2P83Z/mHAef9s/wz6PeZGc5zDNn/1zPgnG8Wf1jmef+s/SzS/7k5Bhb6mfiZtAs4HXh3u/xu4Dc6jGWkqupzNHfp7rVQf08H3lONq4DDkzx8PJGujAX6v5DTgUuq6sdV9S1gG3DSigU3BlV1a1Vd2y7/ALgeOIo5OQYW6f9CZuoYaD/Hu9uHB7c/BTwVuLRd3//57zkuLgWeliRjCnfkFun/Qmbq+J9AJwHbqmp7Vf0EuIRmn/eaqWNwGZbcN1W1uap+2D68Cjh6zDF2aZhjB+A/0pyM3DPO4Do2zL75t8DbquoOgKq6bcwxdmmY/VPAQ9vlw4Bbxhhfp4b4O9lxcXoN+/+mZsQyz/tnzjLP+2fOPpz3z5R9OO+fG9OQpC3gb5N8Mcn6dt3DqupWaD5c4Oc6i248FurvUcDNPe12MLsH9tntZVvv7JnyP9P9by8bfjzNbMK5Owb6+g9zcgwkOTDJdcBtwOU0syq+X1W72ya9fby3/+32O4EjxhvxaPX3v6r2fP5vaD//C5Ic0q6buc9/wgyzf2fuGBzSco+9s2hmt82LJfdPkscDx1TVJ8YZ2AQY5tg5ATghyReSXJXktLFF171h9s/rgecn2QFsAv7deEKbCo6L08vPbvB5/7yZtzzHIIPO+WbakOf9M2vI8/65MQ1J2idX1ROAZwAvTfIrXQc0QQbNVlps1tm0+ivgnwOPA24F/p92/cz2P8lDgI8AL6+quxZrOmDd1O+DAf2fm2Ogqn5aVY+jmXV3EvALg5q1/858/5M8FjgX+JfALwH/DHhV23zm+j9hhtm/8/oZDN3vJM8H1gB/saIRTZZF90+SA4ALgFeMLaLJMcyxcxBNyYOnAM8D3pHk8BWOa1IMs3+eB7yrqo6mubz/ve0xpfn9P3kW+Nl53q+Fz/lm1jLO+2fSMs7758bE/0FTVbe0/94GfIwmafHdPZfutP/O+mVgC/V3B3BMT7ujmcFLvqrqu23i5p+At3Pf5ewz2f8kB9P8R/X+qvpou3pujoFB/Z+3YwCgqr4PfJamptzhSQ5qN/X28d7+t9sPY0YuG+rp/2nt5TBVVT8G/gtz8PlPiGH278weg0sY6thL8qvA/wU8uz1+58VS++dQ4LHAZ5PcSPP/3MbMx83Dhv29+nhV/WNbyuebNEnbeTDM/jmLplY7VXUl8EDgyLFEN/kcF6fX3H92C5z3z5t5y3PsZZFzvpm0zPP+mbPM8/65MdFJ2iQPTnLonmXg6cDXgI3AC9tmLwQ+3k2EY7NQfzcCv9PeyXUtcOeeqfGzpK+W1m/SHAPQ9H9dmruLH0dzAvN3445vlNpajhcD11fVW3o2zcUxsFD/5+UYSLJqz2ypJA8CfpWmPs9m4Iy2Wf/nv+e4OAO4oqqmdtbFAv3/Rs8fKqGpy9T7+c/M8T+BrgGOT3JckgfQ3BhsY1+bmToGl2HJfdNezv+faRK0M/sH9gIW3T9VdWdVHVlVx1bVsTQ1e59dVTN/N2+G+736a5obz5HkSJryB9vHGmV3htk/NwFPA0jyCzRJ2p1jjXJyOS5Or2GO/Zm1yHn/vJm3PMdeFjnnmzn7cN4/U/bhvH9uHLR0k049DPhY8/lxEPCBqvpUkmuADyc5i+YPtTM7jHGkknyQ5vK2I9taW68D3sjg/m6iucxrG/BD4EVjD3jEFuj/U5I8juaSnxuB3weoqq1JPgx8HdgNvLSqftpF3CP0ZOAFwFfT1OUEeA3zcwws1P/nzckx8HDg3UkOpPkS7cNV9YkkXwcuSfJnNHf8vrhtfzHNZZ7baGYvrusi6BFaqP9XJFlFcyngdcAftO1n7fifKFW1O8nZwGU0d51+Z/s7dx6wpao2MnvH4FCG3Dd/ATwE+K/t3zE3VdWzOwt6jIbcP3NpyH1zGfD09v/+nwJ/VFW7uot6fIbcP68A3p7kHJq/C353Tr4cWujv5IMBquoiHBen1kLHfsdhjdPA8/5uQ1pZyzzvnznLOe+fUcs97581yzrvnyeZk79pJEmSJEmSJGkiTXS5A0mSJEmSJEmadSZpJUmSJEmSJKlDJmklSZIkSZIkqUMmaSVJkiRJkiSpQyZpJUmSJEmSJKlDJmklSZIkSZIkqUMmaSVJkiRJkiSpQyZpJUmSJEmSJKlD/z+t9LvIQwEI0gAAAABJRU5ErkJggg==\n",
318
      "text/plain": [
319
       "<Figure size 1728x2160 with 21 Axes>"
320
      ]
321
     },
322
     "metadata": {
323
      "needs_background": "light"
324
     },
325
     "output_type": "display_data"
326
    }
327
   ],
328
   "source": [
329
    "fig, axes = plt.subplots(7, 3, figsize=(24, 30))\n",
330
    "\n",
331
    "for i, ax in enumerate(axes.flatten()):\n",
332
    "    if i == len(cols_float): continue\n",
333
    "    col = cols_float[i]\n",
334
    "    a = ax.hist(train_md[col], bins=100, density=True, alpha=0.5)\n",
335
    "    a = ax.hist(test_md[col], bins=100, density=True, alpha=0.5)\n",
336
    "    ks = ks_2samp(train_md[col].values, test_md[col].values)\n",
337
    "    ax.set_title(col + (' IMPORTANT' if col in significant_cols else '') + ' ks {:.4f}'.format(ks.statistic))"
338
   ]
339
  },
340
  {
341
   "cell_type": "markdown",
342
   "metadata": {},
343
   "source": [
344
    "# Scans"
345
   ]
346
  },
347
  {
348
   "cell_type": "code",
349
   "execution_count": 103,
350
   "metadata": {},
351
   "outputs": [
352
    {
353
     "data": {
354
      "text/html": [
355
       "<div>\n",
356
       "<style scoped>\n",
357
       "    .dataframe tbody tr th:only-of-type {\n",
358
       "        vertical-align: middle;\n",
359
       "    }\n",
360
       "\n",
361
       "    .dataframe tbody tr th {\n",
362
       "        vertical-align: top;\n",
363
       "    }\n",
364
       "\n",
365
       "    .dataframe thead th {\n",
366
       "        text-align: right;\n",
367
       "    }\n",
368
       "</style>\n",
369
       "<table border=\"1\" class=\"dataframe\">\n",
370
       "  <thead>\n",
371
       "    <tr style=\"text-align: right;\">\n",
372
       "      <th></th>\n",
373
       "      <th>BitsAllocated</th>\n",
374
       "      <th>BitsStored</th>\n",
375
       "      <th>HighBit</th>\n",
376
       "      <th>ImageOrientationPatient</th>\n",
377
       "      <th>ImagePositionPatient</th>\n",
378
       "      <th>Modality</th>\n",
379
       "      <th>PatientID</th>\n",
380
       "      <th>PhotometricInterpretation</th>\n",
381
       "      <th>PixelRepresentation</th>\n",
382
       "      <th>PixelSpacing</th>\n",
383
       "      <th>RescaleIntercept</th>\n",
384
       "      <th>RescaleSlope</th>\n",
385
       "      <th>SOPInstanceUID</th>\n",
386
       "      <th>SamplesPerPixel</th>\n",
387
       "      <th>SeriesInstanceUID</th>\n",
388
       "      <th>StudyID</th>\n",
389
       "      <th>StudyInstanceUID</th>\n",
390
       "      <th>WindowCenter</th>\n",
391
       "      <th>WindowWidth</th>\n",
392
       "      <th>ImageOrientationPatient_0</th>\n",
393
       "      <th>ImageOrientationPatient_1</th>\n",
394
       "      <th>ImageOrientationPatient_2</th>\n",
395
       "      <th>ImageOrientationPatient_3</th>\n",
396
       "      <th>ImageOrientationPatient_4</th>\n",
397
       "      <th>ImageOrientationPatient_5</th>\n",
398
       "      <th>ImagePositionPatient_0</th>\n",
399
       "      <th>ImagePositionPatient_1</th>\n",
400
       "      <th>ImagePositionPatient_2</th>\n",
401
       "      <th>PixelSpacing_0</th>\n",
402
       "      <th>PixelSpacing_1</th>\n",
403
       "      <th>WindowCenter_0</th>\n",
404
       "      <th>WindowCenter_1</th>\n",
405
       "      <th>WindowCenter_1_NAN</th>\n",
406
       "      <th>any</th>\n",
407
       "      <th>epidural</th>\n",
408
       "      <th>intraparenchymal</th>\n",
409
       "      <th>intraventricular</th>\n",
410
       "      <th>subarachnoid</th>\n",
411
       "      <th>subdural</th>\n",
412
       "      <th>weight</th>\n",
413
       "    </tr>\n",
414
       "  </thead>\n",
415
       "  <tbody>\n",
416
       "    <tr>\n",
417
       "      <th>0</th>\n",
418
       "      <td>16</td>\n",
419
       "      <td>0</td>\n",
420
       "      <td>15</td>\n",
421
       "      <td>['1.000000', '0.000000', '0.000000', '0.000000...</td>\n",
422
       "      <td>['-125.000', '-123.101', '104.307']</td>\n",
423
       "      <td>CT</td>\n",
424
       "      <td>ID_b81a287f</td>\n",
425
       "      <td>MONOCHROME2</td>\n",
426
       "      <td>0</td>\n",
427
       "      <td>['0.488281', '0.488281']</td>\n",
428
       "      <td>0</td>\n",
429
       "      <td>1.0</td>\n",
430
       "      <td>ID_231d901c1</td>\n",
431
       "      <td>1</td>\n",
432
       "      <td>ID_15dcd6057a</td>\n",
433
       "      <td>NaN</td>\n",
434
       "      <td>ID_dd37ba3adb</td>\n",
435
       "      <td>40</td>\n",
436
       "      <td>100</td>\n",
437
       "      <td>1.0</td>\n",
438
       "      <td>0.0</td>\n",
439
       "      <td>0.0</td>\n",
440
       "      <td>0.0</td>\n",
441
       "      <td>0.984808</td>\n",
442
       "      <td>-0.173648</td>\n",
443
       "      <td>-125.0</td>\n",
444
       "      <td>-123.101000</td>\n",
445
       "      <td>104.307000</td>\n",
446
       "      <td>0.488281</td>\n",
447
       "      <td>0.488281</td>\n",
448
       "      <td>40.0</td>\n",
449
       "      <td>38.015255</td>\n",
450
       "      <td>0</td>\n",
451
       "      <td>1</td>\n",
452
       "      <td>0</td>\n",
453
       "      <td>0</td>\n",
454
       "      <td>0</td>\n",
455
       "      <td>1</td>\n",
456
       "      <td>0</td>\n",
457
       "      <td>0.015365</td>\n",
458
       "    </tr>\n",
459
       "    <tr>\n",
460
       "      <th>1</th>\n",
461
       "      <td>16</td>\n",
462
       "      <td>1</td>\n",
463
       "      <td>11</td>\n",
464
       "      <td>['1', '0', '0', '0', '0.933580426', '-0.358367...</td>\n",
465
       "      <td>['-125', '53.6282216', '223.572015']</td>\n",
466
       "      <td>CT</td>\n",
467
       "      <td>ID_400facde</td>\n",
468
       "      <td>MONOCHROME2</td>\n",
469
       "      <td>1</td>\n",
470
       "      <td>['0.48828125', '0.48828125']</td>\n",
471
       "      <td>0</td>\n",
472
       "      <td>1.0</td>\n",
473
       "      <td>ID_994bc0470</td>\n",
474
       "      <td>1</td>\n",
475
       "      <td>ID_4ba12c2161</td>\n",
476
       "      <td>NaN</td>\n",
477
       "      <td>ID_c5277f0c63</td>\n",
478
       "      <td>['00047', '00047']</td>\n",
479
       "      <td>['00080', '00080']</td>\n",
480
       "      <td>1.0</td>\n",
481
       "      <td>0.0</td>\n",
482
       "      <td>0.0</td>\n",
483
       "      <td>0.0</td>\n",
484
       "      <td>0.933580</td>\n",
485
       "      <td>-0.358368</td>\n",
486
       "      <td>-125.0</td>\n",
487
       "      <td>53.628222</td>\n",
488
       "      <td>223.572015</td>\n",
489
       "      <td>0.488281</td>\n",
490
       "      <td>0.488281</td>\n",
491
       "      <td>47.0</td>\n",
492
       "      <td>47.000000</td>\n",
493
       "      <td>1</td>\n",
494
       "      <td>0</td>\n",
495
       "      <td>0</td>\n",
496
       "      <td>0</td>\n",
497
       "      <td>0</td>\n",
498
       "      <td>0</td>\n",
499
       "      <td>0</td>\n",
500
       "      <td>0.001997</td>\n",
501
       "    </tr>\n",
502
       "    <tr>\n",
503
       "      <th>2</th>\n",
504
       "      <td>16</td>\n",
505
       "      <td>0</td>\n",
506
       "      <td>15</td>\n",
507
       "      <td>['1.000000', '0.000000', '0.000000', '0.000000...</td>\n",
508
       "      <td>['-125.000000', '-123.646240', '124.321068']</td>\n",
509
       "      <td>CT</td>\n",
510
       "      <td>ID_42910d3d</td>\n",
511
       "      <td>MONOCHROME2</td>\n",
512
       "      <td>0</td>\n",
513
       "      <td>['0.488281', '0.488281']</td>\n",
514
       "      <td>0</td>\n",
515
       "      <td>1.0</td>\n",
516
       "      <td>ID_127689cce</td>\n",
517
       "      <td>1</td>\n",
518
       "      <td>ID_c4b4931314</td>\n",
519
       "      <td>NaN</td>\n",
520
       "      <td>ID_db93ade25b</td>\n",
521
       "      <td>30</td>\n",
522
       "      <td>80</td>\n",
523
       "      <td>1.0</td>\n",
524
       "      <td>0.0</td>\n",
525
       "      <td>0.0</td>\n",
526
       "      <td>0.0</td>\n",
527
       "      <td>0.972370</td>\n",
528
       "      <td>-0.233445</td>\n",
529
       "      <td>-125.0</td>\n",
530
       "      <td>-123.646240</td>\n",
531
       "      <td>124.321068</td>\n",
532
       "      <td>0.488281</td>\n",
533
       "      <td>0.488281</td>\n",
534
       "      <td>30.0</td>\n",
535
       "      <td>38.015255</td>\n",
536
       "      <td>0</td>\n",
537
       "      <td>0</td>\n",
538
       "      <td>0</td>\n",
539
       "      <td>0</td>\n",
540
       "      <td>0</td>\n",
541
       "      <td>0</td>\n",
542
       "      <td>0</td>\n",
543
       "      <td>0.269672</td>\n",
544
       "    </tr>\n",
545
       "    <tr>\n",
546
       "      <th>3</th>\n",
547
       "      <td>16</td>\n",
548
       "      <td>1</td>\n",
549
       "      <td>11</td>\n",
550
       "      <td>['1', '0', '0', '0', '1', '0']</td>\n",
551
       "      <td>['-114', '-6', '171.999939']</td>\n",
552
       "      <td>CT</td>\n",
553
       "      <td>ID_329aafa7</td>\n",
554
       "      <td>MONOCHROME2</td>\n",
555
       "      <td>1</td>\n",
556
       "      <td>['0.4453125', '0.4453125']</td>\n",
557
       "      <td>0</td>\n",
558
       "      <td>1.0</td>\n",
559
       "      <td>ID_25457734a</td>\n",
560
       "      <td>1</td>\n",
561
       "      <td>ID_116558f409</td>\n",
562
       "      <td>NaN</td>\n",
563
       "      <td>ID_8dd6d32f3b</td>\n",
564
       "      <td>['00036', '00036']</td>\n",
565
       "      <td>['00080', '00080']</td>\n",
566
       "      <td>1.0</td>\n",
567
       "      <td>0.0</td>\n",
568
       "      <td>0.0</td>\n",
569
       "      <td>0.0</td>\n",
570
       "      <td>1.000000</td>\n",
571
       "      <td>0.000000</td>\n",
572
       "      <td>-114.0</td>\n",
573
       "      <td>-6.000000</td>\n",
574
       "      <td>171.999939</td>\n",
575
       "      <td>0.445312</td>\n",
576
       "      <td>0.445312</td>\n",
577
       "      <td>36.0</td>\n",
578
       "      <td>36.000000</td>\n",
579
       "      <td>1</td>\n",
580
       "      <td>0</td>\n",
581
       "      <td>0</td>\n",
582
       "      <td>0</td>\n",
583
       "      <td>0</td>\n",
584
       "      <td>0</td>\n",
585
       "      <td>0</td>\n",
586
       "      <td>0.003259</td>\n",
587
       "    </tr>\n",
588
       "    <tr>\n",
589
       "      <th>4</th>\n",
590
       "      <td>16</td>\n",
591
       "      <td>1</td>\n",
592
       "      <td>11</td>\n",
593
       "      <td>['1', '0', '0', '0', '1', '0']</td>\n",
594
       "      <td>['-115', '-1', '230.5']</td>\n",
595
       "      <td>CT</td>\n",
596
       "      <td>ID_6b544c3c</td>\n",
597
       "      <td>MONOCHROME2</td>\n",
598
       "      <td>1</td>\n",
599
       "      <td>['0.44921875', '0.44921875']</td>\n",
600
       "      <td>0</td>\n",
601
       "      <td>1.0</td>\n",
602
       "      <td>ID_81c9aa125</td>\n",
603
       "      <td>1</td>\n",
604
       "      <td>ID_f56d7bd0f9</td>\n",
605
       "      <td>NaN</td>\n",
606
       "      <td>ID_2685c5d5c0</td>\n",
607
       "      <td>['00036', '00036']</td>\n",
608
       "      <td>['00080', '00080']</td>\n",
609
       "      <td>1.0</td>\n",
610
       "      <td>0.0</td>\n",
611
       "      <td>0.0</td>\n",
612
       "      <td>0.0</td>\n",
613
       "      <td>1.000000</td>\n",
614
       "      <td>0.000000</td>\n",
615
       "      <td>-115.0</td>\n",
616
       "      <td>-1.000000</td>\n",
617
       "      <td>230.500000</td>\n",
618
       "      <td>0.449219</td>\n",
619
       "      <td>0.449219</td>\n",
620
       "      <td>36.0</td>\n",
621
       "      <td>36.000000</td>\n",
622
       "      <td>1</td>\n",
623
       "      <td>0</td>\n",
624
       "      <td>0</td>\n",
625
       "      <td>0</td>\n",
626
       "      <td>0</td>\n",
627
       "      <td>0</td>\n",
628
       "      <td>0</td>\n",
629
       "      <td>0.005538</td>\n",
630
       "    </tr>\n",
631
       "  </tbody>\n",
632
       "</table>\n",
633
       "</div>"
634
      ],
635
      "text/plain": [
636
       "   BitsAllocated BitsStored  HighBit  \\\n",
637
       "0             16          0       15   \n",
638
       "1             16          1       11   \n",
639
       "2             16          0       15   \n",
640
       "3             16          1       11   \n",
641
       "4             16          1       11   \n",
642
       "\n",
643
       "                             ImageOrientationPatient  \\\n",
644
       "0  ['1.000000', '0.000000', '0.000000', '0.000000...   \n",
645
       "1  ['1', '0', '0', '0', '0.933580426', '-0.358367...   \n",
646
       "2  ['1.000000', '0.000000', '0.000000', '0.000000...   \n",
647
       "3                     ['1', '0', '0', '0', '1', '0']   \n",
648
       "4                     ['1', '0', '0', '0', '1', '0']   \n",
649
       "\n",
650
       "                           ImagePositionPatient Modality    PatientID  \\\n",
651
       "0           ['-125.000', '-123.101', '104.307']       CT  ID_b81a287f   \n",
652
       "1          ['-125', '53.6282216', '223.572015']       CT  ID_400facde   \n",
653
       "2  ['-125.000000', '-123.646240', '124.321068']       CT  ID_42910d3d   \n",
654
       "3                  ['-114', '-6', '171.999939']       CT  ID_329aafa7   \n",
655
       "4                       ['-115', '-1', '230.5']       CT  ID_6b544c3c   \n",
656
       "\n",
657
       "  PhotometricInterpretation PixelRepresentation                  PixelSpacing  \\\n",
658
       "0               MONOCHROME2                   0      ['0.488281', '0.488281']   \n",
659
       "1               MONOCHROME2                   1  ['0.48828125', '0.48828125']   \n",
660
       "2               MONOCHROME2                   0      ['0.488281', '0.488281']   \n",
661
       "3               MONOCHROME2                   1    ['0.4453125', '0.4453125']   \n",
662
       "4               MONOCHROME2                   1  ['0.44921875', '0.44921875']   \n",
663
       "\n",
664
       "  RescaleIntercept  RescaleSlope SOPInstanceUID  SamplesPerPixel  \\\n",
665
       "0                0           1.0   ID_231d901c1                1   \n",
666
       "1                0           1.0   ID_994bc0470                1   \n",
667
       "2                0           1.0   ID_127689cce                1   \n",
668
       "3                0           1.0   ID_25457734a                1   \n",
669
       "4                0           1.0   ID_81c9aa125                1   \n",
670
       "\n",
671
       "  SeriesInstanceUID  StudyID StudyInstanceUID        WindowCenter  \\\n",
672
       "0     ID_15dcd6057a      NaN    ID_dd37ba3adb                  40   \n",
673
       "1     ID_4ba12c2161      NaN    ID_c5277f0c63  ['00047', '00047']   \n",
674
       "2     ID_c4b4931314      NaN    ID_db93ade25b                  30   \n",
675
       "3     ID_116558f409      NaN    ID_8dd6d32f3b  ['00036', '00036']   \n",
676
       "4     ID_f56d7bd0f9      NaN    ID_2685c5d5c0  ['00036', '00036']   \n",
677
       "\n",
678
       "          WindowWidth  ImageOrientationPatient_0  ImageOrientationPatient_1  \\\n",
679
       "0                 100                        1.0                        0.0   \n",
680
       "1  ['00080', '00080']                        1.0                        0.0   \n",
681
       "2                  80                        1.0                        0.0   \n",
682
       "3  ['00080', '00080']                        1.0                        0.0   \n",
683
       "4  ['00080', '00080']                        1.0                        0.0   \n",
684
       "\n",
685
       "   ImageOrientationPatient_2  ImageOrientationPatient_3  \\\n",
686
       "0                        0.0                        0.0   \n",
687
       "1                        0.0                        0.0   \n",
688
       "2                        0.0                        0.0   \n",
689
       "3                        0.0                        0.0   \n",
690
       "4                        0.0                        0.0   \n",
691
       "\n",
692
       "   ImageOrientationPatient_4  ImageOrientationPatient_5  \\\n",
693
       "0                   0.984808                  -0.173648   \n",
694
       "1                   0.933580                  -0.358368   \n",
695
       "2                   0.972370                  -0.233445   \n",
696
       "3                   1.000000                   0.000000   \n",
697
       "4                   1.000000                   0.000000   \n",
698
       "\n",
699
       "   ImagePositionPatient_0  ImagePositionPatient_1  ImagePositionPatient_2  \\\n",
700
       "0                  -125.0             -123.101000              104.307000   \n",
701
       "1                  -125.0               53.628222              223.572015   \n",
702
       "2                  -125.0             -123.646240              124.321068   \n",
703
       "3                  -114.0               -6.000000              171.999939   \n",
704
       "4                  -115.0               -1.000000              230.500000   \n",
705
       "\n",
706
       "   PixelSpacing_0  PixelSpacing_1  WindowCenter_0  WindowCenter_1  \\\n",
707
       "0        0.488281        0.488281            40.0       38.015255   \n",
708
       "1        0.488281        0.488281            47.0       47.000000   \n",
709
       "2        0.488281        0.488281            30.0       38.015255   \n",
710
       "3        0.445312        0.445312            36.0       36.000000   \n",
711
       "4        0.449219        0.449219            36.0       36.000000   \n",
712
       "\n",
713
       "  WindowCenter_1_NAN  any  epidural  intraparenchymal  intraventricular  \\\n",
714
       "0                  0    1         0                 0                 0   \n",
715
       "1                  1    0         0                 0                 0   \n",
716
       "2                  0    0         0                 0                 0   \n",
717
       "3                  1    0         0                 0                 0   \n",
718
       "4                  1    0         0                 0                 0   \n",
719
       "\n",
720
       "   subarachnoid  subdural    weight  \n",
721
       "0             1         0  0.015365  \n",
722
       "1             0         0  0.001997  \n",
723
       "2             0         0  0.269672  \n",
724
       "3             0         0  0.003259  \n",
725
       "4             0         0  0.005538  "
726
      ]
727
     },
728
     "execution_count": 103,
729
     "metadata": {},
730
     "output_type": "execute_result"
731
    }
732
   ],
733
   "source": [
734
    "train_md.head()"
735
   ]
736
  },
737
  {
738
   "cell_type": "code",
739
   "execution_count": 151,
740
   "metadata": {},
741
   "outputs": [
742
    {
743
     "data": {
744
      "text/html": [
745
       "<div>\n",
746
       "<style scoped>\n",
747
       "    .dataframe tbody tr th:only-of-type {\n",
748
       "        vertical-align: middle;\n",
749
       "    }\n",
750
       "\n",
751
       "    .dataframe tbody tr th {\n",
752
       "        vertical-align: top;\n",
753
       "    }\n",
754
       "\n",
755
       "    .dataframe thead th {\n",
756
       "        text-align: right;\n",
757
       "    }\n",
758
       "</style>\n",
759
       "<table border=\"1\" class=\"dataframe\">\n",
760
       "  <thead>\n",
761
       "    <tr style=\"text-align: right;\">\n",
762
       "      <th></th>\n",
763
       "      <th>BitsAllocated</th>\n",
764
       "      <th>BitsStored</th>\n",
765
       "      <th>HighBit</th>\n",
766
       "      <th>ImageOrientationPatient</th>\n",
767
       "      <th>ImagePositionPatient</th>\n",
768
       "      <th>Modality</th>\n",
769
       "      <th>PatientID</th>\n",
770
       "      <th>PhotometricInterpretation</th>\n",
771
       "      <th>PixelRepresentation</th>\n",
772
       "      <th>PixelSpacing</th>\n",
773
       "      <th>RescaleIntercept</th>\n",
774
       "      <th>RescaleSlope</th>\n",
775
       "      <th>SOPInstanceUID</th>\n",
776
       "      <th>SamplesPerPixel</th>\n",
777
       "      <th>SeriesInstanceUID</th>\n",
778
       "      <th>StudyID</th>\n",
779
       "      <th>StudyInstanceUID</th>\n",
780
       "      <th>WindowCenter</th>\n",
781
       "      <th>WindowWidth</th>\n",
782
       "      <th>ImageOrientationPatient_0</th>\n",
783
       "      <th>ImageOrientationPatient_1</th>\n",
784
       "      <th>ImageOrientationPatient_2</th>\n",
785
       "      <th>ImageOrientationPatient_3</th>\n",
786
       "      <th>ImageOrientationPatient_4</th>\n",
787
       "      <th>ImageOrientationPatient_5</th>\n",
788
       "      <th>ImagePositionPatient_0</th>\n",
789
       "      <th>ImagePositionPatient_1</th>\n",
790
       "      <th>ImagePositionPatient_2</th>\n",
791
       "      <th>PixelSpacing_0</th>\n",
792
       "      <th>PixelSpacing_1</th>\n",
793
       "      <th>WindowCenter_0</th>\n",
794
       "      <th>WindowCenter_1</th>\n",
795
       "      <th>WindowCenter_1_NAN</th>\n",
796
       "      <th>any</th>\n",
797
       "      <th>epidural</th>\n",
798
       "      <th>intraparenchymal</th>\n",
799
       "      <th>intraventricular</th>\n",
800
       "      <th>subarachnoid</th>\n",
801
       "      <th>subdural</th>\n",
802
       "      <th>weight</th>\n",
803
       "      <th>pos_max</th>\n",
804
       "      <th>pos_min</th>\n",
805
       "      <th>pos_size</th>\n",
806
       "      <th>pos_idx</th>\n",
807
       "      <th>pos_inc</th>\n",
808
       "    </tr>\n",
809
       "  </thead>\n",
810
       "  <tbody>\n",
811
       "    <tr>\n",
812
       "      <th>6173</th>\n",
813
       "      <td>16</td>\n",
814
       "      <td>0</td>\n",
815
       "      <td>15</td>\n",
816
       "      <td>['1.000000', '0.000000', '0.000000', '0.000000...</td>\n",
817
       "      <td>['-125.000000', '-107.097977', '18.730394']</td>\n",
818
       "      <td>CT</td>\n",
819
       "      <td>ID_6a88f066</td>\n",
820
       "      <td>MONOCHROME2</td>\n",
821
       "      <td>0</td>\n",
822
       "      <td>['0.488281', '0.488281']</td>\n",
823
       "      <td>0</td>\n",
824
       "      <td>1.0</td>\n",
825
       "      <td>ID_fca334534</td>\n",
826
       "      <td>1</td>\n",
827
       "      <td>ID_025d684f04</td>\n",
828
       "      <td>NaN</td>\n",
829
       "      <td>ID_75eaa2e6de</td>\n",
830
       "      <td>30</td>\n",
831
       "      <td>80</td>\n",
832
       "      <td>1.0</td>\n",
833
       "      <td>0.0</td>\n",
834
       "      <td>0.0</td>\n",
835
       "      <td>0.0</td>\n",
836
       "      <td>0.927184</td>\n",
837
       "      <td>-0.374607</td>\n",
838
       "      <td>-125.0</td>\n",
839
       "      <td>-107.097977</td>\n",
840
       "      <td>18.730394</td>\n",
841
       "      <td>0.488281</td>\n",
842
       "      <td>0.488281</td>\n",
843
       "      <td>30.0</td>\n",
844
       "      <td>38.015255</td>\n",
845
       "      <td>0</td>\n",
846
       "      <td>0</td>\n",
847
       "      <td>0</td>\n",
848
       "      <td>0</td>\n",
849
       "      <td>0</td>\n",
850
       "      <td>0</td>\n",
851
       "      <td>0</td>\n",
852
       "      <td>0.210224</td>\n",
853
       "      <td>185.898392</td>\n",
854
       "      <td>18.730394</td>\n",
855
       "      <td>36</td>\n",
856
       "      <td>0</td>\n",
857
       "      <td>0.000000</td>\n",
858
       "    </tr>\n",
859
       "    <tr>\n",
860
       "      <th>6174</th>\n",
861
       "      <td>16</td>\n",
862
       "      <td>0</td>\n",
863
       "      <td>15</td>\n",
864
       "      <td>['1.000000', '0.000000', '0.000000', '0.000000...</td>\n",
865
       "      <td>['-125.000000', '-107.097977', '24.123068']</td>\n",
866
       "      <td>CT</td>\n",
867
       "      <td>ID_6a88f066</td>\n",
868
       "      <td>MONOCHROME2</td>\n",
869
       "      <td>0</td>\n",
870
       "      <td>['0.488281', '0.488281']</td>\n",
871
       "      <td>0</td>\n",
872
       "      <td>1.0</td>\n",
873
       "      <td>ID_bb3ca1577</td>\n",
874
       "      <td>1</td>\n",
875
       "      <td>ID_025d684f04</td>\n",
876
       "      <td>NaN</td>\n",
877
       "      <td>ID_75eaa2e6de</td>\n",
878
       "      <td>30</td>\n",
879
       "      <td>80</td>\n",
880
       "      <td>1.0</td>\n",
881
       "      <td>0.0</td>\n",
882
       "      <td>0.0</td>\n",
883
       "      <td>0.0</td>\n",
884
       "      <td>0.927184</td>\n",
885
       "      <td>-0.374607</td>\n",
886
       "      <td>-125.0</td>\n",
887
       "      <td>-107.097977</td>\n",
888
       "      <td>24.123068</td>\n",
889
       "      <td>0.488281</td>\n",
890
       "      <td>0.488281</td>\n",
891
       "      <td>30.0</td>\n",
892
       "      <td>38.015255</td>\n",
893
       "      <td>0</td>\n",
894
       "      <td>0</td>\n",
895
       "      <td>0</td>\n",
896
       "      <td>0</td>\n",
897
       "      <td>0</td>\n",
898
       "      <td>0</td>\n",
899
       "      <td>0</td>\n",
900
       "      <td>0.210186</td>\n",
901
       "      <td>185.898392</td>\n",
902
       "      <td>18.730394</td>\n",
903
       "      <td>36</td>\n",
904
       "      <td>1</td>\n",
905
       "      <td>5.392674</td>\n",
906
       "    </tr>\n",
907
       "    <tr>\n",
908
       "      <th>6175</th>\n",
909
       "      <td>16</td>\n",
910
       "      <td>0</td>\n",
911
       "      <td>15</td>\n",
912
       "      <td>['1.000000', '0.000000', '0.000000', '0.000000...</td>\n",
913
       "      <td>['-125.000000', '-107.097977', '29.515741']</td>\n",
914
       "      <td>CT</td>\n",
915
       "      <td>ID_6a88f066</td>\n",
916
       "      <td>MONOCHROME2</td>\n",
917
       "      <td>0</td>\n",
918
       "      <td>['0.488281', '0.488281']</td>\n",
919
       "      <td>0</td>\n",
920
       "      <td>1.0</td>\n",
921
       "      <td>ID_78ce791af</td>\n",
922
       "      <td>1</td>\n",
923
       "      <td>ID_025d684f04</td>\n",
924
       "      <td>NaN</td>\n",
925
       "      <td>ID_75eaa2e6de</td>\n",
926
       "      <td>30</td>\n",
927
       "      <td>80</td>\n",
928
       "      <td>1.0</td>\n",
929
       "      <td>0.0</td>\n",
930
       "      <td>0.0</td>\n",
931
       "      <td>0.0</td>\n",
932
       "      <td>0.927184</td>\n",
933
       "      <td>-0.374607</td>\n",
934
       "      <td>-125.0</td>\n",
935
       "      <td>-107.097977</td>\n",
936
       "      <td>29.515741</td>\n",
937
       "      <td>0.488281</td>\n",
938
       "      <td>0.488281</td>\n",
939
       "      <td>30.0</td>\n",
940
       "      <td>38.015255</td>\n",
941
       "      <td>0</td>\n",
942
       "      <td>0</td>\n",
943
       "      <td>0</td>\n",
944
       "      <td>0</td>\n",
945
       "      <td>0</td>\n",
946
       "      <td>0</td>\n",
947
       "      <td>0</td>\n",
948
       "      <td>0.212440</td>\n",
949
       "      <td>185.898392</td>\n",
950
       "      <td>18.730394</td>\n",
951
       "      <td>36</td>\n",
952
       "      <td>2</td>\n",
953
       "      <td>5.392673</td>\n",
954
       "    </tr>\n",
955
       "    <tr>\n",
956
       "      <th>6176</th>\n",
957
       "      <td>16</td>\n",
958
       "      <td>0</td>\n",
959
       "      <td>15</td>\n",
960
       "      <td>['1.000000', '0.000000', '0.000000', '0.000000...</td>\n",
961
       "      <td>['-125.000000', '-107.097977', '34.908417']</td>\n",
962
       "      <td>CT</td>\n",
963
       "      <td>ID_6a88f066</td>\n",
964
       "      <td>MONOCHROME2</td>\n",
965
       "      <td>0</td>\n",
966
       "      <td>['0.488281', '0.488281']</td>\n",
967
       "      <td>0</td>\n",
968
       "      <td>1.0</td>\n",
969
       "      <td>ID_3c9c2db71</td>\n",
970
       "      <td>1</td>\n",
971
       "      <td>ID_025d684f04</td>\n",
972
       "      <td>NaN</td>\n",
973
       "      <td>ID_75eaa2e6de</td>\n",
974
       "      <td>30</td>\n",
975
       "      <td>80</td>\n",
976
       "      <td>1.0</td>\n",
977
       "      <td>0.0</td>\n",
978
       "      <td>0.0</td>\n",
979
       "      <td>0.0</td>\n",
980
       "      <td>0.927184</td>\n",
981
       "      <td>-0.374607</td>\n",
982
       "      <td>-125.0</td>\n",
983
       "      <td>-107.097977</td>\n",
984
       "      <td>34.908417</td>\n",
985
       "      <td>0.488281</td>\n",
986
       "      <td>0.488281</td>\n",
987
       "      <td>30.0</td>\n",
988
       "      <td>38.015255</td>\n",
989
       "      <td>0</td>\n",
990
       "      <td>0</td>\n",
991
       "      <td>0</td>\n",
992
       "      <td>0</td>\n",
993
       "      <td>0</td>\n",
994
       "      <td>0</td>\n",
995
       "      <td>0</td>\n",
996
       "      <td>0.201545</td>\n",
997
       "      <td>185.898392</td>\n",
998
       "      <td>18.730394</td>\n",
999
       "      <td>36</td>\n",
1000
       "      <td>3</td>\n",
1001
       "      <td>5.392676</td>\n",
1002
       "    </tr>\n",
1003
       "    <tr>\n",
1004
       "      <th>6177</th>\n",
1005
       "      <td>16</td>\n",
1006
       "      <td>0</td>\n",
1007
       "      <td>15</td>\n",
1008
       "      <td>['1.000000', '0.000000', '0.000000', '0.000000...</td>\n",
1009
       "      <td>['-125.000000', '-107.097977', '40.300396']</td>\n",
1010
       "      <td>CT</td>\n",
1011
       "      <td>ID_6a88f066</td>\n",
1012
       "      <td>MONOCHROME2</td>\n",
1013
       "      <td>0</td>\n",
1014
       "      <td>['0.488281', '0.488281']</td>\n",
1015
       "      <td>0</td>\n",
1016
       "      <td>1.0</td>\n",
1017
       "      <td>ID_069d12e61</td>\n",
1018
       "      <td>1</td>\n",
1019
       "      <td>ID_025d684f04</td>\n",
1020
       "      <td>NaN</td>\n",
1021
       "      <td>ID_75eaa2e6de</td>\n",
1022
       "      <td>30</td>\n",
1023
       "      <td>80</td>\n",
1024
       "      <td>1.0</td>\n",
1025
       "      <td>0.0</td>\n",
1026
       "      <td>0.0</td>\n",
1027
       "      <td>0.0</td>\n",
1028
       "      <td>0.927184</td>\n",
1029
       "      <td>-0.374607</td>\n",
1030
       "      <td>-125.0</td>\n",
1031
       "      <td>-107.097977</td>\n",
1032
       "      <td>40.300396</td>\n",
1033
       "      <td>0.488281</td>\n",
1034
       "      <td>0.488281</td>\n",
1035
       "      <td>30.0</td>\n",
1036
       "      <td>38.015255</td>\n",
1037
       "      <td>0</td>\n",
1038
       "      <td>0</td>\n",
1039
       "      <td>0</td>\n",
1040
       "      <td>0</td>\n",
1041
       "      <td>0</td>\n",
1042
       "      <td>0</td>\n",
1043
       "      <td>0</td>\n",
1044
       "      <td>0.206333</td>\n",
1045
       "      <td>185.898392</td>\n",
1046
       "      <td>18.730394</td>\n",
1047
       "      <td>36</td>\n",
1048
       "      <td>4</td>\n",
1049
       "      <td>5.391979</td>\n",
1050
       "    </tr>\n",
1051
       "    <tr>\n",
1052
       "      <th>6178</th>\n",
1053
       "      <td>16</td>\n",
1054
       "      <td>0</td>\n",
1055
       "      <td>15</td>\n",
1056
       "      <td>['1.000000', '0.000000', '0.000000', '0.000000...</td>\n",
1057
       "      <td>['-125.000000', '-107.097977', '45.693069']</td>\n",
1058
       "      <td>CT</td>\n",
1059
       "      <td>ID_6a88f066</td>\n",
1060
       "      <td>MONOCHROME2</td>\n",
1061
       "      <td>0</td>\n",
1062
       "      <td>['0.488281', '0.488281']</td>\n",
1063
       "      <td>0</td>\n",
1064
       "      <td>1.0</td>\n",
1065
       "      <td>ID_7bdb10aaa</td>\n",
1066
       "      <td>1</td>\n",
1067
       "      <td>ID_025d684f04</td>\n",
1068
       "      <td>NaN</td>\n",
1069
       "      <td>ID_75eaa2e6de</td>\n",
1070
       "      <td>30</td>\n",
1071
       "      <td>80</td>\n",
1072
       "      <td>1.0</td>\n",
1073
       "      <td>0.0</td>\n",
1074
       "      <td>0.0</td>\n",
1075
       "      <td>0.0</td>\n",
1076
       "      <td>0.927184</td>\n",
1077
       "      <td>-0.374607</td>\n",
1078
       "      <td>-125.0</td>\n",
1079
       "      <td>-107.097977</td>\n",
1080
       "      <td>45.693069</td>\n",
1081
       "      <td>0.488281</td>\n",
1082
       "      <td>0.488281</td>\n",
1083
       "      <td>30.0</td>\n",
1084
       "      <td>38.015255</td>\n",
1085
       "      <td>0</td>\n",
1086
       "      <td>0</td>\n",
1087
       "      <td>0</td>\n",
1088
       "      <td>0</td>\n",
1089
       "      <td>0</td>\n",
1090
       "      <td>0</td>\n",
1091
       "      <td>0</td>\n",
1092
       "      <td>0.199955</td>\n",
1093
       "      <td>185.898392</td>\n",
1094
       "      <td>18.730394</td>\n",
1095
       "      <td>36</td>\n",
1096
       "      <td>5</td>\n",
1097
       "      <td>5.392673</td>\n",
1098
       "    </tr>\n",
1099
       "    <tr>\n",
1100
       "      <th>6179</th>\n",
1101
       "      <td>16</td>\n",
1102
       "      <td>0</td>\n",
1103
       "      <td>15</td>\n",
1104
       "      <td>['1.000000', '0.000000', '0.000000', '0.000000...</td>\n",
1105
       "      <td>['-125.000000', '-107.097977', '51.085743']</td>\n",
1106
       "      <td>CT</td>\n",
1107
       "      <td>ID_6a88f066</td>\n",
1108
       "      <td>MONOCHROME2</td>\n",
1109
       "      <td>0</td>\n",
1110
       "      <td>['0.488281', '0.488281']</td>\n",
1111
       "      <td>0</td>\n",
1112
       "      <td>1.0</td>\n",
1113
       "      <td>ID_be063f884</td>\n",
1114
       "      <td>1</td>\n",
1115
       "      <td>ID_025d684f04</td>\n",
1116
       "      <td>NaN</td>\n",
1117
       "      <td>ID_75eaa2e6de</td>\n",
1118
       "      <td>30</td>\n",
1119
       "      <td>80</td>\n",
1120
       "      <td>1.0</td>\n",
1121
       "      <td>0.0</td>\n",
1122
       "      <td>0.0</td>\n",
1123
       "      <td>0.0</td>\n",
1124
       "      <td>0.927184</td>\n",
1125
       "      <td>-0.374607</td>\n",
1126
       "      <td>-125.0</td>\n",
1127
       "      <td>-107.097977</td>\n",
1128
       "      <td>51.085743</td>\n",
1129
       "      <td>0.488281</td>\n",
1130
       "      <td>0.488281</td>\n",
1131
       "      <td>30.0</td>\n",
1132
       "      <td>38.015255</td>\n",
1133
       "      <td>0</td>\n",
1134
       "      <td>0</td>\n",
1135
       "      <td>0</td>\n",
1136
       "      <td>0</td>\n",
1137
       "      <td>0</td>\n",
1138
       "      <td>0</td>\n",
1139
       "      <td>0</td>\n",
1140
       "      <td>0.198593</td>\n",
1141
       "      <td>185.898392</td>\n",
1142
       "      <td>18.730394</td>\n",
1143
       "      <td>36</td>\n",
1144
       "      <td>6</td>\n",
1145
       "      <td>5.392674</td>\n",
1146
       "    </tr>\n",
1147
       "    <tr>\n",
1148
       "      <th>6180</th>\n",
1149
       "      <td>16</td>\n",
1150
       "      <td>0</td>\n",
1151
       "      <td>15</td>\n",
1152
       "      <td>['1.000000', '0.000000', '0.000000', '0.000000...</td>\n",
1153
       "      <td>['-125.000000', '-107.097977', '56.478416']</td>\n",
1154
       "      <td>CT</td>\n",
1155
       "      <td>ID_6a88f066</td>\n",
1156
       "      <td>MONOCHROME2</td>\n",
1157
       "      <td>0</td>\n",
1158
       "      <td>['0.488281', '0.488281']</td>\n",
1159
       "      <td>0</td>\n",
1160
       "      <td>1.0</td>\n",
1161
       "      <td>ID_464557fbf</td>\n",
1162
       "      <td>1</td>\n",
1163
       "      <td>ID_025d684f04</td>\n",
1164
       "      <td>NaN</td>\n",
1165
       "      <td>ID_75eaa2e6de</td>\n",
1166
       "      <td>30</td>\n",
1167
       "      <td>80</td>\n",
1168
       "      <td>1.0</td>\n",
1169
       "      <td>0.0</td>\n",
1170
       "      <td>0.0</td>\n",
1171
       "      <td>0.0</td>\n",
1172
       "      <td>0.927184</td>\n",
1173
       "      <td>-0.374607</td>\n",
1174
       "      <td>-125.0</td>\n",
1175
       "      <td>-107.097977</td>\n",
1176
       "      <td>56.478416</td>\n",
1177
       "      <td>0.488281</td>\n",
1178
       "      <td>0.488281</td>\n",
1179
       "      <td>30.0</td>\n",
1180
       "      <td>38.015255</td>\n",
1181
       "      <td>0</td>\n",
1182
       "      <td>0</td>\n",
1183
       "      <td>0</td>\n",
1184
       "      <td>0</td>\n",
1185
       "      <td>0</td>\n",
1186
       "      <td>0</td>\n",
1187
       "      <td>0</td>\n",
1188
       "      <td>0.200670</td>\n",
1189
       "      <td>185.898392</td>\n",
1190
       "      <td>18.730394</td>\n",
1191
       "      <td>36</td>\n",
1192
       "      <td>7</td>\n",
1193
       "      <td>5.392673</td>\n",
1194
       "    </tr>\n",
1195
       "    <tr>\n",
1196
       "      <th>6181</th>\n",
1197
       "      <td>16</td>\n",
1198
       "      <td>0</td>\n",
1199
       "      <td>15</td>\n",
1200
       "      <td>['1.000000', '0.000000', '0.000000', '0.000000...</td>\n",
1201
       "      <td>['-125.000000', '-107.097977', '61.870396']</td>\n",
1202
       "      <td>CT</td>\n",
1203
       "      <td>ID_6a88f066</td>\n",
1204
       "      <td>MONOCHROME2</td>\n",
1205
       "      <td>0</td>\n",
1206
       "      <td>['0.488281', '0.488281']</td>\n",
1207
       "      <td>0</td>\n",
1208
       "      <td>1.0</td>\n",
1209
       "      <td>ID_ec73321eb</td>\n",
1210
       "      <td>1</td>\n",
1211
       "      <td>ID_025d684f04</td>\n",
1212
       "      <td>NaN</td>\n",
1213
       "      <td>ID_75eaa2e6de</td>\n",
1214
       "      <td>30</td>\n",
1215
       "      <td>80</td>\n",
1216
       "      <td>1.0</td>\n",
1217
       "      <td>0.0</td>\n",
1218
       "      <td>0.0</td>\n",
1219
       "      <td>0.0</td>\n",
1220
       "      <td>0.927184</td>\n",
1221
       "      <td>-0.374607</td>\n",
1222
       "      <td>-125.0</td>\n",
1223
       "      <td>-107.097977</td>\n",
1224
       "      <td>61.870396</td>\n",
1225
       "      <td>0.488281</td>\n",
1226
       "      <td>0.488281</td>\n",
1227
       "      <td>30.0</td>\n",
1228
       "      <td>38.015255</td>\n",
1229
       "      <td>0</td>\n",
1230
       "      <td>0</td>\n",
1231
       "      <td>0</td>\n",
1232
       "      <td>0</td>\n",
1233
       "      <td>0</td>\n",
1234
       "      <td>0</td>\n",
1235
       "      <td>0</td>\n",
1236
       "      <td>0.200965</td>\n",
1237
       "      <td>185.898392</td>\n",
1238
       "      <td>18.730394</td>\n",
1239
       "      <td>36</td>\n",
1240
       "      <td>8</td>\n",
1241
       "      <td>5.391980</td>\n",
1242
       "    </tr>\n",
1243
       "    <tr>\n",
1244
       "      <th>6182</th>\n",
1245
       "      <td>16</td>\n",
1246
       "      <td>0</td>\n",
1247
       "      <td>15</td>\n",
1248
       "      <td>['1.000000', '0.000000', '0.000000', '0.000000...</td>\n",
1249
       "      <td>['-125.000000', '-107.097977', '61.870396']</td>\n",
1250
       "      <td>CT</td>\n",
1251
       "      <td>ID_6a88f066</td>\n",
1252
       "      <td>MONOCHROME2</td>\n",
1253
       "      <td>0</td>\n",
1254
       "      <td>['0.488281', '0.488281']</td>\n",
1255
       "      <td>0</td>\n",
1256
       "      <td>1.0</td>\n",
1257
       "      <td>ID_0e67917f5</td>\n",
1258
       "      <td>1</td>\n",
1259
       "      <td>ID_025d684f04</td>\n",
1260
       "      <td>NaN</td>\n",
1261
       "      <td>ID_75eaa2e6de</td>\n",
1262
       "      <td>30</td>\n",
1263
       "      <td>80</td>\n",
1264
       "      <td>1.0</td>\n",
1265
       "      <td>0.0</td>\n",
1266
       "      <td>0.0</td>\n",
1267
       "      <td>0.0</td>\n",
1268
       "      <td>0.927184</td>\n",
1269
       "      <td>-0.374607</td>\n",
1270
       "      <td>-125.0</td>\n",
1271
       "      <td>-107.097977</td>\n",
1272
       "      <td>61.870396</td>\n",
1273
       "      <td>0.488281</td>\n",
1274
       "      <td>0.488281</td>\n",
1275
       "      <td>30.0</td>\n",
1276
       "      <td>38.015255</td>\n",
1277
       "      <td>0</td>\n",
1278
       "      <td>0</td>\n",
1279
       "      <td>0</td>\n",
1280
       "      <td>0</td>\n",
1281
       "      <td>0</td>\n",
1282
       "      <td>0</td>\n",
1283
       "      <td>0</td>\n",
1284
       "      <td>0.200965</td>\n",
1285
       "      <td>185.898392</td>\n",
1286
       "      <td>18.730394</td>\n",
1287
       "      <td>36</td>\n",
1288
       "      <td>9</td>\n",
1289
       "      <td>0.000000</td>\n",
1290
       "    </tr>\n",
1291
       "    <tr>\n",
1292
       "      <th>6183</th>\n",
1293
       "      <td>16</td>\n",
1294
       "      <td>0</td>\n",
1295
       "      <td>15</td>\n",
1296
       "      <td>['1.000000', '0.000000', '0.000000', '0.000000...</td>\n",
1297
       "      <td>['-125.000000', '-107.097977', '67.263069']</td>\n",
1298
       "      <td>CT</td>\n",
1299
       "      <td>ID_6a88f066</td>\n",
1300
       "      <td>MONOCHROME2</td>\n",
1301
       "      <td>0</td>\n",
1302
       "      <td>['0.488281', '0.488281']</td>\n",
1303
       "      <td>0</td>\n",
1304
       "      <td>1.0</td>\n",
1305
       "      <td>ID_ee4045bd9</td>\n",
1306
       "      <td>1</td>\n",
1307
       "      <td>ID_025d684f04</td>\n",
1308
       "      <td>NaN</td>\n",
1309
       "      <td>ID_75eaa2e6de</td>\n",
1310
       "      <td>30</td>\n",
1311
       "      <td>80</td>\n",
1312
       "      <td>1.0</td>\n",
1313
       "      <td>0.0</td>\n",
1314
       "      <td>0.0</td>\n",
1315
       "      <td>0.0</td>\n",
1316
       "      <td>0.927184</td>\n",
1317
       "      <td>-0.374607</td>\n",
1318
       "      <td>-125.0</td>\n",
1319
       "      <td>-107.097977</td>\n",
1320
       "      <td>67.263069</td>\n",
1321
       "      <td>0.488281</td>\n",
1322
       "      <td>0.488281</td>\n",
1323
       "      <td>30.0</td>\n",
1324
       "      <td>38.015255</td>\n",
1325
       "      <td>0</td>\n",
1326
       "      <td>0</td>\n",
1327
       "      <td>0</td>\n",
1328
       "      <td>0</td>\n",
1329
       "      <td>0</td>\n",
1330
       "      <td>0</td>\n",
1331
       "      <td>0</td>\n",
1332
       "      <td>0.197010</td>\n",
1333
       "      <td>185.898392</td>\n",
1334
       "      <td>18.730394</td>\n",
1335
       "      <td>36</td>\n",
1336
       "      <td>10</td>\n",
1337
       "      <td>5.392673</td>\n",
1338
       "    </tr>\n",
1339
       "    <tr>\n",
1340
       "      <th>6184</th>\n",
1341
       "      <td>16</td>\n",
1342
       "      <td>0</td>\n",
1343
       "      <td>15</td>\n",
1344
       "      <td>['1.000000', '0.000000', '0.000000', '0.000000...</td>\n",
1345
       "      <td>['-125.000000', '-107.097977', '67.263069']</td>\n",
1346
       "      <td>CT</td>\n",
1347
       "      <td>ID_6a88f066</td>\n",
1348
       "      <td>MONOCHROME2</td>\n",
1349
       "      <td>0</td>\n",
1350
       "      <td>['0.488281', '0.488281']</td>\n",
1351
       "      <td>0</td>\n",
1352
       "      <td>1.0</td>\n",
1353
       "      <td>ID_c7605edce</td>\n",
1354
       "      <td>1</td>\n",
1355
       "      <td>ID_025d684f04</td>\n",
1356
       "      <td>NaN</td>\n",
1357
       "      <td>ID_75eaa2e6de</td>\n",
1358
       "      <td>30</td>\n",
1359
       "      <td>80</td>\n",
1360
       "      <td>1.0</td>\n",
1361
       "      <td>0.0</td>\n",
1362
       "      <td>0.0</td>\n",
1363
       "      <td>0.0</td>\n",
1364
       "      <td>0.927184</td>\n",
1365
       "      <td>-0.374607</td>\n",
1366
       "      <td>-125.0</td>\n",
1367
       "      <td>-107.097977</td>\n",
1368
       "      <td>67.263069</td>\n",
1369
       "      <td>0.488281</td>\n",
1370
       "      <td>0.488281</td>\n",
1371
       "      <td>30.0</td>\n",
1372
       "      <td>38.015255</td>\n",
1373
       "      <td>0</td>\n",
1374
       "      <td>0</td>\n",
1375
       "      <td>0</td>\n",
1376
       "      <td>0</td>\n",
1377
       "      <td>0</td>\n",
1378
       "      <td>0</td>\n",
1379
       "      <td>0</td>\n",
1380
       "      <td>0.197010</td>\n",
1381
       "      <td>185.898392</td>\n",
1382
       "      <td>18.730394</td>\n",
1383
       "      <td>36</td>\n",
1384
       "      <td>11</td>\n",
1385
       "      <td>0.000000</td>\n",
1386
       "    </tr>\n",
1387
       "    <tr>\n",
1388
       "      <th>6185</th>\n",
1389
       "      <td>16</td>\n",
1390
       "      <td>0</td>\n",
1391
       "      <td>15</td>\n",
1392
       "      <td>['1.000000', '0.000000', '0.000000', '0.000000...</td>\n",
1393
       "      <td>['-125.000000', '-107.097977', '72.655739']</td>\n",
1394
       "      <td>CT</td>\n",
1395
       "      <td>ID_6a88f066</td>\n",
1396
       "      <td>MONOCHROME2</td>\n",
1397
       "      <td>0</td>\n",
1398
       "      <td>['0.488281', '0.488281']</td>\n",
1399
       "      <td>0</td>\n",
1400
       "      <td>1.0</td>\n",
1401
       "      <td>ID_1184a716d</td>\n",
1402
       "      <td>1</td>\n",
1403
       "      <td>ID_025d684f04</td>\n",
1404
       "      <td>NaN</td>\n",
1405
       "      <td>ID_75eaa2e6de</td>\n",
1406
       "      <td>30</td>\n",
1407
       "      <td>80</td>\n",
1408
       "      <td>1.0</td>\n",
1409
       "      <td>0.0</td>\n",
1410
       "      <td>0.0</td>\n",
1411
       "      <td>0.0</td>\n",
1412
       "      <td>0.927184</td>\n",
1413
       "      <td>-0.374607</td>\n",
1414
       "      <td>-125.0</td>\n",
1415
       "      <td>-107.097977</td>\n",
1416
       "      <td>72.655739</td>\n",
1417
       "      <td>0.488281</td>\n",
1418
       "      <td>0.488281</td>\n",
1419
       "      <td>30.0</td>\n",
1420
       "      <td>38.015255</td>\n",
1421
       "      <td>0</td>\n",
1422
       "      <td>0</td>\n",
1423
       "      <td>0</td>\n",
1424
       "      <td>0</td>\n",
1425
       "      <td>0</td>\n",
1426
       "      <td>0</td>\n",
1427
       "      <td>0</td>\n",
1428
       "      <td>0.204350</td>\n",
1429
       "      <td>185.898392</td>\n",
1430
       "      <td>18.730394</td>\n",
1431
       "      <td>36</td>\n",
1432
       "      <td>12</td>\n",
1433
       "      <td>5.392670</td>\n",
1434
       "    </tr>\n",
1435
       "    <tr>\n",
1436
       "      <th>6186</th>\n",
1437
       "      <td>16</td>\n",
1438
       "      <td>0</td>\n",
1439
       "      <td>15</td>\n",
1440
       "      <td>['1.000000', '0.000000', '0.000000', '0.000000...</td>\n",
1441
       "      <td>['-125.000000', '-107.097977', '72.655739']</td>\n",
1442
       "      <td>CT</td>\n",
1443
       "      <td>ID_6a88f066</td>\n",
1444
       "      <td>MONOCHROME2</td>\n",
1445
       "      <td>0</td>\n",
1446
       "      <td>['0.488281', '0.488281']</td>\n",
1447
       "      <td>0</td>\n",
1448
       "      <td>1.0</td>\n",
1449
       "      <td>ID_12683d977</td>\n",
1450
       "      <td>1</td>\n",
1451
       "      <td>ID_025d684f04</td>\n",
1452
       "      <td>NaN</td>\n",
1453
       "      <td>ID_75eaa2e6de</td>\n",
1454
       "      <td>30</td>\n",
1455
       "      <td>80</td>\n",
1456
       "      <td>1.0</td>\n",
1457
       "      <td>0.0</td>\n",
1458
       "      <td>0.0</td>\n",
1459
       "      <td>0.0</td>\n",
1460
       "      <td>0.927184</td>\n",
1461
       "      <td>-0.374607</td>\n",
1462
       "      <td>-125.0</td>\n",
1463
       "      <td>-107.097977</td>\n",
1464
       "      <td>72.655739</td>\n",
1465
       "      <td>0.488281</td>\n",
1466
       "      <td>0.488281</td>\n",
1467
       "      <td>30.0</td>\n",
1468
       "      <td>38.015255</td>\n",
1469
       "      <td>0</td>\n",
1470
       "      <td>0</td>\n",
1471
       "      <td>0</td>\n",
1472
       "      <td>0</td>\n",
1473
       "      <td>0</td>\n",
1474
       "      <td>0</td>\n",
1475
       "      <td>0</td>\n",
1476
       "      <td>0.204350</td>\n",
1477
       "      <td>185.898392</td>\n",
1478
       "      <td>18.730394</td>\n",
1479
       "      <td>36</td>\n",
1480
       "      <td>13</td>\n",
1481
       "      <td>0.000000</td>\n",
1482
       "    </tr>\n",
1483
       "    <tr>\n",
1484
       "      <th>6187</th>\n",
1485
       "      <td>16</td>\n",
1486
       "      <td>0</td>\n",
1487
       "      <td>15</td>\n",
1488
       "      <td>['1.000000', '0.000000', '0.000000', '0.000000...</td>\n",
1489
       "      <td>['-125.000000', '-107.097977', '78.048416']</td>\n",
1490
       "      <td>CT</td>\n",
1491
       "      <td>ID_6a88f066</td>\n",
1492
       "      <td>MONOCHROME2</td>\n",
1493
       "      <td>0</td>\n",
1494
       "      <td>['0.488281', '0.488281']</td>\n",
1495
       "      <td>0</td>\n",
1496
       "      <td>1.0</td>\n",
1497
       "      <td>ID_7854703e3</td>\n",
1498
       "      <td>1</td>\n",
1499
       "      <td>ID_025d684f04</td>\n",
1500
       "      <td>NaN</td>\n",
1501
       "      <td>ID_75eaa2e6de</td>\n",
1502
       "      <td>30</td>\n",
1503
       "      <td>80</td>\n",
1504
       "      <td>1.0</td>\n",
1505
       "      <td>0.0</td>\n",
1506
       "      <td>0.0</td>\n",
1507
       "      <td>0.0</td>\n",
1508
       "      <td>0.927184</td>\n",
1509
       "      <td>-0.374607</td>\n",
1510
       "      <td>-125.0</td>\n",
1511
       "      <td>-107.097977</td>\n",
1512
       "      <td>78.048416</td>\n",
1513
       "      <td>0.488281</td>\n",
1514
       "      <td>0.488281</td>\n",
1515
       "      <td>30.0</td>\n",
1516
       "      <td>38.015255</td>\n",
1517
       "      <td>0</td>\n",
1518
       "      <td>0</td>\n",
1519
       "      <td>0</td>\n",
1520
       "      <td>0</td>\n",
1521
       "      <td>0</td>\n",
1522
       "      <td>0</td>\n",
1523
       "      <td>0</td>\n",
1524
       "      <td>0.196889</td>\n",
1525
       "      <td>185.898392</td>\n",
1526
       "      <td>18.730394</td>\n",
1527
       "      <td>36</td>\n",
1528
       "      <td>14</td>\n",
1529
       "      <td>5.392677</td>\n",
1530
       "    </tr>\n",
1531
       "    <tr>\n",
1532
       "      <th>6188</th>\n",
1533
       "      <td>16</td>\n",
1534
       "      <td>0</td>\n",
1535
       "      <td>15</td>\n",
1536
       "      <td>['1.000000', '0.000000', '0.000000', '0.000000...</td>\n",
1537
       "      <td>['-125.000000', '-107.097977', '78.048416']</td>\n",
1538
       "      <td>CT</td>\n",
1539
       "      <td>ID_6a88f066</td>\n",
1540
       "      <td>MONOCHROME2</td>\n",
1541
       "      <td>0</td>\n",
1542
       "      <td>['0.488281', '0.488281']</td>\n",
1543
       "      <td>0</td>\n",
1544
       "      <td>1.0</td>\n",
1545
       "      <td>ID_6f53ceeb2</td>\n",
1546
       "      <td>1</td>\n",
1547
       "      <td>ID_025d684f04</td>\n",
1548
       "      <td>NaN</td>\n",
1549
       "      <td>ID_75eaa2e6de</td>\n",
1550
       "      <td>30</td>\n",
1551
       "      <td>80</td>\n",
1552
       "      <td>1.0</td>\n",
1553
       "      <td>0.0</td>\n",
1554
       "      <td>0.0</td>\n",
1555
       "      <td>0.0</td>\n",
1556
       "      <td>0.927184</td>\n",
1557
       "      <td>-0.374607</td>\n",
1558
       "      <td>-125.0</td>\n",
1559
       "      <td>-107.097977</td>\n",
1560
       "      <td>78.048416</td>\n",
1561
       "      <td>0.488281</td>\n",
1562
       "      <td>0.488281</td>\n",
1563
       "      <td>30.0</td>\n",
1564
       "      <td>38.015255</td>\n",
1565
       "      <td>0</td>\n",
1566
       "      <td>0</td>\n",
1567
       "      <td>0</td>\n",
1568
       "      <td>0</td>\n",
1569
       "      <td>0</td>\n",
1570
       "      <td>0</td>\n",
1571
       "      <td>0</td>\n",
1572
       "      <td>0.196889</td>\n",
1573
       "      <td>185.898392</td>\n",
1574
       "      <td>18.730394</td>\n",
1575
       "      <td>36</td>\n",
1576
       "      <td>15</td>\n",
1577
       "      <td>0.000000</td>\n",
1578
       "    </tr>\n",
1579
       "    <tr>\n",
1580
       "      <th>6189</th>\n",
1581
       "      <td>16</td>\n",
1582
       "      <td>0</td>\n",
1583
       "      <td>15</td>\n",
1584
       "      <td>['1.000000', '0.000000', '0.000000', '0.000000...</td>\n",
1585
       "      <td>['-125.000000', '-107.097977', '83.440392']</td>\n",
1586
       "      <td>CT</td>\n",
1587
       "      <td>ID_6a88f066</td>\n",
1588
       "      <td>MONOCHROME2</td>\n",
1589
       "      <td>0</td>\n",
1590
       "      <td>['0.488281', '0.488281']</td>\n",
1591
       "      <td>0</td>\n",
1592
       "      <td>1.0</td>\n",
1593
       "      <td>ID_fbc4828da</td>\n",
1594
       "      <td>1</td>\n",
1595
       "      <td>ID_025d684f04</td>\n",
1596
       "      <td>NaN</td>\n",
1597
       "      <td>ID_75eaa2e6de</td>\n",
1598
       "      <td>30</td>\n",
1599
       "      <td>80</td>\n",
1600
       "      <td>1.0</td>\n",
1601
       "      <td>0.0</td>\n",
1602
       "      <td>0.0</td>\n",
1603
       "      <td>0.0</td>\n",
1604
       "      <td>0.927184</td>\n",
1605
       "      <td>-0.374607</td>\n",
1606
       "      <td>-125.0</td>\n",
1607
       "      <td>-107.097977</td>\n",
1608
       "      <td>83.440392</td>\n",
1609
       "      <td>0.488281</td>\n",
1610
       "      <td>0.488281</td>\n",
1611
       "      <td>30.0</td>\n",
1612
       "      <td>38.015255</td>\n",
1613
       "      <td>0</td>\n",
1614
       "      <td>0</td>\n",
1615
       "      <td>0</td>\n",
1616
       "      <td>0</td>\n",
1617
       "      <td>0</td>\n",
1618
       "      <td>0</td>\n",
1619
       "      <td>0</td>\n",
1620
       "      <td>0.196881</td>\n",
1621
       "      <td>185.898392</td>\n",
1622
       "      <td>18.730394</td>\n",
1623
       "      <td>36</td>\n",
1624
       "      <td>16</td>\n",
1625
       "      <td>5.391976</td>\n",
1626
       "    </tr>\n",
1627
       "    <tr>\n",
1628
       "      <th>6190</th>\n",
1629
       "      <td>16</td>\n",
1630
       "      <td>0</td>\n",
1631
       "      <td>15</td>\n",
1632
       "      <td>['1.000000', '0.000000', '0.000000', '0.000000...</td>\n",
1633
       "      <td>['-125.000000', '-107.097977', '88.833069']</td>\n",
1634
       "      <td>CT</td>\n",
1635
       "      <td>ID_6a88f066</td>\n",
1636
       "      <td>MONOCHROME2</td>\n",
1637
       "      <td>0</td>\n",
1638
       "      <td>['0.488281', '0.488281']</td>\n",
1639
       "      <td>0</td>\n",
1640
       "      <td>1.0</td>\n",
1641
       "      <td>ID_476062d7a</td>\n",
1642
       "      <td>1</td>\n",
1643
       "      <td>ID_025d684f04</td>\n",
1644
       "      <td>NaN</td>\n",
1645
       "      <td>ID_75eaa2e6de</td>\n",
1646
       "      <td>30</td>\n",
1647
       "      <td>80</td>\n",
1648
       "      <td>1.0</td>\n",
1649
       "      <td>0.0</td>\n",
1650
       "      <td>0.0</td>\n",
1651
       "      <td>0.0</td>\n",
1652
       "      <td>0.927184</td>\n",
1653
       "      <td>-0.374607</td>\n",
1654
       "      <td>-125.0</td>\n",
1655
       "      <td>-107.097977</td>\n",
1656
       "      <td>88.833069</td>\n",
1657
       "      <td>0.488281</td>\n",
1658
       "      <td>0.488281</td>\n",
1659
       "      <td>30.0</td>\n",
1660
       "      <td>38.015255</td>\n",
1661
       "      <td>0</td>\n",
1662
       "      <td>0</td>\n",
1663
       "      <td>0</td>\n",
1664
       "      <td>0</td>\n",
1665
       "      <td>0</td>\n",
1666
       "      <td>0</td>\n",
1667
       "      <td>0</td>\n",
1668
       "      <td>0.194283</td>\n",
1669
       "      <td>185.898392</td>\n",
1670
       "      <td>18.730394</td>\n",
1671
       "      <td>36</td>\n",
1672
       "      <td>17</td>\n",
1673
       "      <td>5.392677</td>\n",
1674
       "    </tr>\n",
1675
       "    <tr>\n",
1676
       "      <th>6191</th>\n",
1677
       "      <td>16</td>\n",
1678
       "      <td>0</td>\n",
1679
       "      <td>15</td>\n",
1680
       "      <td>['1.000000', '0.000000', '0.000000', '0.000000...</td>\n",
1681
       "      <td>['-125.000000', '-107.097977', '94.225739']</td>\n",
1682
       "      <td>CT</td>\n",
1683
       "      <td>ID_6a88f066</td>\n",
1684
       "      <td>MONOCHROME2</td>\n",
1685
       "      <td>0</td>\n",
1686
       "      <td>['0.488281', '0.488281']</td>\n",
1687
       "      <td>0</td>\n",
1688
       "      <td>1.0</td>\n",
1689
       "      <td>ID_1afe3f61a</td>\n",
1690
       "      <td>1</td>\n",
1691
       "      <td>ID_025d684f04</td>\n",
1692
       "      <td>NaN</td>\n",
1693
       "      <td>ID_75eaa2e6de</td>\n",
1694
       "      <td>30</td>\n",
1695
       "      <td>80</td>\n",
1696
       "      <td>1.0</td>\n",
1697
       "      <td>0.0</td>\n",
1698
       "      <td>0.0</td>\n",
1699
       "      <td>0.0</td>\n",
1700
       "      <td>0.927184</td>\n",
1701
       "      <td>-0.374607</td>\n",
1702
       "      <td>-125.0</td>\n",
1703
       "      <td>-107.097977</td>\n",
1704
       "      <td>94.225739</td>\n",
1705
       "      <td>0.488281</td>\n",
1706
       "      <td>0.488281</td>\n",
1707
       "      <td>30.0</td>\n",
1708
       "      <td>38.015255</td>\n",
1709
       "      <td>0</td>\n",
1710
       "      <td>0</td>\n",
1711
       "      <td>0</td>\n",
1712
       "      <td>0</td>\n",
1713
       "      <td>0</td>\n",
1714
       "      <td>0</td>\n",
1715
       "      <td>0</td>\n",
1716
       "      <td>0.196501</td>\n",
1717
       "      <td>185.898392</td>\n",
1718
       "      <td>18.730394</td>\n",
1719
       "      <td>36</td>\n",
1720
       "      <td>18</td>\n",
1721
       "      <td>5.392670</td>\n",
1722
       "    </tr>\n",
1723
       "    <tr>\n",
1724
       "      <th>6192</th>\n",
1725
       "      <td>16</td>\n",
1726
       "      <td>0</td>\n",
1727
       "      <td>15</td>\n",
1728
       "      <td>['1.000000', '0.000000', '0.000000', '0.000000...</td>\n",
1729
       "      <td>['-125.000000', '-107.097977', '99.618416']</td>\n",
1730
       "      <td>CT</td>\n",
1731
       "      <td>ID_6a88f066</td>\n",
1732
       "      <td>MONOCHROME2</td>\n",
1733
       "      <td>0</td>\n",
1734
       "      <td>['0.488281', '0.488281']</td>\n",
1735
       "      <td>0</td>\n",
1736
       "      <td>1.0</td>\n",
1737
       "      <td>ID_881a87f12</td>\n",
1738
       "      <td>1</td>\n",
1739
       "      <td>ID_025d684f04</td>\n",
1740
       "      <td>NaN</td>\n",
1741
       "      <td>ID_75eaa2e6de</td>\n",
1742
       "      <td>30</td>\n",
1743
       "      <td>80</td>\n",
1744
       "      <td>1.0</td>\n",
1745
       "      <td>0.0</td>\n",
1746
       "      <td>0.0</td>\n",
1747
       "      <td>0.0</td>\n",
1748
       "      <td>0.927184</td>\n",
1749
       "      <td>-0.374607</td>\n",
1750
       "      <td>-125.0</td>\n",
1751
       "      <td>-107.097977</td>\n",
1752
       "      <td>99.618416</td>\n",
1753
       "      <td>0.488281</td>\n",
1754
       "      <td>0.488281</td>\n",
1755
       "      <td>30.0</td>\n",
1756
       "      <td>38.015255</td>\n",
1757
       "      <td>0</td>\n",
1758
       "      <td>0</td>\n",
1759
       "      <td>0</td>\n",
1760
       "      <td>0</td>\n",
1761
       "      <td>0</td>\n",
1762
       "      <td>0</td>\n",
1763
       "      <td>0</td>\n",
1764
       "      <td>0.198735</td>\n",
1765
       "      <td>185.898392</td>\n",
1766
       "      <td>18.730394</td>\n",
1767
       "      <td>36</td>\n",
1768
       "      <td>19</td>\n",
1769
       "      <td>5.392677</td>\n",
1770
       "    </tr>\n",
1771
       "    <tr>\n",
1772
       "      <th>6193</th>\n",
1773
       "      <td>16</td>\n",
1774
       "      <td>0</td>\n",
1775
       "      <td>15</td>\n",
1776
       "      <td>['1.000000', '0.000000', '0.000000', '0.000000...</td>\n",
1777
       "      <td>['-125.000000', '-107.097977', '105.010391']</td>\n",
1778
       "      <td>CT</td>\n",
1779
       "      <td>ID_6a88f066</td>\n",
1780
       "      <td>MONOCHROME2</td>\n",
1781
       "      <td>0</td>\n",
1782
       "      <td>['0.488281', '0.488281']</td>\n",
1783
       "      <td>0</td>\n",
1784
       "      <td>1.0</td>\n",
1785
       "      <td>ID_35040508c</td>\n",
1786
       "      <td>1</td>\n",
1787
       "      <td>ID_025d684f04</td>\n",
1788
       "      <td>NaN</td>\n",
1789
       "      <td>ID_75eaa2e6de</td>\n",
1790
       "      <td>30</td>\n",
1791
       "      <td>80</td>\n",
1792
       "      <td>1.0</td>\n",
1793
       "      <td>0.0</td>\n",
1794
       "      <td>0.0</td>\n",
1795
       "      <td>0.0</td>\n",
1796
       "      <td>0.927184</td>\n",
1797
       "      <td>-0.374607</td>\n",
1798
       "      <td>-125.0</td>\n",
1799
       "      <td>-107.097977</td>\n",
1800
       "      <td>105.010391</td>\n",
1801
       "      <td>0.488281</td>\n",
1802
       "      <td>0.488281</td>\n",
1803
       "      <td>30.0</td>\n",
1804
       "      <td>38.015255</td>\n",
1805
       "      <td>0</td>\n",
1806
       "      <td>0</td>\n",
1807
       "      <td>0</td>\n",
1808
       "      <td>0</td>\n",
1809
       "      <td>0</td>\n",
1810
       "      <td>0</td>\n",
1811
       "      <td>0</td>\n",
1812
       "      <td>0.193396</td>\n",
1813
       "      <td>185.898392</td>\n",
1814
       "      <td>18.730394</td>\n",
1815
       "      <td>36</td>\n",
1816
       "      <td>20</td>\n",
1817
       "      <td>5.391975</td>\n",
1818
       "    </tr>\n",
1819
       "    <tr>\n",
1820
       "      <th>6194</th>\n",
1821
       "      <td>16</td>\n",
1822
       "      <td>0</td>\n",
1823
       "      <td>15</td>\n",
1824
       "      <td>['1.000000', '0.000000', '0.000000', '0.000000...</td>\n",
1825
       "      <td>['-125.000000', '-107.097977', '110.403069']</td>\n",
1826
       "      <td>CT</td>\n",
1827
       "      <td>ID_6a88f066</td>\n",
1828
       "      <td>MONOCHROME2</td>\n",
1829
       "      <td>0</td>\n",
1830
       "      <td>['0.488281', '0.488281']</td>\n",
1831
       "      <td>0</td>\n",
1832
       "      <td>1.0</td>\n",
1833
       "      <td>ID_c2ca8f50a</td>\n",
1834
       "      <td>1</td>\n",
1835
       "      <td>ID_025d684f04</td>\n",
1836
       "      <td>NaN</td>\n",
1837
       "      <td>ID_75eaa2e6de</td>\n",
1838
       "      <td>30</td>\n",
1839
       "      <td>80</td>\n",
1840
       "      <td>1.0</td>\n",
1841
       "      <td>0.0</td>\n",
1842
       "      <td>0.0</td>\n",
1843
       "      <td>0.0</td>\n",
1844
       "      <td>0.927184</td>\n",
1845
       "      <td>-0.374607</td>\n",
1846
       "      <td>-125.0</td>\n",
1847
       "      <td>-107.097977</td>\n",
1848
       "      <td>110.403069</td>\n",
1849
       "      <td>0.488281</td>\n",
1850
       "      <td>0.488281</td>\n",
1851
       "      <td>30.0</td>\n",
1852
       "      <td>38.015255</td>\n",
1853
       "      <td>0</td>\n",
1854
       "      <td>0</td>\n",
1855
       "      <td>0</td>\n",
1856
       "      <td>0</td>\n",
1857
       "      <td>0</td>\n",
1858
       "      <td>0</td>\n",
1859
       "      <td>0</td>\n",
1860
       "      <td>0.200352</td>\n",
1861
       "      <td>185.898392</td>\n",
1862
       "      <td>18.730394</td>\n",
1863
       "      <td>36</td>\n",
1864
       "      <td>21</td>\n",
1865
       "      <td>5.392678</td>\n",
1866
       "    </tr>\n",
1867
       "    <tr>\n",
1868
       "      <th>6195</th>\n",
1869
       "      <td>16</td>\n",
1870
       "      <td>0</td>\n",
1871
       "      <td>15</td>\n",
1872
       "      <td>['1.000000', '0.000000', '0.000000', '0.000000...</td>\n",
1873
       "      <td>['-125.000000', '-107.097977', '115.795746']</td>\n",
1874
       "      <td>CT</td>\n",
1875
       "      <td>ID_6a88f066</td>\n",
1876
       "      <td>MONOCHROME2</td>\n",
1877
       "      <td>0</td>\n",
1878
       "      <td>['0.488281', '0.488281']</td>\n",
1879
       "      <td>0</td>\n",
1880
       "      <td>1.0</td>\n",
1881
       "      <td>ID_717df1a2c</td>\n",
1882
       "      <td>1</td>\n",
1883
       "      <td>ID_025d684f04</td>\n",
1884
       "      <td>NaN</td>\n",
1885
       "      <td>ID_75eaa2e6de</td>\n",
1886
       "      <td>30</td>\n",
1887
       "      <td>80</td>\n",
1888
       "      <td>1.0</td>\n",
1889
       "      <td>0.0</td>\n",
1890
       "      <td>0.0</td>\n",
1891
       "      <td>0.0</td>\n",
1892
       "      <td>0.927184</td>\n",
1893
       "      <td>-0.374607</td>\n",
1894
       "      <td>-125.0</td>\n",
1895
       "      <td>-107.097977</td>\n",
1896
       "      <td>115.795746</td>\n",
1897
       "      <td>0.488281</td>\n",
1898
       "      <td>0.488281</td>\n",
1899
       "      <td>30.0</td>\n",
1900
       "      <td>38.015255</td>\n",
1901
       "      <td>0</td>\n",
1902
       "      <td>0</td>\n",
1903
       "      <td>0</td>\n",
1904
       "      <td>0</td>\n",
1905
       "      <td>0</td>\n",
1906
       "      <td>0</td>\n",
1907
       "      <td>0</td>\n",
1908
       "      <td>0.188346</td>\n",
1909
       "      <td>185.898392</td>\n",
1910
       "      <td>18.730394</td>\n",
1911
       "      <td>36</td>\n",
1912
       "      <td>22</td>\n",
1913
       "      <td>5.392677</td>\n",
1914
       "    </tr>\n",
1915
       "    <tr>\n",
1916
       "      <th>6196</th>\n",
1917
       "      <td>16</td>\n",
1918
       "      <td>0</td>\n",
1919
       "      <td>15</td>\n",
1920
       "      <td>['1.000000', '0.000000', '0.000000', '0.000000...</td>\n",
1921
       "      <td>['-125.000000', '-107.097977', '121.188416']</td>\n",
1922
       "      <td>CT</td>\n",
1923
       "      <td>ID_6a88f066</td>\n",
1924
       "      <td>MONOCHROME2</td>\n",
1925
       "      <td>0</td>\n",
1926
       "      <td>['0.488281', '0.488281']</td>\n",
1927
       "      <td>0</td>\n",
1928
       "      <td>1.0</td>\n",
1929
       "      <td>ID_9ceb8d633</td>\n",
1930
       "      <td>1</td>\n",
1931
       "      <td>ID_025d684f04</td>\n",
1932
       "      <td>NaN</td>\n",
1933
       "      <td>ID_75eaa2e6de</td>\n",
1934
       "      <td>30</td>\n",
1935
       "      <td>80</td>\n",
1936
       "      <td>1.0</td>\n",
1937
       "      <td>0.0</td>\n",
1938
       "      <td>0.0</td>\n",
1939
       "      <td>0.0</td>\n",
1940
       "      <td>0.927184</td>\n",
1941
       "      <td>-0.374607</td>\n",
1942
       "      <td>-125.0</td>\n",
1943
       "      <td>-107.097977</td>\n",
1944
       "      <td>121.188416</td>\n",
1945
       "      <td>0.488281</td>\n",
1946
       "      <td>0.488281</td>\n",
1947
       "      <td>30.0</td>\n",
1948
       "      <td>38.015255</td>\n",
1949
       "      <td>0</td>\n",
1950
       "      <td>0</td>\n",
1951
       "      <td>0</td>\n",
1952
       "      <td>0</td>\n",
1953
       "      <td>0</td>\n",
1954
       "      <td>0</td>\n",
1955
       "      <td>0</td>\n",
1956
       "      <td>0.196615</td>\n",
1957
       "      <td>185.898392</td>\n",
1958
       "      <td>18.730394</td>\n",
1959
       "      <td>36</td>\n",
1960
       "      <td>23</td>\n",
1961
       "      <td>5.392670</td>\n",
1962
       "    </tr>\n",
1963
       "    <tr>\n",
1964
       "      <th>6197</th>\n",
1965
       "      <td>16</td>\n",
1966
       "      <td>0</td>\n",
1967
       "      <td>15</td>\n",
1968
       "      <td>['1.000000', '0.000000', '0.000000', '0.000000...</td>\n",
1969
       "      <td>['-125.000000', '-107.097977', '126.580399']</td>\n",
1970
       "      <td>CT</td>\n",
1971
       "      <td>ID_6a88f066</td>\n",
1972
       "      <td>MONOCHROME2</td>\n",
1973
       "      <td>0</td>\n",
1974
       "      <td>['0.488281', '0.488281']</td>\n",
1975
       "      <td>0</td>\n",
1976
       "      <td>1.0</td>\n",
1977
       "      <td>ID_899a807d5</td>\n",
1978
       "      <td>1</td>\n",
1979
       "      <td>ID_025d684f04</td>\n",
1980
       "      <td>NaN</td>\n",
1981
       "      <td>ID_75eaa2e6de</td>\n",
1982
       "      <td>30</td>\n",
1983
       "      <td>80</td>\n",
1984
       "      <td>1.0</td>\n",
1985
       "      <td>0.0</td>\n",
1986
       "      <td>0.0</td>\n",
1987
       "      <td>0.0</td>\n",
1988
       "      <td>0.927184</td>\n",
1989
       "      <td>-0.374607</td>\n",
1990
       "      <td>-125.0</td>\n",
1991
       "      <td>-107.097977</td>\n",
1992
       "      <td>126.580399</td>\n",
1993
       "      <td>0.488281</td>\n",
1994
       "      <td>0.488281</td>\n",
1995
       "      <td>30.0</td>\n",
1996
       "      <td>38.015255</td>\n",
1997
       "      <td>0</td>\n",
1998
       "      <td>0</td>\n",
1999
       "      <td>0</td>\n",
2000
       "      <td>0</td>\n",
2001
       "      <td>0</td>\n",
2002
       "      <td>0</td>\n",
2003
       "      <td>0</td>\n",
2004
       "      <td>0.187647</td>\n",
2005
       "      <td>185.898392</td>\n",
2006
       "      <td>18.730394</td>\n",
2007
       "      <td>36</td>\n",
2008
       "      <td>24</td>\n",
2009
       "      <td>5.391983</td>\n",
2010
       "    </tr>\n",
2011
       "    <tr>\n",
2012
       "      <th>6198</th>\n",
2013
       "      <td>16</td>\n",
2014
       "      <td>0</td>\n",
2015
       "      <td>15</td>\n",
2016
       "      <td>['1.000000', '0.000000', '0.000000', '0.000000...</td>\n",
2017
       "      <td>['-125.000000', '-107.097977', '131.973068']</td>\n",
2018
       "      <td>CT</td>\n",
2019
       "      <td>ID_6a88f066</td>\n",
2020
       "      <td>MONOCHROME2</td>\n",
2021
       "      <td>0</td>\n",
2022
       "      <td>['0.488281', '0.488281']</td>\n",
2023
       "      <td>0</td>\n",
2024
       "      <td>1.0</td>\n",
2025
       "      <td>ID_8192ed875</td>\n",
2026
       "      <td>1</td>\n",
2027
       "      <td>ID_025d684f04</td>\n",
2028
       "      <td>NaN</td>\n",
2029
       "      <td>ID_75eaa2e6de</td>\n",
2030
       "      <td>30</td>\n",
2031
       "      <td>80</td>\n",
2032
       "      <td>1.0</td>\n",
2033
       "      <td>0.0</td>\n",
2034
       "      <td>0.0</td>\n",
2035
       "      <td>0.0</td>\n",
2036
       "      <td>0.927184</td>\n",
2037
       "      <td>-0.374607</td>\n",
2038
       "      <td>-125.0</td>\n",
2039
       "      <td>-107.097977</td>\n",
2040
       "      <td>131.973068</td>\n",
2041
       "      <td>0.488281</td>\n",
2042
       "      <td>0.488281</td>\n",
2043
       "      <td>30.0</td>\n",
2044
       "      <td>38.015255</td>\n",
2045
       "      <td>0</td>\n",
2046
       "      <td>0</td>\n",
2047
       "      <td>0</td>\n",
2048
       "      <td>0</td>\n",
2049
       "      <td>0</td>\n",
2050
       "      <td>0</td>\n",
2051
       "      <td>0</td>\n",
2052
       "      <td>0.192265</td>\n",
2053
       "      <td>185.898392</td>\n",
2054
       "      <td>18.730394</td>\n",
2055
       "      <td>36</td>\n",
2056
       "      <td>25</td>\n",
2057
       "      <td>5.392669</td>\n",
2058
       "    </tr>\n",
2059
       "    <tr>\n",
2060
       "      <th>6199</th>\n",
2061
       "      <td>16</td>\n",
2062
       "      <td>0</td>\n",
2063
       "      <td>15</td>\n",
2064
       "      <td>['1.000000', '0.000000', '0.000000', '0.000000...</td>\n",
2065
       "      <td>['-125.000000', '-107.097977', '137.365738']</td>\n",
2066
       "      <td>CT</td>\n",
2067
       "      <td>ID_6a88f066</td>\n",
2068
       "      <td>MONOCHROME2</td>\n",
2069
       "      <td>0</td>\n",
2070
       "      <td>['0.488281', '0.488281']</td>\n",
2071
       "      <td>0</td>\n",
2072
       "      <td>1.0</td>\n",
2073
       "      <td>ID_76cc2c93b</td>\n",
2074
       "      <td>1</td>\n",
2075
       "      <td>ID_025d684f04</td>\n",
2076
       "      <td>NaN</td>\n",
2077
       "      <td>ID_75eaa2e6de</td>\n",
2078
       "      <td>30</td>\n",
2079
       "      <td>80</td>\n",
2080
       "      <td>1.0</td>\n",
2081
       "      <td>0.0</td>\n",
2082
       "      <td>0.0</td>\n",
2083
       "      <td>0.0</td>\n",
2084
       "      <td>0.927184</td>\n",
2085
       "      <td>-0.374607</td>\n",
2086
       "      <td>-125.0</td>\n",
2087
       "      <td>-107.097977</td>\n",
2088
       "      <td>137.365738</td>\n",
2089
       "      <td>0.488281</td>\n",
2090
       "      <td>0.488281</td>\n",
2091
       "      <td>30.0</td>\n",
2092
       "      <td>38.015255</td>\n",
2093
       "      <td>0</td>\n",
2094
       "      <td>0</td>\n",
2095
       "      <td>0</td>\n",
2096
       "      <td>0</td>\n",
2097
       "      <td>0</td>\n",
2098
       "      <td>0</td>\n",
2099
       "      <td>0</td>\n",
2100
       "      <td>0.196634</td>\n",
2101
       "      <td>185.898392</td>\n",
2102
       "      <td>18.730394</td>\n",
2103
       "      <td>36</td>\n",
2104
       "      <td>26</td>\n",
2105
       "      <td>5.392670</td>\n",
2106
       "    </tr>\n",
2107
       "    <tr>\n",
2108
       "      <th>6200</th>\n",
2109
       "      <td>16</td>\n",
2110
       "      <td>0</td>\n",
2111
       "      <td>15</td>\n",
2112
       "      <td>['1.000000', '0.000000', '0.000000', '0.000000...</td>\n",
2113
       "      <td>['-125.000000', '-107.097977', '142.758423']</td>\n",
2114
       "      <td>CT</td>\n",
2115
       "      <td>ID_6a88f066</td>\n",
2116
       "      <td>MONOCHROME2</td>\n",
2117
       "      <td>0</td>\n",
2118
       "      <td>['0.488281', '0.488281']</td>\n",
2119
       "      <td>0</td>\n",
2120
       "      <td>1.0</td>\n",
2121
       "      <td>ID_d9157fdd9</td>\n",
2122
       "      <td>1</td>\n",
2123
       "      <td>ID_025d684f04</td>\n",
2124
       "      <td>NaN</td>\n",
2125
       "      <td>ID_75eaa2e6de</td>\n",
2126
       "      <td>30</td>\n",
2127
       "      <td>80</td>\n",
2128
       "      <td>1.0</td>\n",
2129
       "      <td>0.0</td>\n",
2130
       "      <td>0.0</td>\n",
2131
       "      <td>0.0</td>\n",
2132
       "      <td>0.927184</td>\n",
2133
       "      <td>-0.374607</td>\n",
2134
       "      <td>-125.0</td>\n",
2135
       "      <td>-107.097977</td>\n",
2136
       "      <td>142.758423</td>\n",
2137
       "      <td>0.488281</td>\n",
2138
       "      <td>0.488281</td>\n",
2139
       "      <td>30.0</td>\n",
2140
       "      <td>38.015255</td>\n",
2141
       "      <td>0</td>\n",
2142
       "      <td>0</td>\n",
2143
       "      <td>0</td>\n",
2144
       "      <td>0</td>\n",
2145
       "      <td>0</td>\n",
2146
       "      <td>0</td>\n",
2147
       "      <td>0</td>\n",
2148
       "      <td>0.187304</td>\n",
2149
       "      <td>185.898392</td>\n",
2150
       "      <td>18.730394</td>\n",
2151
       "      <td>36</td>\n",
2152
       "      <td>27</td>\n",
2153
       "      <td>5.392685</td>\n",
2154
       "    </tr>\n",
2155
       "    <tr>\n",
2156
       "      <th>6201</th>\n",
2157
       "      <td>16</td>\n",
2158
       "      <td>0</td>\n",
2159
       "      <td>15</td>\n",
2160
       "      <td>['1.000000', '0.000000', '0.000000', '0.000000...</td>\n",
2161
       "      <td>['-125.000000', '-107.097977', '148.150391']</td>\n",
2162
       "      <td>CT</td>\n",
2163
       "      <td>ID_6a88f066</td>\n",
2164
       "      <td>MONOCHROME2</td>\n",
2165
       "      <td>0</td>\n",
2166
       "      <td>['0.488281', '0.488281']</td>\n",
2167
       "      <td>0</td>\n",
2168
       "      <td>1.0</td>\n",
2169
       "      <td>ID_033d94fcc</td>\n",
2170
       "      <td>1</td>\n",
2171
       "      <td>ID_025d684f04</td>\n",
2172
       "      <td>NaN</td>\n",
2173
       "      <td>ID_75eaa2e6de</td>\n",
2174
       "      <td>30</td>\n",
2175
       "      <td>80</td>\n",
2176
       "      <td>1.0</td>\n",
2177
       "      <td>0.0</td>\n",
2178
       "      <td>0.0</td>\n",
2179
       "      <td>0.0</td>\n",
2180
       "      <td>0.927184</td>\n",
2181
       "      <td>-0.374607</td>\n",
2182
       "      <td>-125.0</td>\n",
2183
       "      <td>-107.097977</td>\n",
2184
       "      <td>148.150391</td>\n",
2185
       "      <td>0.488281</td>\n",
2186
       "      <td>0.488281</td>\n",
2187
       "      <td>30.0</td>\n",
2188
       "      <td>38.015255</td>\n",
2189
       "      <td>0</td>\n",
2190
       "      <td>0</td>\n",
2191
       "      <td>0</td>\n",
2192
       "      <td>0</td>\n",
2193
       "      <td>0</td>\n",
2194
       "      <td>0</td>\n",
2195
       "      <td>0</td>\n",
2196
       "      <td>0.202036</td>\n",
2197
       "      <td>185.898392</td>\n",
2198
       "      <td>18.730394</td>\n",
2199
       "      <td>36</td>\n",
2200
       "      <td>28</td>\n",
2201
       "      <td>5.391968</td>\n",
2202
       "    </tr>\n",
2203
       "    <tr>\n",
2204
       "      <th>6202</th>\n",
2205
       "      <td>16</td>\n",
2206
       "      <td>0</td>\n",
2207
       "      <td>15</td>\n",
2208
       "      <td>['1.000000', '0.000000', '0.000000', '0.000000...</td>\n",
2209
       "      <td>['-125.000000', '-107.097977', '153.543076']</td>\n",
2210
       "      <td>CT</td>\n",
2211
       "      <td>ID_6a88f066</td>\n",
2212
       "      <td>MONOCHROME2</td>\n",
2213
       "      <td>0</td>\n",
2214
       "      <td>['0.488281', '0.488281']</td>\n",
2215
       "      <td>0</td>\n",
2216
       "      <td>1.0</td>\n",
2217
       "      <td>ID_a431772f0</td>\n",
2218
       "      <td>1</td>\n",
2219
       "      <td>ID_025d684f04</td>\n",
2220
       "      <td>NaN</td>\n",
2221
       "      <td>ID_75eaa2e6de</td>\n",
2222
       "      <td>30</td>\n",
2223
       "      <td>80</td>\n",
2224
       "      <td>1.0</td>\n",
2225
       "      <td>0.0</td>\n",
2226
       "      <td>0.0</td>\n",
2227
       "      <td>0.0</td>\n",
2228
       "      <td>0.927184</td>\n",
2229
       "      <td>-0.374607</td>\n",
2230
       "      <td>-125.0</td>\n",
2231
       "      <td>-107.097977</td>\n",
2232
       "      <td>153.543076</td>\n",
2233
       "      <td>0.488281</td>\n",
2234
       "      <td>0.488281</td>\n",
2235
       "      <td>30.0</td>\n",
2236
       "      <td>38.015255</td>\n",
2237
       "      <td>0</td>\n",
2238
       "      <td>0</td>\n",
2239
       "      <td>0</td>\n",
2240
       "      <td>0</td>\n",
2241
       "      <td>0</td>\n",
2242
       "      <td>0</td>\n",
2243
       "      <td>0</td>\n",
2244
       "      <td>0.198950</td>\n",
2245
       "      <td>185.898392</td>\n",
2246
       "      <td>18.730394</td>\n",
2247
       "      <td>36</td>\n",
2248
       "      <td>29</td>\n",
2249
       "      <td>5.392685</td>\n",
2250
       "    </tr>\n",
2251
       "    <tr>\n",
2252
       "      <th>6203</th>\n",
2253
       "      <td>16</td>\n",
2254
       "      <td>0</td>\n",
2255
       "      <td>15</td>\n",
2256
       "      <td>['1.000000', '0.000000', '0.000000', '0.000000...</td>\n",
2257
       "      <td>['-125.000000', '-107.097977', '158.935745']</td>\n",
2258
       "      <td>CT</td>\n",
2259
       "      <td>ID_6a88f066</td>\n",
2260
       "      <td>MONOCHROME2</td>\n",
2261
       "      <td>0</td>\n",
2262
       "      <td>['0.488281', '0.488281']</td>\n",
2263
       "      <td>0</td>\n",
2264
       "      <td>1.0</td>\n",
2265
       "      <td>ID_5ec5d1f13</td>\n",
2266
       "      <td>1</td>\n",
2267
       "      <td>ID_025d684f04</td>\n",
2268
       "      <td>NaN</td>\n",
2269
       "      <td>ID_75eaa2e6de</td>\n",
2270
       "      <td>30</td>\n",
2271
       "      <td>80</td>\n",
2272
       "      <td>1.0</td>\n",
2273
       "      <td>0.0</td>\n",
2274
       "      <td>0.0</td>\n",
2275
       "      <td>0.0</td>\n",
2276
       "      <td>0.927184</td>\n",
2277
       "      <td>-0.374607</td>\n",
2278
       "      <td>-125.0</td>\n",
2279
       "      <td>-107.097977</td>\n",
2280
       "      <td>158.935745</td>\n",
2281
       "      <td>0.488281</td>\n",
2282
       "      <td>0.488281</td>\n",
2283
       "      <td>30.0</td>\n",
2284
       "      <td>38.015255</td>\n",
2285
       "      <td>0</td>\n",
2286
       "      <td>0</td>\n",
2287
       "      <td>0</td>\n",
2288
       "      <td>0</td>\n",
2289
       "      <td>0</td>\n",
2290
       "      <td>0</td>\n",
2291
       "      <td>0</td>\n",
2292
       "      <td>0.192972</td>\n",
2293
       "      <td>185.898392</td>\n",
2294
       "      <td>18.730394</td>\n",
2295
       "      <td>36</td>\n",
2296
       "      <td>30</td>\n",
2297
       "      <td>5.392669</td>\n",
2298
       "    </tr>\n",
2299
       "    <tr>\n",
2300
       "      <th>6204</th>\n",
2301
       "      <td>16</td>\n",
2302
       "      <td>0</td>\n",
2303
       "      <td>15</td>\n",
2304
       "      <td>['1.000000', '0.000000', '0.000000', '0.000000...</td>\n",
2305
       "      <td>['-125.000000', '-107.097977', '164.328415']</td>\n",
2306
       "      <td>CT</td>\n",
2307
       "      <td>ID_6a88f066</td>\n",
2308
       "      <td>MONOCHROME2</td>\n",
2309
       "      <td>0</td>\n",
2310
       "      <td>['0.488281', '0.488281']</td>\n",
2311
       "      <td>0</td>\n",
2312
       "      <td>1.0</td>\n",
2313
       "      <td>ID_95a2ed5a1</td>\n",
2314
       "      <td>1</td>\n",
2315
       "      <td>ID_025d684f04</td>\n",
2316
       "      <td>NaN</td>\n",
2317
       "      <td>ID_75eaa2e6de</td>\n",
2318
       "      <td>30</td>\n",
2319
       "      <td>80</td>\n",
2320
       "      <td>1.0</td>\n",
2321
       "      <td>0.0</td>\n",
2322
       "      <td>0.0</td>\n",
2323
       "      <td>0.0</td>\n",
2324
       "      <td>0.927184</td>\n",
2325
       "      <td>-0.374607</td>\n",
2326
       "      <td>-125.0</td>\n",
2327
       "      <td>-107.097977</td>\n",
2328
       "      <td>164.328415</td>\n",
2329
       "      <td>0.488281</td>\n",
2330
       "      <td>0.488281</td>\n",
2331
       "      <td>30.0</td>\n",
2332
       "      <td>38.015255</td>\n",
2333
       "      <td>0</td>\n",
2334
       "      <td>0</td>\n",
2335
       "      <td>0</td>\n",
2336
       "      <td>0</td>\n",
2337
       "      <td>0</td>\n",
2338
       "      <td>0</td>\n",
2339
       "      <td>0</td>\n",
2340
       "      <td>0.186043</td>\n",
2341
       "      <td>185.898392</td>\n",
2342
       "      <td>18.730394</td>\n",
2343
       "      <td>36</td>\n",
2344
       "      <td>31</td>\n",
2345
       "      <td>5.392670</td>\n",
2346
       "    </tr>\n",
2347
       "    <tr>\n",
2348
       "      <th>6205</th>\n",
2349
       "      <td>16</td>\n",
2350
       "      <td>0</td>\n",
2351
       "      <td>15</td>\n",
2352
       "      <td>['1.000000', '0.000000', '0.000000', '0.000000...</td>\n",
2353
       "      <td>['-125.000000', '-107.097977', '169.720383']</td>\n",
2354
       "      <td>CT</td>\n",
2355
       "      <td>ID_6a88f066</td>\n",
2356
       "      <td>MONOCHROME2</td>\n",
2357
       "      <td>0</td>\n",
2358
       "      <td>['0.488281', '0.488281']</td>\n",
2359
       "      <td>0</td>\n",
2360
       "      <td>1.0</td>\n",
2361
       "      <td>ID_9e46b7e2d</td>\n",
2362
       "      <td>1</td>\n",
2363
       "      <td>ID_025d684f04</td>\n",
2364
       "      <td>NaN</td>\n",
2365
       "      <td>ID_75eaa2e6de</td>\n",
2366
       "      <td>30</td>\n",
2367
       "      <td>80</td>\n",
2368
       "      <td>1.0</td>\n",
2369
       "      <td>0.0</td>\n",
2370
       "      <td>0.0</td>\n",
2371
       "      <td>0.0</td>\n",
2372
       "      <td>0.927184</td>\n",
2373
       "      <td>-0.374607</td>\n",
2374
       "      <td>-125.0</td>\n",
2375
       "      <td>-107.097977</td>\n",
2376
       "      <td>169.720383</td>\n",
2377
       "      <td>0.488281</td>\n",
2378
       "      <td>0.488281</td>\n",
2379
       "      <td>30.0</td>\n",
2380
       "      <td>38.015255</td>\n",
2381
       "      <td>0</td>\n",
2382
       "      <td>0</td>\n",
2383
       "      <td>0</td>\n",
2384
       "      <td>0</td>\n",
2385
       "      <td>0</td>\n",
2386
       "      <td>0</td>\n",
2387
       "      <td>0</td>\n",
2388
       "      <td>0.188509</td>\n",
2389
       "      <td>185.898392</td>\n",
2390
       "      <td>18.730394</td>\n",
2391
       "      <td>36</td>\n",
2392
       "      <td>32</td>\n",
2393
       "      <td>5.391968</td>\n",
2394
       "    </tr>\n",
2395
       "    <tr>\n",
2396
       "      <th>6206</th>\n",
2397
       "      <td>16</td>\n",
2398
       "      <td>0</td>\n",
2399
       "      <td>15</td>\n",
2400
       "      <td>['1.000000', '0.000000', '0.000000', '0.000000...</td>\n",
2401
       "      <td>['-125.000000', '-107.097977', '175.113052']</td>\n",
2402
       "      <td>CT</td>\n",
2403
       "      <td>ID_6a88f066</td>\n",
2404
       "      <td>MONOCHROME2</td>\n",
2405
       "      <td>0</td>\n",
2406
       "      <td>['0.488281', '0.488281']</td>\n",
2407
       "      <td>0</td>\n",
2408
       "      <td>1.0</td>\n",
2409
       "      <td>ID_f81bd8224</td>\n",
2410
       "      <td>1</td>\n",
2411
       "      <td>ID_025d684f04</td>\n",
2412
       "      <td>NaN</td>\n",
2413
       "      <td>ID_75eaa2e6de</td>\n",
2414
       "      <td>30</td>\n",
2415
       "      <td>80</td>\n",
2416
       "      <td>1.0</td>\n",
2417
       "      <td>0.0</td>\n",
2418
       "      <td>0.0</td>\n",
2419
       "      <td>0.0</td>\n",
2420
       "      <td>0.927184</td>\n",
2421
       "      <td>-0.374607</td>\n",
2422
       "      <td>-125.0</td>\n",
2423
       "      <td>-107.097977</td>\n",
2424
       "      <td>175.113052</td>\n",
2425
       "      <td>0.488281</td>\n",
2426
       "      <td>0.488281</td>\n",
2427
       "      <td>30.0</td>\n",
2428
       "      <td>38.015255</td>\n",
2429
       "      <td>0</td>\n",
2430
       "      <td>0</td>\n",
2431
       "      <td>0</td>\n",
2432
       "      <td>0</td>\n",
2433
       "      <td>0</td>\n",
2434
       "      <td>0</td>\n",
2435
       "      <td>0</td>\n",
2436
       "      <td>0.184709</td>\n",
2437
       "      <td>185.898392</td>\n",
2438
       "      <td>18.730394</td>\n",
2439
       "      <td>36</td>\n",
2440
       "      <td>33</td>\n",
2441
       "      <td>5.392669</td>\n",
2442
       "    </tr>\n",
2443
       "    <tr>\n",
2444
       "      <th>6207</th>\n",
2445
       "      <td>16</td>\n",
2446
       "      <td>0</td>\n",
2447
       "      <td>15</td>\n",
2448
       "      <td>['1.000000', '0.000000', '0.000000', '0.000000...</td>\n",
2449
       "      <td>['-125.000000', '-107.097977', '180.505722']</td>\n",
2450
       "      <td>CT</td>\n",
2451
       "      <td>ID_6a88f066</td>\n",
2452
       "      <td>MONOCHROME2</td>\n",
2453
       "      <td>0</td>\n",
2454
       "      <td>['0.488281', '0.488281']</td>\n",
2455
       "      <td>0</td>\n",
2456
       "      <td>1.0</td>\n",
2457
       "      <td>ID_0855f0640</td>\n",
2458
       "      <td>1</td>\n",
2459
       "      <td>ID_025d684f04</td>\n",
2460
       "      <td>NaN</td>\n",
2461
       "      <td>ID_75eaa2e6de</td>\n",
2462
       "      <td>30</td>\n",
2463
       "      <td>80</td>\n",
2464
       "      <td>1.0</td>\n",
2465
       "      <td>0.0</td>\n",
2466
       "      <td>0.0</td>\n",
2467
       "      <td>0.0</td>\n",
2468
       "      <td>0.927184</td>\n",
2469
       "      <td>-0.374607</td>\n",
2470
       "      <td>-125.0</td>\n",
2471
       "      <td>-107.097977</td>\n",
2472
       "      <td>180.505722</td>\n",
2473
       "      <td>0.488281</td>\n",
2474
       "      <td>0.488281</td>\n",
2475
       "      <td>30.0</td>\n",
2476
       "      <td>38.015255</td>\n",
2477
       "      <td>0</td>\n",
2478
       "      <td>0</td>\n",
2479
       "      <td>0</td>\n",
2480
       "      <td>0</td>\n",
2481
       "      <td>0</td>\n",
2482
       "      <td>0</td>\n",
2483
       "      <td>0</td>\n",
2484
       "      <td>0.188770</td>\n",
2485
       "      <td>185.898392</td>\n",
2486
       "      <td>18.730394</td>\n",
2487
       "      <td>36</td>\n",
2488
       "      <td>34</td>\n",
2489
       "      <td>5.392670</td>\n",
2490
       "    </tr>\n",
2491
       "    <tr>\n",
2492
       "      <th>6208</th>\n",
2493
       "      <td>16</td>\n",
2494
       "      <td>0</td>\n",
2495
       "      <td>15</td>\n",
2496
       "      <td>['1.000000', '0.000000', '0.000000', '0.000000...</td>\n",
2497
       "      <td>['-125.000000', '-107.097977', '185.898392']</td>\n",
2498
       "      <td>CT</td>\n",
2499
       "      <td>ID_6a88f066</td>\n",
2500
       "      <td>MONOCHROME2</td>\n",
2501
       "      <td>0</td>\n",
2502
       "      <td>['0.488281', '0.488281']</td>\n",
2503
       "      <td>0</td>\n",
2504
       "      <td>1.0</td>\n",
2505
       "      <td>ID_1574a1111</td>\n",
2506
       "      <td>1</td>\n",
2507
       "      <td>ID_025d684f04</td>\n",
2508
       "      <td>NaN</td>\n",
2509
       "      <td>ID_75eaa2e6de</td>\n",
2510
       "      <td>30</td>\n",
2511
       "      <td>80</td>\n",
2512
       "      <td>1.0</td>\n",
2513
       "      <td>0.0</td>\n",
2514
       "      <td>0.0</td>\n",
2515
       "      <td>0.0</td>\n",
2516
       "      <td>0.927184</td>\n",
2517
       "      <td>-0.374607</td>\n",
2518
       "      <td>-125.0</td>\n",
2519
       "      <td>-107.097977</td>\n",
2520
       "      <td>185.898392</td>\n",
2521
       "      <td>0.488281</td>\n",
2522
       "      <td>0.488281</td>\n",
2523
       "      <td>30.0</td>\n",
2524
       "      <td>38.015255</td>\n",
2525
       "      <td>0</td>\n",
2526
       "      <td>0</td>\n",
2527
       "      <td>0</td>\n",
2528
       "      <td>0</td>\n",
2529
       "      <td>0</td>\n",
2530
       "      <td>0</td>\n",
2531
       "      <td>0</td>\n",
2532
       "      <td>0.206839</td>\n",
2533
       "      <td>185.898392</td>\n",
2534
       "      <td>18.730394</td>\n",
2535
       "      <td>36</td>\n",
2536
       "      <td>35</td>\n",
2537
       "      <td>5.392670</td>\n",
2538
       "    </tr>\n",
2539
       "  </tbody>\n",
2540
       "</table>\n",
2541
       "</div>"
2542
      ],
2543
      "text/plain": [
2544
       "      BitsAllocated BitsStored  HighBit  \\\n",
2545
       "6173             16          0       15   \n",
2546
       "6174             16          0       15   \n",
2547
       "6175             16          0       15   \n",
2548
       "6176             16          0       15   \n",
2549
       "6177             16          0       15   \n",
2550
       "6178             16          0       15   \n",
2551
       "6179             16          0       15   \n",
2552
       "6180             16          0       15   \n",
2553
       "6181             16          0       15   \n",
2554
       "6182             16          0       15   \n",
2555
       "6183             16          0       15   \n",
2556
       "6184             16          0       15   \n",
2557
       "6185             16          0       15   \n",
2558
       "6186             16          0       15   \n",
2559
       "6187             16          0       15   \n",
2560
       "6188             16          0       15   \n",
2561
       "6189             16          0       15   \n",
2562
       "6190             16          0       15   \n",
2563
       "6191             16          0       15   \n",
2564
       "6192             16          0       15   \n",
2565
       "6193             16          0       15   \n",
2566
       "6194             16          0       15   \n",
2567
       "6195             16          0       15   \n",
2568
       "6196             16          0       15   \n",
2569
       "6197             16          0       15   \n",
2570
       "6198             16          0       15   \n",
2571
       "6199             16          0       15   \n",
2572
       "6200             16          0       15   \n",
2573
       "6201             16          0       15   \n",
2574
       "6202             16          0       15   \n",
2575
       "6203             16          0       15   \n",
2576
       "6204             16          0       15   \n",
2577
       "6205             16          0       15   \n",
2578
       "6206             16          0       15   \n",
2579
       "6207             16          0       15   \n",
2580
       "6208             16          0       15   \n",
2581
       "\n",
2582
       "                                ImageOrientationPatient  \\\n",
2583
       "6173  ['1.000000', '0.000000', '0.000000', '0.000000...   \n",
2584
       "6174  ['1.000000', '0.000000', '0.000000', '0.000000...   \n",
2585
       "6175  ['1.000000', '0.000000', '0.000000', '0.000000...   \n",
2586
       "6176  ['1.000000', '0.000000', '0.000000', '0.000000...   \n",
2587
       "6177  ['1.000000', '0.000000', '0.000000', '0.000000...   \n",
2588
       "6178  ['1.000000', '0.000000', '0.000000', '0.000000...   \n",
2589
       "6179  ['1.000000', '0.000000', '0.000000', '0.000000...   \n",
2590
       "6180  ['1.000000', '0.000000', '0.000000', '0.000000...   \n",
2591
       "6181  ['1.000000', '0.000000', '0.000000', '0.000000...   \n",
2592
       "6182  ['1.000000', '0.000000', '0.000000', '0.000000...   \n",
2593
       "6183  ['1.000000', '0.000000', '0.000000', '0.000000...   \n",
2594
       "6184  ['1.000000', '0.000000', '0.000000', '0.000000...   \n",
2595
       "6185  ['1.000000', '0.000000', '0.000000', '0.000000...   \n",
2596
       "6186  ['1.000000', '0.000000', '0.000000', '0.000000...   \n",
2597
       "6187  ['1.000000', '0.000000', '0.000000', '0.000000...   \n",
2598
       "6188  ['1.000000', '0.000000', '0.000000', '0.000000...   \n",
2599
       "6189  ['1.000000', '0.000000', '0.000000', '0.000000...   \n",
2600
       "6190  ['1.000000', '0.000000', '0.000000', '0.000000...   \n",
2601
       "6191  ['1.000000', '0.000000', '0.000000', '0.000000...   \n",
2602
       "6192  ['1.000000', '0.000000', '0.000000', '0.000000...   \n",
2603
       "6193  ['1.000000', '0.000000', '0.000000', '0.000000...   \n",
2604
       "6194  ['1.000000', '0.000000', '0.000000', '0.000000...   \n",
2605
       "6195  ['1.000000', '0.000000', '0.000000', '0.000000...   \n",
2606
       "6196  ['1.000000', '0.000000', '0.000000', '0.000000...   \n",
2607
       "6197  ['1.000000', '0.000000', '0.000000', '0.000000...   \n",
2608
       "6198  ['1.000000', '0.000000', '0.000000', '0.000000...   \n",
2609
       "6199  ['1.000000', '0.000000', '0.000000', '0.000000...   \n",
2610
       "6200  ['1.000000', '0.000000', '0.000000', '0.000000...   \n",
2611
       "6201  ['1.000000', '0.000000', '0.000000', '0.000000...   \n",
2612
       "6202  ['1.000000', '0.000000', '0.000000', '0.000000...   \n",
2613
       "6203  ['1.000000', '0.000000', '0.000000', '0.000000...   \n",
2614
       "6204  ['1.000000', '0.000000', '0.000000', '0.000000...   \n",
2615
       "6205  ['1.000000', '0.000000', '0.000000', '0.000000...   \n",
2616
       "6206  ['1.000000', '0.000000', '0.000000', '0.000000...   \n",
2617
       "6207  ['1.000000', '0.000000', '0.000000', '0.000000...   \n",
2618
       "6208  ['1.000000', '0.000000', '0.000000', '0.000000...   \n",
2619
       "\n",
2620
       "                              ImagePositionPatient Modality    PatientID  \\\n",
2621
       "6173   ['-125.000000', '-107.097977', '18.730394']       CT  ID_6a88f066   \n",
2622
       "6174   ['-125.000000', '-107.097977', '24.123068']       CT  ID_6a88f066   \n",
2623
       "6175   ['-125.000000', '-107.097977', '29.515741']       CT  ID_6a88f066   \n",
2624
       "6176   ['-125.000000', '-107.097977', '34.908417']       CT  ID_6a88f066   \n",
2625
       "6177   ['-125.000000', '-107.097977', '40.300396']       CT  ID_6a88f066   \n",
2626
       "6178   ['-125.000000', '-107.097977', '45.693069']       CT  ID_6a88f066   \n",
2627
       "6179   ['-125.000000', '-107.097977', '51.085743']       CT  ID_6a88f066   \n",
2628
       "6180   ['-125.000000', '-107.097977', '56.478416']       CT  ID_6a88f066   \n",
2629
       "6181   ['-125.000000', '-107.097977', '61.870396']       CT  ID_6a88f066   \n",
2630
       "6182   ['-125.000000', '-107.097977', '61.870396']       CT  ID_6a88f066   \n",
2631
       "6183   ['-125.000000', '-107.097977', '67.263069']       CT  ID_6a88f066   \n",
2632
       "6184   ['-125.000000', '-107.097977', '67.263069']       CT  ID_6a88f066   \n",
2633
       "6185   ['-125.000000', '-107.097977', '72.655739']       CT  ID_6a88f066   \n",
2634
       "6186   ['-125.000000', '-107.097977', '72.655739']       CT  ID_6a88f066   \n",
2635
       "6187   ['-125.000000', '-107.097977', '78.048416']       CT  ID_6a88f066   \n",
2636
       "6188   ['-125.000000', '-107.097977', '78.048416']       CT  ID_6a88f066   \n",
2637
       "6189   ['-125.000000', '-107.097977', '83.440392']       CT  ID_6a88f066   \n",
2638
       "6190   ['-125.000000', '-107.097977', '88.833069']       CT  ID_6a88f066   \n",
2639
       "6191   ['-125.000000', '-107.097977', '94.225739']       CT  ID_6a88f066   \n",
2640
       "6192   ['-125.000000', '-107.097977', '99.618416']       CT  ID_6a88f066   \n",
2641
       "6193  ['-125.000000', '-107.097977', '105.010391']       CT  ID_6a88f066   \n",
2642
       "6194  ['-125.000000', '-107.097977', '110.403069']       CT  ID_6a88f066   \n",
2643
       "6195  ['-125.000000', '-107.097977', '115.795746']       CT  ID_6a88f066   \n",
2644
       "6196  ['-125.000000', '-107.097977', '121.188416']       CT  ID_6a88f066   \n",
2645
       "6197  ['-125.000000', '-107.097977', '126.580399']       CT  ID_6a88f066   \n",
2646
       "6198  ['-125.000000', '-107.097977', '131.973068']       CT  ID_6a88f066   \n",
2647
       "6199  ['-125.000000', '-107.097977', '137.365738']       CT  ID_6a88f066   \n",
2648
       "6200  ['-125.000000', '-107.097977', '142.758423']       CT  ID_6a88f066   \n",
2649
       "6201  ['-125.000000', '-107.097977', '148.150391']       CT  ID_6a88f066   \n",
2650
       "6202  ['-125.000000', '-107.097977', '153.543076']       CT  ID_6a88f066   \n",
2651
       "6203  ['-125.000000', '-107.097977', '158.935745']       CT  ID_6a88f066   \n",
2652
       "6204  ['-125.000000', '-107.097977', '164.328415']       CT  ID_6a88f066   \n",
2653
       "6205  ['-125.000000', '-107.097977', '169.720383']       CT  ID_6a88f066   \n",
2654
       "6206  ['-125.000000', '-107.097977', '175.113052']       CT  ID_6a88f066   \n",
2655
       "6207  ['-125.000000', '-107.097977', '180.505722']       CT  ID_6a88f066   \n",
2656
       "6208  ['-125.000000', '-107.097977', '185.898392']       CT  ID_6a88f066   \n",
2657
       "\n",
2658
       "     PhotometricInterpretation PixelRepresentation              PixelSpacing  \\\n",
2659
       "6173               MONOCHROME2                   0  ['0.488281', '0.488281']   \n",
2660
       "6174               MONOCHROME2                   0  ['0.488281', '0.488281']   \n",
2661
       "6175               MONOCHROME2                   0  ['0.488281', '0.488281']   \n",
2662
       "6176               MONOCHROME2                   0  ['0.488281', '0.488281']   \n",
2663
       "6177               MONOCHROME2                   0  ['0.488281', '0.488281']   \n",
2664
       "6178               MONOCHROME2                   0  ['0.488281', '0.488281']   \n",
2665
       "6179               MONOCHROME2                   0  ['0.488281', '0.488281']   \n",
2666
       "6180               MONOCHROME2                   0  ['0.488281', '0.488281']   \n",
2667
       "6181               MONOCHROME2                   0  ['0.488281', '0.488281']   \n",
2668
       "6182               MONOCHROME2                   0  ['0.488281', '0.488281']   \n",
2669
       "6183               MONOCHROME2                   0  ['0.488281', '0.488281']   \n",
2670
       "6184               MONOCHROME2                   0  ['0.488281', '0.488281']   \n",
2671
       "6185               MONOCHROME2                   0  ['0.488281', '0.488281']   \n",
2672
       "6186               MONOCHROME2                   0  ['0.488281', '0.488281']   \n",
2673
       "6187               MONOCHROME2                   0  ['0.488281', '0.488281']   \n",
2674
       "6188               MONOCHROME2                   0  ['0.488281', '0.488281']   \n",
2675
       "6189               MONOCHROME2                   0  ['0.488281', '0.488281']   \n",
2676
       "6190               MONOCHROME2                   0  ['0.488281', '0.488281']   \n",
2677
       "6191               MONOCHROME2                   0  ['0.488281', '0.488281']   \n",
2678
       "6192               MONOCHROME2                   0  ['0.488281', '0.488281']   \n",
2679
       "6193               MONOCHROME2                   0  ['0.488281', '0.488281']   \n",
2680
       "6194               MONOCHROME2                   0  ['0.488281', '0.488281']   \n",
2681
       "6195               MONOCHROME2                   0  ['0.488281', '0.488281']   \n",
2682
       "6196               MONOCHROME2                   0  ['0.488281', '0.488281']   \n",
2683
       "6197               MONOCHROME2                   0  ['0.488281', '0.488281']   \n",
2684
       "6198               MONOCHROME2                   0  ['0.488281', '0.488281']   \n",
2685
       "6199               MONOCHROME2                   0  ['0.488281', '0.488281']   \n",
2686
       "6200               MONOCHROME2                   0  ['0.488281', '0.488281']   \n",
2687
       "6201               MONOCHROME2                   0  ['0.488281', '0.488281']   \n",
2688
       "6202               MONOCHROME2                   0  ['0.488281', '0.488281']   \n",
2689
       "6203               MONOCHROME2                   0  ['0.488281', '0.488281']   \n",
2690
       "6204               MONOCHROME2                   0  ['0.488281', '0.488281']   \n",
2691
       "6205               MONOCHROME2                   0  ['0.488281', '0.488281']   \n",
2692
       "6206               MONOCHROME2                   0  ['0.488281', '0.488281']   \n",
2693
       "6207               MONOCHROME2                   0  ['0.488281', '0.488281']   \n",
2694
       "6208               MONOCHROME2                   0  ['0.488281', '0.488281']   \n",
2695
       "\n",
2696
       "     RescaleIntercept  RescaleSlope SOPInstanceUID  SamplesPerPixel  \\\n",
2697
       "6173                0           1.0   ID_fca334534                1   \n",
2698
       "6174                0           1.0   ID_bb3ca1577                1   \n",
2699
       "6175                0           1.0   ID_78ce791af                1   \n",
2700
       "6176                0           1.0   ID_3c9c2db71                1   \n",
2701
       "6177                0           1.0   ID_069d12e61                1   \n",
2702
       "6178                0           1.0   ID_7bdb10aaa                1   \n",
2703
       "6179                0           1.0   ID_be063f884                1   \n",
2704
       "6180                0           1.0   ID_464557fbf                1   \n",
2705
       "6181                0           1.0   ID_ec73321eb                1   \n",
2706
       "6182                0           1.0   ID_0e67917f5                1   \n",
2707
       "6183                0           1.0   ID_ee4045bd9                1   \n",
2708
       "6184                0           1.0   ID_c7605edce                1   \n",
2709
       "6185                0           1.0   ID_1184a716d                1   \n",
2710
       "6186                0           1.0   ID_12683d977                1   \n",
2711
       "6187                0           1.0   ID_7854703e3                1   \n",
2712
       "6188                0           1.0   ID_6f53ceeb2                1   \n",
2713
       "6189                0           1.0   ID_fbc4828da                1   \n",
2714
       "6190                0           1.0   ID_476062d7a                1   \n",
2715
       "6191                0           1.0   ID_1afe3f61a                1   \n",
2716
       "6192                0           1.0   ID_881a87f12                1   \n",
2717
       "6193                0           1.0   ID_35040508c                1   \n",
2718
       "6194                0           1.0   ID_c2ca8f50a                1   \n",
2719
       "6195                0           1.0   ID_717df1a2c                1   \n",
2720
       "6196                0           1.0   ID_9ceb8d633                1   \n",
2721
       "6197                0           1.0   ID_899a807d5                1   \n",
2722
       "6198                0           1.0   ID_8192ed875                1   \n",
2723
       "6199                0           1.0   ID_76cc2c93b                1   \n",
2724
       "6200                0           1.0   ID_d9157fdd9                1   \n",
2725
       "6201                0           1.0   ID_033d94fcc                1   \n",
2726
       "6202                0           1.0   ID_a431772f0                1   \n",
2727
       "6203                0           1.0   ID_5ec5d1f13                1   \n",
2728
       "6204                0           1.0   ID_95a2ed5a1                1   \n",
2729
       "6205                0           1.0   ID_9e46b7e2d                1   \n",
2730
       "6206                0           1.0   ID_f81bd8224                1   \n",
2731
       "6207                0           1.0   ID_0855f0640                1   \n",
2732
       "6208                0           1.0   ID_1574a1111                1   \n",
2733
       "\n",
2734
       "     SeriesInstanceUID  StudyID StudyInstanceUID WindowCenter WindowWidth  \\\n",
2735
       "6173     ID_025d684f04      NaN    ID_75eaa2e6de           30          80   \n",
2736
       "6174     ID_025d684f04      NaN    ID_75eaa2e6de           30          80   \n",
2737
       "6175     ID_025d684f04      NaN    ID_75eaa2e6de           30          80   \n",
2738
       "6176     ID_025d684f04      NaN    ID_75eaa2e6de           30          80   \n",
2739
       "6177     ID_025d684f04      NaN    ID_75eaa2e6de           30          80   \n",
2740
       "6178     ID_025d684f04      NaN    ID_75eaa2e6de           30          80   \n",
2741
       "6179     ID_025d684f04      NaN    ID_75eaa2e6de           30          80   \n",
2742
       "6180     ID_025d684f04      NaN    ID_75eaa2e6de           30          80   \n",
2743
       "6181     ID_025d684f04      NaN    ID_75eaa2e6de           30          80   \n",
2744
       "6182     ID_025d684f04      NaN    ID_75eaa2e6de           30          80   \n",
2745
       "6183     ID_025d684f04      NaN    ID_75eaa2e6de           30          80   \n",
2746
       "6184     ID_025d684f04      NaN    ID_75eaa2e6de           30          80   \n",
2747
       "6185     ID_025d684f04      NaN    ID_75eaa2e6de           30          80   \n",
2748
       "6186     ID_025d684f04      NaN    ID_75eaa2e6de           30          80   \n",
2749
       "6187     ID_025d684f04      NaN    ID_75eaa2e6de           30          80   \n",
2750
       "6188     ID_025d684f04      NaN    ID_75eaa2e6de           30          80   \n",
2751
       "6189     ID_025d684f04      NaN    ID_75eaa2e6de           30          80   \n",
2752
       "6190     ID_025d684f04      NaN    ID_75eaa2e6de           30          80   \n",
2753
       "6191     ID_025d684f04      NaN    ID_75eaa2e6de           30          80   \n",
2754
       "6192     ID_025d684f04      NaN    ID_75eaa2e6de           30          80   \n",
2755
       "6193     ID_025d684f04      NaN    ID_75eaa2e6de           30          80   \n",
2756
       "6194     ID_025d684f04      NaN    ID_75eaa2e6de           30          80   \n",
2757
       "6195     ID_025d684f04      NaN    ID_75eaa2e6de           30          80   \n",
2758
       "6196     ID_025d684f04      NaN    ID_75eaa2e6de           30          80   \n",
2759
       "6197     ID_025d684f04      NaN    ID_75eaa2e6de           30          80   \n",
2760
       "6198     ID_025d684f04      NaN    ID_75eaa2e6de           30          80   \n",
2761
       "6199     ID_025d684f04      NaN    ID_75eaa2e6de           30          80   \n",
2762
       "6200     ID_025d684f04      NaN    ID_75eaa2e6de           30          80   \n",
2763
       "6201     ID_025d684f04      NaN    ID_75eaa2e6de           30          80   \n",
2764
       "6202     ID_025d684f04      NaN    ID_75eaa2e6de           30          80   \n",
2765
       "6203     ID_025d684f04      NaN    ID_75eaa2e6de           30          80   \n",
2766
       "6204     ID_025d684f04      NaN    ID_75eaa2e6de           30          80   \n",
2767
       "6205     ID_025d684f04      NaN    ID_75eaa2e6de           30          80   \n",
2768
       "6206     ID_025d684f04      NaN    ID_75eaa2e6de           30          80   \n",
2769
       "6207     ID_025d684f04      NaN    ID_75eaa2e6de           30          80   \n",
2770
       "6208     ID_025d684f04      NaN    ID_75eaa2e6de           30          80   \n",
2771
       "\n",
2772
       "      ImageOrientationPatient_0  ImageOrientationPatient_1  \\\n",
2773
       "6173                        1.0                        0.0   \n",
2774
       "6174                        1.0                        0.0   \n",
2775
       "6175                        1.0                        0.0   \n",
2776
       "6176                        1.0                        0.0   \n",
2777
       "6177                        1.0                        0.0   \n",
2778
       "6178                        1.0                        0.0   \n",
2779
       "6179                        1.0                        0.0   \n",
2780
       "6180                        1.0                        0.0   \n",
2781
       "6181                        1.0                        0.0   \n",
2782
       "6182                        1.0                        0.0   \n",
2783
       "6183                        1.0                        0.0   \n",
2784
       "6184                        1.0                        0.0   \n",
2785
       "6185                        1.0                        0.0   \n",
2786
       "6186                        1.0                        0.0   \n",
2787
       "6187                        1.0                        0.0   \n",
2788
       "6188                        1.0                        0.0   \n",
2789
       "6189                        1.0                        0.0   \n",
2790
       "6190                        1.0                        0.0   \n",
2791
       "6191                        1.0                        0.0   \n",
2792
       "6192                        1.0                        0.0   \n",
2793
       "6193                        1.0                        0.0   \n",
2794
       "6194                        1.0                        0.0   \n",
2795
       "6195                        1.0                        0.0   \n",
2796
       "6196                        1.0                        0.0   \n",
2797
       "6197                        1.0                        0.0   \n",
2798
       "6198                        1.0                        0.0   \n",
2799
       "6199                        1.0                        0.0   \n",
2800
       "6200                        1.0                        0.0   \n",
2801
       "6201                        1.0                        0.0   \n",
2802
       "6202                        1.0                        0.0   \n",
2803
       "6203                        1.0                        0.0   \n",
2804
       "6204                        1.0                        0.0   \n",
2805
       "6205                        1.0                        0.0   \n",
2806
       "6206                        1.0                        0.0   \n",
2807
       "6207                        1.0                        0.0   \n",
2808
       "6208                        1.0                        0.0   \n",
2809
       "\n",
2810
       "      ImageOrientationPatient_2  ImageOrientationPatient_3  \\\n",
2811
       "6173                        0.0                        0.0   \n",
2812
       "6174                        0.0                        0.0   \n",
2813
       "6175                        0.0                        0.0   \n",
2814
       "6176                        0.0                        0.0   \n",
2815
       "6177                        0.0                        0.0   \n",
2816
       "6178                        0.0                        0.0   \n",
2817
       "6179                        0.0                        0.0   \n",
2818
       "6180                        0.0                        0.0   \n",
2819
       "6181                        0.0                        0.0   \n",
2820
       "6182                        0.0                        0.0   \n",
2821
       "6183                        0.0                        0.0   \n",
2822
       "6184                        0.0                        0.0   \n",
2823
       "6185                        0.0                        0.0   \n",
2824
       "6186                        0.0                        0.0   \n",
2825
       "6187                        0.0                        0.0   \n",
2826
       "6188                        0.0                        0.0   \n",
2827
       "6189                        0.0                        0.0   \n",
2828
       "6190                        0.0                        0.0   \n",
2829
       "6191                        0.0                        0.0   \n",
2830
       "6192                        0.0                        0.0   \n",
2831
       "6193                        0.0                        0.0   \n",
2832
       "6194                        0.0                        0.0   \n",
2833
       "6195                        0.0                        0.0   \n",
2834
       "6196                        0.0                        0.0   \n",
2835
       "6197                        0.0                        0.0   \n",
2836
       "6198                        0.0                        0.0   \n",
2837
       "6199                        0.0                        0.0   \n",
2838
       "6200                        0.0                        0.0   \n",
2839
       "6201                        0.0                        0.0   \n",
2840
       "6202                        0.0                        0.0   \n",
2841
       "6203                        0.0                        0.0   \n",
2842
       "6204                        0.0                        0.0   \n",
2843
       "6205                        0.0                        0.0   \n",
2844
       "6206                        0.0                        0.0   \n",
2845
       "6207                        0.0                        0.0   \n",
2846
       "6208                        0.0                        0.0   \n",
2847
       "\n",
2848
       "      ImageOrientationPatient_4  ImageOrientationPatient_5  \\\n",
2849
       "6173                   0.927184                  -0.374607   \n",
2850
       "6174                   0.927184                  -0.374607   \n",
2851
       "6175                   0.927184                  -0.374607   \n",
2852
       "6176                   0.927184                  -0.374607   \n",
2853
       "6177                   0.927184                  -0.374607   \n",
2854
       "6178                   0.927184                  -0.374607   \n",
2855
       "6179                   0.927184                  -0.374607   \n",
2856
       "6180                   0.927184                  -0.374607   \n",
2857
       "6181                   0.927184                  -0.374607   \n",
2858
       "6182                   0.927184                  -0.374607   \n",
2859
       "6183                   0.927184                  -0.374607   \n",
2860
       "6184                   0.927184                  -0.374607   \n",
2861
       "6185                   0.927184                  -0.374607   \n",
2862
       "6186                   0.927184                  -0.374607   \n",
2863
       "6187                   0.927184                  -0.374607   \n",
2864
       "6188                   0.927184                  -0.374607   \n",
2865
       "6189                   0.927184                  -0.374607   \n",
2866
       "6190                   0.927184                  -0.374607   \n",
2867
       "6191                   0.927184                  -0.374607   \n",
2868
       "6192                   0.927184                  -0.374607   \n",
2869
       "6193                   0.927184                  -0.374607   \n",
2870
       "6194                   0.927184                  -0.374607   \n",
2871
       "6195                   0.927184                  -0.374607   \n",
2872
       "6196                   0.927184                  -0.374607   \n",
2873
       "6197                   0.927184                  -0.374607   \n",
2874
       "6198                   0.927184                  -0.374607   \n",
2875
       "6199                   0.927184                  -0.374607   \n",
2876
       "6200                   0.927184                  -0.374607   \n",
2877
       "6201                   0.927184                  -0.374607   \n",
2878
       "6202                   0.927184                  -0.374607   \n",
2879
       "6203                   0.927184                  -0.374607   \n",
2880
       "6204                   0.927184                  -0.374607   \n",
2881
       "6205                   0.927184                  -0.374607   \n",
2882
       "6206                   0.927184                  -0.374607   \n",
2883
       "6207                   0.927184                  -0.374607   \n",
2884
       "6208                   0.927184                  -0.374607   \n",
2885
       "\n",
2886
       "      ImagePositionPatient_0  ImagePositionPatient_1  ImagePositionPatient_2  \\\n",
2887
       "6173                  -125.0             -107.097977               18.730394   \n",
2888
       "6174                  -125.0             -107.097977               24.123068   \n",
2889
       "6175                  -125.0             -107.097977               29.515741   \n",
2890
       "6176                  -125.0             -107.097977               34.908417   \n",
2891
       "6177                  -125.0             -107.097977               40.300396   \n",
2892
       "6178                  -125.0             -107.097977               45.693069   \n",
2893
       "6179                  -125.0             -107.097977               51.085743   \n",
2894
       "6180                  -125.0             -107.097977               56.478416   \n",
2895
       "6181                  -125.0             -107.097977               61.870396   \n",
2896
       "6182                  -125.0             -107.097977               61.870396   \n",
2897
       "6183                  -125.0             -107.097977               67.263069   \n",
2898
       "6184                  -125.0             -107.097977               67.263069   \n",
2899
       "6185                  -125.0             -107.097977               72.655739   \n",
2900
       "6186                  -125.0             -107.097977               72.655739   \n",
2901
       "6187                  -125.0             -107.097977               78.048416   \n",
2902
       "6188                  -125.0             -107.097977               78.048416   \n",
2903
       "6189                  -125.0             -107.097977               83.440392   \n",
2904
       "6190                  -125.0             -107.097977               88.833069   \n",
2905
       "6191                  -125.0             -107.097977               94.225739   \n",
2906
       "6192                  -125.0             -107.097977               99.618416   \n",
2907
       "6193                  -125.0             -107.097977              105.010391   \n",
2908
       "6194                  -125.0             -107.097977              110.403069   \n",
2909
       "6195                  -125.0             -107.097977              115.795746   \n",
2910
       "6196                  -125.0             -107.097977              121.188416   \n",
2911
       "6197                  -125.0             -107.097977              126.580399   \n",
2912
       "6198                  -125.0             -107.097977              131.973068   \n",
2913
       "6199                  -125.0             -107.097977              137.365738   \n",
2914
       "6200                  -125.0             -107.097977              142.758423   \n",
2915
       "6201                  -125.0             -107.097977              148.150391   \n",
2916
       "6202                  -125.0             -107.097977              153.543076   \n",
2917
       "6203                  -125.0             -107.097977              158.935745   \n",
2918
       "6204                  -125.0             -107.097977              164.328415   \n",
2919
       "6205                  -125.0             -107.097977              169.720383   \n",
2920
       "6206                  -125.0             -107.097977              175.113052   \n",
2921
       "6207                  -125.0             -107.097977              180.505722   \n",
2922
       "6208                  -125.0             -107.097977              185.898392   \n",
2923
       "\n",
2924
       "      PixelSpacing_0  PixelSpacing_1  WindowCenter_0  WindowCenter_1  \\\n",
2925
       "6173        0.488281        0.488281            30.0       38.015255   \n",
2926
       "6174        0.488281        0.488281            30.0       38.015255   \n",
2927
       "6175        0.488281        0.488281            30.0       38.015255   \n",
2928
       "6176        0.488281        0.488281            30.0       38.015255   \n",
2929
       "6177        0.488281        0.488281            30.0       38.015255   \n",
2930
       "6178        0.488281        0.488281            30.0       38.015255   \n",
2931
       "6179        0.488281        0.488281            30.0       38.015255   \n",
2932
       "6180        0.488281        0.488281            30.0       38.015255   \n",
2933
       "6181        0.488281        0.488281            30.0       38.015255   \n",
2934
       "6182        0.488281        0.488281            30.0       38.015255   \n",
2935
       "6183        0.488281        0.488281            30.0       38.015255   \n",
2936
       "6184        0.488281        0.488281            30.0       38.015255   \n",
2937
       "6185        0.488281        0.488281            30.0       38.015255   \n",
2938
       "6186        0.488281        0.488281            30.0       38.015255   \n",
2939
       "6187        0.488281        0.488281            30.0       38.015255   \n",
2940
       "6188        0.488281        0.488281            30.0       38.015255   \n",
2941
       "6189        0.488281        0.488281            30.0       38.015255   \n",
2942
       "6190        0.488281        0.488281            30.0       38.015255   \n",
2943
       "6191        0.488281        0.488281            30.0       38.015255   \n",
2944
       "6192        0.488281        0.488281            30.0       38.015255   \n",
2945
       "6193        0.488281        0.488281            30.0       38.015255   \n",
2946
       "6194        0.488281        0.488281            30.0       38.015255   \n",
2947
       "6195        0.488281        0.488281            30.0       38.015255   \n",
2948
       "6196        0.488281        0.488281            30.0       38.015255   \n",
2949
       "6197        0.488281        0.488281            30.0       38.015255   \n",
2950
       "6198        0.488281        0.488281            30.0       38.015255   \n",
2951
       "6199        0.488281        0.488281            30.0       38.015255   \n",
2952
       "6200        0.488281        0.488281            30.0       38.015255   \n",
2953
       "6201        0.488281        0.488281            30.0       38.015255   \n",
2954
       "6202        0.488281        0.488281            30.0       38.015255   \n",
2955
       "6203        0.488281        0.488281            30.0       38.015255   \n",
2956
       "6204        0.488281        0.488281            30.0       38.015255   \n",
2957
       "6205        0.488281        0.488281            30.0       38.015255   \n",
2958
       "6206        0.488281        0.488281            30.0       38.015255   \n",
2959
       "6207        0.488281        0.488281            30.0       38.015255   \n",
2960
       "6208        0.488281        0.488281            30.0       38.015255   \n",
2961
       "\n",
2962
       "     WindowCenter_1_NAN  any  epidural  intraparenchymal  intraventricular  \\\n",
2963
       "6173                  0    0         0                 0                 0   \n",
2964
       "6174                  0    0         0                 0                 0   \n",
2965
       "6175                  0    0         0                 0                 0   \n",
2966
       "6176                  0    0         0                 0                 0   \n",
2967
       "6177                  0    0         0                 0                 0   \n",
2968
       "6178                  0    0         0                 0                 0   \n",
2969
       "6179                  0    0         0                 0                 0   \n",
2970
       "6180                  0    0         0                 0                 0   \n",
2971
       "6181                  0    0         0                 0                 0   \n",
2972
       "6182                  0    0         0                 0                 0   \n",
2973
       "6183                  0    0         0                 0                 0   \n",
2974
       "6184                  0    0         0                 0                 0   \n",
2975
       "6185                  0    0         0                 0                 0   \n",
2976
       "6186                  0    0         0                 0                 0   \n",
2977
       "6187                  0    0         0                 0                 0   \n",
2978
       "6188                  0    0         0                 0                 0   \n",
2979
       "6189                  0    0         0                 0                 0   \n",
2980
       "6190                  0    0         0                 0                 0   \n",
2981
       "6191                  0    0         0                 0                 0   \n",
2982
       "6192                  0    0         0                 0                 0   \n",
2983
       "6193                  0    0         0                 0                 0   \n",
2984
       "6194                  0    0         0                 0                 0   \n",
2985
       "6195                  0    0         0                 0                 0   \n",
2986
       "6196                  0    0         0                 0                 0   \n",
2987
       "6197                  0    0         0                 0                 0   \n",
2988
       "6198                  0    0         0                 0                 0   \n",
2989
       "6199                  0    0         0                 0                 0   \n",
2990
       "6200                  0    0         0                 0                 0   \n",
2991
       "6201                  0    0         0                 0                 0   \n",
2992
       "6202                  0    0         0                 0                 0   \n",
2993
       "6203                  0    0         0                 0                 0   \n",
2994
       "6204                  0    0         0                 0                 0   \n",
2995
       "6205                  0    0         0                 0                 0   \n",
2996
       "6206                  0    0         0                 0                 0   \n",
2997
       "6207                  0    0         0                 0                 0   \n",
2998
       "6208                  0    0         0                 0                 0   \n",
2999
       "\n",
3000
       "      subarachnoid  subdural    weight     pos_max    pos_min  pos_size  \\\n",
3001
       "6173             0         0  0.210224  185.898392  18.730394        36   \n",
3002
       "6174             0         0  0.210186  185.898392  18.730394        36   \n",
3003
       "6175             0         0  0.212440  185.898392  18.730394        36   \n",
3004
       "6176             0         0  0.201545  185.898392  18.730394        36   \n",
3005
       "6177             0         0  0.206333  185.898392  18.730394        36   \n",
3006
       "6178             0         0  0.199955  185.898392  18.730394        36   \n",
3007
       "6179             0         0  0.198593  185.898392  18.730394        36   \n",
3008
       "6180             0         0  0.200670  185.898392  18.730394        36   \n",
3009
       "6181             0         0  0.200965  185.898392  18.730394        36   \n",
3010
       "6182             0         0  0.200965  185.898392  18.730394        36   \n",
3011
       "6183             0         0  0.197010  185.898392  18.730394        36   \n",
3012
       "6184             0         0  0.197010  185.898392  18.730394        36   \n",
3013
       "6185             0         0  0.204350  185.898392  18.730394        36   \n",
3014
       "6186             0         0  0.204350  185.898392  18.730394        36   \n",
3015
       "6187             0         0  0.196889  185.898392  18.730394        36   \n",
3016
       "6188             0         0  0.196889  185.898392  18.730394        36   \n",
3017
       "6189             0         0  0.196881  185.898392  18.730394        36   \n",
3018
       "6190             0         0  0.194283  185.898392  18.730394        36   \n",
3019
       "6191             0         0  0.196501  185.898392  18.730394        36   \n",
3020
       "6192             0         0  0.198735  185.898392  18.730394        36   \n",
3021
       "6193             0         0  0.193396  185.898392  18.730394        36   \n",
3022
       "6194             0         0  0.200352  185.898392  18.730394        36   \n",
3023
       "6195             0         0  0.188346  185.898392  18.730394        36   \n",
3024
       "6196             0         0  0.196615  185.898392  18.730394        36   \n",
3025
       "6197             0         0  0.187647  185.898392  18.730394        36   \n",
3026
       "6198             0         0  0.192265  185.898392  18.730394        36   \n",
3027
       "6199             0         0  0.196634  185.898392  18.730394        36   \n",
3028
       "6200             0         0  0.187304  185.898392  18.730394        36   \n",
3029
       "6201             0         0  0.202036  185.898392  18.730394        36   \n",
3030
       "6202             0         0  0.198950  185.898392  18.730394        36   \n",
3031
       "6203             0         0  0.192972  185.898392  18.730394        36   \n",
3032
       "6204             0         0  0.186043  185.898392  18.730394        36   \n",
3033
       "6205             0         0  0.188509  185.898392  18.730394        36   \n",
3034
       "6206             0         0  0.184709  185.898392  18.730394        36   \n",
3035
       "6207             0         0  0.188770  185.898392  18.730394        36   \n",
3036
       "6208             0         0  0.206839  185.898392  18.730394        36   \n",
3037
       "\n",
3038
       "      pos_idx   pos_inc  \n",
3039
       "6173        0  0.000000  \n",
3040
       "6174        1  5.392674  \n",
3041
       "6175        2  5.392673  \n",
3042
       "6176        3  5.392676  \n",
3043
       "6177        4  5.391979  \n",
3044
       "6178        5  5.392673  \n",
3045
       "6179        6  5.392674  \n",
3046
       "6180        7  5.392673  \n",
3047
       "6181        8  5.391980  \n",
3048
       "6182        9  0.000000  \n",
3049
       "6183       10  5.392673  \n",
3050
       "6184       11  0.000000  \n",
3051
       "6185       12  5.392670  \n",
3052
       "6186       13  0.000000  \n",
3053
       "6187       14  5.392677  \n",
3054
       "6188       15  0.000000  \n",
3055
       "6189       16  5.391976  \n",
3056
       "6190       17  5.392677  \n",
3057
       "6191       18  5.392670  \n",
3058
       "6192       19  5.392677  \n",
3059
       "6193       20  5.391975  \n",
3060
       "6194       21  5.392678  \n",
3061
       "6195       22  5.392677  \n",
3062
       "6196       23  5.392670  \n",
3063
       "6197       24  5.391983  \n",
3064
       "6198       25  5.392669  \n",
3065
       "6199       26  5.392670  \n",
3066
       "6200       27  5.392685  \n",
3067
       "6201       28  5.391968  \n",
3068
       "6202       29  5.392685  \n",
3069
       "6203       30  5.392669  \n",
3070
       "6204       31  5.392670  \n",
3071
       "6205       32  5.391968  \n",
3072
       "6206       33  5.392669  \n",
3073
       "6207       34  5.392670  \n",
3074
       "6208       35  5.392670  "
3075
      ]
3076
     },
3077
     "execution_count": 151,
3078
     "metadata": {},
3079
     "output_type": "execute_result"
3080
    }
3081
   ],
3082
   "source": [
3083
    "train_md.loc[train_md.SeriesInstanceUID == 'ID_025d684f04']"
3084
   ]
3085
  },
3086
  {
3087
   "cell_type": "code",
3088
   "execution_count": 104,
3089
   "metadata": {},
3090
   "outputs": [
3091
    {
3092
     "data": {
3093
      "text/plain": [
3094
       "19530"
3095
      ]
3096
     },
3097
     "execution_count": 104,
3098
     "metadata": {},
3099
     "output_type": "execute_result"
3100
    }
3101
   ],
3102
   "source": [
3103
    "len(train_md.SeriesInstanceUID.unique())"
3104
   ]
3105
  },
3106
  {
3107
   "cell_type": "code",
3108
   "execution_count": 106,
3109
   "metadata": {},
3110
   "outputs": [
3111
    {
3112
     "data": {
3113
      "text/plain": [
3114
       "17079"
3115
      ]
3116
     },
3117
     "execution_count": 106,
3118
     "metadata": {},
3119
     "output_type": "execute_result"
3120
    }
3121
   ],
3122
   "source": [
3123
    "len(train_md.PatientID.unique())"
3124
   ]
3125
  },
3126
  {
3127
   "cell_type": "code",
3128
   "execution_count": 136,
3129
   "metadata": {},
3130
   "outputs": [
3131
    {
3132
     "data": {
3133
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAD4CAYAAAAZ1BptAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAR60lEQVR4nO3df6zd9V3H8efLIhtOkSIdwZZY1EZlS3SsYdUlyzJmKWAsJiNhMdIsJDUL6DQaLf7TZXORGXWOZCPBUVcWHRLcQiNstbIti8nGuGxz/HLplSFcQbhahtPFzc63f5zP1ePt+dz23lPOvT19PpKT8/2+v5/v93w+bc999fP9fs+5qSokSRrlu1a7A5KktcuQkCR1GRKSpC5DQpLUZUhIkrrOWO0OnGznnXdebd68ebW7IUmnlIceeuhfqmrD4vrUhcTmzZuZmZlZ7W5I0iklyT+Oqnu6SZLUZUhIkroMCUlSlyEhSeoyJCRJXYaEJKnLkJAkdRkSkqQuQ0KS1DV1n7iWRtm8597/XX7y5qtWsSfSqcWQ0GnHwJBOnKebJEldhoQkqcvTTZpaw6eVJK2MMwlJUpchIUnqMiQkSV2GhCSpy5CQJHUZEpKkLkNCktRlSEiSugwJSVKXISFJ6jIkJEldxw2JJPuSPJ/kkaHauUkOJTncnte3epLckmQ2yVeSXDK0z67W/nCSXUP11yZ5uO1zS5Is9RqSpMk5kZnEh4Edi2p7gPuragtwf1sHuALY0h67gVth8AMf2Au8DrgU2Dv0Q//W1nZhvx3HeQ1J0oQcNySq6rPAkUXlncD+trwfuHqofkcNfB44J8kFwOXAoao6UlUvAIeAHW3b2VX1uaoq4I5Fxxr1GpKkCVnpNYnzq+pZgPb8ylbfCDw91G6u1Zaqz42oL/Uax0iyO8lMkpn5+fkVDkmStNjJvnCdEbVaQX1Zquq2qtpaVVs3bNiw3N0lSR0rDYnn2qki2vPzrT4HXDjUbhPwzHHqm0bUl3oNSdKErDQkDgALdyjtAu4Zql/X7nLaBrzYThUdBLYnWd8uWG8HDrZt30iyrd3VdN2iY416DUnShBz315cm+SjwRuC8JHMM7lK6GbgryfXAU8A1rfl9wJXALPBN4G0AVXUkybuBB1u7d1XVwsXwtzO4g+os4BPtwRKvIUmakOOGRFW9tbPpshFtC7ihc5x9wL4R9Rng1SPq/zrqNSRJk+MnriVJXYaEJKnLkJAkdRkSkqQuQ0KS1GVISJK6DAlJUpchIUnqMiQkSV2GhCSpy5CQJHUZEpKkLkNCktRlSEiSugwJSVKXISFJ6jIkJEldhoQkqcuQkCR1GRKSpC5DQpLUZUhIkroMCUlSlyEhSeoyJCRJXYaEJKnLkJAkdRkSkqQuQ0KS1DVWSCT59SSPJnkkyUeTvDzJRUkeSHI4yV8kObO1fVlbn23bNw8d56ZW/2qSy4fqO1ptNsmecfoqSVq+FYdEko3ArwJbq+rVwDrgWuC9wPuqagvwAnB92+V64IWq+lHgfa0dSS5u+70K2AF8MMm6JOuADwBXABcDb21tJUkTMu7ppjOAs5KcAXwP8CzwJuDutn0/cHVb3tnWadsvS5JWv7OqvlVVXwNmgUvbY7aqnqiqbwN3traSpAlZcUhU1T8BfwA8xSAcXgQeAr5eVUdbszlgY1veCDzd9j3a2v/AcH3RPr36MZLsTjKTZGZ+fn6lQ5IkLTLO6ab1DP5nfxHwg8ArGJwaWqwWdulsW2792GLVbVW1taq2btiw4XhdlySdoHFON70Z+FpVzVfVfwEfA34GOKedfgLYBDzTlueACwHa9u8HjgzXF+3Tq0uSJmSckHgK2Jbke9q1hcuAx4BPA29pbXYB97TlA22dtv1TVVWtfm27++kiYAvwBeBBYEu7W+pMBhe3D4zRX0nSMp1x/CajVdUDSe4GvggcBb4E3AbcC9yZ5Hdb7fa2y+3AR5LMMphBXNuO82iSuxgEzFHghqr6DkCSG4GDDO6c2ldVj660v5Kk5VtxSABU1V5g76LyEwzuTFrc9j+BazrHeQ/wnhH1+4D7xumjJGnl/MS1JKnLkJAkdRkSkqQuQ0KS1GVISJK6DAlJUpchIUnqMiQkSV1jfZhOWms277l3tbsgTRVnEpKkLkNCktRlSEiSugwJSVKXISFJ6jIkJEldhoQkqcuQkCR1GRKSpC5DQpLU5ddy6LQ2/DUeT9581Sr2RFqbnElIkroMCUlSlyEhSeoyJCRJXYaEJKnLkJAkdRkSkqQuQ0KS1DVWSCQ5J8ndSf4+yeNJfjrJuUkOJTncnte3tklyS5LZJF9JcsnQcXa19oeT7BqqvzbJw22fW5JknP5KkpZn3JnE+4FPVtWPAz8JPA7sAe6vqi3A/W0d4ApgS3vsBm4FSHIusBd4HXApsHchWFqb3UP77Rizv5KkZVhxSCQ5G3gDcDtAVX27qr4O7AT2t2b7gavb8k7gjhr4PHBOkguAy4FDVXWkql4ADgE72razq+pzVVXAHUPHkiRNwDgziR8G5oE/TfKlJB9K8grg/Kp6FqA9v7K13wg8PbT/XKstVZ8bUT9Gkt1JZpLMzM/PjzEkSdKwcULiDOAS4Naqeg3wH/zfqaVRRl1PqBXUjy1W3VZVW6tq64YNG5butSTphI0TEnPAXFU90NbvZhAaz7VTRbTn54faXzi0/ybgmePUN42oS5ImZMUhUVX/DDyd5Mda6TLgMeAAsHCH0i7gnrZ8ALiu3eW0DXixnY46CGxPsr5dsN4OHGzbvpFkW7ur6bqhY0mSJmDc3yfxK8CfJTkTeAJ4G4PguSvJ9cBTwDWt7X3AlcAs8M3Wlqo6kuTdwIOt3buq6khbfjvwYeAs4BPtIUmakLFCoqq+DGwdsemyEW0LuKFznH3AvhH1GeDV4/RRkrRyfuJaktRlSEiSugwJSVKXISFJ6jIkJEldhoQkqcuQkCR1GRKSpC5DQpLUZUhIkroMCUlSlyEhSeoyJCRJXYaEJKnLkJAkdRkSkqQuQ0KS1GVISJK6DAlJUpchIUnqMiQkSV2GhCSpy5CQJHUZEpKkLkNCktRlSEiSugwJSVKXISFJ6jIkJEldY4dEknVJvpTkr9r6RUkeSHI4yV8kObPVX9bWZ9v2zUPHuKnVv5rk8qH6jlabTbJn3L5KkpbnZMwk3gE8PrT+XuB9VbUFeAG4vtWvB16oqh8F3tfakeRi4FrgVcAO4IMteNYBHwCuAC4G3traSpImZKyQSLIJuAr4UFsP8Cbg7tZkP3B1W97Z1mnbL2vtdwJ3VtW3quprwCxwaXvMVtUTVfVt4M7WVpI0IePOJP4Y+C3gv9v6DwBfr6qjbX0O2NiWNwJPA7TtL7b2/1tftE+vfowku5PMJJmZn58fc0iSpAUrDokkPwc8X1UPDZdHNK3jbFtu/dhi1W1VtbWqtm7YsGGJXkuSluOMMfZ9PfDzSa4EXg6czWBmcU6SM9psYRPwTGs/B1wIzCU5A/h+4MhQfcHwPr26JGkCVjyTqKqbqmpTVW1mcOH5U1X1i8Cngbe0ZruAe9rygbZO2/6pqqpWv7bd/XQRsAX4AvAgsKXdLXVme40DK+2vJGn5xplJ9Pw2cGeS3wW+BNze6rcDH0kyy2AGcS1AVT2a5C7gMeAocENVfQcgyY3AQWAdsK+qHn0J+itJ6jgpIVFVnwE+05afYHBn0uI2/wlc09n/PcB7RtTvA+47GX2UJC3fSzGTkCZq8557V7sL0tTyazkkSV2GhCSpy5CQJHUZEpKkLkNCktRlSEiSugwJSVKXISFJ6jIkJEldhoQkqcuQkCR1GRKSpC5DQpLUZUhIkroMCUlSlyEhSerylw5JzfAvL3ry5qtWsSfS2uFMQpLUZUhIkroMCUlSlyEhSeoyJCRJXYaEJKnLkJAkdRkSkqQuQ0KS1GVISJK6VhwSSS5M8ukkjyd5NMk7Wv3cJIeSHG7P61s9SW5JMpvkK0kuGTrWrtb+cJJdQ/XXJnm47XNLkowzWEnS8owzkzgK/EZV/QSwDbghycXAHuD+qtoC3N/WAa4AtrTHbuBWGIQKsBd4HXApsHchWFqb3UP77Rijv5KkZVpxSFTVs1X1xbb8DeBxYCOwE9jfmu0Hrm7LO4E7auDzwDlJLgAuBw5V1ZGqegE4BOxo286uqs9VVQF3DB1LkjQBJ+WaRJLNwGuAB4Dzq+pZGAQJ8MrWbCPw9NBuc622VH1uRH3U6+9OMpNkZn5+ftzhSJKasUMiyfcCfwn8WlX921JNR9RqBfVji1W3VdXWqtq6YcOG43VZknSCxgqJJN/NICD+rKo+1srPtVNFtOfnW30OuHBo903AM8epbxpRlyRNyDh3NwW4HXi8qv5oaNMBYOEOpV3APUP169pdTtuAF9vpqIPA9iTr2wXr7cDBtu0bSba117pu6FiSpAkY5zfTvR74JeDhJF9utd8BbgbuSnI98BRwTdt2H3AlMAt8E3gbQFUdSfJu4MHW7l1VdaQtvx34MHAW8In2kCRNyIpDoqr+ltHXDQAuG9G+gBs6x9oH7BtRnwFevdI+SpLG4yeuJUldhoQkqcuQkCR1GRKSpC5DQpLUZUhIkroMCUlSlyEhSeoyJCRJXYaEJKlrnO9uklbN5j33rnYXpNOCMwlJUpczCa2K4ZnAkzdftYo9kbQUZxKSpC5nEtIIznSkAWcSkqQuZxLSCjnb0OnAmYQkqcuQkCR1ebpJq+5UOm3T+xDfqTQGaTmcSUiSupxJSMfhV4DodOZMQpLU5UxCOsm8PqFp4kxCktTlTEITs9xz+4vb+79yafIMCa0pSwWJF5ClyTMk9JLyB7t0ajMkpJeQF7FfWifzPyH+/YyWqlrtPiwpyQ7g/cA64ENVdfNS7bdu3VozMzMT6dvpyJnByTFtP5B6/y7GGedq/lubtr+fE5Hkoarauri+pmcSSdYBHwB+FpgDHkxyoKoeW92eTT/DYHWs5M99+Afaiezfa7/c4yzXqfRv6qUIvVPVmp5JJPlp4J1VdXlbvwmgqn6vt48zidEm+cNAOp2dSJCcrPfdyQytU3ImAWwEnh5anwNet7hRkt3A7rb670m+OoG+TdJ5wL+crIPlvSfrSCfdSR3nGuY4p8v/G+ck318n+bV+aFRxrYdERtSOmfpU1W3AbS99d1ZHkplRCT9tHOd0cZzTYa1/4noOuHBofRPwzCr1RZJOO2s9JB4EtiS5KMmZwLXAgVXukySdNtb06aaqOprkRuAgg1tg91XVo6vcrdUwtafSFnGc08VxToE1fXeTJGl1rfXTTZKkVWRISJK6DIk1JMk7k/xTki+3x5VD225KMpvkq0kuH6rvaLXZJHtWp+fjm5ZxACR5MsnD7e9wptXOTXIoyeH2vL7Vk+SWNu6vJLlkdXu/tCT7kjyf5JGh2rLHlmRXa384ya7VGMtSOuM8Pd+fVeVjjTyAdwK/OaJ+MfB3wMuAi4B/YHAhf11b/mHgzNbm4tUexwrGPRXjGBrPk8B5i2q/D+xpy3uA97blK4FPMPhM0DbggdXu/3HG9gbgEuCRlY4NOBd4oj2vb8vrV3tsJzDO0/L96Uzi1LATuLOqvlVVXwNmgUvbY7aqnqiqbwN3tranmmkZx1J2Avvb8n7g6qH6HTXweeCcJBesRgdPRFV9FjiyqLzcsV0OHKqqI1X1AnAI2PHS9/7EdcbZM9XvT0Ni7bmxTc33LUzbGf31JBuXqJ9qpmUcCwr46yQPta+MATi/qp4FaM+vbPVpGPtyx3Yqj/m0e38aEhOW5G+SPDLisRO4FfgR4KeAZ4E/XNhtxKFqifqpZlrGseD1VXUJcAVwQ5I3LNF22sY+bNr+3Z6W7881/WG6aVRVbz6Rdkn+BPirtrrU15NMw9eWTNXXr1TVM+35+SQfZ3Da4bkkF1TVs+2Uy/Ot+TSMfbljmwPeuKj+mQn0cyxV9dzC8un0/nQmsYYsOhf9C8DCnRUHgGuTvCzJRcAW4AtMz9eWTMs4SPKKJN+3sAxsZ/D3eABYuItnF3BPWz4AXNfuBNoGvLhw6uYUstyxHQS2J1nfTtlsb7U17XR9fzqTWFt+P8lPMZiSPgn8MkBVPZrkLuAx4ChwQ1V9B2AavrakpuvrV84HPp4EBu+vP6+qTyZ5ELgryfXAU8A1rf19DO4CmgW+Cbxt8l0+cUk+ymAWcF6SOWAvcDPLGFtVHUnybgY/RAHeVVUnepF4IjrjfOPp+P70azkkSV2ebpIkdRkSkqQuQ0KS1GVISJK6DAlJUpchIUnqMiQkSV3/A5NSl0L85ghEAAAAAElFTkSuQmCC\n",
3134
      "text/plain": [
3135
       "<Figure size 432x288 with 1 Axes>"
3136
      ]
3137
     },
3138
     "metadata": {
3139
      "needs_background": "light"
3140
     },
3141
     "output_type": "display_data"
3142
    }
3143
   ],
3144
   "source": [
3145
    "a = plt.hist(train_md.pos_max,bins=100)"
3146
   ]
3147
  },
3148
  {
3149
   "cell_type": "code",
3150
   "execution_count": 137,
3151
   "metadata": {},
3152
   "outputs": [
3153
    {
3154
     "data": {
3155
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAD6CAYAAABDPiuvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAUtUlEQVR4nO3df4xd5Z3f8fdnTUhpNqxNMAjZVs02VrosUhIzAlepom3oGgOrNZVCRVStp8iVKwQrIrVqnG4ltpBITqVuGqQskhtc7CgNodmNsDZmvZYTtKrED48TAgEv9YR48axdPFsTQos2Kdlv/7iP8ZV9Z+aOmZk79n2/pKtzzvc858xzjq7nM+ec516nqpAkDbdfGnQHJEmDZxhIkgwDSZJhIEnCMJAkYRhIkugjDJJ8KMlzXa+fJvl0ksuS7EtyuE2XtfZJ8mCS8STPJ1nbta/R1v5wktGu+nVJXmjbPJgk83O4kqReMpvPGSRZAvwVcANwN3CyqrYl2Qosq6rPJLkF+F3gltbuS1V1Q5LLgDFgBCjgIHBdVb2e5FngXuBpYA/wYFU9MV1fLr/88lq9evXsjlaShtjBgwf/uqqW91p30Sz3dSPwo6r6yyQbgd9o9Z3Ak8BngI3AruqkzNNJlia5qrXdV1UnAZLsAzYkeRK4tKqeavVdwG3AtGGwevVqxsbGZtl9SRpeSf5yqnWzfWZwB/D1Nn9lVR0HaNMrWn0FcLRrm4lWm64+0aN+liRbkowlGZucnJxl1yVJU+k7DJJcDPw28N9natqjVudQP7tYtb2qRqpqZPnynlc6kqRzMJsrg5uB71XVa235tXb7hzY90eoTwKqu7VYCx2aor+xRlyQtkNmEwac4fYsIYDdwakTQKPB4V31TG1W0Dnij3UbaC6xPsqyNPFoP7G3r3kyyro0i2tS1L0nSAujrAXKSvwv8JvCvusrbgMeSbAZeBW5v9T10RhKNA28BdwJU1ckkDwAHWrv7Tz1MBu4CHgEuofPgeNqHx5KkuTWroaWLycjISDmaSJL6l+RgVY30WucnkCVJhoEkyTCQJDH7TyBLQ2311m+/M39k260D7Ik0t7wykCQZBpIkw0CShGEgScIwkCRhGEiSMAwkSRgGkiQMA0kShoEkCcNAkoRhIEnCMJAkYRhIkjAMJEkYBpIkDANJEoaBJIk+wyDJ0iTfTPIXSQ4l+YdJLkuyL8nhNl3W2ibJg0nGkzyfZG3XfkZb+8NJRrvq1yV5oW3zYJLM/aFKkqbS75XBl4A/rap/AHwYOARsBfZX1Rpgf1sGuBlY015bgIcAklwG3AfcAFwP3HcqQFqbLV3bbXh3hyW9O6u3fvudlzQMZgyDJJcCHwceBqiqn1fVT4CNwM7WbCdwW5vfCOyqjqeBpUmuAm4C9lXVyap6HdgHbGjrLq2qp6qqgF1d+5IkLYB+rgx+FZgE/muS7yf5SpL3AVdW1XGANr2itV8BHO3afqLVpqtP9KifJcmWJGNJxiYnJ/vouiSpH/2EwUXAWuChqvoo8H85fUuol173++sc6mcXq7ZX1UhVjSxfvnz6XkuS+tZPGEwAE1X1TFv+Jp1weK3d4qFNT3S1X9W1/Urg2Az1lT3qkqQFMmMYVNX/Ao4m+VAr3Qi8BOwGTo0IGgUeb/O7gU1tVNE64I12G2kvsD7JsvbgeD2wt617M8m6NopoU9e+JEkL4KI+2/0u8LUkFwOvAHfSCZLHkmwGXgVub233ALcA48BbrS1VdTLJA8CB1u7+qjrZ5u8CHgEuAZ5oL0nSAukrDKrqOWCkx6obe7Qt4O4p9rMD2NGjPgZc209fJElzr98rA+mC0f3ZgSPbbh1gT6TFw6+jkCQZBpIkw0CShGEgScIwkCRhGEiSMAwkSRgGkiQMA0kShoEkCcNAkoRhIEnCMJAkYRhIkjAMJEkYBpIkDANJEv5PZ9I5839M04XEKwNJkmEgSTIMJEn0GQZJjiR5IclzScZa7bIk+5IcbtNlrZ4kDyYZT/J8krVd+xlt7Q8nGe2qX9f2P962zVwfqCRparO5MvjHVfWRqhppy1uB/VW1BtjflgFuBta01xbgIeiEB3AfcANwPXDfqQBpbbZ0bbfhnI9IkjRr7+Y20UZgZ5vfCdzWVd9VHU8DS5NcBdwE7Kuqk1X1OrAP2NDWXVpVT1VVAbu69iVJWgD9hkEBf5bkYJItrXZlVR0HaNMrWn0FcLRr24lWm64+0aN+liRbkowlGZucnOyz65KkmfT7OYOPVdWxJFcA+5L8xTRte93vr3Oon12s2g5sBxgZGenZRpI0e31dGVTVsTY9AXyLzj3/19otHtr0RGs+Aazq2nwlcGyG+soedUnSApkxDJK8L8n7T80D64EfAruBUyOCRoHH2/xuYFMbVbQOeKPdRtoLrE+yrD04Xg/sbeveTLKujSLa1LUvSdIC6Oc20ZXAt9poz4uA/1ZVf5rkAPBYks3Aq8Dtrf0e4BZgHHgLuBOgqk4meQA40NrdX1Un2/xdwCPAJcAT7SVJWiAzhkFVvQJ8uEf9fwM39qgXcPcU+9oB7OhRHwOu7aO/kqR54CeQJUmGgSTJMJAkYRhIkjAMJEkYBpIkDANJEoaBJAnDQJKEYSBJwjCQJGEYSJIwDCRJGAaSJAwDSRKGgSQJw0CShGEgScIwkCTRx/+BLOncrd767Xfmj2y7dYA9kaZnGEhzwF/6Ot/1fZsoyZIk30/yJ2356iTPJDmc5BtJLm7197bl8bZ+ddc+PtvqLye5qau+odXGk2ydu8OTJPVjNs8M7gUOdS1/AfhiVa0BXgc2t/pm4PWq+iDwxdaOJNcAdwC/DmwA/rAFzBLgy8DNwDXAp1pbSdIC6SsMkqwEbgW+0pYDfAL4ZmuyE7itzW9sy7T1N7b2G4FHq+pnVfVjYBy4vr3Gq+qVqvo58GhrK0laIP1eGfxn4N8Cf9uWPwD8pKrebssTwIo2vwI4CtDWv9Hav1M/Y5up6pKkBTJjGCT5LeBEVR3sLvdoWjOsm229V1+2JBlLMjY5OTlNryVJs9HPlcHHgN9OcoTOLZxP0LlSWJrk1GiklcCxNj8BrAJo638FONldP2ObqepnqartVTVSVSPLly/vo+uSpH7MGAZV9dmqWllVq+k8AP5OVf1z4LvAJ1uzUeDxNr+7LdPWf6eqqtXvaKONrgbWAM8CB4A1bXTSxe1n7J6To5Mk9eXdfM7gM8CjST4HfB94uNUfBr6aZJzOFcEdAFX1YpLHgJeAt4G7q+oXAEnuAfYCS4AdVfXiu+iXJGmWZhUGVfUk8GSbf4XOSKAz2/wNcPsU238e+HyP+h5gz2z6IkmaO343kSTJMJAkGQaSJAwDSRKGgSQJw0CShGEgScIwkCRhGEiSMAwkSRgGkiQMA0kShoEkCcNAkoRhIEnCMJAkYRhIkjAMJEkYBpIkDANJEoaBJAnDQJJEH2GQ5O8keTbJD5K8mOQ/tPrVSZ5JcjjJN5Jc3Orvbcvjbf3qrn19ttVfTnJTV31Dq40n2Tr3hylJmk4/VwY/Az5RVR8GPgJsSLIO+ALwxapaA7wObG7tNwOvV9UHgS+2diS5BrgD+HVgA/CHSZYkWQJ8GbgZuAb4VGsrSVogM4ZBdfyftvie9irgE8A3W30ncFub39iWaetvTJJWf7SqflZVPwbGgevba7yqXqmqnwOPtraSpAVyUT+N2l/vB4EP0vkr/kfAT6rq7dZkAljR5lcARwGq6u0kbwAfaPWnu3bbvc3RM+o3zPpIpHdp9dZvD7oL0sD09QC5qn5RVR8BVtL5S/7XejVr00yxbrb1syTZkmQsydjk5OTMHZck9WVWo4mq6ifAk8A6YGmSU1cWK4FjbX4CWAXQ1v8KcLK7fsY2U9V7/fztVTVSVSPLly+fTdclSdPoZzTR8iRL2/wlwD8BDgHfBT7Zmo0Cj7f53W2Ztv47VVWtfkcbbXQ1sAZ4FjgArGmjky6m85B591wcnCSpP/08M7gK2NmeG/wS8FhV/UmSl4BHk3wO+D7wcGv/MPDVJON0rgjuAKiqF5M8BrwEvA3cXVW/AEhyD7AXWALsqKoX5+wIJUkzmjEMqup54KM96q/QeX5wZv1vgNun2Nfngc/3qO8B9vTRX0nSPPATyJKk/oaWSotV93DQI9tuHWBPZud87bcuXF4ZSJIMA0mSYSBJwmcGGnJ+BYXU4ZWBJMkwkCQZBpIkDANJEoaBJAnDQJKEYSBJwjCQJOGHznQB88vgpP4ZBjovDOMv9mE8Zg2Ot4kkSYaBJMnbRNKM/DI7DQOvDCRJhoEkyTCQJNFHGCRZleS7SQ4leTHJva1+WZJ9SQ636bJWT5IHk4wneT7J2q59jbb2h5OMdtWvS/JC2+bBJJmPg5Uk9dbPlcHbwL+uql8D1gF3J7kG2Arsr6o1wP62DHAzsKa9tgAPQSc8gPuAG4DrgftOBUhrs6Vruw3v/tAkSf2aMQyq6nhVfa/NvwkcAlYAG4GdrdlO4LY2vxHYVR1PA0uTXAXcBOyrqpNV9TqwD9jQ1l1aVU9VVQG7uvYlSVoAs3pmkGQ18FHgGeDKqjoOncAArmjNVgBHuzabaLXp6hM96r1+/pYkY0nGJicnZ9N1SdI0+g6DJL8M/BHw6ar66XRNe9TqHOpnF6u2V9VIVY0sX758pi5LkvrUVxgkeQ+dIPhaVf1xK7/WbvHQpidafQJY1bX5SuDYDPWVPeqSpAXSz2iiAA8Dh6rqD7pW7QZOjQgaBR7vqm9qo4rWAW+020h7gfVJlrUHx+uBvW3dm0nWtZ+1qWtfkqQF0M/XUXwM+B3ghSTPtdq/A7YBjyXZDLwK3N7W7QFuAcaBt4A7AarqZJIHgAOt3f1VdbLN3wU8AlwCPNFekqQFMmMYVNX/oPd9fYAbe7Qv4O4p9rUD2NGjPgZcO1NfJEnzw08gS5IMA0mSYSBJwjCQJGEYSJIwDCRJGAaSJPw/kLXIdP9/w0e23TrAnkjDxSsDSZJhIEkyDCRJGAaSJAwDSRKGgSQJw0CShGEgScIPnUnnHT+Yp/nglYEkyTCQJHmbSItY9+0QSfPLKwNJkmEgSerjNlGSHcBvASeq6tpWuwz4BrAaOAL8s6p6PUmALwG3AG8B/6Kqvte2GQX+fdvt56pqZ6tfBzwCXALsAe6tqpqj49MQGfbbSo4y0rvRz5XBI8CGM2pbgf1VtQbY35YBbgbWtNcW4CF4JzzuA24ArgfuS7KsbfNQa3tquzN/liRpns14ZVBVf55k9RnljcBvtPmdwJPAZ1p9V/vL/ukkS5Nc1druq6qTAEn2ARuSPAlcWlVPtfou4DbgiXdzULqwDfsVgDQfzvWZwZVVdRygTa9o9RXA0a52E602XX2iR72nJFuSjCUZm5ycPMeuS5LONNdDS9OjVudQ76mqtgPbAUZGRnyuoKHh1ZDm27leGbzWbv/QpidafQJY1dVuJXBshvrKHnVJ0gI61zDYDYy2+VHg8a76pnSsA95ot5H2AuuTLGsPjtcDe9u6N5OsayORNnXtS5K0QPoZWvp1Og+AL08yQWdU0DbgsSSbgVeB21vzPXSGlY7TGVp6J0BVnUzyAHCgtbv/1MNk4C5ODy19Ah8eS9KC62c00aemWHVjj7YF3D3FfnYAO3rUx4BrZ+qHJGn++AlkSZJfVCfNNUf+6HxkGGgoLIZf0IuhD9JUvE0kSTIMJEneJpKGmt90qlO8MpAkGQaSJMNAkoTPDKQL3plDWn02oF68MpAkGQaSJG8TSVogDmNd3LwykCR5ZSANmn8xazEwDCSdE0PswmIYSJqWv/SHg2EgLSJ+zbUGxQfIkiSvDCTNLW8rnZ8MA0kDZXgsDoaBpPPWVEFiwMzeogmDJBuALwFLgK9U1bYBd0nSIrEQv9z7+RkXcsgsijBIsgT4MvCbwARwIMnuqnppsD3TubiQ/8Ho/OY3uE5tUYQBcD0wXlWvACR5FNgIGAaLzGyHPjpUcn5NdX6nO+/9bDOoX5KLoQ/n4kK4XZWqGnQfSPJJYENV/cu2/DvADVV1zxnttgBb2uKHgJfP2NXlwF/Pc3fPF56LDs/DaZ6L04b1XPy9qlrea8ViuTJIj9pZKVVV24HtU+4kGauqkbns2PnKc9HheTjNc3Ga5+Jsi+VDZxPAqq7llcCxAfVFkobOYgmDA8CaJFcnuRi4A9g94D5J0tBYFLeJqurtJPcAe+kMLd1RVS+ew66mvIU0hDwXHZ6H0zwXp3kuzrAoHiBLkgZrsdwmkiQNkGEgSTp/wyDJkSQvJHkuyVirXZZkX5LDbbps0P2cD0l2JDmR5IddtZ7Hno4Hk4wneT7J2sH1fO5NcS5+P8lftffGc0lu6Vr32XYuXk5y02B6PT+SrEry3SSHkryY5N5WH7r3xjTnYijfG32pqvPyBRwBLj+j9h+BrW1+K/CFQfdzno7948Ba4IczHTtwC/AEnc9yrAOeGXT/F+Bc/D7wb3q0vQb4AfBe4GrgR8CSQR/DHJ6Lq4C1bf79wP9sxzx0741pzsVQvjf6eZ23VwZT2AjsbPM7gdsG2Jd5U1V/Dpw8ozzVsW8EdlXH08DSJFctTE/n3xTnYiobgUer6mdV9WNgnM5XoVwQqup4VX2vzb8JHAJWMITvjWnOxVQu6PdGP87nMCjgz5IcbF9TAXBlVR2HzpsBuGJgvVt4Ux37CuBoV7sJpv9HcaG4p9362NF1u3BozkWS1cBHgWcY8vfGGecChvy9MZXzOQw+VlVrgZuBu5N8fNAdWqT6+qqPC8xDwN8HPgIcB/5Tqw/FuUjyy8AfAZ+uqp9O17RH7YI6Hz3OxVC/N6Zz3oZBVR1r0xPAt+hc0r126jK3TU8MrocLbqpjH7qv+qiq16rqF1X1t8B/4fTl/gV/LpK8h84vv69V1R+38lC+N3qdi2F+b8zkvAyDJO9L8v5T88B64Id0vsJitDUbBR4fTA8HYqpj3w1saiNH1gFvnLplcKE64773P6Xz3oDOubgjyXuTXA2sAZ5d6P7NlyQBHgYOVdUfdK0auvfGVOdiWN8bfRn0E+xzeQG/SufJ/w+AF4Hfa/UPAPuBw2162aD7Ok/H/3U6l7j/j85fNJunOnY6l79fpjM64gVgZND9X4Bz8dV2rM/T+Ud+VVf732vn4mXg5kH3f47PxT+ic2vjeeC59rplGN8b05yLoXxv9PPy6ygkSefnbSJJ0twyDCRJhoEkyTCQJGEYSJIwDCRJGAaSJOD/A42RhLzRJJ6tAAAAAElFTkSuQmCC\n",
3156
      "text/plain": [
3157
       "<Figure size 432x288 with 1 Axes>"
3158
      ]
3159
     },
3160
     "metadata": {
3161
      "needs_background": "light"
3162
     },
3163
     "output_type": "display_data"
3164
    }
3165
   ],
3166
   "source": [
3167
    "a = plt.hist(train_md.pos_max - train_md.pos_min,bins=100)"
3168
   ]
3169
  },
3170
  {
3171
   "cell_type": "code",
3172
   "execution_count": 145,
3173
   "metadata": {},
3174
   "outputs": [
3175
    {
3176
     "data": {
3177
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAD4CAYAAAAZ1BptAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAQaElEQVR4nO3cf6zddX3H8efLFpTolF9XQ1q2stlkItlQO2zishhwUGBZWSILZBudIek0kGBcMov/4I+R4LKJIVEWNjrL4qyNutEojjX8iDNRoCiC0LFekUkHocUCQowY8L0/zqfd8XI+9962cM4Bno/k5n6/7+/nez7vftN7Xvf7455UFZIkjfKqSTcgSZpehoQkqcuQkCR1GRKSpC5DQpLUtXTSDbzQjj322FqxYsWk25Ckl5Q777zzsaqamVt/2YXEihUr2L59+6TbkKSXlCT/M6ru5SZJUpchIUnqMiQkSV2GhCSpy5CQJHUZEpKkLkNCktRlSEiSugwJSVLXy+4vrl/OVmz42v7lB684e4KdSHql8ExCktRlSEiSugwJSVKXISFJ6jIkJEldhoQkqcuQkCR1GRKSpC5DQpLUZUhIkroMCUlSlyEhSeoyJCRJXYaEJKnLkJAkdRkSkqQuQ0KS1GVISJK6Fh0SSZYk+W6Sr7b1E5LclmRnki8mObzVX93WZ9v2FUOvcWmr35/kjKH6mlabTbJhqD5yDknSeBzImcQlwI6h9U8CV1bVSuBx4MJWvxB4vKreDFzZxpHkROA84K3AGuCzLXiWAJ8BzgROBM5vY+ebQ5I0BosKiSTLgbOBf2zrAU4FvtSGbALOactr2zpt+2lt/Fpgc1U9U1U/BGaBU9rXbFU9UFU/BzYDaxeYQ5I0Bos9k/g08FfAL9r6McATVfVsW98FLGvLy4CHANr2J9v4/fU5+/Tq883xS5KsT7I9yfY9e/Ys8p8kSVrIgiGR5A+A3VV153B5xNBaYNsLVX9+seqaqlpVVatmZmZGDZEkHYSlixjzLuAPk5wFvAZ4PYMziyOTLG2/6S8HHm7jdwHHA7uSLAXeAOwdqu8zvM+o+mPzzCFJGoMFzySq6tKqWl5VKxjceL65qv4EuAV4bxu2Dri+LW9t67TtN1dVtfp57emnE4CVwO3AHcDK9iTT4W2OrW2f3hySpDE4lL+T+DDwoSSzDO4fXNvq1wLHtPqHgA0AVXUvsAW4D/h34KKqeq6dJVwM3Mjg6aktbex8c0iSxmAxl5v2q6pbgVvb8gMMnkyaO+ZnwLmd/S8HLh9RvwG4YUR95BySpPHwL64lSV2GhCSpy5CQJHUZEpKkLkNCktRlSEiSugwJSVKXISFJ6jIkJEldhoQkqcuQkCR1GRKSpC5DQpLUZUhIkroMCUlSlyEhSeoyJCRJXYaEJKnLkJAkdRkSkqQuQ0KS1GVISJK6DAlJUpchIUnqMiQkSV2GhCSpy5CQJHUZEpKkLkNCktRlSEiSugwJSVKXISFJ6jIkJEldhoQkqcuQkCR1GRKSpC5DQpLUtWBIJHlNktuTfC/JvUk+1uonJLktyc4kX0xyeKu/uq3Ptu0rhl7r0la/P8kZQ/U1rTabZMNQfeQckqTxWMyZxDPAqVX128DJwJokq4FPAldW1UrgceDCNv5C4PGqejNwZRtHkhOB84C3AmuAzyZZkmQJ8BngTOBE4Pw2lnnmkCSNwYIhUQNPt9XD2lcBpwJfavVNwDlteW1bp20/LUlafXNVPVNVPwRmgVPa12xVPVBVPwc2A2vbPr05JEljsKh7Eu03/ruA3cA24AfAE1X1bBuyC1jWlpcBDwG07U8CxwzX5+zTqx8zzxxz+1ufZHuS7Xv27FnMP0mStAiLComqeq6qTgaWM/jN/y2jhrXv6Wx7oeqj+rumqlZV1aqZmZlRQyRJB+GAnm6qqieAW4HVwJFJlrZNy4GH2/Iu4HiAtv0NwN7h+px9evXH5plDkjQGi3m6aSbJkW35COA9wA7gFuC9bdg64Pq2vLWt07bfXFXV6ue1p59OAFYCtwN3ACvbk0yHM7i5vbXt05tDkjQGSxcewnHApvYU0quALVX11ST3AZuT/DXwXeDaNv5a4J+TzDI4gzgPoKruTbIFuA94Frioqp4DSHIxcCOwBNhYVfe21/pwZw5J0hgsGBJVdTfwthH1Bxjcn5hb/xlwbue1LgcuH1G/AbhhsXNIksbDv7iWJHUZEpKkLkNCktRlSEiSugwJSVKXISFJ6jIkJEldhoQkqcuQkCR1GRKSpC5DQpLUZUhIkroMCUlSlyEhSeoyJCRJXYaEJKnLkJAkdRkSkqQuQ0KS1GVISJK6DAlJUpchIUnqMiQkSV2GhCSpy5CQJHUZEpKkLkNCktRlSEiSugwJSVKXISFJ6jIkJEldhoQkqcuQkCR1GRKSpC5DQpLUZUhIkroMCUlS14IhkeT4JLck2ZHk3iSXtPrRSbYl2dm+H9XqSXJVktkkdyd5+9BrrWvjdyZZN1R/R5J72j5XJcl8c0iSxmMxZxLPAn9ZVW8BVgMXJTkR2ADcVFUrgZvaOsCZwMr2tR64GgZv+MBlwDuBU4DLht70r25j9+23ptV7c0iSxmDBkKiqR6rqO235KWAHsAxYC2xqwzYB57TltcB1NfBt4MgkxwFnANuqam9VPQ5sA9a0ba+vqm9VVQHXzXmtUXNIksbggO5JJFkBvA24DXhTVT0CgyAB3tiGLQMeGtptV6vNV981os48c8zta32S7Um279mz50D+SZKkeSw6JJK8Dvgy8MGq+sl8Q0fU6iDqi1ZV11TVqqpaNTMzcyC7SpLmsaiQSHIYg4D4fFV9pZUfbZeKaN93t/ou4Pih3ZcDDy9QXz6iPt8ckqQxWMzTTQGuBXZU1aeGNm0F9j2htA64fqh+QXvKaTXwZLtUdCNwepKj2g3r04Eb27ankqxuc10w57VGzSFJGoOlixjzLuDPgHuS3NVqHwGuALYkuRD4EXBu23YDcBYwC/wUeB9AVe1N8gngjjbu41W1ty1/APgccATw9fbFPHNIksZgwZCoqm8y+r4BwGkjxhdwUee1NgIbR9S3AyeNqP941BySpPHwL64lSV2GhCSpy5CQJHUZEpKkLkNCktRlSEiSugwJSVKXISFJ6jIkJEldhoQkqcuQkCR1GRKSpC5DQpLUZUhIkroMCUlSlyEhSeoyJCRJXYaEJKnLkJAkdRkSkqQuQ0KS1GVISJK6DAlJUpchIUnqMiQkSV2GhCSpy5CQJHUZEpKkLkNCktS1dNIN6OCs2PC1/csPXnH2BDuR9HLmmYQkqcuQkCR1GRKSpC5DQpLUZUhIkroMCUlSlyEhSepaMCSSbEyyO8n3h2pHJ9mWZGf7flSrJ8lVSWaT3J3k7UP7rGvjdyZZN1R/R5J72j5XJcl8c0iSxmcxZxKfA9bMqW0AbqqqlcBNbR3gTGBl+1oPXA2DN3zgMuCdwCnAZUNv+le3sfv2W7PAHJKkMVkwJKrqG8DeOeW1wKa2vAk4Z6h+XQ18GzgyyXHAGcC2qtpbVY8D24A1bdvrq+pbVVXAdXNea9QckqQxOdh7Em+qqkcA2vc3tvoy4KGhcbtabb76rhH1+eaQJI3JC33jOiNqdRD1A5s0WZ9ke5Lte/bsOdDdJUkdBxsSj7ZLRbTvu1t9F3D80LjlwMML1JePqM83x/NU1TVVtaqqVs3MzBzkP0mSNNfBhsRWYN8TSuuA64fqF7SnnFYDT7ZLRTcCpyc5qt2wPh24sW17Ksnq9lTTBXNea9QckqQxWfCjwpN8AXg3cGySXQyeUroC2JLkQuBHwLlt+A3AWcAs8FPgfQBVtTfJJ4A72riPV9W+m+EfYPAE1RHA19sX88whSRqTBUOiqs7vbDptxNgCLuq8zkZg44j6duCkEfUfj5pDkjQ+/sW1JKnLkJAkdRkSkqQuQ0KS1GVISJK6DAlJUpchIUnqMiQkSV2GhCSpy5CQJHUZEpKkLkNCktRlSEiSugwJSVKXISFJ6jIkJEldhoQkqcuQkCR1GRKSpC5DQpLUZUhIkroMCUlSlyEhSeoyJCRJXYaEJKnLkJAkdRkSkqQuQ0KS1LV00g28HK3Y8LX9yw9ecfYEO5GkQ2NIvMgMDEkvZYbEEN/QJemXeU9CktRlSEiSugwJSVKXISFJ6jIkJEldhoQkqctHYF8GfHRX0otl6s8kkqxJcn+S2SQbJt2PJL2STPWZRJIlwGeA3wd2AXck2VpV9022s0M3/Nv/XIdyNuBZhaQX0lSHBHAKMFtVDwAk2QysBV70kOi9iY/jjXe+ADnY1zEwJB2MaQ+JZcBDQ+u7gHfOHZRkPbC+rT6d5P6DnO9Y4LH5BuSTB/nKh7hvs2B/L+Lci3XQPY6J/R26ae/R/g7Or40qTntIZEStnleouga45pAnS7ZX1apDfZ0Xy7T3B9Pfo/0dumnv0f5eWNN+43oXcPzQ+nLg4Qn1IkmvONMeEncAK5OckORw4Dxg64R7kqRXjKm+3FRVzya5GLgRWAJsrKp7X8QpD/mS1Yts2vuD6e/R/g7dtPdofy+gVD3vEr8kScD0X26SJE2QISFJ6jIkmmn/+I8kDya5J8ldSbZPQT8bk+xO8v2h2tFJtiXZ2b4fNYU9fjTJ/7bjeFeSsybY3/FJbkmyI8m9SS5p9ak4jvP0NxXHMMlrktye5Hutv4+1+glJbmvH74vtoZeJmKfHzyX54dAxPHlSPS7EexLs//iP/2bo4z+A86fp4z+SPAisqqqp+COcJL8HPA1cV1UntdrfAHur6ooWtEdV1YenrMePAk9X1d9Oqq99khwHHFdV30nyK8CdwDnAnzMFx3Ge/v6YKTiGSQK8tqqeTnIY8E3gEuBDwFeqanOSvwe+V1VXT1mP7we+WlVfmkRfB8IziYH9H/9RVT8H9n38hzqq6hvA3jnltcCmtryJwRvKxHR6nBpV9UhVfactPwXsYPApA1NxHOfpbyrUwNNt9bD2VcCpwL4334n+P5ynx5cMQ2Jg1Md/TM0PQ1PAfyS5s30MyTR6U1U9AoM3GOCNE+6n5+Ikd7fLURO9JLZPkhXA24DbmMLjOKc/mJJjmGRJkruA3cA24AfAE1X1bBsy8Z/luT1W1b5jeHk7hlcmefUEW5yXITGwqI//mLB3VdXbgTOBi9qlFB24q4HfAE4GHgH+brLtQJLXAV8GPlhVP5l0P3ON6G9qjmFVPVdVJzP4NIZTgLeMGjberuZMPqfHJCcBlwK/CfwOcDQwscuyCzEkBqb+4z+q6uH2fTfwrwx+IKbNo+069r7r2bsn3M/zVNWj7Yf2F8A/MOHj2K5Tfxn4fFV9pZWn5jiO6m/ajmHr6QngVmA1cGSSfX8oPDU/y0M9rmmX8qqqngH+iSk4hj2GxMBUf/xHkte2G4ckeS1wOvD9+feaiK3Aura8Drh+gr2MtO/Nt/kjJngc203Na4EdVfWpoU1TcRx7/U3LMUwyk+TItnwE8B4G901uAd7bhk30/2Gnx/8a+iUgDO6ZTOPPM+DTTfu1x/g+zf9//MflE25pvyS/zuDsAQYfpfIvk+4vyReAdzP42ONHgcuAfwO2AL8K/Ag4t6omduO40+O7GVwmKeBB4C/2Xf+fQH+/C/wncA/wi1b+CIPr/hM/jvP0dz5TcAyT/BaDG9NLGPzCu6WqPt5+XjYzuIzzXeBP22/sYzdPjzcDMwwudd8FvH/oBvdUMSQkSV1ebpIkdRkSkqQuQ0KS1GVISJK6DAlJUpchIUnqMiQkSV3/B7ZXiCib6H4bAAAAAElFTkSuQmCC\n",
3178
      "text/plain": [
3179
       "<Figure size 432x288 with 1 Axes>"
3180
      ]
3181
     },
3182
     "metadata": {
3183
      "needs_background": "light"
3184
     },
3185
     "output_type": "display_data"
3186
    }
3187
   ],
3188
   "source": [
3189
    "a = plt.hist(train_md.pos_inc,bins=100)"
3190
   ]
3191
  },
3192
  {
3193
   "cell_type": "code",
3194
   "execution_count": 150,
3195
   "metadata": {},
3196
   "outputs": [
3197
    {
3198
     "data": {
3199
      "text/html": [
3200
       "<div>\n",
3201
       "<style scoped>\n",
3202
       "    .dataframe tbody tr th:only-of-type {\n",
3203
       "        vertical-align: middle;\n",
3204
       "    }\n",
3205
       "\n",
3206
       "    .dataframe tbody tr th {\n",
3207
       "        vertical-align: top;\n",
3208
       "    }\n",
3209
       "\n",
3210
       "    .dataframe thead th {\n",
3211
       "        text-align: right;\n",
3212
       "    }\n",
3213
       "</style>\n",
3214
       "<table border=\"1\" class=\"dataframe\">\n",
3215
       "  <thead>\n",
3216
       "    <tr style=\"text-align: right;\">\n",
3217
       "      <th></th>\n",
3218
       "      <th>BitsAllocated</th>\n",
3219
       "      <th>BitsStored</th>\n",
3220
       "      <th>HighBit</th>\n",
3221
       "      <th>ImageOrientationPatient</th>\n",
3222
       "      <th>ImagePositionPatient</th>\n",
3223
       "      <th>Modality</th>\n",
3224
       "      <th>PatientID</th>\n",
3225
       "      <th>PhotometricInterpretation</th>\n",
3226
       "      <th>PixelRepresentation</th>\n",
3227
       "      <th>PixelSpacing</th>\n",
3228
       "      <th>RescaleIntercept</th>\n",
3229
       "      <th>RescaleSlope</th>\n",
3230
       "      <th>SOPInstanceUID</th>\n",
3231
       "      <th>SamplesPerPixel</th>\n",
3232
       "      <th>SeriesInstanceUID</th>\n",
3233
       "      <th>StudyID</th>\n",
3234
       "      <th>StudyInstanceUID</th>\n",
3235
       "      <th>WindowCenter</th>\n",
3236
       "      <th>WindowWidth</th>\n",
3237
       "      <th>ImageOrientationPatient_0</th>\n",
3238
       "      <th>ImageOrientationPatient_1</th>\n",
3239
       "      <th>ImageOrientationPatient_2</th>\n",
3240
       "      <th>ImageOrientationPatient_3</th>\n",
3241
       "      <th>ImageOrientationPatient_4</th>\n",
3242
       "      <th>ImageOrientationPatient_5</th>\n",
3243
       "      <th>ImagePositionPatient_0</th>\n",
3244
       "      <th>ImagePositionPatient_1</th>\n",
3245
       "      <th>ImagePositionPatient_2</th>\n",
3246
       "      <th>PixelSpacing_0</th>\n",
3247
       "      <th>PixelSpacing_1</th>\n",
3248
       "      <th>WindowCenter_0</th>\n",
3249
       "      <th>WindowCenter_1</th>\n",
3250
       "      <th>WindowCenter_1_NAN</th>\n",
3251
       "      <th>any</th>\n",
3252
       "      <th>epidural</th>\n",
3253
       "      <th>intraparenchymal</th>\n",
3254
       "      <th>intraventricular</th>\n",
3255
       "      <th>subarachnoid</th>\n",
3256
       "      <th>subdural</th>\n",
3257
       "      <th>weight</th>\n",
3258
       "      <th>pos_max</th>\n",
3259
       "      <th>pos_min</th>\n",
3260
       "      <th>pos_size</th>\n",
3261
       "      <th>pos_idx</th>\n",
3262
       "      <th>pos_inc</th>\n",
3263
       "    </tr>\n",
3264
       "  </thead>\n",
3265
       "  <tbody>\n",
3266
       "    <tr>\n",
3267
       "      <th>6182</th>\n",
3268
       "      <td>16</td>\n",
3269
       "      <td>0</td>\n",
3270
       "      <td>15</td>\n",
3271
       "      <td>['1.000000', '0.000000', '0.000000', '0.000000...</td>\n",
3272
       "      <td>['-125.000000', '-107.097977', '61.870396']</td>\n",
3273
       "      <td>CT</td>\n",
3274
       "      <td>ID_6a88f066</td>\n",
3275
       "      <td>MONOCHROME2</td>\n",
3276
       "      <td>0</td>\n",
3277
       "      <td>['0.488281', '0.488281']</td>\n",
3278
       "      <td>0</td>\n",
3279
       "      <td>1.0</td>\n",
3280
       "      <td>ID_0e67917f5</td>\n",
3281
       "      <td>1</td>\n",
3282
       "      <td>ID_025d684f04</td>\n",
3283
       "      <td>NaN</td>\n",
3284
       "      <td>ID_75eaa2e6de</td>\n",
3285
       "      <td>30</td>\n",
3286
       "      <td>80</td>\n",
3287
       "      <td>1.0</td>\n",
3288
       "      <td>0.0</td>\n",
3289
       "      <td>0.0</td>\n",
3290
       "      <td>0.0</td>\n",
3291
       "      <td>0.927184</td>\n",
3292
       "      <td>-0.374607</td>\n",
3293
       "      <td>-125.0</td>\n",
3294
       "      <td>-107.097977</td>\n",
3295
       "      <td>61.870396</td>\n",
3296
       "      <td>0.488281</td>\n",
3297
       "      <td>0.488281</td>\n",
3298
       "      <td>30.0</td>\n",
3299
       "      <td>38.015255</td>\n",
3300
       "      <td>0</td>\n",
3301
       "      <td>0</td>\n",
3302
       "      <td>0</td>\n",
3303
       "      <td>0</td>\n",
3304
       "      <td>0</td>\n",
3305
       "      <td>0</td>\n",
3306
       "      <td>0</td>\n",
3307
       "      <td>0.200965</td>\n",
3308
       "      <td>185.898392</td>\n",
3309
       "      <td>18.730394</td>\n",
3310
       "      <td>36</td>\n",
3311
       "      <td>9</td>\n",
3312
       "      <td>0.0</td>\n",
3313
       "    </tr>\n",
3314
       "    <tr>\n",
3315
       "      <th>6184</th>\n",
3316
       "      <td>16</td>\n",
3317
       "      <td>0</td>\n",
3318
       "      <td>15</td>\n",
3319
       "      <td>['1.000000', '0.000000', '0.000000', '0.000000...</td>\n",
3320
       "      <td>['-125.000000', '-107.097977', '67.263069']</td>\n",
3321
       "      <td>CT</td>\n",
3322
       "      <td>ID_6a88f066</td>\n",
3323
       "      <td>MONOCHROME2</td>\n",
3324
       "      <td>0</td>\n",
3325
       "      <td>['0.488281', '0.488281']</td>\n",
3326
       "      <td>0</td>\n",
3327
       "      <td>1.0</td>\n",
3328
       "      <td>ID_c7605edce</td>\n",
3329
       "      <td>1</td>\n",
3330
       "      <td>ID_025d684f04</td>\n",
3331
       "      <td>NaN</td>\n",
3332
       "      <td>ID_75eaa2e6de</td>\n",
3333
       "      <td>30</td>\n",
3334
       "      <td>80</td>\n",
3335
       "      <td>1.0</td>\n",
3336
       "      <td>0.0</td>\n",
3337
       "      <td>0.0</td>\n",
3338
       "      <td>0.0</td>\n",
3339
       "      <td>0.927184</td>\n",
3340
       "      <td>-0.374607</td>\n",
3341
       "      <td>-125.0</td>\n",
3342
       "      <td>-107.097977</td>\n",
3343
       "      <td>67.263069</td>\n",
3344
       "      <td>0.488281</td>\n",
3345
       "      <td>0.488281</td>\n",
3346
       "      <td>30.0</td>\n",
3347
       "      <td>38.015255</td>\n",
3348
       "      <td>0</td>\n",
3349
       "      <td>0</td>\n",
3350
       "      <td>0</td>\n",
3351
       "      <td>0</td>\n",
3352
       "      <td>0</td>\n",
3353
       "      <td>0</td>\n",
3354
       "      <td>0</td>\n",
3355
       "      <td>0.197010</td>\n",
3356
       "      <td>185.898392</td>\n",
3357
       "      <td>18.730394</td>\n",
3358
       "      <td>36</td>\n",
3359
       "      <td>11</td>\n",
3360
       "      <td>0.0</td>\n",
3361
       "    </tr>\n",
3362
       "    <tr>\n",
3363
       "      <th>6186</th>\n",
3364
       "      <td>16</td>\n",
3365
       "      <td>0</td>\n",
3366
       "      <td>15</td>\n",
3367
       "      <td>['1.000000', '0.000000', '0.000000', '0.000000...</td>\n",
3368
       "      <td>['-125.000000', '-107.097977', '72.655739']</td>\n",
3369
       "      <td>CT</td>\n",
3370
       "      <td>ID_6a88f066</td>\n",
3371
       "      <td>MONOCHROME2</td>\n",
3372
       "      <td>0</td>\n",
3373
       "      <td>['0.488281', '0.488281']</td>\n",
3374
       "      <td>0</td>\n",
3375
       "      <td>1.0</td>\n",
3376
       "      <td>ID_12683d977</td>\n",
3377
       "      <td>1</td>\n",
3378
       "      <td>ID_025d684f04</td>\n",
3379
       "      <td>NaN</td>\n",
3380
       "      <td>ID_75eaa2e6de</td>\n",
3381
       "      <td>30</td>\n",
3382
       "      <td>80</td>\n",
3383
       "      <td>1.0</td>\n",
3384
       "      <td>0.0</td>\n",
3385
       "      <td>0.0</td>\n",
3386
       "      <td>0.0</td>\n",
3387
       "      <td>0.927184</td>\n",
3388
       "      <td>-0.374607</td>\n",
3389
       "      <td>-125.0</td>\n",
3390
       "      <td>-107.097977</td>\n",
3391
       "      <td>72.655739</td>\n",
3392
       "      <td>0.488281</td>\n",
3393
       "      <td>0.488281</td>\n",
3394
       "      <td>30.0</td>\n",
3395
       "      <td>38.015255</td>\n",
3396
       "      <td>0</td>\n",
3397
       "      <td>0</td>\n",
3398
       "      <td>0</td>\n",
3399
       "      <td>0</td>\n",
3400
       "      <td>0</td>\n",
3401
       "      <td>0</td>\n",
3402
       "      <td>0</td>\n",
3403
       "      <td>0.204350</td>\n",
3404
       "      <td>185.898392</td>\n",
3405
       "      <td>18.730394</td>\n",
3406
       "      <td>36</td>\n",
3407
       "      <td>13</td>\n",
3408
       "      <td>0.0</td>\n",
3409
       "    </tr>\n",
3410
       "    <tr>\n",
3411
       "      <th>6188</th>\n",
3412
       "      <td>16</td>\n",
3413
       "      <td>0</td>\n",
3414
       "      <td>15</td>\n",
3415
       "      <td>['1.000000', '0.000000', '0.000000', '0.000000...</td>\n",
3416
       "      <td>['-125.000000', '-107.097977', '78.048416']</td>\n",
3417
       "      <td>CT</td>\n",
3418
       "      <td>ID_6a88f066</td>\n",
3419
       "      <td>MONOCHROME2</td>\n",
3420
       "      <td>0</td>\n",
3421
       "      <td>['0.488281', '0.488281']</td>\n",
3422
       "      <td>0</td>\n",
3423
       "      <td>1.0</td>\n",
3424
       "      <td>ID_6f53ceeb2</td>\n",
3425
       "      <td>1</td>\n",
3426
       "      <td>ID_025d684f04</td>\n",
3427
       "      <td>NaN</td>\n",
3428
       "      <td>ID_75eaa2e6de</td>\n",
3429
       "      <td>30</td>\n",
3430
       "      <td>80</td>\n",
3431
       "      <td>1.0</td>\n",
3432
       "      <td>0.0</td>\n",
3433
       "      <td>0.0</td>\n",
3434
       "      <td>0.0</td>\n",
3435
       "      <td>0.927184</td>\n",
3436
       "      <td>-0.374607</td>\n",
3437
       "      <td>-125.0</td>\n",
3438
       "      <td>-107.097977</td>\n",
3439
       "      <td>78.048416</td>\n",
3440
       "      <td>0.488281</td>\n",
3441
       "      <td>0.488281</td>\n",
3442
       "      <td>30.0</td>\n",
3443
       "      <td>38.015255</td>\n",
3444
       "      <td>0</td>\n",
3445
       "      <td>0</td>\n",
3446
       "      <td>0</td>\n",
3447
       "      <td>0</td>\n",
3448
       "      <td>0</td>\n",
3449
       "      <td>0</td>\n",
3450
       "      <td>0</td>\n",
3451
       "      <td>0.196889</td>\n",
3452
       "      <td>185.898392</td>\n",
3453
       "      <td>18.730394</td>\n",
3454
       "      <td>36</td>\n",
3455
       "      <td>15</td>\n",
3456
       "      <td>0.0</td>\n",
3457
       "    </tr>\n",
3458
       "    <tr>\n",
3459
       "      <th>23316</th>\n",
3460
       "      <td>16</td>\n",
3461
       "      <td>0</td>\n",
3462
       "      <td>15</td>\n",
3463
       "      <td>['1.000000', '0.000000', '0.000000', '0.000000...</td>\n",
3464
       "      <td>['-125.000', '-100.476', '67.115']</td>\n",
3465
       "      <td>CT</td>\n",
3466
       "      <td>ID_90c32ee5</td>\n",
3467
       "      <td>MONOCHROME2</td>\n",
3468
       "      <td>0</td>\n",
3469
       "      <td>['0.488281', '0.488281']</td>\n",
3470
       "      <td>0</td>\n",
3471
       "      <td>1.0</td>\n",
3472
       "      <td>ID_057386df0</td>\n",
3473
       "      <td>1</td>\n",
3474
       "      <td>ID_08f1a9df80</td>\n",
3475
       "      <td>NaN</td>\n",
3476
       "      <td>ID_e329fba98e</td>\n",
3477
       "      <td>40</td>\n",
3478
       "      <td>150</td>\n",
3479
       "      <td>1.0</td>\n",
3480
       "      <td>0.0</td>\n",
3481
       "      <td>0.0</td>\n",
3482
       "      <td>0.0</td>\n",
3483
       "      <td>0.891007</td>\n",
3484
       "      <td>-0.453990</td>\n",
3485
       "      <td>-125.0</td>\n",
3486
       "      <td>-100.476000</td>\n",
3487
       "      <td>67.115000</td>\n",
3488
       "      <td>0.488281</td>\n",
3489
       "      <td>0.488281</td>\n",
3490
       "      <td>40.0</td>\n",
3491
       "      <td>38.015255</td>\n",
3492
       "      <td>0</td>\n",
3493
       "      <td>1</td>\n",
3494
       "      <td>0</td>\n",
3495
       "      <td>0</td>\n",
3496
       "      <td>0</td>\n",
3497
       "      <td>0</td>\n",
3498
       "      <td>1</td>\n",
3499
       "      <td>0.018081</td>\n",
3500
       "      <td>156.895000</td>\n",
3501
       "      <td>-17.055000</td>\n",
3502
       "      <td>40</td>\n",
3503
       "      <td>16</td>\n",
3504
       "      <td>0.0</td>\n",
3505
       "    </tr>\n",
3506
       "  </tbody>\n",
3507
       "</table>\n",
3508
       "</div>"
3509
      ],
3510
      "text/plain": [
3511
       "       BitsAllocated BitsStored  HighBit  \\\n",
3512
       "6182              16          0       15   \n",
3513
       "6184              16          0       15   \n",
3514
       "6186              16          0       15   \n",
3515
       "6188              16          0       15   \n",
3516
       "23316             16          0       15   \n",
3517
       "\n",
3518
       "                                 ImageOrientationPatient  \\\n",
3519
       "6182   ['1.000000', '0.000000', '0.000000', '0.000000...   \n",
3520
       "6184   ['1.000000', '0.000000', '0.000000', '0.000000...   \n",
3521
       "6186   ['1.000000', '0.000000', '0.000000', '0.000000...   \n",
3522
       "6188   ['1.000000', '0.000000', '0.000000', '0.000000...   \n",
3523
       "23316  ['1.000000', '0.000000', '0.000000', '0.000000...   \n",
3524
       "\n",
3525
       "                              ImagePositionPatient Modality    PatientID  \\\n",
3526
       "6182   ['-125.000000', '-107.097977', '61.870396']       CT  ID_6a88f066   \n",
3527
       "6184   ['-125.000000', '-107.097977', '67.263069']       CT  ID_6a88f066   \n",
3528
       "6186   ['-125.000000', '-107.097977', '72.655739']       CT  ID_6a88f066   \n",
3529
       "6188   ['-125.000000', '-107.097977', '78.048416']       CT  ID_6a88f066   \n",
3530
       "23316           ['-125.000', '-100.476', '67.115']       CT  ID_90c32ee5   \n",
3531
       "\n",
3532
       "      PhotometricInterpretation PixelRepresentation              PixelSpacing  \\\n",
3533
       "6182                MONOCHROME2                   0  ['0.488281', '0.488281']   \n",
3534
       "6184                MONOCHROME2                   0  ['0.488281', '0.488281']   \n",
3535
       "6186                MONOCHROME2                   0  ['0.488281', '0.488281']   \n",
3536
       "6188                MONOCHROME2                   0  ['0.488281', '0.488281']   \n",
3537
       "23316               MONOCHROME2                   0  ['0.488281', '0.488281']   \n",
3538
       "\n",
3539
       "      RescaleIntercept  RescaleSlope SOPInstanceUID  SamplesPerPixel  \\\n",
3540
       "6182                 0           1.0   ID_0e67917f5                1   \n",
3541
       "6184                 0           1.0   ID_c7605edce                1   \n",
3542
       "6186                 0           1.0   ID_12683d977                1   \n",
3543
       "6188                 0           1.0   ID_6f53ceeb2                1   \n",
3544
       "23316                0           1.0   ID_057386df0                1   \n",
3545
       "\n",
3546
       "      SeriesInstanceUID  StudyID StudyInstanceUID WindowCenter WindowWidth  \\\n",
3547
       "6182      ID_025d684f04      NaN    ID_75eaa2e6de           30          80   \n",
3548
       "6184      ID_025d684f04      NaN    ID_75eaa2e6de           30          80   \n",
3549
       "6186      ID_025d684f04      NaN    ID_75eaa2e6de           30          80   \n",
3550
       "6188      ID_025d684f04      NaN    ID_75eaa2e6de           30          80   \n",
3551
       "23316     ID_08f1a9df80      NaN    ID_e329fba98e           40         150   \n",
3552
       "\n",
3553
       "       ImageOrientationPatient_0  ImageOrientationPatient_1  \\\n",
3554
       "6182                         1.0                        0.0   \n",
3555
       "6184                         1.0                        0.0   \n",
3556
       "6186                         1.0                        0.0   \n",
3557
       "6188                         1.0                        0.0   \n",
3558
       "23316                        1.0                        0.0   \n",
3559
       "\n",
3560
       "       ImageOrientationPatient_2  ImageOrientationPatient_3  \\\n",
3561
       "6182                         0.0                        0.0   \n",
3562
       "6184                         0.0                        0.0   \n",
3563
       "6186                         0.0                        0.0   \n",
3564
       "6188                         0.0                        0.0   \n",
3565
       "23316                        0.0                        0.0   \n",
3566
       "\n",
3567
       "       ImageOrientationPatient_4  ImageOrientationPatient_5  \\\n",
3568
       "6182                    0.927184                  -0.374607   \n",
3569
       "6184                    0.927184                  -0.374607   \n",
3570
       "6186                    0.927184                  -0.374607   \n",
3571
       "6188                    0.927184                  -0.374607   \n",
3572
       "23316                   0.891007                  -0.453990   \n",
3573
       "\n",
3574
       "       ImagePositionPatient_0  ImagePositionPatient_1  ImagePositionPatient_2  \\\n",
3575
       "6182                   -125.0             -107.097977               61.870396   \n",
3576
       "6184                   -125.0             -107.097977               67.263069   \n",
3577
       "6186                   -125.0             -107.097977               72.655739   \n",
3578
       "6188                   -125.0             -107.097977               78.048416   \n",
3579
       "23316                  -125.0             -100.476000               67.115000   \n",
3580
       "\n",
3581
       "       PixelSpacing_0  PixelSpacing_1  WindowCenter_0  WindowCenter_1  \\\n",
3582
       "6182         0.488281        0.488281            30.0       38.015255   \n",
3583
       "6184         0.488281        0.488281            30.0       38.015255   \n",
3584
       "6186         0.488281        0.488281            30.0       38.015255   \n",
3585
       "6188         0.488281        0.488281            30.0       38.015255   \n",
3586
       "23316        0.488281        0.488281            40.0       38.015255   \n",
3587
       "\n",
3588
       "      WindowCenter_1_NAN  any  epidural  intraparenchymal  intraventricular  \\\n",
3589
       "6182                   0    0         0                 0                 0   \n",
3590
       "6184                   0    0         0                 0                 0   \n",
3591
       "6186                   0    0         0                 0                 0   \n",
3592
       "6188                   0    0         0                 0                 0   \n",
3593
       "23316                  0    1         0                 0                 0   \n",
3594
       "\n",
3595
       "       subarachnoid  subdural    weight     pos_max    pos_min  pos_size  \\\n",
3596
       "6182              0         0  0.200965  185.898392  18.730394        36   \n",
3597
       "6184              0         0  0.197010  185.898392  18.730394        36   \n",
3598
       "6186              0         0  0.204350  185.898392  18.730394        36   \n",
3599
       "6188              0         0  0.196889  185.898392  18.730394        36   \n",
3600
       "23316             0         1  0.018081  156.895000 -17.055000        40   \n",
3601
       "\n",
3602
       "       pos_idx  pos_inc  \n",
3603
       "6182         9      0.0  \n",
3604
       "6184        11      0.0  \n",
3605
       "6186        13      0.0  \n",
3606
       "6188        15      0.0  \n",
3607
       "23316       16      0.0  "
3608
      ]
3609
     },
3610
     "execution_count": 150,
3611
     "metadata": {},
3612
     "output_type": "execute_result"
3613
    }
3614
   ],
3615
   "source": [
3616
    "train_md.loc[(train_md.pos_inc == 0) & (train_md.pos_idx != 0)].head()"
3617
   ]
3618
  },
3619
  {
3620
   "cell_type": "code",
3621
   "execution_count": 292,
3622
   "metadata": {},
3623
   "outputs": [],
3624
   "source": [
3625
    "grp = pd.qcut(train_md['pos_rel'],30,duplicates='drop')\n",
3626
    "x = train_md['pos_rel'].groupby(grp).mean()"
3627
   ]
3628
  },
3629
  {
3630
   "cell_type": "code",
3631
   "execution_count": 303,
3632
   "metadata": {},
3633
   "outputs": [
3634
    {
3635
     "data": {
3636
      "text/plain": [
3637
       "<matplotlib.legend.Legend at 0x19581ddb160>"
3638
      ]
3639
     },
3640
     "execution_count": 303,
3641
     "metadata": {},
3642
     "output_type": "execute_result"
3643
    },
3644
    {
3645
     "data": {
3646
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6IAAAHSCAYAAAD2RXZvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdd3QV1d7G8e/kpFdIQRNaQFBKQgJJACkaWlBBOiLVgIKCgF4VsSAi6vV6xQZ2pCooCoJK7yIKFxIUEBBQCEVaOqmkzfsHmFeQbpJJeT5rsdY5M3tmP5OzFsnv7D17DNM0ERERERERESkpdlYHEBERERERkYpFhaiIiIiIiIiUKBWiIiIiIiIiUqJUiIqIiIiIiEiJUiEqIiIiIiIiJUqFqIiIiIiIiJQoe6s69vX1NQMDA63qXkRERERERIpRbGxsgmmafhfbZ1khGhgYSExMjFXdi4iIiIiISDEyDOPQpfZpaq6IiIiIiIiUKBWiIiIiIiIiUqJUiIqIiIiIiEiJsuweURERERERKZ9yc3M5evQo2dnZVkeREuDs7Ey1atVwcHC46mNUiIqIiIiISJE6evQoHh4eBAYGYhiG1XGkGJmmSWJiIkePHqVWrVpXfZym5oqIiIiISJHKzs7Gx8dHRWgFYBgGPj4+1zz6rUJURERERESKnIrQiuN6PmsVoiIiIiIiIlKiVIiKiIiIiIhIibpiIWoYhrNhGFsMw9huGMYuwzBeuEibaMMw4g3D+PncvweKJ66IiIiIiMjV6datG2FhYTRs2JCPPvoIAHd3d5599llCQkJo3rw5J0+eJC0tjVq1apGbmwvA6dOnCQwMLHwvRe9qVs09A7Q1TTPdMAwHYKNhGMtM09x8Qbt5pmmOLPqIIiIiIiJSVr3w7S52HztdpOdsEODJ83c3vGK76dOn4+3tTVZWFhEREfTs2ZOMjAyaN2/Oyy+/zJNPPsnUqVMZN24ckZGRLFmyhG7duvH555/Ts2fPa3ociVybK46Immeln3vrcO6fWaypRERERERE/qHJkycXjnweOXKE/fv34+joSOfOnQEICwsjLi4OgAceeIAZM2YAMGPGDAYPHmxV7Arhqp4jahiGDYgF6gDvmqb5v4s062kYxm3APuBfpmkeKbqYIiIiIiJSFl3NyGVxWL9+PatXr2bTpk24uroSGRlJdnY2Dg4Ohau82mw28vLyAGjZsiVxcXF899135OfnExQUZEnuiuKqFisyTTPfNM1QoBrQ1DCMCz+Vb4FA0zQbAauBWRc7j2EYwwzDiDEMIyY+Pv6f5BYREREREbmk1NRUKleujKurK7/++iubN194Z+HfDRo0iL59+2o0tARc06q5pmmmAOuBOy7Ynmia5plzb6cCYZc4/iPTNMNN0wz38/O7jrgiIiIiIiJXdscdd5CXl0ejRo147rnnaN68+RWP6d+/P8nJyfTt27cEElZsV5yaaxiGH5BrmmaKYRguQHvg1Qva+Jumefzc2y7AniJPKiIiIiIicpWcnJxYtmzZ37anp6cXvu7Vqxe9evUqfL9x40Z69epFpUqVSiRjRXY194j6A7PO3SdqB3xhmuZiwzAmAjGmaX4DjDYMowuQByQB0cUVWEREpKww8/PBzq7wXiQRESm9Ro0axbJly1i6dKnVUSqEKxaipmnuABpfZPv4v7x+Gni6aKOJiIiUTaZpkrZiJSdfeQX7G26g6mv/xbFmTatjiYjIZUyZMsXqCBXKNd0jKiIiIpeXc/QPjjz0EH88+ig2Ly9y4uI42L0Hqd98Y3U0ERGRUkOFqIiISBEwc3NJ/PhjDnTuTObWGKo8NZZaXy2g9qKFONWvz7Enx3Js7Fjy0zOsjioiImI5FaIiIiL/UOa2nzjYsxenJr2OW6uW3LRkMT7R0Rj29jgEBFBz1kx8R44k9dvFHOzRg6ydO62OLCIiYikVoiIiItcpPzWV4+Of51C/fuSnpVHtvXep/s47OPj7n9fOsLfHb+TD1Jw9CzM3l7i+/UicNg2zoMCi5CIiItZSISoiInKNTNMk9dtv+f2uTqQsWID34MHctPhbPNq2vexxruHh1F60EI+2bTn12iSOPDCU3FOnSii1iIhczvjx41m9evXftq9fv57OnTsXWT+RkZHExMQU2fnKqqt5fIuIiIickxMXx4mJE8n4cRPOjRpR4+OpONevf9XH27y8qPr2W6R8+SUn//0KB7t1J+CVf+N+++3FmFpERK5k4sSJRXIe0zQxTRM7O435XY5+OiIiIlehICeH+Hff5UCXrmTt2MkN458j8LO511SE/skwDCrfcw+15n+Jva8vRx58iJOvvEJBTk4xJBcRqbg+/fRTmjZtSmhoKA8++CD5+fm4u7vz+OOP06RJE9q1a0d8fDwA0dHRzJ8/H4Dly5dTr149WrVqxVdffVV4vgkTJjBp0qTC90FBQcTFxREXF0f9+vUZMWIETZo04ciRIwwfPpzw8HAaNmzI888/X7IXXgZoRFREROQKMv63hRMTJpBz8CCed91JlaeewqFKlX98Xqc6dQj88gtOvTaJpFmzydiylaqvT8Kpdu0iSC0iUkosewpOFPEibTcGw53/uWyTPXv2MG/ePH744QccHBwYMWIEc+bMISMjgyZNmvD6668zceJEXnjhBd55553C47Kzsxk6dChr166lTp069OnT56oi7d27lxkzZvDee+8B8PLLL+Pt7U1+fj7t2rVjx44dNGrU6PqvuZzRiKiIiMgl5CUlcWzsUxy+7z7MvDyqT51K1TfeKJIi9E92Tk7cOO5Zqr33HnnHj3OwZy9S5s/HNM0i60NEpCJas2YNsbGxREREEBoaypo1azhw4AB2dnaFxeWAAQPYuHHjecf9+uuv1KpVi7p162IYBgMGDLiq/mrWrEnz5s0L33/xxRc0adKExo0bs2vXLnbv3l10F1cOaERURETkAmZBAalffcWp1yaRn5mJz4MP4jv8IeycnYutT4+2bXD+ehHHnhzL8XHPkf7DD/i/8AI2T89i61NEpERcYeSyuJimyX333ccrr7xy3vYXX3zxvPeGYfzt2IttA7C3t6fgLyueZ2dnF752c3MrfH3w4EEmTZrE1q1bqVy5MtHR0ee1FY2IioiInOfMb79xaNAgjo97Dsc6dai98Cuq/OvRYi1C/+Rwww3UmD4Nv3/9i7SVqzjYrTuZ234q9n5FRMqjdu3aMX/+fE6dW508KSmJQ4cOUVBQUHgv6Ny5c2nVqtV5x9WrV4+DBw/y+++/A/DZZ58V7gsMDGTbtm0AbNu2jYMHD16079OnT+Pm5oaXlxcnT55k2bJlRX59ZZ1GREVERICC7GwS3v+AxOnTsbm64v/Si3j16IFRwqseGjYbvg8Ow61ZU/54YgyHBg7Eb+TD+AwbhmGzlWgWEZGyrEGDBrz00ktERUVRUFCAg4MD7777Lm5ubuzatYuwsDC8vLyYN2/eecc5Ozvz0Ucf0alTJ3x9fWnVqhW//PILAD179mT27NmEhoYSERHBzTfffNG+Q0JCaNy4MQ0bNqR27dq0bNmy2K+3rDGsugclPDzc1PNzRESkNEj/fiMnJk4k98gRvLp2pcrYJ7H39rY6FvlpaZyY8AKnlyzBNSKCgNf+i8ONN1odS0Tkivbs2UP961hVvCS4u7uTnp5udYxy52KfuWEYsaZphl+svabmiohIhZV76hR/PPYYR4YOxbDZqDFzJgGv/qdUFKEANg8PAia9hv8rr5C1axcHu3Yj7SIPWxcRESlrVIiKiEiFYxYUkPzZZxy4qxNpq9fgO2oktb75GrfmzayO9jeGYVCpezdqLZiPQ9WqHB05ihMTJ1KgRS9ERK6LRkNLBxWiIiJSoWT/+itxffty4oWJOAcHUfubr/F7+GHsHB2tjnZZTrVqUfPzz/AePJjkuZ8R1/sesvftszqWiIjIdVEhKiIiFUJBRgYnX/0vB3v2IvfoHwS89l9qTJ+OY2Cg1dGump2jIzeMfZLqU6eSl5REXO97SP78cz1zVEREyhwVoiIiUiEcHf0ISTNmUKlnT25augSvu+++5HPiSjv31q2o/fUiXCMiODHhBY6OGkV+SorVsURERK6aClERESn3MrZsIeOHH6gyZgz+E1/A5uVldaR/zN7Xl+offUiVsWNJ/24DB7p1J2PLFqtjiYiIXBUVoiIiUq6ZpknC5CnY+/lRuX8/q+MUKcPODp/B0QR+9hl2Tk4cjh5M/OTJmPn5VkcTEbFcixYtrtjmrbfeIjMzswTSFI/169fTuXPnEusvLi6OoKCgIjmXClERESnXMv/3PzJjYvAZNgw7Z2er4xQLl6CG1PpqAV5dupDw3vukfPml1ZFERCz3448/XrHN5QrR/GL6Ui8vL69YzlvWqBAVEZFyyzRN4qe8g/0NN1Dpnt5WxylWdm5u+L/yb5wbNSJxxgyNiopIhefu7g6cHTWMjIykV69e1KtXj/79+2OaJpMnT+bYsWO0adOGNm3aFB4zfvx4mjVrxqZNm5g4cSIREREEBQUxbNiwwsXhIiMjefTRR2nRogVBQUFsOXdrxJYtW2jRogWNGzemRYsW7N27F4CZM2fSu3dv7r77bqKiogB47bXXiIiIoFGjRjz//PPA2RHH+vXrM3ToUBo2bEhUVBRZWVkA/Pbbb7Rv356QkBCaNGnC77//Dpx9HM2F17ZmzRq6d+9e+LNYtWoVPXr0KLzGsWPHEhYWRvv27dmyZQuRkZHUrl2bb775pjBH69atadKkCU2aNLmqov5a2Rf5GUVEREqJjB9/JCs2lhvGP4edk5PVcYqdYRj4DBnMH4/+i7Q1a/A898eOiIiVXt3yKr8m/Vqk56znXY+xTcdedfuffvqJXbt2ERAQQMuWLfnhhx8YPXo0b7zxBuvWrcPX1xeAjIwMgoKCmDhxIgANGjRg/PjxAAwcOJDFixdz9913F7b98ccf2bBhA0OGDOGXX36hXr16bNiwAXt7e1avXs0zzzzDggULANi0aRM7duzA29ublStXsn//frZs2YJpmnTp0oUNGzZQo0YN9u/fz2effcbUqVO55557WLBgAQMGDKB///489dRTdO/enezsbAoKCjhy5MhFr61t27Y8/PDDxMfH4+fnx4wZMxg8eHBh7sjISF599VW6d+/OuHHjWLVqFbt37+a+++6jS5cuVKlShVWrVuHs7Mz+/fvp27cvMTExRfb5gQpREREpp0zTJGHKO9j7+1OpVy+r45QYj/btcahWjaTpM1SIioic07RpU6pVqwZAaGgocXFxtGrV6m/tbDYbPXv2LHy/bt06/vvf/5KZmUlSUhINGzYsLET79u0LwG233cbp06dJSUkhLS2N++67j/3792MYBrm5uYXn6tChA97e3gCsXLmSlStX0rhxY+DsqOb+/fupUaMGtWrVIjQ0FICwsDDi4uJIS0vjjz/+KBzldP7LrSaXuraBAwfy6aefMnjwYDZt2sTs2bMBcHR05I477gAgODgYJycnHBwcCA4OJi4uDoDc3FxGjhzJzz//jM1mY18xPLdahaiIiJRLGRs3kvXzz9w4YQJ2jo5Wxykxhr093tHRnHzpJTK3/YRrk8ZWRxKRCu5aRi6Li9NfZsXYbLZL3qfp7OyMzWYDIDs7mxEjRhATE0P16tWZMGEC2dnZhW0vfASYYRg899xztGnThoULFxIXF0dkZGThfjc3t8LXpmny9NNP8+CDD553jri4uL9lzcrKuuzzoi91bYMHD+buu+/G2dmZ3r17Y29/tvRzcHAozG5nZ1d4vJ2dXeGxb775JjfccAPbt2+noKDgvMK3qOgeURERKXf+vDfUISCASj26X/mAcqZSj+7YvLxInD7N6igiIqWah4cHaWlpF933Z9Hp6+tLeno68+fPP2//vHnzANi4cSNeXl54eXmRmppK1apVgbP3hV5Kx44dmT59Ounp6QD88ccfnDp16pLtPT09qVatGosWLQLgzJkzV1ztNyAggICAAF566SWio6Mv2/ZCqamp+Pv7Y2dnxyeffFIsCzepEBURkXIn/bvvyN6xA5/hD2FUoNHQP9m5ulKpX1/S16zlzMGDVscRESm1hg0bxp133lm4WNFfVapUiaFDhxIcHEy3bt2IiIg4b3/lypVp0aIFDz30ENOmnf3i78knn+Tpp5+mZcuWly3eoqKi6NevH7feeivBwcH06tXrkgXxnz755BMmT55Mo0aNaNGiBSdOnLji9fXv35/q1avToEGDK7b9qxEjRjBr1iyaN2/Ovn37zhvNLSrG5YZ5i1N4eLhZ1De8ioiImKZJXO97yE9J4aZlSzEcHKyOZIm8hAR+a9MWrx498H9hgtVxRKSC2bNnD/Xr17c6RrGJjIxk0qRJhIeHWx3lskaOHEnjxo25//77i72vi33mhmHEmqZ50R+SRkRFRKRcSV+3nuxffsF3+PAKW4QC2Pv64tWtK6mLFpGXmGh1HBERKWFhYWHs2LGDAQMGWB3lolSIiohIuWGaJvHvTMGhRg28unaxOo7lvAcPxjxzhuS5n1kdRUSkXFm/fn2pHw2NjY1lw4YN5y1mVJqoEBURkXIjfc0azuzeg++I4Rj2WhjeqXZt3Nu0IXnOHArOPRBdRESkNFAhKiIi5YJZUED8lHdwrFkTr86drY5TavjcP4T8lBRSz620KCIiUhqoEBURkXIhbdVqzuzdi+/DIzQa+hcuYWE4N2pE4oyZmMWw/L6IiMj1UCEqIiJlnllQQMI77+BYqxaenTpZHadUMQwDnyGDyT18mLQ1a6yOIyIiAqgQFRGRciBtxQrO7N+P78MPY9hsVscpdTw6dMChWjWSps+wOoqISIlp0aLFFdu89dZbZGZmlkCai/v5559ZunTpJffHxMQwevTo6zr3hAkTmDRp0vVGK3YqREVEpEwz8/OJf/ddHOvchOedd1gdp1QybDa8o6PJ+vlnMrdtszqOiEiJ+PHHH6/Y5nKFaH4J3M5wuUI0Ly+P8PBwJk+eXOw5/uyvJKkQFRGRMu30suXk/PY7fhoNvaxKPbpj8/Iicfp0q6OIiJQId3d34OyjViIjI+nVqxf16tWjf//+mKbJ5MmTOXbsGG3atKFNmzaFx4wfP55mzZqxadMmJk6cSEREBEFBQQwbNgzTNNmzZw9NmzYt7CcuLo5GjRoBZx+ZcvvttxMWFkbHjh05fvw4AJGRkYwdO5amTZty88038/3335OTk8P48eOZN28eoaGhzJs3jwkTJjBs2DCioqIYNGgQ69evp/O5BfjS09MZPHgwwcHBNGrUiAULFpx3nQDz588nOjr6bz+LqVOnEhERQUhICD179iwsvqOjo3nsscdo06YNY8eOLeJP4PK0moOIiJRZZn4+Ce++i1Pdunh07Gh1nFLNztWVSv36kvjBh5w5eBCnWrWsjiQiFcSJf/+bM3t+LdJzOtWvx43PPHPV7X/66Sd27dpFQEAALVu25IcffmD06NG88cYbrFu3Dl9fXwAyMjIICgpi4sSJADRo0IDx48cDMHDgQBYvXszdd99NTk4OBw4coHbt2sybN4977rmH3NxcRo0axddff42fnx/z5s3j2WefZfq5LwDz8vLYsmULS5cu5YUXXmD16tVMnDiRmJgY3nnnHeDsdNrY2Fg2btyIi4sL69evL7yGF198ES8vL3bu3AlAcnLyVV9/jx49GDp0KADjxo1j2rRpjBo1CoB9+/axevVqbCX8Za5GREVEpMw6vWQJOQcP4jtyJIadfqVdiXf//hgODiTNnGV1FBGREtW0aVOqVauGnZ0doaGhxMXFXbSdzWajZ8+ehe/XrVtHs2bNCA4OZu3atezatQuAe+65hy+++AKAefPm0adPH/bu3csvv/xChw4dCA0N5aWXXuLo0aOF5+rRowcAYWFhl+wfoEuXLri4uPxt++rVq3n44YcL31euXPmqr/+XX36hdevWBAcHM2fOnMLrAOjdu3eJF6GgEVERESmjzLw8Et59D6d69fDo0N7qOGWCva8vXl27krpoEX6jR2Hv42N1JBGpAK5l5LK4ODk5Fb622WyXvB/S2dm5sCjLzs5mxIgRxMTEUL16dSZMmEB2djYAffr0oXfv3vTo0QPDMKhbty47d+6kYcOGbNq06bIZLtc/gJub20W3m6aJYRh/2/7XbX/mu1B0dDSLFi0iJCSEmTNnnjfSeqn+ipu+PhYRkTIp9dvF5Bw6hN/IhzUaeg28B0djnjlD8py5VkcREbGch4cHaWlpF933Z1Hn6+tLeno68+fPL9x30003YbPZePHFF+nTpw8At9xyC/Hx8YWFaG5u7nkjj9fa/4WioqIKp/DC/0/NveGGG9izZw8FBQUsXLjwosempaXh7+9Pbm4uc+bMuar+ipt+c4uISJlj5uaS8P77ODWoj3u7dlbHKVOcatfGvW1bkufOpSAry+o4IiKWGjZsGHfeeWfhYkV/ValSJYYOHUpwcDDdunUjIiLivP19+vTh008/5Z577gHA0dGR+fPnM3bsWEJCQggNDb3iyr1t2rRh9+7dhYsVXc64ceNITk4mKCiIkJAQ1q1bB8B//vMfOnfuTNu2bfH397/osS+++CLNmjWjQ4cO1KtX77L9lBTDNE1LOg4PDzdjYmIs6VtERMq2lAULOP7sOKq99x4ebf/+x4NcXmZMDIcGDOTG58dTuW9fq+OISDm0Z88e6tevb3UMKUEX+8wNw4g1TTP8Yu01IioiImXK2dHQD3AOCsK9TaTVccokl7AwnBs1InHGTMwSeE6eiIjIhVSIiohImZKyaBG5R4/iN2rkRRdtkCszDAOfIUPIPXyYtDVrrI4jIiIVkApREREpM8ycHBLefx/nkEa43Xab1XHKNI8O7XGoXp2kadOx6jYdERGpuFSIiohImZHy1ULyjh3Hb+QojYb+Q4bNhnf0fWRt307WTz9ZHUdERCoYFaIiIlImFOTkkPDBB7iEhuLWqqXVccqFSt27Y/PyInH6dKujiIhIBXPFQtQwDGfDMLYYhrHdMIxdhmG8cJE2ToZhzDMM4zfDMP5nGEZgcYQVEZGKK2X+fPJOnMBX94YWGTtXVyr160v6mrWcOXjQ6jgiIlKBXM2I6BmgrWmaIUAocIdhGM0vaHM/kGyaZh3gTeDVoo0pIiIVWcGZMyR+8CEuYWG4tWhhdZxyxbt/fwwHB5JmzrI6ioiIZSZMmMCkSZNKrL+ZM2cycuTIIjnXBx98wOzZs/+2PS4ujqCgoCLpozhcsRA1z0o/99bh3L8LVzXoCvz5G2w+0M7Q19UiIlJEUr74krxTp7RSbjGw9/XFq2tXUhcuJC8x0eo4IiJljmmaFBQUWNb/Qw89xKBBgyzr/3pd1T2ihmHYDMP4GTgFrDJN838XNKkKHAEwTTMPSAV8ijKoiIhUTAXZ2SR+9BGuERG4NmtmdZxyyXvwYMycHJLnzLU6iohIkcnIyKBTp06EhIQQFBTEvHnzCAwMJCEhAYCYmBgiIyML22/fvp22bdtSt25dpk6dCkB6ejrt2rWjSZMmBAcH8/XXXwNnRxvr16/PiBEjaNKkCUeOHGH48OGEh4fTsGFDnn/++cLzbt26lRYtWhASEkLTpk1JS0sD4NixY9xxxx3UrVuXJ598srC9u7s7zz77LCEhITRv3pyTJ08CcOjQIdq1a0ejRo1o164dhw8fBs4fzY2NjSUkJIRbb72Vd999t5h+skXD/moamaaZD4QahlEJWGgYRpBpmr/8pcnFvp7+21rwhmEMA4YB1KhR4zriiohIRZMybx558fEEvD5Jo6HFxKl2LdzbtiV57lx8hj6AnYuL1ZFEpBz5/ot9JBxJv3LDa+Bb3Z3W99x82TbLly8nICCAJUuWAJCamsrYsWMv2X7Hjh1s3ryZjIwMGjduTKdOnahSpQoLFy7E09OThIQEmjdvTpcuXQDYu3cvM2bM4L333gPg5Zdfxtvbm/z8fNq1a8eOHTuoV68effr0Yd68eURERHD69Glczv0f+/PPP/PTTz/h5OTELbfcwqhRo6hevToZGRk0b96cl19+mSeffJKpU6cybtw4Ro4cyaBBg7jvvvuYPn06o0ePZtGiReddw+DBg5kyZQq33347Y8aMue6fb0m4plVzTdNMAdYDd1yw6yhQHcAwDHvAC0i6yPEfmaYZbppmuJ+f33UFFhGRiqMgK4uEqR/j2rw5bk2bWh2nXPMZMpj8lBRSFi60OoqISJEIDg5m9erVjB07lu+//x4vL6/Ltu/atSsuLi74+vrSpk0btmzZgmmaPPPMMzRq1Ij27dvzxx9/FI5Q1qxZk+bN/3/pnC+++IImTZrQuHFjdu3axe7du9m7dy/+/v5EREQA4Onpib392bHAdu3a4eXlhbOzMw0aNODQoUMAODo60rlzZwDCwsKIi4sDYNOmTfTr1w+AgQMHsnHjxvPyp6amkpKSwu23317YpjS74oioYRh+QK5pmimGYbgA7fn7YkTfAPcBm4BewFpTT8cWEZF/KPmzz8lPSMDv7besjlLuuYSF4RzSiKSZs6jcpw+GzWZ1JBEpJ640cllcbr75ZmJjY1m6dClPP/00UVFR2NvbF97PmZ2dfV77C2fdGIbBnDlziI+PJzY2FgcHBwIDAwuPc3NzK2x78OBBJk2axNatW6lcuTLR0dFkZ2djmuYlZ/M4OTkVvrbZbOTl5QHg4OBQeMxft1/owvNerq/S6GpGRP2BdYZh7AC2cvYe0cWGYUw0DKPLuTbTAB/DMH4DHgOeKp64IiJSURRkZpL48ce4tWiBa1iY1XHKPcMw8Bk8hNzDh0lbvcbqOCIi/9ixY8dwdXVlwIABPPHEE2zbto3AwEBiY2MBWLBgwXntv/76a7Kzs0lMTGT9+vVERESQmppKlSpVcHBwYN26dYWjlhc6ffo0bm5ueHl5cfLkSZYtWwZAvXr1OHbsGFu3bgUgLS3tkoXllbRo0YLPP/8cgDlz5tCqVavz9leqVAkvL6/CkdI5c+ZcVz8l5YojoqZp7gAaX2T7+L+8zgZ6F200ERGpyJLnziU/KQnfUUWzvL1cmUeH9jhUr07i9Gl4RHUoU9+si4hcaOfOnYwZMwY7OzscHKl56FQAACAASURBVBx4//33ycrK4v777+ff//43zS5YAK9p06Z06tSJw4cP89xzzxEQEED//v25++67CQ8PJzQ0lHr16l20r5CQEBo3bkzDhg2pXbs2LVu2BM5Os503bx6jRo0iKysLFxcXVq9efV3XM3nyZIYMGcJrr72Gn58fM2bM+FubGTNmMGTIEFxdXenYseN19VNSDKtm0IaHh5sxMTGW9C0iIqVbfnoGv7dvj3NQEDU+nmp1nAolac4cTr74EjXnzsG1SROr44hIGbVnzx7q169vdQwpQRf7zA3DiDVNM/xi7a9psSIREZGSkDxnDvkpKfhpNLTEVereHZuXF4nTplsdRUREyjEVoiIiUqrkp6eTNH06brffhktIiNVxKhw7V1cq9+9H+tq1nDlw0Oo4IiJSTqkQFRGRUiX500/JT03Fb+Qoq6NUWJX79cNwcCBp1iyro4iISDmlQlREREqN/LQ0EqfPwL1NG1yCg6yOU2HZ+/ri1a0bqQsXkpeYaHUcEREph1SIiohIqZE0ezYFp0/r3tBSwDs6GjMnh+Q5c62OIiIi5ZAKURERKRXyT58maeYs3Nu3w7lBA6vjVHhOtWvh3rYtyXPnUpCVZXUcEREpZ1SIiohIqZA0cxYFaWn4jdRoaGnhc/8Q8lNSSFm40OooIiLFasKECUyaNOmK7aKjo5k/f36R9BkXF0dQUMW9DUWFqIiIWC4/JYWkWbPwiIrC+RIPC5eS59KkCc4hjUiaOQszP9/qOCIiZU5eXp7VEUotFaIiImK5xJkzKcjIwPfhh62OIn9hGAY+Q+4n9/Bh0lavsTqOiMg1ycjIoFOnToSEhBAUFMS8efMIDAwkISEBgJiYGCIjIwvbb9++nbZt21K3bl2mTp0KgGmajBw5kgYNGtCpUydOnTpV2P5S55owYQLDhg0jKiqKQYMGERcXR+vWrWnSpAlNmjThxx9/LJkfQClnb3UAERGp2PKSk0me/Qked96B8y03Wx1HLuDRvh0O1auTOH0aHlEdMAzD6kgiUsasm/kRpw4dKNJzVqlZmzbRwy7bZvny5QQEBLBkyRIAUlNTGTt27CXb79ixg82bN5ORkUHjxo3p1KkTmzdvZu/evezcuZOTJ0/SoEEDhgwZcsV8sbGxbNy4ERcXFzIzM1m1ahXOzs7s37+fvn37EhMTc20XXA5pRFRERCyVNH0GBVlZ+Gk0tFQybDa8o+8je/sOsrZtszqOiMhVCw4OZvXq1YwdO5bvv/8eLy+vy7bv2rUrLi4u+Pr60qZNG7Zs2cKGDRvo27cvNpuNgIAA2rZte1V9d+nSBRcXFwByc3MZOnQowcHB9O7dm927d//jaysPNCIqIiKWyUtKImnOHDzvugunOnWsjiOXUKlHDxKmvEPi9Bm4hoVZHUdEypgrjVwWl5tvvpnY2FiWLl3K008/TVRUFPb29hQUFACQnZ19XvsLZ3z8+f5SM0Eudy43N7fC12+++SY33HAD27dvp6CgAGdn5392YeWERkRFRMQyidOmYWZn4/vwCKujyGXYubhQuV9f0teu5cyBg1bHERG5KseOHcPV1ZUBAwbwxBNPsG3bNgIDA4mNjQVgwYIF57X/+uuvyc7OJjExkfXr1xMREcFtt93G559/Tn5+PsePH2fdunWF7S93rr9KTU3F398fOzs7PvnkE/K1+BugQlRERCySl5BA8tzP8OzcCafata2OI1dQuX9/DAcHkmbOtDqKiMhV2blzJ02bNiU0NJSXX36ZcePG8fzzz/PII4/QunVrbDbbee2bNm1Kp06daN68Oc899xwBAQF0796dunXrEhwczPDhw7n99tsL21/uXH81YsQIZs2aRfPmzdm3b995o6UVmWGapiUdh4eHm7pJV0Sk4jr5n1dJmj2b2ksW41SrltVx5CocH/88qYsWUWfdWux9fKyOIyKl2J49e6hfv77VMaQEXewzNwwj1jTN8Iu114ioiIiUuNxTp0j+7DO8unRREVqGeEdHY+bmkjxnjtVRRESkjFMhKiIiJS7x448x8/LwHTHc6ihyDZxq18K9bVuS58ylICvL6jgiIlKGqRAVEZESlXviBCmfz8Ora1cca9SwOo5cI58hg8lPTSVl4UKro4iISBmmQlREREpUwnvvY5omflopt0xyadIEl5AQkmbOwtTKjyJyGVatRSMl73o+axWiIiJSYnIOHSJlwQIq9+mDQ9WqVseR62AYBt5DhpB7+DBpq9dYHUdESilnZ2cSExNVjFYApmmSmJh4zc9HtS+mPCIiIn8TP3kKhqMjvg9a83BzKRoe7dvhUKMGidOn4RHV4ZIPexeRiqtatWocPXqU+Ph4q6NICXB2dqZatWrXdIwKURERKRHZv/7K6SVL8Bk2DHs/P6vjyD9g2Gx4R9/HyYkvkrVtG65hYVZHEpFSxsHBgVpaFV0uQ1NzRUSkRMS/PRk7T0987h9idRQpApW6d8dWqRKJ02dYHUVERMogFaIiIlLsMn/6ifR16/C5/35sXl5Wx5EiYOfiQuV+/Uhfu5YzBw5aHUdERMoYFaIiIlKsTNMk/s23sPn44D1wgNVxpAhV7t8Pw8GBpJkzrY4iIiJljApREREpVhk//kjmli34PvQQdq6uVseRImTv44NXt26kLlpEXkKC1XFERKQMUSEqIiLF5s/RUPsAfyr1ucfqOFIMvKPvw8zJIfXrb6yOIiIiZYgKURERKTZpq1eT/csv+D08EjtHR6vjSDFwql0bpwb1SVu50uooIiJShqgQFRGRYmHm5xP/9ts41q6NV9cuVseRYuQZ1ZGs7dvJPXHC6igiIlJGqBAVEZFicXrxYnJ++x2/0aMx7PXY6vLMIyoKgLSVqyxOIiIiZYUKURERKXJmTg7xU97BuUEDPKI6WB1HiplT7Vo41a2r6bkiInLVVIiKiEiRS54/n9yjR/H716MYdvpVUxF4dOxIZmwsefHxVkcREZEyQH8diIhIkSrIyiLh/fdxCQ/DrVUrq+NICfGI6gCmSdrq1VZHERGRMkCFqIiIFKnkOXPIj0+gyr/+hWEYVseREuJUty6OtWpxWtNzRUTkKqgQFRGRIpOflkbC1I9xu/02XMPCrI4jJcgwDDyiosjcspW85GSr44iISCmnQlRERIpM0owZFKSmUuWRR6yOIhbw7BgF+fmkr1ljdRQRESnlVIiKiEiRyEtMJHHmLDzuvAPnBg2sjiMWcKpfH4fq1Tm9QtNzRUTk8lSIiohIkUj86CPM7Gz8Ro22OopY5Oz03A5kbNpEfmqq1XFERKQUUyEqIiL/WO6xYyTP/Qyv7t1wql3L6jhiIc+OHSEvj7R166yOIiIipZgKURER+ccS3n8fAL+HH7Y4iVjNOTgYe39/0jQ9V0RELkOFqIiI/CNnDh4k5auFVOp7Lw4BAVbHEYsZhoFnVAcyNm4kPz3d6jgiIlJKqRAVEZF/JGHKOxhOTvgOG2Z1FCklPDp2xMzNJX39d1ZHERGRUkqFqIiIXLfsPXs4vXQp3oMGYu/ra3UcKSVcQkOx9/MjbcUKq6OIiEgppUJURESuW/xbb2Pn6YnPkCFWR5FSxLCzw6NDB9K//56CzEyr44iISCmkQlRERK5L5rZtpH/3HT4PPIDN09PqOFLKeHTsiJmdTfqG762OIiIipZAKURERuWamaRL/xpvYfH3xHtDf6jhSCrmGh2Hz9iZtpabniojI39lbHUBERMqejB9+JDMmhhueG4edq6vVcSqknPwcTmSc4FjGMY6nH+eP9D84nnGc5OxkutbpSlTNKAzDsCyfYbPh0b49pxcvpiA7GztnZ8uyiIhI6XPFQtQwjOrAbOBGoAD4yDTNty9oEwl8DRw8t+kr0zQnFm1UEREpDUzTJP7NN3GoWpXKvXtbHafcyszN5HjGcY6lH+N4xrlCM/14YeEZnxWPiVnY3s6wo4prFeyw44nvnqDZjc14qulT1Klcx7Jr8IiKIuWLL8j44Qc82rWzLIeIiJQ+VzMimgc8bprmNsMwPIBYwzBWmaa5+4J235um2bnoI4qISGmStnIV2bt24f/KKxiOjlbHKbNO55w+byTzWPqxs//OFZrJZ5LPa29vZ8+NrjdS1b0qLaq2IMAtAH93f6q6V8XfzZ8b3G7Awc6BvII85u+bz5SfptDr2170rdeX4aHD8XQs+ft43Zo1xc7Li7SVK1WIiojIea5YiJqmeRw4fu51mmEYe4CqwIWFqIiIlHNmfj7xb7+N40034dXlbqvjlHpH046yO3H3eQXmHxlnRzbTc9PPa+tsc8bf3Z8AtwAa+jQkwD0Afzd/AtwDCHALwNfFF5ud7Yp92tvZc2+9e+kY2JEpP01hzp45LD24lEebPErXOl2xM0pueQjDwQGPdu1IW7WKgpwc7PTFhYiInHNN94gahhEINAb+d5HdtxqGsR04Bjxhmuauf5xORERKldRvviXnwAGqvv02hu3KRVFFdSD1AB/t+IhlB5dRYBYA4O7gToB7AFXdqhJ+Q3jhSGaAewAB7gFUdqpcpPd0VnauzPhbx9Pr5l688r9XGP/jeL7c9yVPN32aYL/gIuvnSjyiOpD61VdkbtqE++23l1i/IiJSuhmmaV65FWAYhjvwHfCyaZpfXbDPEygwTTPdMIy7gLdN06x7kXMMA4YB1KhRI+zQoUP/NL+IiJSQgpwcDtxxJ7bKlQmc/6WlC+GUVgdSDvDhjg9ZdnAZzvbO3HvLvdxV+y4C3AMsmRr7J9M0WXxgMW/EvkFCVgLd63TnkSaP4OPiU+x9F+TksL9FSzw6RhHw8svF3p+IiJQehmHEmqYZftF9V1OIGobhACwGVpim+cZVtI8Dwk3TTLhUm/DwcDMmJuaKfYuISOmQNGcOJ198ieoff4x7q5ZWxylVfk/5nQ+3f8jyuOVnC9B69xLdMBpvZ2+ro50nPSedD3d8yKe7P8XF3oURoSO4t9692NsV7yL6fzz5JBnfbaDuxu8xHByKtS8RESk9LleIXvFGEePsV97TgD2XKkINw7jxXDsMw2h67ryJ1x9ZRERKk4LMTBLe/wDXiAjcWrawOk6p8Vvyb4z5bgzdv+7O+qPrGRI0hBU9V/BY2GOlrggFcHd05/Hwx1nQdQHBfsG8uvVVen/bmy3HtxRrv55RUeSnppK5dWux9iMiImXH1XwF2hIYCOw0DOPnc9ueAWoAmKb5AdALGG4YRh6QBdxrXu2cXxERKfWSPp1DfkICfpPf1pRcYH/yfj7c8SEr41biYu/C/cH3M6jBICo7V7Y62lWp7VWbD9p/wNoja3lt62vcv/J+ompG8UT4E/i7+xd5f26tWmG4unJ6xUrcWuiLDBERuYZ7RIuapuaKiJQN+adP81v7Drg2bkz1Dz+wOo6l9iXv48PtH7Ly0Epc7V3pX78/gxoMopJzJaujXbfsvGxm7JrBtJ3TMDB4IPgBooOicbI5FWk/R//1LzK3bKXuhu+00JWISAXxj6bmiohIxZY4fToFp0/j9+gjVkexzN6kvTy2/jF6ftOTH479wNDgoazouYLRTUaX6SIUwNnemeEhw/mm2ze0rtaad35+h26LurHu8DqK8stqz44dyU9MJDM2tsjOKSIiZVfxrk4gIiJlWl5CAkmzP8Hzrrtwrl/f6jglbm/SXj7Y/gGrD6/G3cGdBxs9yMAGA/Fy8rI6WpELcA/gjcg32Hx8M6/87xVGrxtNy6oteSriKQK9Av/x+d1bt8ZwdiZtxUrcmjb954FFRKRM04ioiIhcUsJHH2GeOYPvqJFWRylRvyb9yqPrHqXXt73YfHwzD4U8xPKeyxnZeGS5LEL/qrl/c+Z3mc+Y8DFsP7Wd7t90543YN8jIzfhH57Vzc8O9dSvSVq3CLCgoorQiIlJWaURUREQuKvfYMVI++5xKPbrjVKuW1XFKxJ7EPXyw/ewiPh4OHgwPGU7/+v3LffF5IQc7BwY1HMRdte/irdi3mPHLDBb/vpjHwh+jU61O171glUdUR9JWrSbr5+24NmlcxKlFRKQs0YioiIhcVPy77wLgO2KExUmK3+7E3YxaO4p7Ft/D1hNbGREyguW9ljMidESFK0L/ytfFl5davcSnd31KFdcqPP3900Qvj+bXpF+v63zubSIxHBxIW7GiiJOKiEhZo1VzRUTkb84cOMiBzp3xHjiAG55+2uo4xWZX4i4++PkD1h9dj4ejBwMbDKR//f54OnpaHa3UKTALWLh/IW9ve5vUnFR639ybkaEjr3mxpiMPDSd7317qrFmjRwGJiJRzl1s1V1NzRUTkb+KnTMZwdsZn2DCroxSLXQm7eH/7+3x39Ds8HT0ZGTqSfvX74eHoYXW0UsvOsKPnzT1pX7M97/38HvP2zmN53HJGNx5Nz7o9sdld3SNZPDp2JH39erJ/+QWX4OBiTi0iIqWVpuaKiMh5snfvJm3Zcnyi78Pex8fqOEVqZ/xORqwewb1L7uXn+J8Z1XgUK3qu4MGQB1WEXiUvJy+ebvY0X9z9BXUr1eXFzS/Sd0lfjqYdvarjPdq2AXt7Tc8VEangVIiKiMh5Tr39NnZeXngPHmx1lCJzJv8MT3//NP2W9mNHwg5GNx7N8h7LGdZoGO6O7lbHK5Nurnwz0ztO57XbX+No+lEeW/8Y2XnZVzzO5uWFW/PmnF65qkifUyoiImWLClERESmUGRtLxncb8B36ADaP8jFCmHomlWErh7H4wGKGBg9lRc8VDG00VAVoETAMgzsC7+A/rf/DnqQ9vLLllas6zqNjFLmHD3Pm1+tb9EhERMo+FaIiIgKAaZqceuNNbH6+VO7f3+o4ReJY+jEGLRvEzoSd/Pe2/zK6yWjcHNysjlXu3FbtNoYGD+Wr/V+xcP/CK7b3aNcO7Ow4vXJlCaQTEZHSSIWoiIgAkLFxI1mxsfgOH46di4vVcf6x3Ym76b+0P/FZ8XzY4UPurHWn1ZHKtYdDH6aZfzNe/t/LV3y8i723N65Nm5K2fIWm54qIVFAqREVEBLOggFNvvolDtWpU7tXL6jj/2MY/NhK9PBp7O3tm3zGbiBsjrI5U7tnsbLza+lW8nLx4bP1jnM45fdn2nh2jyDl4kJzffiuhhCIiUpqoEBUREdJWruLM7j34jRqJ4ehodZx/ZOH+hYxcM5KanjWZc9cc6lSuY3WkCsPHxYfXb3+d4+nHeW7jc5cd7fRo3x4MQ9NzRUQqKBWiIiIVnJmXR/zkyTjWuQnPzp2tjnPdTNPkvZ/fY/yP42nm34yZd8ykimsVq2NVOKFVQnk8/HHWHlnLzF0zL9nO3s8Pl7AmpK1QISoiUhGpEBURqeBSv/6GnAMH8HvkEQybzeo41yW3IJfxP47n/e3v0/WmrrzT7h0tSmSh/vX70zGwI29ve5uYEzGXbOcZFcWZffs4c/BgCaYTEZHSQIWoiEgFZublkfDuuzgHBZ2dKlkGZeRmMGrNKBb9tojhIcN5seWLONg5WB2rQjMMgxdavEB1j+qM2TCG+Mz4i7bz6NABODs1XEREKhYVoiIiFVjaypXkHjuG74jhGIZhdZxrFp8ZT/TyaDYf38wLLV5gROiIMnkd5ZGbgxtvRr5JRm4GYzaMIa8g729tHPz9cQkJIW3FCgsSioiIlVSIiohUYImzZuFQswbukZFWR7lmv6f8Tv+l/Tl0+hBT2k6hR90eVkeSC9SpXIfxt44n9mQsk7dNvmgbj6gosnfvJufo0RJOJyIiVlIhKiJSQWX+9BPZ23fgPXAQhl3Z+nUQcyKGgcsGkpOfw8w7ZtK6WmurI8kldK7dmT639GHGrhmsObzmb/s9OkYBaNEiEZEKpmz95SEiIkUmadZs7Dw9qdS9m9VRrsnyg8sZtmoYvi6+zOk0hwY+DayOJFfwZMSTBPkEMW7jOA6fPnzePsdq1XBu0IA0PcZFRKRCUSEqIlIB5f7xB2krV1Kpdy/s3MrG6rKmaTLzl5mM2TCGYN9gPrnzE6q6V7U6llwFR5sjr0e+js3OxmPrHyM7L/u8/R4dO5K1fTu5x49blFBEREqaClERkQooac5cMAy8BwywOspVyS/I5z9b/sPrsa8TVTOKj6I+wsvJy+pYcg0C3AN4pdUr7Evex8v/e/m8fR5R51bPXaXVc0VEKgoVoiIiFUxBRgYpX36JZ8coHPz9rY5zRdl52Tz+3ePM/XUugxoM4rXbX8PJ5mR1LLkOrau1ZlijYSz6bRFf7f+qcLtTrVo43XwzpzU9V0SkwlAhKiJSwaR8tZCCtDS8Bw2yOsoVJWcnc//K+1l7eC1jI8YyJmIMdoZ+dZVlw0OGc6v/rby8+WX2JO4p3O7RMYqs2G3kxV/8maMiIlK+6Le5iEgFYhYUkPTJJ7iEhOASGmp1nMs6cvoIA5cNZG/SXl6PfJ0BDcrGNGK5PJudjVdve5XKzpV5bP1jnM45DYBnx45gmqStXm1xQhERKQkqREVEKpD09evJPXwY7+j7rI5yWTvjdzJg2QBSzqQwNWoqHWp2sDqSFKHKzpV5PfJ1TmSe4Nnvn6XALMCpTh0ca9fmtB7jIiJSIagQFRGpQJJmzsLe3x+PDqW3sFt/ZD1DVgzBxd6FT+78hMZVGlsdSYpBiF8IT4Q/wfqj65n+y3Tg7PTczC1byEtKsjidiIgUNxWiIiIVRPaePWRu2YL3gP4Y9vZWx7moL/Z+wSPrHuGmSjfx6V2fUsurltWRpBj1q9ePOwPvZMpPU9hyfAueUVFQUEDamjVWRxMRkWKmQlREpIJImjkLw9WVSr17Wx3lbwrMAt6KfYsXN79Iq6qtmN5xOr4uvlbHkmJmGAYTWkygpmdNxmwYQ2oNbxxq1CBN03NFRMo9FaIiIhVAXnw8qUuXUql7d2yenlbHOU9ufi7PbHyGab9Mo9fNvXi7zdu4OrhaHUtKiKuDK29GvklWXhZPbngSt6j2ZGzeTH5qqtXRRESkGKkQFRGpAJI/+wzy8vAeNNDqKOdJy0lj+OrhLDmwhNGNRzO++Xjs7UrntGEpPjdVuokJt05g26ltLK6eAHl5pK1dZ3UsEREpRipERUTKuYLsbJI/+xz3Nm1wrFnT6jiFTmScYNCyQcSejOXfrf7N0EZDMQzD6lhikbtq38W9t9zL5Kwl5FWpTNqKFVZHEhGRYqRCVESknEv99lvyk5PxHjTI6iiF9ibtpf/S/hzPOM577d/j7pvutjqSlAJjIsYQ7NeINbUzSf/hB/LT062OJCIixUSFqIhIOWaaJsmzZ+NUrx6uzZpaHQeA4+nHeWDlAwDMumMWtwbcanEiKS0cbY68fvvr/NTAGXJzSVqjRYtERMorFaIiIuVYxo8/cmb/b3jfd1+pmPaam5/LExueILcgl2lR07jF+xarI0kp4+/uz7C+r5HkDts+fxfTNK2OJCIixUCFqIhIOZY0axY2X188O91ldRQA3oh9gx3xO3ihxQsEegVaHUdKqZbVW5PZshE37jzGwh1zrY4jIiLFQIWoiEg5deb338nY8D2V+/XFztHR6jisPrSaT/d8Sr96/egY2NHqOFLK3drvMRzzYOW8/7IrcZfVcUREpIipEBURKaeSZn+C4ehI5T59rI7C4dOHee6H5wj2DeaJ8CesjiNlgFt4OHbelWm138bj6x8n9YyeKyoiUp6oEBURKYfykpNJ/fprPLvcjb2Pj6VZsvOyefy7x7Ez7Jh0+yQcbA6W5ikxx7fDZ/1g1fNQkG91mjLHsNnw7BBFk98KSEo9wTMbn6HALLA6loiIFBEVoiIi5VDKF19iZmeXike2vLr1VX5N+pVXWr9CgHuA1XGKX8ph+GoYfHg7HFgPP7wF8wZCTobVycocz45RGFlnmGDXlQ1HNzBt5zSrI4mISBFRISoiUs6YOTkkz5mDW4sWON98s6VZvv39W+bvm8/9QfdzW7XbLM1S7LKSYeU4mBIGu7+Glo/AY7vhztdg3zKY2QnSTlqdsuidSYet0+CPbUV+ateICGyVKhGyK4s7a93JOz+/w+bjm4u8HxERKXkqREVEypnTK1aQd+oU3vdZOxr6e8rvvLj5RcJuCGNk45GWZilWudnww2R4OwR+fAeCe8OoWOjwArhUgmbD4N65EL8XPm4Pp/ZYnbjoxO+Dj9vBksdgahuY1hF2LYT8vCI5veHggHu7tqSvW8fzYc8Q6BnI2A1jOZlRDgt6EZEKxrDq+Vzh4eFmTEyMJX2LiJRXpmkS16s3BZmZ1F6yGMPOmu8bM3Mz6bukLylnUvjy7i+p4lrFkhzFqqAAdn4Ba1+C1CNQpwO0nwA3Bl28/bGfYG6fs4Vrn9lQO7Lksv4fe3cd3uT193H8naTuLrSlXlqcQoFR3GXIcJcNmTCX3/yZ+5gwA7bhDhs+3N21UKHuLkmbxu7nj3TFCoMajJ3XdfVKm/vOfU7SbuSTc8731IDeIFFYqiFPpSFPqSFPVU6eUoNT4hZ6x32ABjN+c3qJYQE6fGIWQWES2HlD22kQPhGsnGrUvnL/flKmz8Bnzi9kt/Bh9ObRhDqF8luf3zCV/0fWGwuCIPxLyWSyU5IktanqmEl9d0YQBEGoO2WnT6O+dAmP9/7vvoVQSZL44OgHJBQlMLf33IczhF7dDTvehcwL4NkCBv8IAV3u/JgGrWDqLlg6ApYMg4HfQavx9dPf60iSRLFaR56y/JZwWdV9BaUaDNd9Zm2Cjv+ZrGCgyRbOE8Lntv8jpsiBuUd1/DZhJ4/oT8DRn2Hn/8Hez6DFaGj3JLiFVqu/1u3bI7e1pXjbdgK6fMwHHT7g1f2v8s2pb3gt4rVaelUEQRCE+iaCqCAIwkMkf8FCFPb22A8efN/6sCZ2DZvjN/NMy2do79n+vvWjTmScNwbQ+D3g0BCG/YYmdAj5pTry0ovIV2nIrwhy+SoN+aUatDoDCrkMmUyGQg5Wnt8ySv02geuf4dCJkxz0mYFCLkcuA7lchkImM95enrD/RAAAIABJREFU971cBgq5DLnsxvsVcpDLrt0vl8mQyaCoVEvubcJlvkqDVl/1bCg7CxNcbMxxsjbD38WaNn5OuFib4WRthrONOR7yQpoceh6rzOMYIqbRvM8nLDUxI7tEzbh5x5iy6BS/TmxHx8kDIPMiHPsZzi6DU/MhsDu0fxoCe8A9fEgiMzPDtns3SnbtQtK+R1//vpzJPsPiqMX42/szImREbf12BUEQhHokpuYKgiA8JDSpqVzt3QfnqVNxe+nF+9KHqLwoJmyZQIRHBD/1/Am57N9XiqBMo68MbHkqDflKDZrcRJrF/kDj3K2Uym1YZTWaZYbeZKkkSsqrXg8pl4GjlRlmJnIMkoTeQMWthNyg5U1+ZYRsNxsMkfxPN4MyQ+1/NmxlpqgMkS7WZjjbmOFkbY6LjfF7Z2vzylsna2NfbyvxIKyeAholDPwemt8YAPOU5Yz79RjxuSrmTGhNt0YVI+GqXDg5H078CspMcA4yjpC2GAPmNnf1PEp27yb16Wfw+e1XbCIj0eq1PLvnWQ6lHeLZVs8yrdk0ZDJZdV8mQRAEoY7caWquCKKCIAgPiaxPPyV/6TKCdu3E1N293tsv0ZQwcuNINAYNqweuxsmiZmsDa1tOSTnnUgqvBUxVecXtjaOYZdpre37aoeQZk/VMVmxHAlYqBrDBZhQWdk44WZvjXDFa6GRtVvn932HP3tIUhfwO4UiS4OAs2PUBNOwAo5disHBEXxFWDZW3YDBI6CWp8lZvkDD8HWxvul+SwN7SFGcbM6zMaiHcShIc/h52vg9O/jBqCbiFXXtdkxI4tGoJoR0649aiPRPnHycmU8mP48Lp1fi6v0OdxlhN+OhPkH4azO0hfAK0nQ6OvnfsgqG8nNhHOmD36KN4fvA+AFqDlncPvcum+E2MCR3D621f/1d+8CEIgvAwE0FUEAThIadXKonr0hWbbt3w+urLem9fkiRe3Psi+1L2Mb/vfFq6taz3PtyORmfgt4MJzN4dS6nmWsg0N5Ebw2NFcLw+VLpaSLTIWEXglTkoNMVom47GtOdbyBx8ar+DF9bAuqeMU33HrQangNpvo7rURbDuabiyCcIGGdfCWtgBxt/5hd3b2DN/Lnq9DslgwK9la9qNm84zGxO5lFbE7DGt6NfM88ZrShKkVqwjjVoPSNCov3Harm8HuM3IZtpLL6M6epTgA/uRKRQAGCQDs07OYmHUQvr49eGTjp9gpjCry1dEEARBuAc1KlYkk8l8gEWAB2AA5kqS9N1N58iA74D+QCkwWZKk2t9QTBAEQahS0dq1GFQqnCZNui/tL45azK7kXbzS5pUHKoTui8nh/Q2XiM9V0auxOzM6B+BuZ4GTtRlWZopbp3MaDHBhNez+8IZKuGa3q4RbG5oNBzsvWDHGuL3LmBXg07bu2rtbWZdg5QQoSITeH8Mjz1SGRE1ZKTvm/ciVQ/vwbd6Kvk+/SMyRAxxcsZi1bz/Ha4+NYRYezFx+hll6A4Nbel27rkxmfH4+baEo1Thl99QCY9j1aAbtnoKmw8DU4obu2PbpQ/GWLZSePIV1O+PrI5fJeSXiFVwsXfj61NcUqgv5ttu32Jjd3ZRfQRAE4f75xxFRmUzmCXhKknRaJpPZAqeAIZIkRV13Tn/gWYxBtB3wnSRJ7e50XTEiKgiCUDskvZ6rffpi4u6O39Il9d7+2eyzTNk6hc7enfm227cPxFq9lPxSPtwUxfaoLPycrfi/QU2urVm8nZsr4fb6oH63WMm7CkuHQ1EaDJ0DTR6rv7Zvdm4lbHzeOPo5YoFxpLJCTlICG7/5jMLMDDqMHEe7ISMqKzQX52az67efiT99Ahe/APa6dGVfvjlfDm/BsNbet29PUwrnV8KxXyDnCli7QpvHoc0TYGuc3msoLSWmQyQOQ4fi8e47t1xiw9UNvHvoXUIcQ/ip50+4WLrU6ksiCIIg3LtanZork8nWAz9IkrTjuvvmAHslSVpe8XM00FWSpIzbXUcEUUEQhNpRvH07ac89j9f332HXu3e9tl2gLmDExhGYyE1YNXAVdmZ29dr+zdRaPXP2xfPT3jjkMhkzuwcxtZM/5iaK2z8o47xxq5Gru43TY3v8HzQZek+VXWuNKg9WjIWUo9DzfYh8/rZTVeuErhy2vgEnfwPfSBg+vzIISpLEhV3b2LNgLuY2Ngx47lV8Gje75RKSJBFz9BC75/9CWXExWT5t+VPelA+HhzMqouGd25ckY0Xio79A7DaQmxpHR9s/CQ1akfrc85SdOUPQvr1Vbk90IPUAL+97GRdLF+b0nIOPXR1MpRYEQRDuWq0FUZlM5gfsB5pKklR83f2bgM8kSTpY8fMu4H+SJJ286fHTgekADRs2bJ2UlHRvz0QQBEG4ReK48egyMwncvq1y7Vx9MEgGnt71NMczjrO4/2KaODept7ZvJkkSOy9n88GmS6TklzGguSdv9Q+jgYPl7R9UmAy7PzaOxFk6QOdXIWIqmJjXX8erolXD+qfh4lpoPRn6fw2KethtrTAFVk+CtFPQ4VljIFeYArdOxe0/82Ws7B3ueDm1UsmBZQs4v2srGgt7ttpHMnVMfyY84nd3/cm7CsfmwNmlxkq9Pu0p0j5C+rcr8V22FKvw8Cofdi7nHM/segaFTMEvPX8hzDmsyvMEQRCEulcrQVQmk9kA+4CPJUn646Zjm4FPbwqir0mSdOp21xMjooIgCDVXduEiiSNG4Pb6/3CePLle2557fi6zz8zmnfbvMLLRyHpt+3oJuSo+2HiJPdE5BLvZ8P6gJnQIusO0zLICOPA1HJtr/Ln9U9DxRWMYfVAYDMZ1qgdnGffdHLGgskhQnYjbBWungl4LQ36CxoMqD2UnxrPp28+rnIp7N1KvXGL7nNkUpKcSYx1Em9FTmNa7xd33TV0EZ5bAsTnoc5KJXeeJY/dmuH8xBywdq3xIfGE8M3bOoERTwnfdvqOd5x1XCwmCIAh1pMZBVCaTmQKbgG2SJM2q4riYmisIgnAfpL36GsrduwnatxeFTf0VaDmecZxpO6bR168vn3X67L6sCy3V6PhxTxzz9idgZiLnhZ7BTOrgh6niNiFJW2YsjLP/K2O4aTkWur0J9ndYu3i/nVoIm140bpcydhXYe/3zY+6FwWAM5Xs+NrYxcjG4BAHXpuLuXjAHCxvb207FvRs6rZajf67m6J8rKUeBXeehzHxy3L393Rj0EP0XKa/+H+r0YoKGKpGF9IKQfhDcG6ydbzg9U5XJUzufIqk4iU86fUJfv77V6rsgCIJQfTUKohUVcRcC+ZIkvXCbcwYAM7lWrOh7SZLuWPJPBFFBEISa0WZlEdejJ07jxuL+xhv11m5OaQ4jNo7AztyOFQNWYGVqVW9tgzEgbbmQyUebo8goUjO0lRev9wvFze66KqtatbHqa8ZZ41f6Wci+DAZtZSVc6rISbm2K2wWrJoG5jTGMejavneuW5sOfMyB2OzQbCQO/BTNroHpTce9GdnIy8z77Aou8RGSegUx+7VWcGtzbBwGF69aR8fob+D3bDsuyI6DMBJkcvNtCo37GL5cQkMkoKi/i2d3Pcjb7LG+0e4MxoWOq1W9JksiIvcLlg/tQK0to3X8wHkEh1bqWIAjCf0lNg2hH4ABwAeP2LQBvAg0BJEn6pSKs/gD0xbh9y5Sb14feTARRQRCEmsme9Q15v/5K4PZtmHnXz6iezqBj2vZpXMy9yPIBywlyDKqXdv8Wm1XCexsvcSgujzBPOz4Y3IQIL0vIvHgtcGacg5zLYNAZH2TpCJ4tjZVwg3uBX8d67XOtyLoES0eCutBYQCikhkWp0s/CqglQnAF9PzWuja0YnTROxf2MwsxMIkeNp+3g4fc0Ffef6HR63vt6PpZnt2CBnkeGjaLt4BGYmJre1eP1RUXEdOyE86SJuL30kvH3HrMVorcYKx4DOPobA2lIX9Re4bx66E32puxlevPpzGw5865HYnOTE7l8aB9XDu2nOCcLE1MzTMzMUKuUBLRuS4cR43D3D6zuSyEIgvDQq9WqubVFBFFBEITqM5SVEde1G1ZtI/CePbve2v3+9PfMuzCPjzt+zKDAQf/8gFpSotby/a5YVhy6QiuzFGaGqmhjlow88xzkRIOkN55o5WwMnQ1aXgufDg3rt/JsXSnOgGUjIesi9P/SGB6r4/Qi2PwKWLvAyEXgbXx/IEkS53duZc/CuVja2DLgudfwblw3o8YGg8Rbyw6Tv3s1Iao4nLx86DV9Jt6hd1fwKnnadDSJicYCXdf/botSK0LpVkjYD/pyMLdHF9idD630/JF3lmHBw3i7/duYyKsuAFWUncWVw/u5cmgfucmJyORyfJu3IiyyC4Ft2iOTwZmtmzi58Q/UKiVBEY/QYcRYXH39a+OlEQRBeKiIICoIgvCQKVixksz33sN3yWKs2lT5//datz91P8/seoZhwcN4r8N7dd9guRIp4xwXT+4n5dIRgvRxBMkzkP89OcfarSJwtrgWPu28Ho7QeTvlSlj7hDFsPTITen1499vMaMtgyyvGwj8B3WDYr8YwCpSXlrJj3g9EH96PX4tw+s18GSs7+zp8IsYw+u6GixzYfYBHlUeQqwpo3rMvncZOxsL6zuudC9esIePtd/D/Yy0WjRtXfVK5EuL3QsxfELMNSZXDbEcH5jnY0d3al887fYaFuzFolxYXEXPkIJcP7SM92rhNeoOQMEI7dqFR+45VTksuL1VxessGTm1eR3mpipD2HXlk+BhcfHxr9LoIgiA8TEQQFQRBeIhIBgPxjw5EbmmJ35rV9VIoKEOZwYhNI/Cw8mBJ/yVYmFj884PuhboYMs9XTK01Tq+VcmORYfw3Kk/uhIlXK+wDIozBs0FLsPV8uEPn7Rj0sPV1OD4XwgbCY3PB7B/W6eYnGKfiZl4wblPT9Q2QG7f6qeupuHciSRIfbIpiyYFYJltcwTLmMFb29nSbPIOQ9pG3/dvWFRQQ27kLTmPH3N36aIMB0k9D9F8svbqez83UtFZpmJnpSlJpQxLTlUgGCWfvhoR17EpoZGfs3Tzu6jmolUpObVnH6S3r0ajVhHboTPtho3H2EnuYCoIgiCAqCILwEFHu30/K9Bk0+PIL7AcOrPP2tHotk7dO5mrRVVY+uhJfu1oY8cmKgrid19Z15l+tPGSwbUC0PJCtee7EmwbRo1tvBnUMRy7/D4bO25EkOPozbHsTvFrDmBVg41r1udF/GYsSAQydByF9Ki5Rf1Nx70SSJD7beoU5++IZHyinUdxfZCfGExAeQY8nnsbOpernlfbSSygPHSZ4317kFnf3wYhOqyXx7Cn2bFlI/pUkTAxyrE3LaWKXTahrGa7NO0NIXwjqec/b+ZSVFHNy05+c+WsjOo2GsI5daD98DI4eDe7pOoIgCA8TEUQFQRAeIsmPP0F5bCxBu3YiMzOr8/Y+P/45Sy4v4esuX9Pbr4ZFcsC4dm/JMNBrwN6ncoTT4N6CDTmufLAnl8JSDePa+fJy7xAcrOr+Of5rXd4Ia6eBjRuMWwOu11VyNeiN27Ic+Bo8msOoxeDoB1RMxZ07m+gjB2o8FdegN5CfocLRwxqFSfVGUiVJ4psdMXy/O45hLT0ZZZXIkTVLkcnkdBw1npZ9H0VeMYL7N9Xx4yRPnITnJ5/gMPSx2/fPoCc16hJXDu0l5tghylUqLG3tsG8RzFJpJ3oPK34JHIV/8imI3QaleSA3gYaPVBY8wvnuCxKVFhdxYsNazm7bjF6npXHn7rQfOhoH97sbYRUEQXiYiCAqCILwkCiPjSV+4CBcX3gBlydn1Hl72xO38/K+lxkXNo7X275e8wtmnIP5A4z7YU74E+yMo0XnUwt5Z/0lzqUU0trXkfcHNaGpV+2uUdSoyyjKykSSJCRJgopbSTKABJJkQKq45ZZzbvy56vurvo6tsytuAYGYmpnX6vOplHoKlo8yBvvRy4xVgVW5sOZxSNgHrSZA/6/A1DhqmJVwlU3ffkZRdhaRoybQdtCwe56KK0kSuSlKoo9mEnMyi7JiDQ7uVnQcGYxvE+d/vsBtfL8rllk7YhjUogHvdfNgz/xfSDx7Co/AYHpNfxY3v4Ab+hA/cCByK2v8V628pX/ZCVe5fHAv0Yf3oyzIx9TCkuCI9oR27ErDpi1QmJhwKe8ST+98GoNk4KceP9HMuTGknjSuK43eaqy+DODSCBr1Ne5Z6tO2clrznagKCzi+fg3ndmxBMhho0rUn7R8bhZ2rW7VfH0EQhH8bEUQFQRAeEhnvvEPRxk0E7dmNiaNjnbaVXJzMyE0jCbQPZEHfBZgq7m57jdvKj4ff+oDCDJ7YDvZe5Ks0fLntCitOpOBsbc6b/UN5rJVXra571ZarObN1EyfWr0GtUtbade+FXGGCm58/nsGheIaE0iC4EXau7rX3PAuSYOkI42vc5TU4tcAYRgd8BeETgb+n4v7FnoXzsLS1Y8Bzr+Iddm9TcUvy1cQczyT6WBYFGSrkChl+zVzwauTA+d2pFOWU4dfMmcjhwTi4V29/2V/2XeWzv67Qr6kH341uSfyxg+xZOI+ykmLaPPoYjwwfg6m5MVTnL15C1scf47d2DZZNmpCfnsaVQ/u4cmgfBRlpyBUm+LdqQ1jHLgSER1Q+7nrJxcnM2DGDPHUes7rOoqPXddv75CdAzDbj1jBJh4xbAjkFwpS/wNb9rp6PMj+PY+tWc2HXViQJmnXvTbvHRmLr7FKt10cQBOHfRARRQRCEh4AuP5+4rt2wf+wxPN9/r07bUuvUjN8ynszSTFY/uhpPG8+aXbAkC37vbSxK9Pg29M7BLDuWxFfbY1CW65jSwY/negZjZ1HDsHsdvU7HxT07OLp2OcqCfPxbtaFJlx7IFQpkMjnIZMiu++Km26rvl2P8Vg4Vtzc/5obvgYLMDDJir5ARc4XMq7Foy9UAWNk7GINpcCMahITiERCM6V2udaxSWaGxIFHCfnDwNU7F9WwB3DQVt2Vr+j3z0l1PxdWU6Yg7nU3MsUzSYgtBAs9Ae0LaeRDU2g0La+PvTK81cG5PCie3JKLXGmjR3Yc2/f0ws6x6m5Q7+e1gAh9uiqJnmDs/jmuFQV3K/iXzubhnO/Zu7vSc+gx+LcLRl5RwoXs38tu1Jt3Wkqz4OJDJ8GncjNDILoS0i8TC5s4VeAFyy3J5audTxBXE8UHkBwwMrGLttbrIGEo3Pg8uITB5M5j/87X/Vpybw/F1q7iwewcyGTTv2Y+2g4dj41T9EWRBEIQHnQiigiAID4Gcn34i9/vZBGzehHng3a9Zq473Dr/H2ti1/NjjRzp7d67ZxdRFsGAA5F2FSRu5QDBv/Hmei2nFPBLgzPuDmxDibls7HcdYVTj6yAEOrVpCYWYGDRo1ptOYifc8+lcXDHo9uSlJxmAaG016zBUKMtIAkMnluDb0xzO4UWU4dfBocG+jpjoNRK2D4F5gaRwxr85UXL3eQMqlfKKPZ5JwLhe91oC9qyWN2nsQ0tYDe1fL2z5WVVTO0XVXuXIkEys7M9oPCSS0vQeyeyw2tfhIIu+sv0TXRq78Mr41FqYKUqIusGPuDxRkpBHSLpIyZQkpl84D4ObrT1jn7jTq0Albp3sfbVRqlDy/53mOZx7nlTavMKnJpKpPjN4KK8ZAcG8YtRQU9xa0i7KzOPbnSi7u3YlCYUKL3v2IGDQca4e6neEgCIJwP4ggKgiC8C9n0GiI694Di7AwGs6bW6dtbby6kTcPvsnUZlN5Pvz5ml1Mq4alwyH5COoRy/nqqje/H0rA2cacdx9tzKPNPWtteqokSSSeO82B5QvJSYzHpaEfHUdPJCA8ol62uKmuspJiMuKiK4NpZlw0mrIyACxsbI2hNDgUz+BQPIJCMLe6uymvkiRxbsdf7F04F0s7ewY8/xreoU3ueH52UgnRxzKJO5lFWYkWC2tTgtu4EdLeA3c/u3t6HbMSizmwMoashGLc/OzoNCoYD/97W/e74ngyb/x5gchAF+ZNbIOlmQKdRsOxdas5vm419m5uBAU3xnLO7wS+9j+cxo+7p+vfTKPX8PqB19mRtIPJTSbzYusXkcuqCO0nfoPNL0GbJ2DA19XaRqgwM4Ojf6wkav9uFKamtOwzgIhBw+p8/1ZBEIT6JIKoIAjCv0W5ErSlxiqo1ylct46M19/A59dfsekYWWfNxxXEMXbLWJo4N2Fe73mYyO99WmUlgx5WT4LLG4lq/xXTzgaSVljG2HYN+V/fUOwta28ablr0ZQ4uX0jq5YvYu7kTOXI8jSI731Jp9d/AYNCTn5ZKeoxx1DQj9gp5qcnGgzIZLt4NjaOmIaE0CA7FqYH3LSOc5aWlbJ87m5i7mIpbnFtGzPEsoo9lUphVisJEjl9zZxq186BhE+dqV8IFkAwSMcczOfznVUqLNDRq58EjjwVi7XD3hZvWnkrl1TXnaOvvxG+TIrA2N/5N6nW6imnWMhJGjMRQVkrAxo01/tBBb9Dz6fFPWRm9koEBA3k/8n1M5VX8re54Fw59Bz3fh44vVLu9/PQ0jv6xgssH92JqZk6rfgNp8+hjWNra1eBZCIIgPBhEEBUEQfg3kCSY3x8yz8OIBcbplRhHqhKGDgOdFv8NG+psdK9UW8rozaMpLi9m9cDVuFrdZl/KuyFJsOkFOLWAta7P8HJKJEFuNnw6tBkRfk611ufc5EQOrlzM1ZPHsLJ34JFhY2jWozcKk9oLuQ8CtUpJZlxMZTDNiI2uLLxkbmWNR1AInsGhNAgJxdTcnG0/f0dRThYdR08kYuDQKoKqlrhT2UQfyyQjrgiABsEONGrnQWC4K+ZWtfv6adQ6Tm1N4uzOZOQKOW36+dKyR0MUpncXctefTeOlVedo5ePA/CkR2N60lrhw7R9kvPUWvosXYRURUeP+SpLEnPNz+PHsj3T06sjXXb7GyvSmkWiDAdY+AZf+gOG/Q9NhNWozLzWFI2uXE33kAGYWFoT3H0zr/kPuao2rIAjCg0oEUUEQhH+D86vhj6lg426seNr/S4h4AtWx4yRPmoTHhx/gOGJEnTQtSRKvH3idrYlbmddrHm0929bsers/Qrb/S35lCF9oR/NMtyCe7BqAuUntjFAWZWdyeNVSog7uxdzSiohBwwjvN6hmxX7+RSSDgYLM9IpRU2MwzU1OMm4ZA9g4Od8yFVevM5B0MY+Y45kkns9DrzPg4G5Fo3YehLR1x87l9us+a0tRTimH1sSRcC4XO1dLIocF4d/C5a4+XPnrQgbPLj9DUy97Fj7e9oYRdUNZGbFdumLTqRNeX39Va/1dHbOaj45+RFPnpvzY40ccLBxuPEGrhsVDIO0UTFwPvh1q3GZuciJH1iwn5tghzK2saT1gCOH9B2FuZV3jawuCINQ3EUQFQRAedOVK+KEN2HrAxA2wdirEboMOz5HyZx5lZ88StGc38joKWquiV/Hh0Q+Z2XImM1rUbH/S3F2zcTnwNit1XVnr9T8+GdaMILfaKUakKizg6B8rOb9zK3K5nFb9BhIxeDiWNrVX7OjfSlNWSubVOAoy0ghu1wErO3skSSIrobhi3Wc2apUWS1tTgtu406i9B64Nbe/L+tmUqHwOrIqhILMUnzBHOo4IwanBPwetHVFZPL30FI08bFnyRDscrMwqj2V+8gkFy1cQvHcPJs61V4l2V9IuXtv/Gl62XszpOefWCtKl+fBbb1DlwNSd4BJcK+1mJ8ZzZM0y4k4cxdTcgobNWhIQ3gb/lm3E1i+CIPxriCAqCILwoNv5PhycBU/sBJ8I0Otg6//Q7J7P1S3uOE+bittLL9dJ01F5UYzfMp62Hm35qedPVRdnuQsanYFda36hz+U32SdrTVbfeYxs64/8HqulVqW8VMWJDX9west6dFoNzbr3pv2w0dWqjvpfUJRTSvSxLGKOZVKUU4bCVI5/CxcatfPAp7ETCkX1133WFr3ewMW9aRzflIC2XE+zrl5EDPCv3A7mdvZEZzNj8SkCXKx5sVcIga42+DpbYUhKJL7/AFxfegmX6dNqta8nM0/y3O7nsDS15JeevxDseFPYzE+A33qBqZUxjN60xrsmsuLjuLB7G/FnTlKSmwOAa0M//Fu1wb9VGxqEhCFX/PvWQguC8N8ggqggCMKDLO8q/NQemg6Hx36+dr8kkTlzFAV7zhM0vQGm01aBde0FL41ew7q4dfx87mcUMgWrB67G0aJ6W0icSspn5crFfKR6n2SrxthN3Yibc823o9Bqyjm7dRPH169BrSyhUYfORI4ch6OnV42v/aAy6A1oNQa0aj3ach06jQFtuQ6NWl/5vbZcf8OX7rrvVUUacpJLQAZeIcZ1nwGt3DCvxn6e9aGsRMOxDfFcOpiOhbUp7QYF0Lhjgzt+gHEwNpcZi0+i0ugBMJHL8HW24rXt3+Nckkfid4sI8rAnwNW61vamjc6P5qmdT6ExaFjSbwl+9n43npB2CuYPALcwmLwJzGp3Kq0kSeSlJpNw5iQJZ06SFh2FQa/H3Noav+bhxmDasjVW9g7/fDFBEIR6IoKoIAjCg2zZaEg8CM+eNE7NraAvLia2azfs2obSwHun8di4NTWe+qfWqVkbu5bfL/5Odmk2zV2b8277d2nk1Oier1Ws1vLF1iucP76X5WYfYbD3xfbJbZV7WFaXQa/n4t4dHFmzHGV+Hn4tW9Nx9ETc/et2/9TapFHrSLqYR0me+pbgeKcgqdcZ7roNmQxMzRXGLwsTTMzkmFua4NPYiZC2Htg6/XvWzOaklHBwVSzpsYW4+NjQaWQwDYJv/3ekKtcRl63kao7xKy5bie2x/Tyxcx7vPPIEJ93DAHCzNSfQ1YZAN2sCXW0IcrMh0NUGT3uLe56WnFyczPgt47E1s2VJ/yW3fnBzZQusHAchfWHUEqjDqs3lpSqSLpwl/vQJEs+eQlVYADIZHgFB+LdqQ0CrCNwDgv4g4XiHAAAgAElEQVRxz1hBEIS6JIKoIAjCgyp2h3GfzV4fQuRzNxzK++13sr/8Ev8/1mJhq4Llo8GggzHLq1UUpVRbyqroVSy4tIA8dR6t3VvzZIsnaefRrlrrBLdezOT/NlzESpnIJqsPsbS2Q/7EdrDz/OcH34ZkMBBz7BCHVi6mICMdz5BQOo2ZhE/jZtW+Zn3SqHUkns8l7lQ2yZfyr4XK6wPjzV9m1743uc05t7tfYSJ/oPdIvVeSJBF3KpvDa+NQFpQT1NqNDsOC7jpQSxoNsd26I4U2JvnlD28JqiVqXeW5VmYKAlwrwqmrDYEVAdXPxeqORbXOZJ9h6rapNHExbnFkrrhpK5pjc+GvV6HtdOj3RbX2GL1XksFAdmI8CWdOEn/2JBmx0SBJWNrZ49+yNf6t2uDXPFxU4BUEod6JICoIgvAg0mmMU3JlMnjqCJhcK7wi6XTE9e6NmZc3vosXGe/MT4ClI6AwCQb/BM3vroKuUqNk+ZXlLIpaRGF5Ie092zOj+QzaeFT578I/yixS8+76i2yPyqKDm4b5hrcxN5TB49vBJaha15QkiaRzpzmwfBHZiVdx8fElcvREAlu3feCDlqZMR8L5XK6evhY+re3NCAh3IyjcDVdfW0xMH67AWNe0Gj1ntiVxensyMqBVH19a9W6Iqdk/jzBmf/steXPnEbRzB6YNGlTeL0kSuUrNDeH0ao6Kq9lK0grLKs+Ty8DHycoYTl2s8bMyx9PMFEeZAsr0SBIkmEfxYdxb9ArqweedPr/1d7vtLTjyA/T+GDrMrK2X5a6VFheRdO408WdOknjuNGplCTK5nAYhofi3iiCgVRtcGvqJv0lBEOqcCKKCIAgPokPfwY53YdxaCO55w6HirVtJe+FFvH/8AdsePa4dKM2HlRMg6SB0fxs6vXLbEZei8iKWXV7G4suLKdGU0MmrE9ObT6elW8tqdddgkFh6LInPt0aj1Rt4rYsnj8c+hawwGSZtBK/wal03PeYKB5cvJCXqAnau7kSOHEdoxy7I63BaY02Vl+lIPJdD3OkckqPyMOgkrB3MCQx3JSjcDY8Ae2S1UKTpv64kX83htXHEncrGxsmcyGHBBIa73jFAadPTievZC+fp03B74YUqz5EkCU2ZDmVBOarCcvJzy0hLV5KTo6I4vxyNUou8TI+5/g6dk0nkWqbh7GtFj4hI3P3tcHS3Mv7eDQZYMxmi1sOIhdBkSM1eiBowGPRkxsUYR0vPnCQ74Spg3OLn74JHvk1bYGZp9Q9XEgRBuHciiAqCIDxoSjJhdmvw6wRjV9xyOHH0GHT5+QT+tQXZzRUxdeWwfiZcWAWtxsOj34LiWkGWAnUBi6MWs+zKMlRaFd18ujGjxQyaODehuqIzS3jjj/OcTi6kY5ALnwwMpOHmCZB6AsathsBu93zN3JQkDq5YzNWTR7Gyd6D90FE069EXE9PaKS5T28pLtcaRz1PZJF/Ox6CTsHE0J7CVG4Gt3fDwtxPhs46kxRRwYFUsealKGgQ70GlUMC7eVW/ZY9AbiHvmVYqupuH4ySxUJXpUheWVX8qKW53m1rW4FjamWDuYY+NojrWDOVb2ZmhN5RRIejI0WhJL1eyIysJRDQO9nNAUJiLLtsRcbwxxZpYmuPvZ4u5vj7uPBe7HnsIy54jxg5qG7er0Nbpbyvw8Es6dIuHMSZLOn0FTVoZcYYJ346YEVARTR08vMVoqCEKtEEFUEAThQfPnk3BxLTx9FJxvLMBTdu4ciaNG4/7WWzhNGF/14yUJ9nwC+7+AgG4wciG5kpaFlxayMnolap2aXr69mN58erWKEP1NrdXzw+44ftl3FVsLE955tDGPtXBHtmoSRG+B4b9B02H3dM3i3BwOr1rCpf27MbOwJGLgUMIHDMbMwrLa/awr5aVaEs7lEnc6m5SofAz6ivAZ7kZQazfc/UT4rC8Gg0TUwXSOrY+nvFRLWGQD7FwsUBVcC5fKwnLKijXc/NZGbiLD2t4cGwdjwLw+bFo7VNxvb47C9J8L+2QXq3l/UxSbz2cQ5GaBU8AicrIyebXhu1gVuJCVUERemgrJYOyEnWku7mZxeHTrh3uTQFx8bFCYPBgFhPQ6LenRl4mvqMSbl5oMgL27BwGtIogYPExskSQIQo2IICoIgvAgSTlu3HOw40vQ8/9uOZz20ksoDxwkeO8e5Nb/sAXEmSVkbXmR+e4+rDGXoZV09PPvx7Rm0wh0qFmF2cNXc3nrz4sk5KoYGu7F2wMa42RlChtmwpkl0O9LaDf9rq9XXqri+LrVnN6yAQmJln0epd2QEVja2tWon7VNrTKGz6uns0m5XBE+nSrCZ7gIn/ebWqXlxKYELuxLQzJImFuZXAuTf3/ZmVLy9UdYO1sRPPtzLGxMa32Eb/eVLN5Zd4m04nw8w34FRTFLBywhwD4AbbmenORiMuOLyYrJIOtKGiq9scKuwkSOi48NHv72uPvb4e5vh63zvVfwrQtF2VkknD1FwpkTJF04i7mVNYNefguvRmH3u2uCIPxLiSAqCILwoDAYYF43UGbBzJNgfmMVS216OnG9euM0cSLu/3vtjpdKV6bz+8Xf+SNmLQaDlkfLDUzrPgvf4L416mKBSsMnWy6z+lQqDZ2s+OSxZnQMrhgV2fk+HJwFnV81rlG9C3qdjvM7/+LImuWUlRQT1rErHUdPxM7VrUb9rE3G8JlD3KkcUq8Yw6etkwWB4a4E/j3y+QAEBeGa8jIdcoXstgWMcufOI2fWLAK2bMY8IKBO+qAq1/HNjhjmHz+Fld9POFra8OeQFThbOt94YsoJlL9NJNOqO1l+M8lKLiUnqQSd1jg92NLW1Did198OD3873PzsMLO4v/u+5qYksf7LjyjOzaHHE0/RvEef+9ofQRD+nUQQFQRBeFCcXgQbnoWhv1ZZ9Tbr00/JX7yEoB3bMfXyqvISKcUp/HrxVzbEbQAZDAkawhOeXfH+8xljMaPhv0Ojew+jkiSx4Vw6H2yMorBMy7ROATzfIxjLv9/oH/0Ztr4OrScb16X+QzCTJIm440c4sHwBBRnp+DRpTpfxj+MeUL3KurVNrdISfzaHq6ezSb1cgMEgYetsQVC4cc2nm6+tCJ//Yrq8PGK7dsNxzGg83nyzTtu6kFrESxvWk2H5DTYyX5Y++juBLk43nnR5o7HQWOgAGLkIvSQjP01FVkIRmQnFZCUUU5hVajxXBk6e1hXB1B4XHxssbc2wsDG9q8rBtaVMWcLm774g6fwZWvYZQNeJ01CY3N+ALAjCv4sIooIgCA+CskJjgSLnIHh86y1BruziJRJHjcJ+yGAafPzxLQ9PKEpg3vl5bEnYgkKmYFjIMB5v+jge1h7GE0oyYdkoyDxv3L+w7bS77lpKfilvr7vIvpgcWnjb8+nQ5jRucN2U2fOr4Y+pEPoojFwE/1DRNj3mMvuWzCc9Ogpn74Z0HjcF/1Zt7nuwUyu1xJ/L4eqpbFKvGMOnnYtF5ZpP14YifD5M0l5+BeWBAwTv24vcsm7XIOv0Bt7avpQt2V9gKGnBC83fY0pkACaK69aD/v1hTvunoe+nt1xDrdKSnVhcGUyzEoooL9XdcI6JqRwLG1MsbEyxtDHFwtoUCxuzaz9X3nftZxPT6odXg17P/mULOLXpT3waN+PRF1/Hys6+2tcTBOG/RQRRQRCEB8HWN4xvRGfsA88WNxySNBoSho9AX1BAwKaNKOyvvdGLLYhl3vl5bE3cirnCnBGNRjClyRRcrVxvbUOjgjVPQMxf8MhM6PUhyG9fGEVVrmPRkSS+3xWLTAav9G7EpA5+KK5fAxm30xhwfdrD+LVganHb6xVkpnNw2UJijh3Cyt6ByFHjadq1F/KbK//Wo8KsUpIu5pF4IZe0mEKkivAZ1NqNwHARPh9mpSdOkDRhIp4ff4zDsKH10ua3J+bwW9QPlOd2JcRsJJ8+1pxm3tcFt79eh2M/Q9/PoP1Td7yWJEkUZZeRn6FCrdKiVmopU2pRKzXXvq+4/+bAej0TcwUW1iZYVgRWC+vbhVazymM3F26KOrCH7XO+x9rBkcGvvI2bX91MdxYE4eEigqggCML9ln0Ffu4A4RNh4Le3HM75fja5P/2E908/YdvduBXK5bzLzD0/l53JO7EysWJ06GgmNp546/qzmxn0xtB7fA6EDYTH5oLZjXsE5irLWXg4kUVHkigq09Ij1I0PhjTFy+GmUaPUU7BwIDgFwJTNYFH1SEhZSTFH167g7PYtyE0URAwcSpuBQ+9LJVy9zkB6XCFJF4zhsyi7DABHT2v8m7sQ1NoNFx8bET7/AyRJImHQIGQWlvivXlVvbb5/5H3Wxq7FNH8UhdmtmNzBn5d7h2BtbmL873PVRLiyGUYtNv43WgsMegNqlQ61UotapUGt1FGm1KBW/R1eK76u+1lTdvvwamZpQtPOXrQZ4Fc5HTgzLob1X3+MWqWk71Mv0OiRTrXSd0EQHl4iiAqCINxPkgSLBkPGOXj2NFjfGCTVly+TMGIkdv364fXlF1zIucCc83PYl7oPW1NbxoaNZXzYeBwsHO6t3aM/GwOpVziMWQk2riTlqZh3IJ7VJ1PR6A30CnNnRpdAWvs63vr4nBj4vQ9Y2MHj28HW/ZZTdBoNp//awPF1q9GUldG0ey86jBiHjaPTrderQ6XFGpIu5pF0IZfky/lo1XoUJnK8Gjng18wF36bO2Lk8eNvDCHUvf8lSsj76CL81a7BsWv29dO+F1qDlmZ3PcDzzBG2tXmX7SXu8HCz5YHATeoS5g6YUFg2CzAswaRP4RNRLv26m1xkqR1RvDqm5qUquns7G1smCzqND8GtuLFimKixgw9efkB5zmXaPjSRy5Hhkd5h1IQjCf5sIooIgCPfT5Y2wcjz0/+qWdZuSVkvCyFHocnII2LiB2fEL+P3i79ib2zM+bDxjw8ZiZ1aD7U0ub4K1Uym3dOFzp49YEGOKiVzO0HAvpnYKIMjNpurHFaUZQ6hODU9sN46IXt9vg4Erh/ZxYMUiSnJzCAiPoNPYybj4+Fa/r/dAkiRyU5QkXsgl8UIe2UnFIIG1vRm+zV3wa+qMd6gTpub3b0qw8GDQl5QQ27kLdgP60+Cjj+qt3RJNCRP/mkimKpM3Wv7AD9uUxGQp6d/Mg/cGNsFNoYRfe0J5MTyx45b9hB8E6bEF7F0WQ0GGCv8WLnQaFYKtkwU6rZbdv//Mhd3bCQiPoP+zr2Bu9Q9bTQmC8J8kgqggCML9oi2DH9uCmS3M2A+KGytO5v78MznffY/X998R39KNiX9NZGDgQN5s9ybWpjV7YydJEvtjc9m5YzPPZb+DOXo2Nv6Knv2G4m53+3WelObD/P5QlGqcjnvTetbki+fZt+Q3shOu4uYXSJcJj9OwaYvbXKz2aNQ6Uq8UkHQhl6SLeaiKNCADdz87/Jo549vMBRdvMeVWuFXGO+9StGkTwfv2orCrv31r05XpjN08FnOFOQv6LOGPk0V8tysWc4Wc1/qFMi5Qg/z33mDpaAyj1v8w7f4+0OsMnNuVwolNCSCX0XaAP817eCOXyzi3fQt7Fs7Fwd2Twa++g1ODqit9C4Lw3yWCqCAIwv2y7wvY87Fx+p3/jeup1DExJAwbjl2vnrh9+TkjN41EqVWybvC6GoVQnd7A5gsZ/LIvnssZxbjbmfN8uBmjYl9GUZAAg3+EFqOqfrCmFBYPgfQzxsJE/p0rD+WlJrN/6XziT5/A1sWVjqMnEhbZpU6n5RXllJF0MZekC3mkxhRg0EmYWSjwaeyMX3NnGjZ2xsrOrM7aFx4OZZcukThsOO5vvYXThPH12vbF3ItM2TqFYMdgfuvzG5mFBt768wKHr+YR3tCBbzpo8N04Chq0hInrwfTBnEJenFvGgVWxJJ7PxamBNV3HNsIzyIGUS+fZ+M1nGPR6Bjz3Kv6tqny/KQjCf5QIooIgCPdDYQr8EGHc03PEghsOSTodiaPHoE1PJ2DTRn5PXcPsM7OZ3X02XX26Vqu5Uo2OlSdS+PVAAmmFZQS6WjOjSyCDWzbA3EQBZQXGfQwTD0C3t6DzqzduIaPXGqcQx2wz9rfJEACUBfkcXr2Ui7t3YGZpSdshIwjvNwgTs9oPgHq9gcyrRZWFhgoyjfsqOrhbVY56egbZo1CINWnCvUkYOQqDSkXApo31Pmq+K2kXL+59kR4Ne/B116+RIeOP02l8tDmKErWOr5smMCjmLWSNB8HwBXesdH2/xZ/N4cDKGJQF5YR18OSRoYFoywpZ9+WH5CQn0mnMJCIGDRMzEwRBAEQQFQRBuD9WT4borTDzBDj43HAod948cr6ehdc3syiIbMzQ9UPp4tOFWV1n3XMzecpyFh5JYtGRRApLtbTxdWRGl0B6hLohl9/0ZlCngQ3PwvkV0HIcPPotmJgZCyqtfwbOLoUBsyDiCTTqMk5u/JOTG/9Ar9PSsvcA2g0dVet7CJYpNSRfyifxQi4pUfmUl+qQK2R4hTjg29QF32bOOLhZ/fOFBOEOCv/4k4w336ThooVYt21b7+0vvLSQr05+xZQmU3ipzUsA5Ks0fLz5MmtPp/Ka3Xae1iwwbrvU59Z9hB8k2nI9JzYncG5nCmaWJjwyNJCgVo5sm/s9MUcOEBrZhd4znsXU/A5LAARB+E+4UxA1qepOQRAEoYYSDsClP40jjzeF0PL4eHJn/4Btr17Y9OnDizumYa4w5422b9xTE8l5pfx6MJ5VJ1NQaw30DHPnyS4BtPG7Q8VaEzN47Bdw8oe9n0JRCoxcDAdnGUNo1zcwhE/m4q6tHF61FFVhASHtIuk4dhKOHg2q80rcQq3SUphVSmp0AUkX8shMKAIJrOzMCGjpil8zF7zDHDGzEP9ECbXHrn8/sj77jMIVK+5LEJ3YeCIpJSnMvzQfb1tvRjYaiZO1GV+PbMHQcC/e+sMSq9J0Jh/5AZWlF9adn673Pt4tU3MFHYYG0aidB/uWR7Nn8RWuHLan85incfP15+DKxeSnpTL41bewc3G7390VBOEBJUZEBUEQapteB3M6g6YEnjl+w5ovSa8naew4NImJBGzexObCQ7x96G3eaf8OIxuNvKvLX0wrYs7+eDafT0chl/FYKy+mdw4gyM323vp5dhlseA6snECZhdTmCRI8R7N/2QLyUpNpEBJGlwmP0yAk7N6uizFsFmWXUZhdSlFOGUUVt4XZpZSrru1d6OZri28zF/yaOePqY4vs5hFcQahFWZ9+Sv6y5QTv2Y2Ji0u9t68z6Ji5eyZH04/yY48fifSKrDym1ur5cVc0LQ7PpJv8NEcjvqdD/wkP/BRXySBx+UgGR/64SnmZjpY9fHD2ymX7L7NQmJoy6KU38A5rer+7KQjCfSKm5gqCINSn4/Ngyyswasktm9XnzV9A9uef0+DLL9D3imTQukEE2AewoO8C5LLbrwuTJImDcbnM2RfPwbhcbMxNGNeuIVMi/fGwr8H0t4T9sHICWU6d2JfhQ0rUBRw8POk0djLBbTvc8U2wWqmlMKeUomxj0CzMLqsMneWl18ImMrB1tMDezRJ7NyvsXS2xd7XE3d8Oa3vz6vddEO5ReXwC8f374/rii7jMmH5f+qDUKJm0dRJpyjQW9VtEiGPIDcdjU7NhwQC8tYl84vYlj48agb/Lg781ilqp5fCfcVw+lIGNozkte9pyauOPFGVn0n3KDFr06n+/uygIwn0ggqggCEJ9UeXB7HBjBcwJ624oBlSekEDCkMew7tAB759+5M2Db7I1cSurH11NkGNQlZfT6Q1suZjJnH1XuZRejJutOY939Gdsu4bYWZhWq4sGvZ7CrAzyUpLJS00mMy6aq6dPYGFrxyPDxtCiV18UJqZIkkS5Slc5qlmYfS10FuWU3TFsOrgZw6a9mxV2LhaYmIr9PIUHQ9LkKWiTkwncsR2Z4v78XWaqMhm7eSwKuYJl/ZfhauV6w3FDcRaqn7uhKVMyUvcBg7pGMrWTP9bmD/509Yy4QvYtjyYvTYVPmBXqws2kRJ2hec++dJ8yA4VJ9f6/JQjCv5MIooIgCPVl4wtwehE8dRjcQivvlgwGkiZMpDw2loCNGzmhj2PGjhnMaD6Dma1m3nKZMo2e1adSmHcgnpT8MgJcrZnROYAhrbyMFXDvgkGvpyAznfzUFHJTk4zBMy2FgvRU9LprIdLWxQ2fJu3wadITVbHs3sLm3yOcLpYoTB/cSp+C8LfirdtIe+EFvH/5GduuXe9bP6Lyopi8dTL+9v7M7zMfK9ObCnLlxmKY15Nsgy19St5BYe3E9M4BTHzEFyuzBzuQ6vUGzu9O5fimBCS9HmePCyRf2IFXaGMGvvgG1g6O97uLgiDUExFEBUEQ6kPGOZjTBdo/BX0/veFQ/qLFZH3yCZ6ffIL5oL4MXT8UE7kJawatwVxxbXpqUamWBYcTWXgkkXyVhlYNHXiySyC9wtxvrYBbQa/TUZiZQV5acuUoZ15qMvnpaRj014KkvZs7zt4NcfZuiKOnN+pSOzITFKReLsFgqPi3QAa2ThbYu1ri4GZ143RaETaFh4Ck1RLbvTuWjZvgM+eX+9qXvSl7eW73c3T16co3Xb9BIb/pQ6akw7BoMKX2gWwwdGRNlifplo2Y3DWM8e0f/EBakq/m4KpY4s/mYGGVQEn2Zqzs7Bn8ylu4B1Q9C0QQhIeLCKKCIAh1TZLg976QFwfPngJLh8pDmuRk4gcPwSqiDT5z5vDt6W/5/eLv/N7ndyI8IirPK1FrGf7zEaKzSugZ5saMLoG08XWsXKdZGThTk8hLTSE3NZn8mwOnTGYMnF4+OPv44uzlg4uPL04NvDExMyc9rpCYY5nEnc5BU6bDyt6MkAh3GoQ44uBmiZ2zCJvCwy/7u+/I+2UOQTt3YOrldV/7svTyUj47/hkTG0/k1YhXbz3h8kbY/g4UJACgQ8Elgy9XFI1wDetEhy59sXALuHFP4AdM4vlc9q+MoSgrCUm7GYO+lD5PPU9YZJf73TVBEOqYCKKCIAh17fxq+GMqDJoN4RMr75YMBpInT0F96RIBmzYSb17MqE2jGBg4kA8jP6w8T6c38PjCkxyKy+XX8S1pbqcjLzWZ3IrptHkpSRRkpN8aOCtGOF0qbp0aeGNqcWPxovwMFdHHMok5nokyvxwTcwWBrVxp1NYDr1DH2460CsLDSpuRQVyPnjhPm4bbiy/c7+7w6bFPWXZlGW+1e4vRoaOrPkmZA2knIeU4xXFHMMs6g4WkBqDM1Akzv3YoGrYF7wjwCgezB6vAkVaj5+SWRM5su4JGuRG9JpU2A4fRaexE5DePBAuC8NAQQVQQBKEulSvhhzZg6wFTd4P82ohiwfLlZL7/AR4fvI/d8GFM+GsCaco01g9ej4OFcdRUkiTeWX+RJUeSeN05lrKz+24InA5uHjh5+1SGTWfvhjh5ed9xs3hVUTlxJ7OJPpZJTnIJMhn4NHaiUTsP/Fu4Ymou3vgJ/20pTz9D2blzBO/ZjczM7L72RW/Q8/ye5zmQdoDZ3WfT2bvzXTxIx4WzRzl+YCv2eeeIUMThS7rxmEwB7o3BuyKY+rQFpwdj1DQ/Q8XeJZdIvrAeffk5vEJbMOTVN7CwsbnfXRMEoQ6IICoIglCXdr4PB2fBEzuMb/j+n727jo7q6ho4/LszEzeiJIQkQCA4wR2Cu7sVl6CFFgrFoUCB0gKFosWLuwT3QII7weICcXe73x/p1/flBQqEDJPAedZilTVz79n7ljbMnnPOPn/LCAnBt30H9Co7Y7dhAzue7mDhjYUsbLCQtiXa/nPdn+6+zHN7wkirUFTXD1K6bkNKVK2Bua3dewvO/5aRloXf/QieXQ8l6EkMcraMpb0RpWtZU7K6lTgqRRD+S6K7O0HDhmP7268Yt9H80SLJGckMPDmQgPgAtrbeSmmz0h9873XfKJadfcETX38aGQQw0D6CijxHGXIn5zxjAD2znKK0aA2wqwG21UDnI88eziOyLPP8eijnt+wjOfoMuobmdJ02E+sSxTWSjyAI6iMKUUEQBHWJ8oFVtaFCV+j8n8YnsiwTNGQoyffuUeLIEaJNlXQ81JHKVpVZ02zNP/s+Tz8OZcRft+lklYL9zW0Uc65Kp0kzkBQftk8zO1sm5GkMz26E4ns3goy0LAzNdChd0xqnmtaYFclfy/MEIb+Qs7PxadESLRsbHLZt1XQ6AIQlhdHneB8AdrTZQWGDwh91v6dPFMvOPue6XzSFjXUY1bAYvYqnoBN6G4JvQtBNiHz299USWJXLKUqL1siZPTUv+dqKDnVLTcrg7IazPPPYhEQmNTu7Uq9H8389v1gQhIJFFKKCIAjqsqMX+LvnNCgysv7n5Zi9ewmdMZPCM2dg1qcP486Pw/OlJwc6HsDOyA6Ah8Fx9FjrSUWTTFye7kDf2IQ+835FR1//XdGAnCI3KiSRZ9dCeX4zjOS4dLT1VJSsaknp2tbYOBZCEvs+BeG9ItevJ+LX3yjhdgwdR0dNpwPAs+hn9D/RHwdjBza32vzmsS4fwMMnkmVnXnDDPxprY11GNXakZw27nKOfUmJz9poG5+w3JeQWpMbl3KhrArbVc1Z22NWCEo0+y3Jenzu+uP3+Mxkpr7As3oxes0ajrSfOGxWEL4EoRAVBENThxRnY3g2az4V63/7zckZoKL7t2qNbrhz2mzdxPugC4y+O57tq3zGowiAAXsam0OmPq+iSycDooyTHRNJ3/m+Y2ry7g2diTCrPb4Tx7Hoo0S+TUCgk7CuYU7qWNcUqmaPSEvs+BeFjZEZH4+3SiEK9emE9baqm0/nH5eDLjD0/lga2DVjeePmbx7p8AFmW8fSJYunZ59z0j8HGRJdRjUvSo3rR188izs6GqBd/z5jeyClQw70AGRp8D01n5t2D/Yv0lBT2/LSYMJ+b6Bo60nP2NCzsrD5LbEEQ1EcUooIgCHktMx1W1zBrp9EAACAASURBVMn5/UhPUOU0O5FlmaARI0i+eYsShw+RZm1Kp0OdMNU1ZWe7nWgptEhMy6Tbag+Co5P5UfcGYQ9u0eXH2RRzrvpGmPSUTHzuhvPsehghz2NABusSxjjVzNn3qWeo2SYrglDQhUycROKlS5S6dBHFe1YjfE67nu5i/vX59C3blyk1p+R6HFmWueqdU5DeDoihyD8FqR3aqncsw02Nh+OT4OEeGHQC7GvnOv7H5nphy37untiGQqlHC9fvKd+wxvtvFAQh3/q3QjR/n4QsCIKQX11fk3NmaN99/xShAHGHDpN02Z3CU6eibW/P4mvziEiJYHmT5WgptMjMymbsjju8CE9knsMrXp6/gcs3Q14rQrOysgnyiubZ9VD87keSlZGNsaUeNdoWp3StwphY5p8Py4JQ0Jn27kX8sWPEHz9OoW7dNJ3OP3qV6UVgQiDbvLZhZ2RH37J9czWOJEnUL2VBvZLmXPGOZOmZ50w/9IjVF30Y1diR7tXeUpDqGkPbJRDoCQeGg+uVnNfUTJIkmgzshm2ZMhxfsYiTf8wlyKsrLYf3/+B984IgFBzvnRGVJGkj0A4Il2W5wlvebwQcBvz+fumALMtz3xdYzIgKglBgJYTCimpQrD702f3Pyxlh4fi2b49OqVI4bNvK/cgH9D/Rn75l+zK55mQAZh95zGYPf6ZXyCLu6DrKNWhMq9Hf/dOc47F7CNeP+JKSkIGugRYlq1tRupY1hYsbiwYegqAGsizj16EDko4uxfft1XQ6r8nKzmLCxQlcDLrI0kZLaerQ9JPHlGWZyy9yCtJ7QbHYFtJjTJOSdK1a9M2CNPAabGoNzn2g0x+fHPtjRL+KYdeshaTEPcbcvhw9ZkxD39jks+YgCMKn+7cZ0Q/5emkz0Oo917jLslz571/vLUIFQRAKtLNzICsdWi745yVZlgmdMwc5LY0i8+eRKWcxx3MOVvpWjKkyBoDNV/3Y7OHPsPJ6JJ/ZhnVJJ5oPH/tPgel9O5yL259ham1Am5EVGbioHi69S2NdwkQUoYKgJpIkUahXL1IfPSLl4SNNp/MapULJwgYLqWhRkcnuk7kbfveTx5QkCRcnSw6OqsvmQTWwMNLhxwMPafLrRXbdCCQjK/s/F9vXhvoT4N5f4HXkk2N/DDMbU4Ysn0fhUh2JCnzGn2NHEeSVv/58BEH4NO8tRGVZvgxEf4ZcBEEQ8r+gm3B/B9QZDeb/6bIZf8yNxPPnsfz2W7SLFWPz4814x3ozvfZ0DLQMOP80jLnHvGhZ0ojCN3agradHx++nodLOWdb7yjuWs5u8sC5hQvtxzhR3tkT5rv1bgiDkKZOOHZH09YnZtVPTqbxBX0ufFU1XYG1gzZhzY/CN9c2TcSVJolFpKw6NqsumgTUwM9Bmyt8F6Z6bQf8pSF2mgI0zHP0WEsLyJPaH0tHTos+cIZRvMp7MdIk9c6fisW83cnb2+28WBCHfy6tPOXUkSbovSdIJSZLKv+siSZKGS5J0S5KkWxEREXkUWhAE4TPJzoYTk8DIBhpM/OflzMhIwubNQ8/ZGbMB/QmID2DN/TU0d2hOI7tGPH4Zx5gddylvY0jjlydJjI6kw3dTMTQzByA2LJnjqx9iaKpDm1EVRfdbQfjMlIaGmLRrR7zbcbLi4jSdzhvMdM1Y3Ww1KoWKkWdHEpGcd5+hJEmicRkrDo+ux8aB1Smkp80P+x/Q9NdLXPWOzNkD32U9ZCTD4dHwmZtcKpQKWo1ojMuAmSi1SuG5dxt7580iOT7//TkJgvBx8qIQvQM4yLLsDKwADr3rQlmW18myXF2W5eqWlpZ5EFoQBOEzurcdXt7NOa5FxxD4/yW5c8lOScFmwXxQKPjJ8ye0ldpMqTmF0LhUhmy+hYmeFq66XoQ8fkDz4WMp4lQGgJTEdI6tvA9Au7HOoguuIGiIaa+eyKmpxB0+rOlU3srOyI5VTVcRkxbDqHOjSExPzNPxJUmiSZnCHBlTjw0DqqOllOi34Torzr0g29wp5+ee9xm4tSFP436oaq2c6DBxCjpGzQjyesCWiWMJfvpYI7kIgpA3PrkQlWU5XpblxL9/fxzQkiTJ4pMzEwRByE9SYuHs7JxD3it2/+flhJMnSThzBosxY9BxdOSIzxGuh15nQrUJGCjNGLLlJgmpGcwpk8TTc25UbdOR8i45DUcy07M4vuoBiTFptBlViUJWohuuIGiKbrly6DpXImbXbjR1tN37lLcoz2+NfuNFzAsmXJxARlZGnseQJImmZQtzZEx9OjoX4dczzxm0+SYx5QeAYxM4NR0iX+R53A9RwtmSnjOHYGL9DamJ2eyZ/SPXD+0VS3UFoYD65EJUkiRr6e8uGpIk1fx7zKhPHVcQBCFfubQYkqOg9WL4u3FQZnQ0oXN/QrdCBcwHDyI6NZolt5ZQ2bIynUt25dtd93jyKp6FDYzx2rcRh0pVcOk3GAA5W+bsZi9CfeNpNqgcNo6iG6QgaJppr96k+/qSfOOmplN5p/q29ZlddzbXXl1jpsdMtRXNBjoqlvaszLxOFfD0iaLtiqs8rPEzaOnCgWGghiL4Q1jaG9FrVjsKlx6BQqskV3Zu4eCiOWKpriAUQO8tRCVJ2gl4AqUlSQqWJGmIJEmukiS5/n1JN+CRJEn3gd+BXnJ+/SpREAQhN8Kfwo21UG0gFKn8z8th8+aRlZiIzYL5SCoVS24uITEjkVl1ZrHwxDPOPgljeqMiBO9dhZG5JW2//QGFMmf/p8dBH3zuRFC3S0lKVrPS0IMJgvDfjFu3QmFiki+bFv23TiU7MabyGI75HmP5neVqiyNJEv1qO7B/ZF0UCoku23y5UGpqzhaFy7+oLe77GJrq0m1yHRxr9kel3xT/B/fYNnkcIU+9NJaTIAgf70O65vaWZdlGlmUtWZaLyrK8QZblNbIsr/n7/ZWyLJeXZdlZluXasix7qD9tQRCEz0SW4eRk0DaAJjP+eTn+zBnij5/AYqQruk5OeL705KjvUQZXGIznMy02XPFjYE1btC9uJSMtjY6TpqNnaATAw4vB3DsTSAUXWyo3t9PQgwmC8L8UuroU6tyZhDNnycznTRWHVxpOd6fubHi0gZ1P1Vs4VyxqgtvYBrg4WTLohi3XjFogX16S00VcQ7R1VbQdVYkqLdqgZdCbtBSZ3XOmcOPwPrFUVxAKCHE2gCAIwr95egx8L0Lj6WCQ0+U2MyaG0Dlz0SlbFothw0jJTGGu51wcjB0oo9uZ2Uce07S0JTWCzxLm502bsROxsHMAwP9BJO67n1OsojkNepQS54MKQj5TqGcPyMwkdv9+TafyryRJYmqtqTQq2oifr//MuYBzao1noq/Fum+qM6V1GUZE9iAMc9L3DoG0vG2a9DEUSgUNejnRsHc9FLq90TMug/uOzRxcPFcs1RWEAkAUooIgCO8S4w8npoBVOag++J+Xw37+mazYWIosmI+kpcXa+2sJTgxmoNP3TNj1mNKFjRhcKJCnVy9Sr0c/SlavBUB4QDyn/nyEhZ0RzYeUR6EUP4IFIb/RKV4c/Tq1idmzBzkrS9Pp/CuVQsVil8VUtKjID5d/4E7YHbXGUygkXF0cWTusCTMVY1DFBeK7/Vu1xnwfSZJwbmpH25HVkbRbY2jRkoAH99g25VuxVFcQ8jnxKUgQBOFtQh/ChhaQnggd/wClCoCECxeIP3IUi+HD0C1blmfRz9jyeAst7dvx25FsDHSU/FRdyfXdW3GqXZ9anXsAEB+VgtsfD9A11KLt6Epo66o0+XSCIPwL0169yXz5isTLlzWdynvpqfRY2XQlNoY2jD0/Ft9YX7XHrF3CnHnjR3DMqBslAvexZdMqUjM0W7QXd7aky8RqaBtWQc+0D3K2QizVFYR8ThSigiAI/8v/CmxqAwoVDD4FtlUByIqPJ3TWbHRKlcLC1ZWs7Czmes7FUNuQJ49diE3J4PfWRfH8czkWDsVoNXI8kiSRlpzBsZUPyMzIpt0YZwxMdDT8gIIg/BujJo1RWVoSs2uXplP5IKa6pqxuthqVQoXrWVfCk8PVHtPKSJc2Y1cQrl+Ktv4/M3ilGwFRSWqP+685ORjTbXJ1Clk7kEUPrIpXxn3HZg798hMpCfEazU0QhDeJQlQQBOG/eR2BbV3AyAaGnAarMv+8FbZwEZlRUdgsWICkrc3uZ7t5EPkAy/QeeIVksbRTaR5vXYZCqaTTxOlo6eqSlZnNibWPiAtPpvWICpgXMdTgwwmC8CEkLS0Kde9O0mV30oODNZ3OB7EzsmNVs1XEpsUy6uwoEtPVv3dTpaOH1cBtmCpTGR63jHYr3Dn1OFTtcf+NkZkuXSZWw768NbFRLhSv2pWAB3fZOnkcIc+eaDQ3QRBeJwpRQRCE/3dzA+zpDzbOMPgkmBT9561Ed3fiDhzAfMgQ9CpWIDQplN/v/o61ljN3vIozrXUZkk5vIS7sFR2+m4qxpRWyLHPhr6eEPIuh8TdlKFrGTIMPJwjCxyjUvRtIErF79mo6lQ9W3rw8vzX6DZ9YH8ZfHE/G5zjr06osyuZzaMRtRhheYcS228x38yIjS3PLYbX1cjrqVnQpyis/Bxwqu6JUqtgzZwo3jx4QS3UFIZ8QhaggCIIsw4Wfwe07cGoJ/Q+D/n+KxqzERF7NmIm2oyMWo0cB8PP1n0nLzMT7SQu+qV0Mp2B3/O7eosmgERQtVwGAm8f8eHYtlJrti1Omto1GHk0QhNzRsrHBsHFjYvfvR05P13Q6H6y+bX1m1Z3F9VfXmeExg2z5MxRdtVyhuAuj0zYyvqqS9e5+9F53jdC4VPXHfgeFUkHD3k7U61aSl77aGNsMpJhzDS7/tVEs1RWEfEIUooIgfN2ys+DYeLi0ECr3g57bQVv/tUvCF/9CZng4RRbMR6Gjw7mAc5wPOk9yeBNcSpShl3kENw/vo1KzVjg3bwPAU89X3HTzp0wda6q3KaaBBxME4VOZ9upFVlQU8WfOaDqVj9KpZCfGVhmLm68by+8sV39AhQI6rUZSqhgf9wu/96iA16t42v7uzpUXkeqP/w6SJFG5mT2tR1QkJjST+LjG1OoyiIAHd9k2+VtePhdLdQVBk0QhKgjC1ysjNWcp7u3NUP876Ljyn+64/y/J05PYPXswGzgQPWdnEtMTmes5D9JsKKZqzczaxpxduwLbMuVpMmgEAEFPo7mw7SlFy5jSqG8ZcVaoIBRQBvXqomVvT+zOgtG06L8NqziMHk492PhoIzue7FB/QBNbaPsbhNyiQ/wujoyph5mBNt9svM7v516QnS2rP4d3KFHZks7fVyU7U+bJNUsaD5qOQqlg9+wp3Dp6AFnWXG6C8DUThaggCF+nlFj4qws8PQatFkGzWfA/BWOSpycvJ09Bu1gxLMeNBWDh9d+ITo1CO7Ynq7qU4cyKheiZmNDhux9RqrSICknk5JqHFLLWp9WIiihV4sesIBRUkkKBac8eJN+6RdqLF5pO56NIksTUWlNpZNeIhTcWcjbgrPqDVuwGFbvDpUWUTH/O4TH16OhchN/OPGfQ5ptEJ2luibOVgzHdplTH0FQHjwMJ1Oj8I47Va3Hp76W66akpGstNEL5W4hOSIAhfn/hXOcezBN2Arhugtutrb2fFxfFy2jQCBw1GoaeH7bKlKHR1ufnqLod99pEVV5cNPTpw48+lpCYk0GnSDPRNCpEUm8axlfdR6ShpN8YZHT1xVqggFHQmnTsjaWkRs3uPplP5aEqFksUNF1PRsiKTL0/mTtgd9QdtsySn6/iBYeiTxtKelZnfuQKePlG0+92dO4Ex6s/hHYzMdOk6qRpFy5hyZU8gFsV60HjAcPzu3GL/glmkJSdrLDdB+BqJQlQQhK9L5AvY0AJiA6Dv3pxv8P8myzLxJ0/h07YdcYcOYz5sGMUPH0K3TBnSMtMZc3oq2ZnGLGg0ifBTO3n5zItWo8ZjVawE6amZuK16QGpyJu1GO2NkpqvBhxQEIa+ozMwwatWKuEOHyC6AhYqeSo+VTVZSxLAIY8+PxTfWV80BC0Hn1RDtC6dnIEkSfWs5sH9kXZRKiZ5rPdl01U9jy2G19VS0HV2J8g2KcPd0IOHBJWg9eiKh3s/Yv2AGqUnqP/ZGEIQcohAVBOHrEXw7pwjNTIGBx8Cx8T9vZYSFEzx2LCHjx6NlZUXxvXuw+v47FLo5BeXQw7+STDAdbEfjEPqEh+dPU6tzT0rXaUB2VjanNzwmMjiRlkPLY2lvpKknFARBDUx79yI7MZE4NzdNp5IrprqmrG62Gi2FFq5nXQlPDldvwOINoc5ouLUBnp8GoGJRE46NaYCLkxVzjnoxZsddElI/w/Eyb6FQKnDpU5q6XUviczecxx76tBo1iTBfH/bNm05KYoJG8hKEr40oRAVB+Dq8OAtb2oGuMQw+BUWqACBnZxOzew++bduS5H4Fq4nfU2zPbnTLlfvn1jVXr3M3fg/Wqhq42pXjwuZ1lKhWk3o9+iLLMu67XxDwMIqGvZwoVtFCU08oCIKa6FWpgo6TE7E7dxXYxjZFjYqyqtkq4tLiGHl2JAnpai62ms4Eq/JweDQk5XTONdHXYn3/akxpXYaTj0PpsPIqT0M1c4yKJElUaW5Pq+EViAhMwMtDlzbjphAZ6M/euVNJjo/TSF6C8DURhaggCF+++7thZ08wd4TBp3P+CaT7+xM4cBChs2ahW748JY4cxnzoUCTVf/Z2Xn0Rwe/3F6KUtFhZZzzHli3C1MaWNmMmIikU3D0TyKPLIVRpYU+FhraaekJBENRIkiRMe/ci1cuL1IcPNZ1OrpUzL8fSRkvxjfVlwsUJZGSpcUZSpQNd1kFqLBz9Nue8ZnL+Xbq6OLJjaC0S0zLp9MdV9t0OVl8e7+FYxYoWQ8sT5p/AE08d2n83jZiXIeydO5WkWM3tZxWEr4EoRAVB+LJ5rICDw8G+Dgw8DkaFkTMyiFy/Ht+OnUh98gTrn+Ziv3kT2g4Or9169P5Lhh9ci9LAmwmVRnNt9Trk7Cw6TZqOjr4+3rfD8TzgQ8nqVtTp5KihBxQE4XMwbt8eSV+fmF27NZ3KJ6lrW5fZdWdz/dV1ZnjMIFvOVl8w6wrQZEZOd/J72197q1YJc9zG1aeKnSkT995nyv4HpGZkqS+Xf+FYxYqm/csQ8iyGp9d16PjDDGLDQ9kz50cSo6M0kpMgfA1EISoIwpcpOxtOT8/5Va4T9NsPusakPH6MX8+eRPz6G4YNG1Di2DFMu3d/7azP1Iwsph18yPjDe1FZHaGcaQVMLwQTFRRIu28nY2pjyyvvWM5u8sLG0YSmA8oiKcRZoYLwJVMaGmLSoT3xbm5kRkRoOp1P0rFkR8ZVGYebrxvL7ixTb7A6Y6BYAzgxGaL9XnvLykiXbUNqMrqxI7tuBtFllQf+kUnqzecdSte2waW3E/4PInl2Q4vOU+aQEB3F7jlTiI8s2H/egpBfiUJUEIQvT1YGHHLNmQ2tMQy6bSQ7UyZ8yRL8e/QkMyIC29+XU3TFCrQKW712q29EIp1WXWXP8x0YOGykWCEbBie44H3DE5dvBlPMuSqxYckcX/0QQzMd2oyshEpLqaEHFQThczIfNAg5I4OojZs0nconG1pxKD1L92TTo01sf7L9/TfklkIBnVaDpISDrpD9+qynSqlgUssybBxYnZDYFNr+7s7eW0Ea2YtbwaUodbo44n0rHO/bSrr+OIfkuDj2zJlCXHjYZ89HEL50ohAVBOHLkpYIO3vBg93QZDq0+YWkm7fx7diRqD83YNK5E47HjmHcosUbtx6+F0L7lRd4qdqErvUxGtm5MN9qPI+OHKNcwyZUbdORlIR0jq68DxK0H+uMrqGWBh5SEARN0HZwwLhdW2J27SIzOlrT6XwSSZL4seaPNLZrzKIbizgTcEZ9wQrZQdslEHQNrix96yVNyhTm+LcNqGBrwqR9Dxi94w6xyenqy+kdqrZwoHqbYjy5+gq/B1p0m/4TqUmJ7J4zhdiw0M+ejyB8yUQhKgjClyMpCrZ2AJ/z0P53siqP4NXMmQQOGADZMvabN1Fk3jyUJiav3ZaakcWPBx4yft9l9B3WIRvewtXZlfFm/Tm3eiU2JUvTfNgYsjKyOb76AUmxabQdVQkTS30NPaggCJpi4eqKnJpK9OYtmk7lkykVShY1XEQly0pMuTyF22G31ResYnco3wUu/gwv7771EttCeuwYVpvJrcpw+nEYrZa54+Edqb6c3qFm++JUalKU++eDCPTSovuMBWSkprJ79mSiX4Z89nwE4UslClFBEL4MsYGwsSWEPYaefxEfXQTftu2I3X8AsyGDKXHkMAa1a79xm09EIp3+uMruh+5YlF6FpBPG0kZLaZZSicOL52FaxJZOP8xAqdLi7GYvQv3iaT6oHNYlTN6ShCAIXzqdEiUwbt2KmO3byYqN1XQ6n0xPpcfKJispYliEsefH4hPro55AkgRtfwUDKzgwHNKT33qZUiExspEjB0fVQ19HSZ8/rzPfzYu0zM/XyEiSJOp3L0XZejbcOu5PyAsVPWYuICszkz1zphAVHPTZchGEL5koRAVBKPjCHsOGFpAUTmbbLQSvOk3I2HEozc0ptmcPhSdNQqGn98Zth+6G0H7FFUKz3TEu/icW+ob81eYvrLwzObZ8MTalnOg562f0TQrhcdAHnzsR1OtaEseqVm9JQhCEr4X5CFeyk5KI3vaXplPJE4V0C7G62Wq0Fdq4nnUlLElN+yH1zaDTKoh8Dmdn/+ulFYua4Da2AX1r2bPe3Y9Of3jwPEzNZ5/+F0mSaNS3DCWrW+F5wIewAG16zvoZgN1zphAR6P/ZchGEL5UoRAVBKNj8r8LG1siyRKzVRHxGzCLx4kUsJ0yg+N496FUo/8YtqRlZTNn/gPG7b2PhcIIs813UsK7Grna7iL38gDPrVlLcuSpdp85FR9+AhxeDuXcmkIqNiuLc1E4DDykIQn6iW9oJo+bNiN66layEz1ccqVNRo6KsaraK+LR4Rp0bRUK6mp7LsTHUGgk31oL3uX+9VE9byfzOFfmzf3XC41Npv+IKWzz8P1sjI4VCotmgchSraM6lnc+IDNGmx6yFKFUq9sydSpifmmaPBeErIQpRQRAKridHYVtn0rMtCbxXmVeLV6Pr5ETxw4ewGDEcSevNRkLe4X8vxb3zlFLOO4hRneebct+wqukq7u8/iPuOzZSu25COk6ajpaOL/4NI3Hc/p1glC+r3KPXaMS+CIHy9zF1dyU5IIGa7GjvOfmblzMuxtNFSfGN9GX9hPOlZamoW1GwWWJaBQ6Mg+f1Nn5qVK8zJ8Q2p62jOrCOPGbT5JuEJqerJ7X8olQpaDq+ArZMp57Y8ITZMm56zFqKlo8Pen6YS6v38s+QhCF8iSRPtsQGqV68u37p1SyOxBUH4AtzahHz0O6JDnYi4noak0sJq4kQK9eiOpHj7d2wH7wYz7eAjdPRDMSm2nYSMaGbVnUW74m05t2E1D86exLl5a5oMdiU9OZubbn48uhSChZ0hnb6ripaOOKZFEIT/CBrhSsr9+5Q8dxaFgYGm08kzR32OMvXKVBoVbcSvjX5FW6md90FePYD1TaBMG+i+JWcP6XvIssy2awHMd3uCgY6KRV0r0bxc4bzP7S3SUzM5+vs9wgMS/m5Wl8nen6aSkpBA16lzKOJU9rPkIQgFjSRJt2VZrv6298SMqCAIBYssw8VFpG6biP/lYoRfisegXn1KuB3DtFfPtxahKelZTN73gAm772Nv9wJV0T9QKrLZ3GozbR1ac/z3JTw4e5KanbrTaIArDy+85K+Znjy8GEzZeja0H1tZFKGCILzBYtRIsmJjidm1S9Op5Kn2ju2ZVmsaF4MvMv7CeNKy0vI+iE0laDINvA7D/Q/79ydJEv3rFOPY2PpYG+sybOstfjzwkOT0zLzP739o66poN8YZsyIGnFjzkKQ4HXrMWoi+iQn75s8k+OljtecgCF8aMSMqCELBkZVB9pHvidx6gKhnRihNzbCeMQOjli3fuWTWOzyB0dvv8jw8jrrVb/MgcT/Ols4sbbSUQkojjv72M373btOg7yAs7Bvisd+buIgU7MqZUa9rScxtDT/zQwqCUJAEDhlK6tOnlDx75q1N0Qqyvc/3MtdzLvWK1GNZ42XoqnTzNkB2FmxuB6EPYeRVMHX44FvTMrP47cxz1l32pbi5Act6VaZS0UJ5m99bJMenc+i3OyTGptFpQhX0jTLY89M0EqIi6PzDLOwrVFJ7DoJQkIgZUUEQCr74l2Qsb4Xfz8eJemKEScdOOLq5Ydyq1TuL0P23g2m/4ioRSXHUqXOUB4n76VKqCxtbbsRI1mPf/Jn4379LnW7DeOldnBNrHqJQKWg31pkO4yqLIlQQhPeyGDWSrKgoYvfs0XQqea67U3fm1p2Lx0sPxp4fS0pmSt4GUCih85qc3x90zSlMP5COSsmPrcuyfWgtUjKy6LLKgz8ueJOVrd4JFn1jbTp8WxldAy2O/H6PtBQdes76GRPLwhxcOBv/+3fUGl8QviRiRlQQhPzP7zJpfw4m8ISSbEkf2+UrMaxf752Xp6RnMfPwI/beDqZyiQwyLDYSkhjIDzV+oHeZ3iTHxbJ/wUyigoOwr9SL0AArdA20qNW+OOXqF0GhFN/RCYLw4QL6DyDdzw/Hs2dQ6OhoOp08d9j7MDOuzqCGdQ1WNFmBvpZ+3ga4twMOjYRmc6D++I++PS45g2mHHnLswStqFjPjt57OFDXN4xz/N2ZECgeX3EaWofP3VdHWy2DfvOlEvwymw/dTKVGlhlrjC0JBIWZEBUEomLKzwf03Upd1JeC4NrKOKQ7bd/5rEfoiLIGOf1xh351gutRNIMxwMQnpsaxvsZ4+ZfuQEBnBzpk/EBUcgrZRJ8KDC1OluT39fqpDBZeioggVBOGjWYwaSWZEBLH792s6FbXoIbf60wAAIABJREFUWLIj8+vP51bYLUadG0VyRnLeBnDuDWU7wPl5OU2MPpKJvhYrelfhtx7OeL2Kp/Uydw7dDcnbHP83pqUeHcZXITtb5vDyu2Rl6tB95gIs7Bw4/Mt8vG9eU2t8QfgSiBlRQRDyp5QYODiS5KvnCLpaGIWpJQ6bNqFdrNg7b9l3O5gZhx6hr6Ogbf1nHApYj5OpE8ubLMfW0JbIoEB2z55KWnIqWgadcKpVmTqdHTG2+LL2dQmC8HnJskxA335kvHpFyVMnkbTV0GU2Hzjhd4If3X+kkmUlVjdbjYFWHnYKTo6GVXVyuuf2/AuKvnUC5b2CopOZsPsetwJi6OBchJ86VcBE782jvPJKRGACh5beRc9Iiy4Tq6FQpnNgwSzC/LxpO24STrXrqy22IBQEYkZUEISC5dV9WOtC4uVLBLpbo7K2o9j27e8sQpPTM5m49z4T996nop0u9euc5mDAOloUa8HW1luxNbTl4YXbbJv8PalJ6RQuNZBuU9rRclgFUYQKgvDJJEnCYuRIMl+9IvbQIU2nozati7dmUcNFPIh4wIgzI0hIT8i7wfXNoN9+UGrDptZwZ2uuhrEz02fX8Np839wJt4evaLPcneu+UXmX5/+wtDei3RhnkmLTOLL8LqBD12k/YV2yNMeWL+bJ1Utqiy0IBZ2YERUEIX+5sxXcJhIfZk7IRSU6pZyw/3M9KnPzt17+PCyB0dvv4B2RyOCGhXiYuZyn0U8ZV3UcQyoMIS4ihbMbzhBwbzMKlT6N+v9A5eaVkBTvP7NOEAThQ8myjH+PnmTFxOB44jiSlvpm4TTtbMBZJl2aRFnzsqxpvgZjbeO8Gzw5GvYNBt8LUH0wtFoEqtzNMN8NjGHC7nsERCfj6uLIhGZOaKvUMwcT9CSaY3/cx6KoER3HVwYyOLhoDiFPvGg58lvKuzRVS1xByO/EjKggCPlfRgocHg1HxhIbV46Q8wr0KlbCYcvmdxahe28F0WHlFWKSM5jVTY+z8VMJSghiZdOV9CsxgKv7vNk2dTsB9zaib2LOoF+XUqWlsyhCBUHIc/8/K5oRHEzcMTdNp6NWzRya8WujX3kS/YRhp4cRlxaXd4Prm0HffVDvW7i1Eba0g4TQXA1Vxd4Ut3EN6FHNjtUXfei62gOfiMS8y/W/2JU1o9WwCkQEJuD2xwMkhTZdpszGrkIlTq5exsPzp9USVxAKMjEjKgiC5kX7wp7+EPqQ6Kz2hO29jUHduhRduQKF/pudD5PTM5l+6BEH7oRQ19GcpjV9WHl/CUWNirLUZRnJ97W5ccyP5JgHZCSfxsrBkW7T56BnlIff2guCIPwPWZbx69IVOSWFEm7HkJRKTaekVpeCLjHh4gRKFirJuubrKKSbx+d4PjqQ8wWlrgn02AZ2ue9Ee/JRKFMOPCA1I4vpbcvRt5b9O4/++hTPb4ZyZqMX9uXMaTOyItnZGRz5dQH+927TdMgoKrdok+cxBSE/EzOigiDkX0/dYG0j5JggIhRDCNt7G6PmzSi6ZvVbi9BnoQl0WHmVg3dDGNu0GKXLn2bZvYXUsanDQvs/uL48AvfdL9BSPSYj6ST25SvQc/Z8UYQKgqB2ObOirqT7+xN/4qSm01E7FzsXljdejk+sD0NPDyUmNSZvA1ToAkPOgEonZ9/o7c25HqpVBWtOjW9IjWJmTD/0iGFbbxGVmJZ3uf7NqYY1jfqUJvBxFGc2Pkap1KLjxOmUqFaTcxtWcef44TyPKQgFlZgRFQRBM7Iy4fxPcHUZsrUz4WENiN55AJNOnbCZ9xOSSvXGLReehjNq+x0MdFTM62LPzoD53Am/w9AiY3B4VIOQZ7GYWOlhbu2F16WDlKxRm7bjfkD1hXawFAQh/5Gzs/Hr2AlZzqbEkSNIii//O3+PEA/GXRiHvbE965uvx1zv7dspci05GvYPBZ9zUG0gtF6cU5zmQna2zCYPfxadfIqxrha/dK9E49JWeZsvcO9sIFf3eVOmtjVN+pclOzsTt+W/8OKGBw37DqJGh655HlMQ8iMxIyoIQv6SGA7bOuUUoVUG8iqwHtE7D2Darx82C+a/tQjdeyuIoVtv4WhlwLJvzFnyeBR+r4KYlPQbqgOliAxOpH6PkhQp8RCvSwcp79KU9hN+FEWoIAiflaRQYO46gnRvHxJOn9F0Op9FXdu6rGy6kqD4IIacGkJkSmTeBtA3g757of53ObOim9tB/KtcDaVQSAypX5wjY+phbqDNoE03mX3kMemZ2XmacuVm9tRsX5yn10Jx3/0chVJF229/oHTdhlzevolrB3bnaTxBKIjEjKggCJ9XgCfsHQipccitlhCy/TYJJ05iMWokFmPHvrFnR5ZlVl304ZdTz2hQyoLODcJZ5LmAGmEtqRDsgpwFlRoXpUoLOy7/tYbHl85StXUHGvUf+lXMRAiCkP/IWVn4tmuPpKND8YMH1LIXMT+6GXqT0edGY21gzYYWG7DUt8z7II8PwaFRoGOYs2/Uvlauh0rNyGLxyWdsvOqHi5Mlq/tVRV/7zS9Cc0uWZTwO+HDvTCBVWzlQp5Mj2VlZnFq9DC/3CzQbOgrn5mLPqPBlEzOigiBoniyDx0rY3Ba09cnu50bQussknDiJ1Q8/YDlu3Bsf1rKyZWYfecwvp57RqXIRGtd8wtaje+l1byplfRviUN6CPrNrUauDA2fWLeHxpbPU7dGXRgOGiSJUEASNkZRKzEcMJ+3pUxIvXNB0Op9NDesarG62mtCkUAafGkxYUljeBynfCYaeBS39nL9Pbm3M+fslF3S1lMxsX46FXSri/iKCPuuvE5OUnmepSpJE3S6OlG9QhDsnA7h90h+FUknLUeOxr+CM+84tJMfnYcdhQShgxCc1QRDULzU+pyvu6WlQujVZfdwImr6MJPcrWM+dg/ngQW/ekpHFuJ132eIZwND6xShZ+iqnj1+n+YuBFLEsTOfvq9B6REX0DOHgotl437xG44EjqNO191cz+yAIQv5l0q4dWnZ2RP6xCk2tPtOEaoWrsbb5WiJSIhh0ahChSbk7euVfFS4Hwy9AiUZwbAIcHQeZuW881KumPav7VcPrVTzd13ryMjYlz1KVJAmX3qVxqlmYa4d8eXAhCIVCSZNBI0hPScFjz/Y8iyUIBY0oRAVBUK+wx7CuUU533BbzyGyxgsAR40i+dw/bX5dg2qPHG7fEp2YwcNMN3B6+Ymrr0qisjnL+3C0a+HWnWCVzuk2uTpFSpqQkxLP3p2kEeT2i9Zjvqdq6/ed/PkEQhLeQVCosRgwn9fFjktzdNZ3OZ1XFqgprm68lJjWGgScH8jLxZd4H0TOFPruhwfdwZytsagPxuY/Tsrw1WwfXJCwula6rPfAOT8izVCWFRNMBZSnubIH77hc88XiJeVF7Krdsy4OzJwn3982zWIJQkIhCVBAE9bm/C9Y3hfREGHCUDMceBPTvT5q3N3Z/rMS4zZt7Y8LiU+mxxpPbATH81rMigcrNXLl6jyY+32DrVIiWwyqgVCpIiI5k9+wpRAT603HiNMo1aKyBBxQEQXg3kw4dUBWxIXLV6q9qVhTA2dKZ9S3WE58ez6CTgwhOCM77IAolNJ0JPbZC+BNY65LThyCXapcwZ9eI2mRkyXRb48ndwLw7jkahVNByaAXsyppyYdtTvG+HU7dbX3QMDbm4Zf1X99+HIIAoRAVBUIfMtJzlUgdHgG1VGOFOutKegL79yHwVit36dRi6uLxxm09EIl1WeRAUncy6/pVxj13KzTuPae09lML2xrQZVQmVlpKY0JfsmjmZhKgIuv44B8dquW9WIQiCoC6StjYWw4aRcu8eydeuaTqdz66CRQXWt1hPYkYig08NJig+SD2BynWEYedAxwi2tIMb63O9b7R8ERP2j6yDiZ4WfdZf5+Kz8DxLU6mloLVrJawdTTiz4TERwenU69GPIK+HvLjhkWdxBKGgEIWoIAh5KyYANrbMaSBR71vof4S00HgC+vQlOyEB+82bMahZ843b7gTG0G21B2mZWWwZWpldgXO47/WMDi9GY2plRPuxldHWVRER4MeumT+QnppC9xkLsCtfSQMPKQiC8GFMunRBZWVF5KrVmk5FI8qbl2dDyw2kZKYw6NQgAuID1BPIqiwMOw+OTeD4RDgyBjJSczWUg7kB+1zrUtzCgKFbbnH4Xkiepamlo6TtaGdMrPQ4v/UJZeo3xdK+GJe2bSAjPff7XAWhIBKFqCAIeefFGVjnAlE+0HM7NJ9LitcTAvp9A4DDX9vQq1jhjdvOPQmjz/prmOhpsWVoRZY/msRTHz+6e3+HkbE+HcZVRtdQi+Anj9g9ZwoKlYpesxdh7Vjqcz+hIAjCR1Ho6GA+dCjJN2+SfPOmptPRiDJmZfizxZ+kZ6Uz+ORg/OL81BNIrxD03g0Nf4C7f8Gm1hCXuyLS0kiHXSNqU72YKd/uusfGK3mXs46eisbflCUxJo2bxwJoNGA48RHh3D56MM9iCEJBIApRQRA+XXYWnJ8P27uDsS0Mvwhl25F0/QaBAwaiMDLCYcd2dEq9WTjuuRnE8G23cSpsxPpBZZh9cyz+ISH08ZmMrpYuHcdXxtBUhxfXPdg3fwb6Jqb0nrMY86J2n/0xBUEQcqNQj+4oLSyIXP11zooClDYrzYaWG8iUMxl8ajC+sWpq0KNQQJNp0PMviHye8+Wo/9VcDWWsq8XmQTVpVd6auce8+OXU0zzby2njaELFhrY8uBCMjkExStWqy/XDe0mIisyT8QWhIBCFqCAInyYrE3Z/A5cXQ+U+MOQMmDuScPEiQcOHoypig8P27WjbvV44yrLMyvMv+GH/A+qVtGBZn2J85z6csIhI+vvOQJmlRYdvK2Niqc+9U24cWfozVsUd6T13McaWVhp6WEEQhI+n0NXFfNAgkjw8Sbl3T9PpaEwp01JsarkJgEGnBuEd462+YGXb5yzV1TWBrR3g+rpc7RvV1VLyR9+q9K5pzx8XfPjxwEMys7LzJMXanRwxMNHhwl9PqN9nEHJ2Npe3b8qTsQWhIHhvISpJ0kZJksIlSXr0jvclSZJ+lyTJW5KkB5IkVc37NAVByJdkGY5/D8/coNVC6PgHaOsT5+ZG8Jix6JQqhcO2bWgVfr1wzMqWmXn4MUtOP6dLFVtmdrbA9fxgEuKTGBQwm+xkBe3GOGNWxIAru7ZybuNqSlStQffp89AzMtbQwwqCIOSeaa+eKAsVIuIrnhUFKFGoBBtbbkQlqRh8ajDPop+pL5hl6ZxitGQzODEJDo/O1b5RpUJiQecKjG1Skl03gxi1/Q6pGVmfnJ62ngqX3k5EhSThezeNGu278PTqJUKeen3y2IJQEHzIjOhmoNW/vN8aKPX3r+HA1/0TVhC+JleXwe3NUH8C1B4JkkTM7j28nDgJ/SpVsN+8CZWp6Wu3pGZkMXr7HbZdC2CESwmGN9NjyOlBZKZnMyRkDqlR2bRxrYilvQGn1izn+sE9VGzako7fT0NLR1czzykIgvCJFAYGmA0cSNKly6Q8eqzpdDSquElxNrXahLZSm6Gnh/I0+qn6gumaQK+d4DIF7m2HTa0g7uOPkpEkie9blGZ2+3Kc9gpjwMYbxKdmfHJ6xZ0tcaxqxS03f5zqtMXQzJwLW9YhZ+fNrKsg5GfvLURlWb4MRP/LJR2BrXKOa0AhSZJs8ipBQRDyqYf74OxsqNAVmswEIGrDRkJnzcKwYUPs1q9DaWj42i1xKRn033iDk49DmdGuHK2rpTH49CB00GXEq7kkBGXQYkh5rIvrc3jJPB5fPEudbr1pPmwMCqVSAw8pCIKQd0z79UVhbPxV7xX9f/bG9mxqtQk9lR5DTg3BK0qNs4AKBTT+EXrtgEjvnPNG/a/kaqiB9YqzvFdl7gTG0HPtNcLjc9eZ97816FkKlbaCK3v9adBnIGG+3jy6dPaTxxWE/C4v9ojaAv99MFTw368JgvClCvCEQyPBvg50XIUsSYQvW0b4L79g3KY1RVf8jkL39dnL0LhUevx9QPjvvatQrkQow88Mx1zbnJGR84h8kUrjb8pi46jDnp+m4n/vDs2HjaFu975IkqShBxUEQcg7SkNDzPr3J/HcOVKfqXFJagFhZ2THplabMNI2YujpoTyKfOsusLxTpm3OUl09U9jSAa6tydW+0Y6VbdkwoAYBUUl0W+NJQFTSJ6VlYKJD3a4lefkiFhknijiV5crOraQlJ3/SuIKQ3+VFIfq2T4hv/b9akqThkiTdkiTpVkRERB6EFgThs4t8Abt6QyF76LUDWVYQOmcOUWvWUqh7d4r88guStvZrt3iHJ9Bl1VVCYlPYMqgmBqZPGH1uNHaGdoyMn8vLhwnU714KG0eJXTMnERngT4eJ06jU7N92BQiCIBQ8Zt/0Q2FgQOTqNZpOJV+wNbRlY8uNmGibMOz0MO6Fq7mZk6UTDDsHTi3h5GQ46AoZKR89TEMnS3YMq01CagZdV3vwKCTuk9IqW9cGW6dCeBzwoU73QSTHx3HtwK5PGlMQ8ru8KESDgf9uh1kUePm2C2VZXifLcnVZlqtbWlrmQWhBED6rxAjY3g0kJfTdR0ZMCv79viF2127Mhw3Deu4cpP9ZQns7IJquqz3JyJbZPaI2UZIn31/8nrJmZRmdMge/6zFUb1sM6xLp7JwxkZSEBLrNmE/J6rU09JCCIAjqozQxwbRfPxJOnSLNx0fT6eQLRQyLsKnVJsx0zRhyagh7n+/Ns2NS3krXJOes60ZT4cEu2NgKkv9tF9rbVbYrxF7XuuiolPRadw1Pn6hcpyRJEo36liErI5un17Ko0KgZd44fIfpl7s5BFYSCIC8K0SNA/7+759YG4mRZfpUH4wqCkJ9kpMDOXpAQCr13kfAgAN8uXUn39cV2xe9Yff/dG0toz3iF0Wf9dcwMtDkwsi4P4o8z9cpUqltXZ3T2LJ5cDKdi46IUdohj9+wpKLW06DVnMbaly2roIQVBENTPbOAAJD09Ites1XQq+Ya1gTV/tfmL6tbVmes5l2lXppGcocalqQoFNJqc08go3At294PMtI8epqSVIftG1sHGRJcBG29w8lHuPwIXKqxPjXbF8LkTgV2Ftqi0tbi07c9cjycI+d2HHN+yE/AESkuSFCxJ0hBJklwlSXL9+5LjgC/gDawHRqktW0EQNCM7Cw4Mg5DbyJ3WEr7HnWDXkWjZFqH4gf0YN2/+xi27bgQyYtstylgbsXdEbU4Gb2fB9QU0tmvMKOV07roFU7q2NRZFQji4cA4mVoXp/dMvmBe1e0sCgiAIXw6VqSmmvXsR7+ZGur+/ptPJN0x1TVnVdBWjnEdxzPcYfY/3xS/OT71By7SBTqsh4CocGgW56FZrY6LHXtc6VLA1ZtT2O+y4HpjrdCo3t8fc1pAbx8Ko0aEnvndu4nfvdq7HE4T8TFLr0od/Ub16dfnWrVsaiS0Iwkc6NQ08V5JRcxovdzwk+dYtCvXsSeGpP6LQ0XntUlmWWXHem9/OPKdRaUv+6FOFtQ9XsOnxJtqXaE8/1WgubHlGcWcLLG1fcHn7JuzKVaTDxGnoGhi+IwFBEIQvS2ZkJN7NmmPcujVFfl6g6XTyHY8QDya7TyY9K5059ebQqpiaewa4/wrn5kKD76HpzFwNkZKexajtt7nwLILvmzsxpknJXDXbC/OLZ//iW5StXxi/m8tBUjDgl5UoVapc5SUImiRJ0m1Zlqu/7b28WJorCMKX7Po68FxJkmlX/OYfIeXxY4osXoTNnNlvFKFZ2TLTDz3itzPP6Vq1KGv6VWHJnQVseryJXqV7MdR4PBe3PaeIkwm6ute4vH0TTrXr02XqXFGECoLwVVFZWFCoR3fijhwhPfjjz7X80tW1rcve9nspaVqSSZcmsfDGQjKyPv3czneq/x1UHZBTkN7ekqsh9LSVrOtfnS5VbPn1zHPmHPUiO/vjJ3wKFzemUmM7vNzDqNSsNzEvg7l36liuchKE/EwUooIgvNvT48gnJhMRWo3ANddQmhai+N49mHTo8MalqRlZjPzrNtuvBzKqkSM/dy3LTI9p7Hu+j2EVhzHAdCSn13thUVQPlXSWuyePUKV1e9p9+wMqLS0NPJwgCIJmmQ8ZgqRQELVuvaZTyZesDazZ3HIz/cr2Y/uT7Qw8NZDQpFD1BJMkaPsrODaFYxPAO3fneGopFSzp7szQ+sXZ7OHPt7vvkZ758ct9a3YojpGZLs9u6uJQqSqe+3aSHBebq5wEIb8ShaggCG8XcpvMv4YQ5GlP5MVXGLdvR/E9e9ApWfKNS+OSM/hmw3XOPAljdvtyjGtWjAkXJ3DC/wTfVfuOXuYDOb7qIUbmCrLTDvP8mjsN+gyk8YDhSArxY0gQhK+TVuHCmHTrSuzBg2S8fOuBA189LaUWk2tOZonLErxjvOlxtAceIR7qCabUgh5bwKoc7BkIoQ9zNYxCITGtbVmmtC7D0fsvGbLlJklpmR81hrauCpe+pYkNS8HCoRUZaalc3f1XrvIRhPxKfAIUBOFNMQEkL+2F34lCJL8C67lzKLJoEQp9/TcuDYpOptsaD+4HxbGyd1W61bBk5NmRuAe7M7POTDqa9eDo7/fR0k0jI3EPr1540Xr0d9Ts2C1Xe2cEQRD+j737DsuyfBs4/r2fwd4bEVkiDly4B7kV9wb33mVZmivLskzTMq00J+49c4src4t7D1BUUPbePM9zv3/Q669SFEFF8focR0eHcd3nfV4ayMk1zuLEZvBgAOIWLyniTN5uLVxbsK7NOqwNrRl2YBi/X/wdrU776l+kbwo91uf+e7U/JBWsfYokSQxr4MGMLpU4ERpHj8WniU/LfqkYLhWs8axhz42TWZSt14LLh/YRdU+0/BGKD1GICoLwL3J6PHGj23N/lxLJwgHX9euw9Pd/ZtF4/kECHecdJzoli+UDalKvjCGDggZxMfoi032n08KqDdt/uYisiyc7ZS3JMZF0HPsV5T9oXAQzEwRBePuoS5TAokN7EjdtIic6uqjTeau5mbuxutVq2ri3Yd6leYw4OIKEzIRX/yJzJ+i5EbJSYI0/ZCYXOJR/dWfm96rGzcfJdJl/gojEjJd63tffEz0DFSlJlTA0MeXwsoWvt8eqILxBohAVBOEJbVwM4f7NiD6RhWm9arht245BuWf39Nx1+THdF57CWF/FlhF18XDU0m9vP0ISQ5jdaDYNrJvwx5yLZKY+JDNpHdqcbPwnT8O1SrU3PCtBEIS3m/WQIchaLfFLAos6lbeekdqIqfWn8lWdrwiODKbrjq5cirn06l/k4A3+yyD6BmzsB4W4KKlZeXtWDqxFTEoWneed4HZUSr6fNTTVo17X0sQ8yMbNpy0RN69x+9SxAuciCG8TUYgKggBAxpUr3GvTjNTQNOz7tcRp0SqUpqZPjZNlmbmHQ/hwzXkqOpmzdUQ99AwS6LOnD4/THvN709+pZVWXHb9cJDn6BpmJGzA0MaH7tzNx8PAsgpkJgiC83fScnTFv04aE9evRxMUVdTpvPUmS6FqmKytbrUSlUNFvTz9W31j96lcKSzeFtrMh9CDs+gwKEb+mmxUbhtZBJ8t0nX+Sc/fzv5LrVcsB53KWPLjlgLWzK0dWBpKTlVngXAThbSEKUUF4z8myTPyaNdzv3g05Kw3XcW2xGj/rmVtxszU6xm2+zMx9t2hfpQSrBtUiNOUSvXb3IjUnlSUtllDF0oddcy8RE3aarKRt2DiXovu3M7F0KFEEsxMEQXg3WA8dipyVRfzSpUWdyjujgnUF1rdZT32n+kw/M50xR8aQmp36al/i0wd8x8D5FXBsVqFClXM0Y/PwulgZ69Fz8SlOhMbm6zlJkmjQoyzoJIytmpESF0Pw9i2FykUQ3gaiEBWE95g2NY1Ho8cQNeVbjGzTcfu8MYZ9ZzxzbFJ6Dn0Dz7DhbDifNPHkZ//KrL+9isFBgzHXN2dFyxWUMy/P7t8vEX49iOzUIFwqVcF/8jSMzC3e8MwEQRDeLfrubpi1akX8mrVoEl7DucdiylzfnDmN5/BptU858OAA3Xd153bC7Vf7ksaToGJXODgFrmwqVChnKyM2DquDs6URH625wKN8nhk1tzWkZjt3oh+YUsKrBsHbN5McK84UC+82UYgKwnsq89Ztwrp0IXnvHmwrp+LcvzIq/99ye6n9x4O4dDr9fpyz9+OZ5V+ZoQ1LMu7oOH48+yONSzVmbeu1uJq4ErTkCvfObUKTcYLyHzSmw9iv0DMwLILZCYIgvHtshg1FTk8nfsWKok7lnaKQFAzwHsDi5otJyU6h566e7Ajd8epeIEnQfi641INtwyHseKHC2ZjoM793NbI1Oj5acz7ffUYrNy6JbSlTUlOrI8syf60Sq+fCu00UooLwHkrcspWwgAC0yYmUapqGTcNSSP4rcnuo/ce5+/F0mHecuLRsVg2shY+Hhp67exJ0P4hPq33KTw1+wkhlxKEVV7l5LBBt9mVqtu+C34hPUapURTA7QRCEd5O+pyemzZuTsHIV2uSC39T6vqrhUIONbTfibePNxGMT+ebkN2Rps15NcJU+BKwCCxdY1wNiCrfq6mFrwg+dK3H+QSLT99zM1zMKpYJGvcqSk2mErWsDbp08SviNq4XKQxCKkihEBeE9osvI4NHEL3g8cSKG3uVwb5WIsYsR9NgABmZPjf/jYgTdF53G3FDN1hH1SFddpvuu7sRmxLKg2QIGeA9Ap5M5tOIil/f/hi7nLo36DcW3Rz/RI1QQBKEAbIYPQ5eaSvyqVUWdyjvJ1siWRc0XMdB7IJtub6L37t6Ep4S/muBGVtBrU+4PbVd3gdSYQoVrXcmR/vVcCTx+j12XH+frGdtSplRp6kxCTFkMzaw4vGwRutfRT1UQ3gBRiArCeyLr7j3CArqRtHUrNkMGUqrOfVSKZOi5Ibdn2j/IssyvB+/wybqLVHG2YOPccI4BAAAgAElEQVSwWux8GMjHhz/GxcyFDW02UNuxNqkJmWyZcYJL++aAHEWbUWPxadm2iGYoCILw7jMoVw6TRo2IX74CbeorvnjnPaFSqBhVbRS/Nv6V8NRw/Hf68+fDP19NcEtX6L4eUqNhbQBkpxcq3ISW5fApZcHYTZcIjcnfn3eNNm6Y25qiZ/wB0WGhXD28v1A5CEJREYWoILwHknfvJqxLFzTR0Tj/Pg9bu5NIsTfAfzk4VPzX2CyNltEbL/HT/tt0rOrEb728mHTyUxZeXkgnz04sb7kcRxNHHlyPY923Jwi/thLkBDqNn4xXHd8imqEgCELxYTNiOLqkJBLWrC3qVN5pDZ0bsr7NekqalGTkoZH8fO5nNDpN4QOXrAZdlkDEedgyGAqxIqmnUvBbDx/01UpGrDpPevaL81PrKWnYqyyZGW6Y2bpzbN1KMtPEDy2Ed48oRAWhGJNzcoic8i0Rn41G38sLty2bMUnZCiEHoM3PuT3S/iExPZveS86w5XwEnzYtw5Cm+vTZ24MzkWeYXGcy39T9BrWkx+ntd9n+ywWyknei0zyi9cdjcK3sU0SzFARBKF4MK1bE2NeX+KVL0aUXbsXtfeds6szKVivpWqYrgVcDGRw0mNiM/LVNea6yrcFvOtzcCUGTChWqhIUhc7pV4XZ0CpO2Xs1XP1TnslaUq+tIdnZdMlKSObVZ/NBCePeIQlQQiilZlnn85VckrFmDVb9+uKxYjjp0HZxbBr6joVrff40Pi02j47wTXHyQyJxuVXBzu0HvPb3J0eWwzG8ZXcp0IS0pi+1zLhC86x7GxsfJTLlN4/5DxUqoIAjCK2YzfDjahAQS1m8o6lTeefpKfb6q8xXf1/+eq7FX6bqjK8GRwYUPXHsY1BoOp+bBqfmFCuXracuoJmXYciGCdcEP8/VMvc6eGJo7YWxZhQt7dxIXkb/nBOFtIQpRQSimYufNI2nbNmw++gj78eOQbv4BB78B7y7Q6N8/vT1zL/dm3MT0bFYM9OFq5jK+OPYFlWwrsaHNBirZViL8VgLrpwYTdTcZp9I3iQ8Ppnbn7lRt0aaIZigIglB8GflUxah2beKWLEGXmVnU6RQLbT3asrr1akzUJgwKGsSSK0vQyflrnZKnFlOhbBvYOx5u7ipUqJGNS/NBGVsmb7/G1YikF443MFHj618GjbYWkkLNkRWLC/V+QXjTRCEqCMVQ4rZtxP76G+YdOmDz4Qi4fyK395lLPegwDxT/+9TfeiGcXotPY2Wkx+IBZZh7cwzrbq2jX4V+LGy2ECt9K87uDmP77AvoG6ooVyeKu2f3UKmpH3W79ijCWQqCIBRvNsOHo42NJXHjpqJOpdgoY1mGta3X0rRUU2afn80nhz8hKevFRV+eFErotAicfGDTQIg4V/BQConZAVWwMdZj+OpzJKXnvPCZ0tXtcK3kjNKgNvcunuPu+Vew0isIb4goRAWhmEk7dYrHX36FUe3aOE75BikuBNZ2z+19FrAqtxcauVt3f95/m0/XX8LHxYLJXQ0Zc6I/txJuMbPBTEZXH01Ouo6dv13i9Pa7lK5uT8UPUgn+YyWeterSZOBw0aJFEAThNTKqWQPD6tWIW7wYXUZGUadTbJjomfBjgx8ZX3M8x8KP0W1nNx4mF2Jbq54RdF8HJnawJgASwgocyspYj996+hCZlMnojRfR6Z5/XlSSJBr08EJt5IPa0IbDyxeh1by4gBWEt4EoRAWhGMkKCSF85MfouZSi5C9zkLITc3udKVTQc2NuDzRyb8b9bMMl5hy8Q2cfJ1rWDWHUkWEYq41Z02oNfq5+PA5JZP13wUTcTqRBDy9KV03n4JJfca5QiVYjP0ehUBbxbAVBEIo3SZKwGzUKTVQUcYsWFXU6xYokSfQs15OlfktJyUmh/77+hStGTeyg5ybQ5sDqrpCRUOBQPqUs+aJVOQ7ciGbBX3dfON7UyoA6HTxB6Uti5CMu7NlR4HcLwpskClFBKCY0MTE8HDIUyUCfUgsWoFTmwIr2ub3OeqwHKzcA4tOy6bX4NFsvRDCqmSsqh7X8eG4GviV9Wdt6LR4WHlwIesDWWRdQqhV0HlsNK4dkdvw8HRtnV9qPmYRKrS7i2QqCILwfjKpXx6xNG+IWLyH7wYOiTqfYqWJXhSXNl5ClzaL/vv48SC7E77FtGei2JndFdF0v0GQVOFTfuq60ruTIzH03ORka98LxFRuWpESZyqgM3Dm5eR1piQUvhAXhTRGFqCAUA7r0dB4OG44mIQHn3+ejtjKGlR0g/m7udqGS1QG4G5NKx3nHuRSexNed7Dma9hV77u1hZNWRzG40G3WOAbt/v8KJLSG4V7bBf2INFIoEtk7/BhNLKzpN+Bp9I6Minq0gCML7xe7zz5FUKqKmfl/UqRRLXlZeLG6++NUUo671oP08uH8M/vgI8tGK5VkkSeKHzpVwtTFm5NoLRCc//8IqhUKiUa+yqAwakJ2ZybF1Kwv0XkF4k0QhKgjvOFmrJWL0GDJv3MBp1k8YepbK3Y4bfQMCVoN7AwBO3Y2j47wTpGZqGN9JZmHox0SmRfJ7098ZUmkIMfdT2fB9MA+uxVHf35MWQ7zJSotn0/dfoVSr6fzFtxhbWBbxbAVBEN4/ans7bD78kNQjR0g5fLio0ymW/r8YzdHm0H9ff+4n3y94sEpdofGXcGUDHJ5a4DAm+irm96pGWpaGj9ZeQKN9/g2/1k4mVGtVBaVeVa4e3k/U3ZACv1sQ3gRRiArCO0yWZaK+n0bq4cPYT/oC03q1ci9KiDgPXZeBZ1MANp8Lp/eS01ibqOja9Aazr4zHycSJ9W3WU7dEXS4fDmfLzHPIskzHMT5UbuxMRkoym6d+RXZ6Op0mfIOFvUPRTlYQBOE9ZtWnN3oeHkR9Pw1dVsG3fAp587LyYnGL3GJ0wN4BhStGfUeDTx/4ayacL/jqZBl7U6Z1qsiZe/HMDLr1wvHVW7liXaoRktKQg4ELkAu4IisIb4IoRAXhHRa/fDkJq1dj1b8/Vl07wbru8OAkdF4E5dogyzI/Bd1i9MZL+Lga4FlxE6tvL6KtR1tWtlyJncqBfYuucXT9bUqVtyLgi5o4uJmTnZnBth+mkBQTRcexX2Hn6l7UUxUEQXivSWo1Dl9OIufhQ+IWi36Rr0sZyzK5xagutxgNSworWCBJgtazwKMJ7BwFoYcKnFOHqk70rFWKBUfuEnQt8rljVWolTfpWRqlfj8d3bnDzxF8Ffq8gvG6iEBWEd1TyviCif5iBafPm2H36MWzoA3f/hPZzwbszAN/vvsGvh0Lw89GRbPUjZyJP8kWtL/iu3nekRuaw4ftg7l6MoU5HD1oNr4SBsRqtJocds6YRGXqHNp+Mo2R576KdqCAIggCAce3amLb0I27hIrLDw4s6nWKrjGUZlrRYgkbWMGBfIYpRpTp3d5JtWVjfByKvFjinL9uUp6KTOaM3XuJBXPpzx5bwtKRik2ZISjv+XL6EnMznny8VhKIiClFBeAdlXLzIo7FjMaxUiRLTpiJtHQx39kGbn6FKDwAWHAll0dF7NKoWzrnsKWRpM1nqt5QArwCuH3vEpunn0GRr6fBZVXxauCApJGSdjr3zZhN26TzNhnxE6Rq1i3imgiAIwj/Zjx0LCgVR06cXdSrFmqelJ4ubL0YrawtXjBqYQY8NoG8Ka/wh+VHBwqiVzOvpg0KSGL76HJk52ueOr9fJExPbZqQnxXN628YCvVMQXjdRiArCOyb7wQMejvgQlb09Jef+imLvKLixHfymQ/UBAGw8+5Bpe25SzTuEs+m/Ud66PBvabqC8mTcHll3nz9W3KOFpjv8XNSlR2gLIPW/654rF3Dx+hPrd+lCxcfOinKYgCILwDGpHR2yGDyf1wEFSjx4t6nSKtf8Wo/eS7hUskLkT9NwAmcmw2h+yUgoUxtnKiJ8DKnPtUTLf7Lj23LH6Rmqa9G2CQu1F8PYtJEVHFeidgvA6iUJUEN4hmoQEHg4ZClotzvN/R3X8a7iyEZpMhtrDAThwPYrxW67gUzqNMHkFtRxrsbjFYqQEAzZNP8vtM1HUbOtGm5FVMDLTexL7zLaNnN+zHZ9W7anZoWsRzVAQBEF4Eet+fdFzdSXyu+/QZWcXdTrFmqelJ0uaL0Eraxm4b2DBi1GHiuC/DKKvw8Z+oNUUKEzjsvZ82MiDtWcesunc87dnu1e1xb1ae3RamYOBiwr0PkF4nUQhKgjvCF1WFuEfjSTn0SNKzv0N/Rtz4cIqaDAOfD8DIDgsng/XnKdsCSWpFkuwMrRixgczCD0Ty6bpZ8lMy6HdJ1Wo0doNhUJ6EvvywX0cW7eCcvUb0rD3QCRJyisNQRAEoYhJenrYT5pEzv0HxAcuLep0ir3SlqUJbBH4ZGX0btLdAgZqmnuEJuQA7B5d4B6jnzYtQx13ayZtu8KNx8l5jpMkiSb9aqFvUot7F07x4OrlguUtCK+JKEQF4R0g63Q8njCRjHPnKDFtGkZxWyF4MdT9GBpOAOBmZDIDlwVTwkIfx9JbiM2I4ce6P3FxYxQHl93AzsWMgEk1cS5r9a/Yd4JPcmDRXFyrVKPF8E+QFOLLgiAIwtvOpH49TJs1JXb+fHIeFezcoZB/HhYeBLYIRJZlBu4bWPBitFrf3NYu55bBga8LVIyqlAp+6V4VMwM1I1afJyUzJ8+xJpb6+PboBgpT9v4+D53u+WdLBeFNEt9xCsI7IGb2HJJ378Z29GeYGZ6Hk79BzaHQbApIEuEJ6fQNPIOhnpIW9a5yOuoEYytM4M7KbG4cf0w1Pxfaj6qCsbn+v+I+vH6FXXNm4ODhSbtPJ6BUqYtohoIgCMLLsh8/HoCoH2YUcSbvh38WowP2DuBuYgGL0UaTcu90OD4btg0Hbd6FZF5sTfX5rYcPD+LTGbvp8nP7hVZq5IqdW0tSYsMJ/mN7wXIWhNdAFKKC8JZL2LCBuIULsQgIwLpMQm5zbJ8+uZcTSRJxqVn0WXKGjGwto9pqWXN7MZ2supO1qQRx4an4DfWmdgcPFMp/f7pHh91l24xvMbdzoOP4yagNDIpohoIgCEJBqJ2csBk6hJR9+0g7caKo03kvuFu4E9giEIAB+wYQmhj68kEUitweo40mwaW1sCagQBcY1XSzYpyfF3uuRhJ4PCzPcZJCotVHnVCoXTm2fpnYoiu8NUQhKghvsdSjR4n8ZgrGH/ji0NQK6fBUqBQAbWaDQkFqlob+y4KJSMxgekBJfrs6hTo5zShxoC6yVqbjGB88qto9FTcxKpLN33+FnpERnSdOwdDUrAhmJwiCIBSW1YABqEuVIvLb75DFxUVvhLuFO4F+gUiSVPBiVJKgwee5vb/v/gnLWkPKy99sO9jXnebl7Zm2+wZnw+LzHGddwoT63T9CkszZ+sO3xEU8fPmcBeEVE4WoILylMm/eJOKTUeiXKYNTz8pIB7+E8h2g/TxQKMnSaBm28hzXHiXzc7cKLLvzDV7hdah0rjWW9sZ0GV8DO5enC8y0xAQ2T/0SnVZLl4lTMLOxLYLZCYIgCK+CQl8f+4kTyL53j/iVK4s6nfeGu7k7S1osQSEpGLBvACEJIQULVLUX9FgPsXdgSTOIfbk4kiQxs2tlnCwN+WjNBWJTs/IcW72VF6VrD0STI7Hx28mkJycVLGdBeEVEISoIb6GcyEgeDh2GwswM5w+bojw8EbxaQefFoFSh08mM3nCJYyGxTO9UkVMJS7A9W4lqoa1wr2JLx9E+mFjqPxU3Kz2NzdMmk5oYT8dxk7EuWaoIZicIgiC8SqYNG2LSqBExc+eREyX6Rb4p7ua523SVkpKBQQMLXox6NoN+OyE7DQKbQ/jZl3rc3FDNvJ4+JKRnM2rdRbS6Z58XlSQJv6H1sCoVQFpiPFumTSEnO+/CVRBeN1GICsJbRpuaysOhw9ClpuI8uhPqYxPBowl0XQZKNbIs882Oa+y8/JjxLcuCOpicHY6Uj66Lj58LfoO9Uesrn4qryc7mj5nfEffwPu0+nUCJMmXf/OQEQRCE18J+4gTQaIgWFxe9UW7mbixpseRJMXon4U7BAjlVg4FBoG8Gy9rArb0v9XiFEuZ8296bYyGxzDlwO89xegYq2o/yw8C8FVF3b7Fn7s/IOl3BchaEQhKFqCC8ReScHCJGfUpWaChOo7thcH4yuNaHgFWgyl3h/O1QCMtP3mewrxs+dincWZpDiRQPGvXxok4HDyTF0z1AdTotu3/9kYfXr+A3fBRuVau/6akJgiAIr5GeszPWgweTvHs3aadOF3U67xU3czcCWwSiklQMChpU8GLU2gMG7ge7srCuO5xb/lKP+9dwpmu1kvxyKITDt6LzHGdVwphmg9qhMvTlzqljHFsvtnQLRUMUooLwlpBlmcgpU0g7dgzH4V0wCZkOJatD93WgZwTA6tP3+Wn/bTpVdaJjSWOOz43AQGtMi5HlKF/XKc+4Bxf/zp0zJ2jYZzDlfBu9yWkJgiAIb4j14EGonZyImvodcs7LtwQRCs7V3JVAv9xidOC+gdxOyHtV8rlMbKHvztydUDs+hj+nv1Sv0SntvSnrYMqn6y8SnpCe57gyNRyo4tcBpV5FzmzbyJVDQQXLVxAKQRSigvCWiFu4iMSNm7Du1hKL+Lng4A09N4K+CQB7rz7my21XaeRlS18Haw7Nv0OaOpkPRjpTpnzJPOOe2Liaywf3UrN9F6q1bv+mpiMIgiC8YQoDA+wnTiDrTgjxq1cXdTrvHRczFwL9AlEr1AzaN6jgxai+CXRfC1V6wZ/TcgtSrSZfjxrqKfm9VzW0WpkP11wgS6PNc2z9Lp6U9O6AUs+V/Yvmcv/yxYLlKwgFJApRQXgLJO3cRczPP2PWqBa2yjVg4wm9toCBOQAnQmP5eO1FqpQ0p5+xBcfW3iHc7BZeA/SoXqZynnEvBu3m1OZ1eDdqRv3ufd/UdARBEIQiYtK4McYf+BL762/kROe9PVN4PZ4Uo8rcYvRW/K2CBVKqof1v8MHncH4FrO+Ze5lRPrjZGDOzayUuPUzk+1038n6FSoHfkMqY2nVAqbZi+6zviX14v2D5CkIBiEJUEIpYenAwjydMwKhSWRxL7EeyLAW9t4GRFQBXI5IYsuIcHpaG9NEac/VQOFcc/kKvTTRdK3bOM25I8CkOBc7H3acGzQZ/hCQ9fXZUEARBKF4kScJh4kTk7Gyif/yxqNN5L7mYubC0xdLcYjSoEMWoJEHjSdB6FtwJguVtIS02X4/6eTsy2NeN5Sfvs/3SozzHmVga0HywD0qD9ui0SrZO/4a0xISC5SsIL0kUooJQhLLu3uPhRyNRO9pSsvw5FGa20OeP3DMiQFhsGv2WnsFBpaJnmgGPbiYQXHoH8dWuM7HOhDzjPrp9k12/zMTe3YM2n4xDoXz6Fl1BEASheNJzdcVqwACSt+8g/ezLtQIRXo1SZqVY2mIp+kr9whWjADUG5l5aGHUNljSH+Hv5emysX1mqu1gyfvNlQqJT8hznXNaKOp2qoNBvR2piIttmTCEnK7Pg+QpCPolCVBCKiCYujodDhiApwLnmPZTm5tB3B5g5AhCdkkmfwDNYZcoEJOmRnpDFhWo7uON0hlkNZ2GgMnhm3ITHEWybMQVjS0s6jpuM2uDZ4wRBEITiy2boEFSOjkR++x2yJn/nC4VX65UWo2Vb536PkBEPS5rBowsvfEStVPBbDx+M9JQMW3WetKy8/z/wae6Cu08FVIYtibwbwu5ffxJtXYTXThSiglAEMm/e5H6fvmhionH2jUPPUg/6/gEWzgAkZ+bQNzAYi9gcOiSoMTBQEtH0OKdVB5nuO52Sps++nCg9KZEt074GoPOEbzAyt3hTUxIEQRDeIgojI+zHjyfr1i0S1q4r6nTeW85mzixtsRQDlQEDgwZyM/5mIYLVzG3vojKEpa0h5MALH3EwN2BOt6rcjUll4tYryHncwCspJJr2K4eFQwWMLBoTEnySv9YsK3iugpAPohAVhDdI1umIWxJIWFd/tInxODfJwtBWhj7bwcodgMwcLYOXBWMdlk6LZBUObmaou0SwJW4twysPx7ek7zNj52RmsvWHb0hNiKfjuMlYOj67nYsgCILwfjBt3gzjunWJ+eUXNLH5O1sovHrOZs4EtgjEUGXIoKBB3IjL+wKhF7LxhEH7wdod1gTAxbUvfKReaRs+a1aGPy4+YunxsDzH6Rup8RtaEVRVMLOvydkdW7i0f3fBcxWEFxCFqCC8ITmPH/Og/wCiZ87EpFZl3FvGYWyfmXsm1LYMAFqdzKjV57G5lkqdDDVlazvg3lPFD1e+x9fJl6GVhz4ztk6rZeecH4i6G0rrT8bi6On1JqcmCIIgvIUkScJ+0hfoMjOJnvVzUafzXnM2zS1GjVRGhS9GTR2g325wrQ/bhsHRn17Ya3REw9I0L2/PlJ3X2Xj2YZ7jbJ1NadijLFlZdbFwLM/BwPncu3iu4LkKwnOIQlQQ3oDkPXu4274DGVeu4Di8I04uQahM9HL/IrGvAIAsy3y1/hLWwUmUz1FRp6MHVQLsGXNsNPZG9kzznYZCevpTVpZlDi75nbvng2k8YBilq9d609MTBEEQ3lL67u5Y9+1D0pYtpF948blC4fX5/2LUWG3MoKBBXIu7VvBgBmbQYyNU9IeDU2D3GNDl3TNUoZD4pXtVfD1tGLf58nNv0i1X15EKviXJyGiMmW1Jds6eTsz9/F2QJAgvI1+FqCRJfpIk3ZIkKUSSpPHP+Hg/SZJiJEm6+Pc/g159qoLw7tGmpPBo3DgiPv0MfTc33Me3wCJhLpJTVRh8GOzLPxk7a+M1jP+KxRElLYdWpHKzkow7Oo6EzARmNZyFub75M99xZttGLh/cS832XajSvNWbmpogCILwjrAZPhyVvT1R336HrM27WBFev5KmJQlsEYiJ2oSB+wZy+vHpggdT6UHHBVDvEwheDBv6QE5GnsMN1EoW9q5OdVcrPl1/kb1XI/Mc6xvgiZ2LNVpao9I3ZMsP35AaH1fwXAXhGV5YiEqSpATmAi2B8kB3SZLKP2PoelmWq/z9z+JXnKcgvHPSz53jXvsOJO3chc3wobh00EPv+lyo0it3O66xzZOxi9dfQ3EoCmM9Ff5jq+Fe1ZbfLv7G6cenmVR7EuWtn/UpB9eOHOTYuhWUq9+Q+t36vKmpCYIgCO8QhbEx9uPGknn9OokbNhR1Ou+9kqYlWdFyBY7Gjgw/MJz99/cXPJhCAc2mgN8PcHMXrGgP6fF5DjfUUxLYrwaVSpozcu15Dt+MfuY4lVqJ3xBvlCpTjK27kJWaytYfppCdmXehKwgvKz8rojWBEFmW78qynA2sA9q/3rQE4d0lZ2cT/fNs7vfuAyoVrgtnY2uwFenWdmj2LbT/DVT6uWNlmVXLr5B5OBKNsZJ+X9XCzsWMQw8OsfjKYjp7dqajZ8dnvifs8gWCFvxCKe9KtBj+CZJC7LQXBEEQns20ZUuMatUievYcNAkJRZ3Oe8/e2J5lfsuoYF2BMUfGsPH2xsIFrD0Mui7NbesS2AISH+Q51ERfxbL+NfFyMGXoqnMcD3n2RVZmNoY0G1CBlAQTSnp3J+b+PXb9MhPdc7YAC8LLyM93rk7AP081h//93/6rsyRJlyVJ2iRJkvMryU4Q3jFZd+8R1r0HcQsWYN6pI25zv8Lw5IcQFwLd10G9j0GSANBqdKydd5GkkzHEWigZPqUu5taG3E++zxfHvqCCdQUm1JrwzPdEh91lx6zvsXJypt3oL1Cq1G9ymoIgCMI7RpIkHCZ9gS4tjRhxcdFbwVzfnIXNF1KvRD2mnJzCwssL82yvki8VOkLvrZASBYubQeSVvN9tqGblgFq4WRszaPlZztx79iqqi7c11Vu58viuJWV9/bl77gxHViwpeI6C8A/5KUSlZ/y3/36W7ABcZVmuBBwAlj8zkCQNkSTprCRJZ2NiYl4uU0F4i8myTMK6ddzr1ImciAicfv2FEt18UK7vBEo9GBgEXn4AJMWkc3ZPGMsmnyThSgJ3rBV8+lVdTIz1SM9JZ9ThUSgVSmY1nIW+Uv+pdyXHRrN1+tfoGRnTafzX6BsZv+npCoIgCO8gfU9PrHr1InHTJjKu5F2kCG+OocqQOY3n0Ma9Db9e+JUfgn9AJ+sKHtC1PgzYCwolBLaEu0fyHGpprMeqQbVwtDBgwLJgLj5MfOa4Gq3dcC5vxf0bTpSt35Lze7Zzfs+OgucoCH/LTyEaDvxzhbMk8K+rtmRZjpNlOevvXy4Cqj0rkCzLC2VZri7LcnVbW9uC5CsIbx1NXBzhw0cQ+fU3GFWrhtsf2zBTn4NN/cGxCgw+RIragwtBD9gwLZhVX57i9B93CU1M55gdTBxXG3MjPWRZ5puT3xCaGMoM3xmUMCnx1LsyU1PZMu1rcrKy6Dz+a0ytbZ6RkSAIgiA8m81HH6K0sSZyyrfIukIUPMIro1aomVp/Kr3L92b1jdVMODqBHG1OwQPal4eB+8HCGVZ1hiub8hxqa6rPmkG1sTLWo8+S01x7lPTUGIVCotmA8hiZ6RH7qDJuVWry5/JFhJ47U/AcBYH8FaLBgKckSW6SJOkB3YDt/xwgSZLjP37ZDihEcyRBeHekHD7M3XbtSTtxAvuJE3GeNwf1X+Phz2mkle3PZZf5bJ73gBUTT3BiSwghUan8aZDDenst9h1dmTeuPnZmBgCsvbmW3fd282GVD6nrVPepd2lycvjjp+9IePyIdqO/wKaU6xuerSAIgvCuU5qYYD92LJlXrpC4Ke8CRXizFJKCz6t/zic+n7D73m5GHh5Jek56wQOaO0H/PeBcCzYPhBO/5jnUwdyANYNrYaKvoveSM9yOSnlqjKGJHn5DKpKekoPS0A87V3d2zZlB1L3QgucovPek/OxFlySpFTAbUAKBsixPlSRpCnBWluXtkiRNIyAaX+YAACAASURBVLcA1QDxwHBZlm8+L2b16tXls2fPFnoCglAUdBkZRM2YQeLadeiXLYvTzBno25uQsWoAoWGmhBj2IiLaBGSQLNRcJIcz2kys7I0Y5OtOJx8nDNTKJ/EuRl+k/97+1HOqxy+Nf3mqX6is07Hrl5ncOnmUViPHUK5+wzc8Y0EQBKG4kGWZ+717kx0SisfePSgtLIo6JeEfNt/ezJRTU/C28WZek3l5tm/Ll5xM2DoUrm+D2iOg+dTcm3afISw2Df8FJ5GBDUPr4Gbz9NGfq39FcGTNLSo3tuL6n3OQdVp6TJ0ldmgJeZIk6Zwsy9Wf+bFCHYouBFGICu+qjKvXePT552SHhWHVvz9mQz4k7MRlQg4E8zC9LDJKTGwMiLdWsTUugQcaDTVdrRj8gTtNytqhUPz72HVsRiwBOwLQU+qxvu16zPTMnnrnkVWBnN2xBd8e/ajZvsubmqogCIJQTGXeusW9Tp2x8O+K4+TJRZ2O8B8H7x9k7F9jcTZ1Zn6z+TgYOxQ8mE4H+ybC6d9zW8i1/+3JxYn/dScqhYCFp9BXKdgwtA7OVkb/+rgsyxxcdoNbZyLx7WrFkRVTMbe1p9uUGegZGj0zpvB+e14hKvo9CEI+yVotsQsWEtatG9mZGjRfLuSsSQuWTTzJoe3pJOQ44O5jQERNc77TJfJrdAwVy9mydURdNgyrQ7Py9k8VoRqdhrF/jSUpO4nZjWY/swg9v2c7Z3dsoUqLNtRo1/lNTVcQBEEoxgy8vLDs0YPEdevJuHatqNMR/qOJSxPmN5tPZHokffb04V7SvYIHUyjAbxp8MBYuroK/ZuY51NPelFUDa5GeraXH4lM8Tvp331BJkmjQ0wvrEsac2ZVM44GfERv+gJ2zf0CnFW1dhJcjVkQFIR+ywyN4OG4i4fezia/cmmiFE5ocGWPDbEpLe3F0jGG2eR923NVgqFYSUMOZAfXcKGX9/J8Ozjo7i6XXljK1/lTaebR76uN3Tp9g+8/TKF29Fm0/m4BCoXxGFEEQBEF4edrkZEJbtkKvZElc1q4R/ajfQjfibjDswDBkWWZe03l423gXPJgsw7bhcGktdFwIlQPyHHrpYSK9Fp/G1lSfdUNrY2dq8K+PJ0als3FaMBb2Rnj6xHAwcB6Vm7WiycDhSHmstgrvJ7EiKggFpMnWcm3RLnZ8upb9Rt246j2YBCMXyta2o73PPvqadSPLJoxWcV04Ga1kTPMynJzQmK/bVXhuEarVadlyZwtLry0lwCvgmUVoxM3r7P71Rxw9vWj18eeiCBUEQRBeKaWZGXajR5Nx6RJJ2/4o6nSEZyhnXY6VLVdipDZiwL4BnHx0suDBJAna/gKuvvDHhxB2LM+hlZ0tWNq/BpHJmfRafJr4tOx/fdzC3ogm/coTfT+FxFh3qrftxKX9uzm/W/x/JOSfWBEVhP/Q6WTCb8Zz50Q4oWcfk4MeajkL96p2eDVww9wqlczV3bBJvs6MnAAOWHVn8AfutK/y7wuIniUuI46tIVvZdHsTEakRVLatTGCLQPSUev8aF/8onLVffo6hqSndpszEyKwQFxUIgiAIQh5knY77PXqS/eBB7sVFZk8fERGKXkx6DEMPDOVe0j2m+U7Dz9Wv4MEyEmBJC0iNzG3zYuuV59ATobH0XxpMaTsT1gyqjbmR+t8f3xLChaAHNO7jxZ1Ty7lz5iTtRk/Es0adgucnFCvisiJByIe0pCxuHH/EtaOPSE3IQqnNwjbuEp61S1L+kwBiMjXsCdpL66ufYUIa86zGU61FTxqWefoCon+SZZkL0RdYf2s9++/vJ0eXQ3X76gR4BdCkVBPUyn9/UU9LTGDNpDFosrPo/u2PWNgX4oICQRAEQXiBzOvXudelK5Y9euAw6YuiTkfIQ3J2MiMPjuRC9AW+qPUFAWXz3lr7Qgn3YXETUBvBoINgYpvn0D9vRTNkxTnKlzBj1aDcNi//T6fVsX3ORSLvJdPhs4ocWvw9MQ/CCJg8DYfSZQqen1BsiEJUEPIgyzKPbidy9a8I7l6IQaeTsTNKwS54PY4myTjPmM4961IsPnqXrMtb+VE1jwy1BbFtl1Om8tO9Pv8pNTuVnXd3sv7WekISQzBRm9DOox3+Xv54WHg885nszAw2fDOBuIiHBHwlvogLgiAIb0bklCkkrFuP25bNGJQtW9TpCHnI1GTy+ZHP+TP8T0ZUHsGwysMKfiYz/Bwsaw32FaDvDtDL+0hR0LVIRqw+j08pS5YNqIGR3v+K0fTkbNZPPYNKT0mbEaXZNHU8muwsek6dhZmtXcFyE4oNUYgKwn9kZWi4deoxV49EkBCZjr6RijKVzbE6sABl8GHMu3YlpOsgFgU/5uidGD7V284nivVkOVRDv+daMLXPM/at+Fusv7WeXXd3ka5Jp5xVOQK8Amjp1hIjdd5f5HVaLdtmTCHs8gU6jP0S96o1XsfUBUEQBOEp2sREQv1aoufhgcuqleLCmbeYRqdh8onJbA/dTjevbkyoNeGp/uP5dmMnrO8F5dpA1xV59hgF2HHpEZ+su0BdDxsW963+r+NIj0MS2TbrAi4VranZ2px1k8diYmVN929nom/0dD9S4f0hClFB+FvMgxSuHgnndnAUmmwddi6meDcoiWN2KNETx6HLzCRh6Gd8k+HMzcgUnE1gidVKykTvgUoBuYf81QZPxc3SZhEUFsSGWxu4GHMRfaU+LVxbEOAVQEWbii/8C12WZYIW/MrVw0E0G/IRlZoU4uyHIAiCIBRAwsaNRH75FSVm/IB5u6cv0RPeHrIsM+vcLJZdW4afqx/f1//+qaM++XZyHuybAHU+ghZTnzt007lwxmy8ROOydszvVQ091f8K10sHH3Js4x3qdPTAukQCW6ZNxrlCJTqOm4xSpXpOVKE4E4Wo8F7TZGsJORfN1b8iiLqXjEqtwLOmPd4fOGFb0pjYuXOJ/X0+SncPljcfyurHEu62xoyqZU6bG6NRRJyDJl9B/c+eagD9MPkhG29vZGvIVhKzEnExc6Frma50KN0Bc/38XzB0ctNaTmxcTe3O3ajn3+tV/xYIgiAIwgvJOh1h3bqT8/gRHnv2oDQxKeqUhBdYenUps87Nom6Juvzc8Ofn7rzKkyzDnnFwZgG0+hFqDn7u8NWn7/PF1qv4VXDgtx5VUSkVf4eRCVp8jdDz0bQbVZXER2fZN38OFRo0pcWwj0V7oPeUKESF91JidDrX/orgxsnHZKVpsLA3wvsDJ7xqO2BgrEYTE0PEmM9JP32aWN/mjLJrSoqk4uPGpRlaJg31hh65N8t1Wgjl2j6Jq9Fp+Cv8Lzbc2sDxR8dRSkoaOTfC38ufWo61Xnp7zNXD+//+Qt2EFsNHie1QgiAIQpHJuHKFMP8ArPr0wX7C+KJOR8iHrXe28vXJr6lgXYG5TeZiaWD58kF0WljXE+7sg25rwev5O7MCj91jys7rtK9Sgln+VVD+fWljdqaGTdPPkpmWg//Emlw+sJmTm9ZQsUkLmg36UBSj76HnFaJinVwoVnRaHWFX4rh6JJyHNxJQKCTcqtjg3aAkTmUsnhR5aadOETHmc7QpKWxs1p9A4wrUc7Nmmp8zpcI2wPIZYGgFA/aBYyUAYjNi2Xx7M5vubCIyLRI7QzuGVx5OZ8/O2BvnfWb0ecIuniNo4a+4VKpKsyEjRREqCIIgFCnDihWx6NKF+FWrMG3aBKMa4r6Ct11Hz45Y6Fvw+V+f03dvXxY0XYCjiePLBVEoocsSWNoKNg2A/ruhRJU8hw+o70amRsuMvbfQVymY3qkSCoWEnoEKvyEV2fjDWfYtukr7TwPQaTWc3roBhUJJk4HDxfc6whNiRVQoFtKSsrh+7BHXj+W2XjGx1Kd8/RKUr18CY3P9J+NkrZbY+fOJ/W0uKXZOjK/YnUR7Z6Y3MKBZ8jakS2sgJx08mkCH35FN7AiODGb9rfUcenAIjayhtmNtArwCaODcALWigOcxgMd3brHxu0lYODjS7evp6BkWYDuNIAiCILximoQEwgK6kRMRge3HH2M9eJBYyXoHnI08y8hDIzFWG7Ow2ULcLdxfPkhKJCxuCtocGHwQzEs+d/is/bf55eAdetd2YUr7Ck+KzDtnowhafI1KjUtSv6snR9csI3j7Zqq0aE3j/oW46Vd454ituUKxJMsyEbcTuXoknHsXY9HpZJzLW+H9gROuFa1RKP/9l6YmLo5Hn39O2omTnPSoyYxy7fisQiL9lHvQu7sflHpQ0R9qDyPZyoXtIdvZcHsD95LuYaZnRvvS7fEv44+ruWuBc87JyuTO6RNcORxE+PWrmNrY0uO7nzCxtCrk74YgCIIgvDralBQiJ08mefcejOvWocQPP6CyzbvXpPB2uBV/i6H7h6KRNcxrMo9KtpVePkjUdQhskVuEDtgLBnnfeSHLMtP33GTBX3cZ7OvGxFblnhSZRzfc5vKhcJoNKI9nDXuOrArk3M6tVG3ZlkZ9h4hi9D0hClGhWMlKz+HmyUiuHf279YqxinJ1HKng64SF/bNXFdPOnCH8szFkJyYy37sNrpXgQ6P9GCXeBmNbqDEIqg8g08CMhZcXsvL6SjK1mVS0qYi/lz9+rn4YqJ6+LTc/ZFkmKvQOVw4HcfP4X2RnpGPh4Ih3w2ZUbNwcI3OLwvx2CIIgCMJrIcsyiZs2ETX1exTGxpT44QdM6tcr6rSEF3iY8pAhQUOIy4zj54Y/U8+pAH9moYdhdRdw9YWeG+E5N/LKssw3O66z7EQYIxuXZnRzLwC0Gh1/zL5A1N1kmg4oT+lqdvy5YjHnd/9BtdbtadB7kChG3wOiEBXeeVkZGh5ejyfsSiyh56LR5OiwdzPDu4ETpX3sUOkpn/mcrNMRu2AhMb/8SrSJJWG1S+DvcAajnASw94baI6BiF1Dpc+LRCb479R0PUx7S0rUl/bz7Ud66fIFzTk9O4uaxP7lyeD+xD8JQ6elTpnY9vBs1o2Q5b/HFVxAEQXgnZN25Q8Rnn5F1JwTrwYOw/fhjJHXBj6YIr19sRizD9g8jNCmUqfWm0sq91csHOb8Stn8EVXtDu1+f6hzwTzqdzMStV1gX/JDPW3jxYaPSAGRnaNg59xKPQ5No1Kss5eo6cnj5Qi7s2UH1tp34oGd/8f1QMScuKxLeObIsE/8ojftX47h/NY7HoUnIOhl9IxVlatrj3aAktqVMnxtDk5BAyCejkc+cJNnZhLo1b9JAfRXJzQ/qjMj9KZ8kEZcRx8yTk9l1dxelTEuxqPkiajvWLlDeOp2WB5cvcuXwfkLPnkKr0eBQugxNB31I2XofiKbOgiAIwjtH39MT1w0biJo2nbhFi0k/E0yJn35Cr6RTUacm5MHG0IalfksZeWgk44+OJzErkR7lerxcEJ/ekHgf/poJVm7gOzrPoQqFxNSOFcnS6Ji5L/cCo0G+7ugZqmj7cRX2zL/C4ZU3ycnS0qjvEHRaHWd3bEGhUFC/e19RjL6nxIqo8NbIztQQfjOB+9fieHA1jtSELABsnE1wqWCNi7c19m5mT539fJbEU6d5MPIjVGmpOPokYlxGRl29N1KtYWDtAYBO1rH1zlZmnZtFuiadgd4DGVxpMPpK/RdEf1pSdCRX/zzAtT8PkhIXg4GpGeV9G+HdqBm2pVxfOp4gCIIgvI2S9+zh8ZdfgSTh+N13mLVoXtQpCc+Rpc3i8yOfc/jhYYZVHsaIyiNeruiTZdgyGK5shM5LcneRPYdGq+PjdRfYfSWSbzt407u2CwDaHB37Fl/l3qVYarV3p1qLUhxYMo/LB/ZSq2MA9QJ6iWK0mBJbc4W3kizLJEalP1n1fBSSiE4jozZQ4lzOChdva0qVt8bEMv+FoZyRxJ1JI9HuPoPaWIvpBxImbYdjXLs/GP7vLGZoYihTTk7hfPR5fOx8mFxn8kvfLpeTnUXImZNcPRzEg6uXQZJwrexDxUbNcK9WC5XYtiQIgiAUQ9nh4UR8NprMy5ex6N4N+3HjUBgU7B4F4fXT6DRMOTmFrSFbaefRjkm1J2GoMnyJAFmwogNEnIU+28GlznOHZ2t0jFh9jgM3opnZpRJdqzsDoNXqOLT8BrfPROHj50Kttq4cWDyXK4eCqNOlO3W79izMNIW3lChEhbeGJltLxO3Ev4vPWJJjMwGwdDTGxTt31dPRwxyl6iWviU+4T2rQHGIXbCfjkRqdswrFJx9TrmV/UP5vB3qmJpOFlxey9NpSjNXGjK42mval26OQ8v++qLshXDm8n5vH/yQrLQ0zW3u8GzWlQoOmmNmIGwUFQRCE4k/OziZ6zhzilwSi7+WF06yf0PfwKOq0hDzIsszvl35n/qX5uJu781PDn/CweIk/r/R4WNIM0uNg4AGwKf3c4Zk5WgavOMvxkFhmdqlM52q5bWBkncyfa29x/egjKjYqSf3OHuxf/BtXD++nrn9P6nTuXphpCm8hUYgKRSopJuPJqmfE7QS0OTpUegpKlv171bOCFWbWL/GTuf8ny/DgFPKpeWQc3UfECQtyMpQ8bNWGD6ZNw1Dv30eg/3kZUVv3toypMQYrg/y1TclITXly8VBM2F2UajWeNetSsXFznMtXFP3VBEEQhPdS6tGjPBo3Hl1GBg6TJmHeqaPYYvkWO/HoBBOOTiBDk8HEWhPpULpD/h+Ov5vbY1TfDAYdAGOb5w7PyNYycHkwJ0LjGFDPjQmtyqJWKpBlmeObQ7h04CFl6zrSsEcZ9i/8hWtHDlK/Wx9qdfQv5CyFt4koRIU3Spuj41FI4pPiMzEqHQBzO8Mnq54lPC1QqZ990+0LabLh+jY4NQ854gKRt62Iv2hIiokFljN/xqthrX8Nj8uIY+bZmU8uI/qyzpf5uoxI1ul4cPUyVw4HERJ8Em1ODnZuHlRs1Jyy9RpgYGJSsPwFQRAEoRjJiYrm0bhxpJ86hVmbNjh8/TVKE3E539sqJj2G8UfHcybyDO082vFFrS8wUj+7/d1THp6B5W3BoRL03Q7q5y8kZGt0fL/7BstOhFHD1ZK5PXywMzNAlmWCd94jeFcYpavb0bivF/sX/MKNo4fx7dGPmu2ffxZVeHeIQlR4rf7/rGfE7UQeXIvj4c0ENFlalCoFTmUsKOVtjUsF6zx7fOZbTiacWQCnfoeUx8QqXDj/pxXOj6JI9KlD9bmzUFv+7xzofy8jGlRxEIMqDnrhZUTpyUlc3LeLa0cOkBwTjYGxCeX+vnjIzvXlzpEKgiAIwvtA1mqJW7SImF9+Re1cEqefZmHoXaGo0xLyoNVpWXB5AfMvzcfN3I0fG/yIp6Vn/h6+tg029oXyHaDLUsjHrrA/LkYwfvMVTAxUzOvpQw3X3B1pF4IecGJLCK6VbGg2sCz7F8zh5vEjfNBrADXadirMFIW3hChEhVdKp5OJi0jl0Z1EHt9J5FFIIhkpOQCYWhk8WfV08rJErV/AVc//urUX9o6DhDCSHOuz8E4lqh86gm1mMqafjKLUkIH/2gr0z8uIqtlX46vaX73wMiJZp+PKoSCOrllGZnoaLhWr4N2wKaVr1EGlp/dq5iEIgiAIxVj6uXNEjB6DJi4O+zGjsezTR2zVfYudfnyacX+NIy0njQm1JtCxdD63Vh//BfZ/CfU+gWZT8vWuW5EpDF91jgfx6UxoVY7/a+/O46Oq7v+Pv84smex7IBuEEJKAoLIJCAgiuCvaX61CaxeX+rB2s1Zrbev32+X3a79ttdUuttW61LrrV1vrUq3KLqDIviWEPfs6k2T2mXt+f9whC0sYMEwC+Twfj3ncuTPnzj13OEzmPefcc2+eNQqlFFuXVbPs+UoKx2Zw6VfP4r3HHqJi9Qou/NKtTLnyBIYOi0FJgqj4VMJhg6b9HdRGQmddlYuANwRASlY8+aXp5m1MOmnDEvr3D07Lbvj3fbDrHbxpJTyV+jV2/HsPX932L1RmFiV/eJiEiRO7ip/sZEQNe6p47/FHqK+qpPCsCcy/+Wtkjyjqv+MQQgghhoiw00ntD39E5/vvk3zhheT94ufYMjIGulriGJq9zXx/xfdZW7eWq0Zfxf0z7j/+UF2t4c27YN0TcNVvYerNUe2rwxfk7pc38c62Bq46J49ffvYckhw2dq6p44O/7WB4cSpXfG0C7z32WyrXrmLeV25j8uUL++EoxUCRICpOSCgQpmFvO7VVTmp3Oanf4yIUMADIyE0kLxI680vTSck8RdO1B9yw4jfoD39HEBt/td7AM/UTuW3bW0yv2ULCnDkU/vJ/ev1hW127mp+t+RkHOw6ysGQh35363eNORuRzd7LqxWfY9O5bJKSmcuEXb2Hs7Avl11shhBDiU9Ba0/bMszT+6ldYMzMpeODXJJ533kBXSxxD2Ajz2JbH+NOmPzEyZSQPzH2A8szy42wUgucXwe4P4PMvQemCqPalteYvy/fwq3/vpCQnmT/dOIUxw5LZvb6Rdx/fRmZ+ElfeMYH3H/8tVR+v5qKbb2fSpVf1w1GKgSBBVPQp4A1Rt8fVNdS2YV87RliDguzC5K7QmTcmncTUUzxEVWv8m18j/O/7SPTW81p4Nr/x/B++2LiDWRvfxWq1kvPNb5B5001dM9X2nIyoKLWI+2fcz/S86cfZjWbnyqUs/fvjeNvbOfeSK5h1w43EJ8kEREIIIUR/8W3fTs137iJw8CDZX7+D7NtvR1n76bQd0e8+rv+Y7y3/Hh2BDu6ddi/XlV7X94/z/g548nJo3Qs3/xtyz456Xx9WNfPN5zfgC4Z54HPncvnZeezf2sLbf9lCalY8V31jAh88+RC7161hwa13cO7FV/TDEYpYkyAqevF2BqirMoNn7S4nzQc70BosFkVOUUrXUNu8kjQcifaY1ElrzfbNH+H4z32M6fyE7UYRf4y7lQtDignvvABtraRds5CcO+/EnpcHnPxkRC3VB3n/8Uc4uH0LuSWlLLj16wwf3ff1sIQQQghxcsKdbhp+9lNc/3ydxPPOI/+BX2MfPnygqyWOocXbwn0r7mN13WouL76c/z7/v0my9zELcnstPDbfvH/re5BWEPW+6lxevvbMejYedHLbnNF879JyGqpcvPnIZhJS7Fz1jQks/dtv2bP+Yy6+7RucM/+yT3l0ItYkiA5hRtigvcXX6xzP1lo3AFa7hdziVHOobWk6ucVp/Te5UJRqnV7e+LiC9I9+w2cCb+AhnvfybmNkxlQyn3mUwK5dJEydwvB7v0/C2RO6tjuZyYiCPh9rXn2BdW+8Rlx8ArMXf5mz51+CxSK/zAohhBCnmvMf/6D+pz/D4nCQ94ufk3LhhQNdJXEMhjZ4fMvj/GHjHxiRMoIH5j7A2Myxx96gfis8cRlkjIKb3wZHStT78ofC/N83dvD3NfuZMTqT3y+eTLjZxxu/34TdYeXKr49n+TMPsXfDOi65/VucPe+ST3+AImYkiA4Bfk+QtgYPznpPr6Wr0WMOswXs8VbyStK6JhYaVpSK1X78Kbf7mzcQ5t3t9byy7iA5e//BfbbnyFLt7Bv5WTImfpWOPz+Be/kK7CNGMOyeu0m5+OKuYSFHm4zo2jHX9jlsRGtN1bo1LHnqUTqamxg/dwFzvvAVEtPSj7mNEEIIIfqff89eau66C//OnWR+5SsMu+s7KJmZftBaV7+Oe5ffi9Pv5N5p9/K5ss8d+ztX1Xvw7PVQMg8WvwhW2wnt69X11fzgtS2kJdh55AtTKLLaeP3hjQBcecd4Vj7/EPs2b+Cyr93J+LnzP+2hiRiRIHqGMAxNR4uXtnoPzgZP97LBg7c90FXOYlGkDUsgfXgiGbmJpA9PJKsgmezCZCzW2AdPMMPg+gNtvPJJNW9sqmNkoIqfxz/NuXon/uGTsV7wXzT973KcL72MJTGR7DvuIOMLn8cS+ePU6mvl1V2v8mLFi9S766OejMjZUM+Sp/7CnvUfkz2iiPm3fI3CcRP63EYIIYQQp47h99P4q1/T9uyzxE+YQMFvHiRu5MiBrpY4hlZfKz9Y+QNW1azi0lGX8uPzf0xy3DHm1Fj3JLxxJ0y5yZxN9wQnf9xR187tz3xCrdPLj648i6uLc3j94Y2EAmEuv/0sVr/8MPu3bOTyO77DWXMu6oejE6eaBNHTjN8bivRourt7OBs8OBs9GKHuf6/4JHtX0EzPTSRjeCIZuUmkZMdjHaDAebhap5fXNtTwyifV7G12k2v38mD268x0/gsSMtFz76dtc5DmvzyK4fWSsXgx2V+/A1tGBlprNjVt4oWKF3h337sEjSDTcqdx2zm3HXcyolAwyLrX/5e1r72EslqZed1iJl2+EKvtxH6dE0IIIcSp0fHee9T+8EcQCpH705+QduWVA10lcQyGNnhy65P8fsPvyU/O58G5DzIua9zRC7/3Y1j5W/P6orO+fcL7cnmDfPeljby3o5FrJ+Zz39wxvPvHLXg7glx2WzlrX/0dB7dt5fJv3MW42Rd+quMSp54E0UEo6A/T0eqjvdlrhswePZyeHr2byqJIy4n0bvYInOm5iSQkD86hLL5gmHe21fPKJ9WsrGpGa5g+Ko17cj5iStXvUT4n+ryv0hGcRuPv/kywpobkefMYds/dOEaPxhP08Nbet3ix4kV2tu4k2Z7MwpKFXF9+PSXpJcfd/77NG/jgiT/TVldD2YzZXPilW0nJyo7BkQshhBDiRARra6m5+x6869eTdt1nyf3BD7AkHucalmLArG9Yz/eWf49WXyv3nHcPi8oXHTlU1zDgf2+Bba/C556C8Z854f0YhuaRpVU8+J9Kyoal8NA1Z7Ph6Qo6WnxcfEsZ6/75e6p3bOOKb93N2Jlz+ufgxCkhQTTGtNb43SE6Wn10tPh6LyP3fe5gr20ciTazdzM3yQyakWG1qdkJWG2Do3ezL2HDHHr76voa3thUS4c/REF6Ap+dUsji/HryVt4PdRuhaBbeoq/S8OhLeDduxFFezvDv30vST1qnnwAAHLZJREFU+eez17WXFyte5PWq1+kIdlCaUcqi8kVcNfqq419YGehsbWHp03+lYvUK0nPzmH/T7YyaOCUGRy+EEEKIk6VDIZr+8Ada/vIotuHDyfzyl0n/3OewJvcxU6sYMG2+Nn648oesqFnBxUUX85OZPyEl7rDJiYI+eHoh1G6Exc9ByfwTHqYLsLyyiW+/sIFQWPPLq8fT8U4trbVu5n+plA1v/4Gaiu1c+a3vUX7+7H46OtHfJIj2M8PQeFz+I8Jl17LNT8gf7rWNLc5CSmY8KVnxpGTGk5xpLlOz4kkfnkh8sr3v6zQNQvUuH8srm1i2q4mVu5pxeYMk2K1cfnYu100pZEZOGMsHP4GNz0JKHsFJd9P45k7a33wTa042w779bZKuuZpltSt4oeIF1tatxWaxcUnRJSwau4iJOROjek+McJgN//4XH778LOFQiOnXXs95Cz+LTSY/EEIIIU4bno8/pukPf8Szdi2WlBQyFi8m84s3YsvJGeiqicMY2uBv2/7Gw+sfJi8pjwfmPsD47PG9C7lb4PGLoXU35IyFiV+AcxdB8rAT2ld1m4c7nl3P5moXd8wsZvQOD437O5i7uJjN/3mEul07ufrO71M6fWY/HqHoLxJET5DWGlej96ghs7PNR2erH8Po/b7FJ9m7QqYZNB3d61nxxCedfkHzcL5gmHX72lhW2cjyymYqGjoAGJbiYE5ZDnPKcrho7DCSbcDHj8GSn0PQS3jiV2mpSKf178+BUmTefBP689fyWu3bvFz5Mo2eRnKTcrm+7Ho+U/oZshOiH0Zbs3M77z/+CE0H9jFq4hTm33Q76bl5p+gdEEIIIcSp5t28mZbHn6Dj3XdRdjtp115L5k1fwVFcPNBVE4fZ2LiRe5bfQ7O3mbun3s3nx36+9/ddfwdsfRU2PAPVH4GyQtmlZigtuxSs0V2v3hcM85N/bef5jw5wQXEmC9vjaNzjYvZ1RWxb+icadu/i6u/cx5jzZpyiIxUnS4LoCdKG5s/fXNp12ROlICnd0d2T2SNwHgqdcfFn3iQ4Wmv2NrtZVtnE8somVu9pwRc0iLNamDoqg7mR8Dk2N6X7Q2fvCnj7e9C4HV08D2doPk1PvEi4pYXUq6+m7osX8ULbe7y//31COsSs/FncUH4DcwrnYD2B63l62l2seO4pti75D8lZ2Vz05dsYM+380z7sCyGEEMIU2L+fliefxPXqa+hgkJQFC8i69RYSzj13oKsmenD6nNy/6n6WVi9l/sj5/HTWT0mNSz2yYFMlbHwGNr0AnQ2QlAPn3GCG0uFnRbWvl9Yd5Ef/2MqwhDjucKTRVtXOtKsL2PXhozTs3c3C795HyZS+J7QUsSVB9CRUfdJIQrLZy5mU4Rg0s9Ceah2+IB/ubukKn9VtXgCKs5OYU5rN3PIcZozOIjHOBgEPtO4xh1y0VEH1Oqh4C9JG0pl7E43PLcW/axdxkyay9fNTecpYSZWzitS4VK4dcy3Xl19PUWrRCdVPGwZblrzLiuf+RsDrYcqV1zLjs4uIi084Be+GEEIIIQZaqLmZ1mefpe255zFcLhKnTiXz1ltInjMHZRka388GO601T29/moc+eYjhScP59Zxfc3bO2UcvHA6Z1xzd+AxU/BuMIORPhklfgAnXQULf13nfWuPi9mc+ocnl47upWQT3uZl0SS571j1G8/69LLz7h4yedN4pOEpxMiSIimMyDM32unaWVTaxrLKJ9fvbCBmapDgr55dkM680jXk5bvLDtd2Bs2W3GUDba3q/WHIu/vxraFjShnvFSijIZfW1pfwlYyOesJezss5iUfkiLiu+jARb9MHR0+6iZuc2anZuY9+mDbRUH6Bw3ATm3/I1skecWJAVQgghxOnJcLtxvvIKLU/9jVBdHY7SMWTecgtpV1yBknkhBoXNTZu5Z9k9NHobuWvKXdw47sa+R6u5m2HzS+Z8Ig1bwRYPY68yQ2nxhXCMHxqcngB3vriRZTubuC0hjdT6ABPmZHNwyxM0H9jHNffcT7FMWDkoSBAVvTR3+lmxq4nllc2s2NVEW6eXQtXE3Kx25mS1MyG+iWHBGiytu8F1ELTRvXFCJmSNgawSyCyBrBJ0WhGe/R20v/MBzldfxYi3s3R+Dn8tr8US5+Dy4stZNHYRE7InRFW/9uYmanZuo3rHVmp2bqel+gAAVrudvDHlnH3RJYy7YJ4MwxVCCCGGIB0M0v7227T89XH8lZXYcnNlpt1BxOV3cf+q+1lycAnzRszjJzN/QkZ8Rt8baQ11m8xzSbe8DD4npI2AcxfDxM9D5pHnBxuG5ncf7OLh93bxWZVEcZtB+YwM6nY8SfPB/RSdM4my6bMoOW8GCckpR9mpiAUJokOcJxBiy8E21m/dRnXVFlTrbkapesptDZTHNZEdrMOiQ90bOFIhc/RhgXMMZI2GBPODJOx00rliBZ1LltK5ciVGezuGzcLyyQ7+fn6AtGEjuKH8Bq4dcy3p8cceYqG1pq2utit4Vu/YRntTAwBxCQnkl59F4djxFI6bwPCSUmz26E5qF0IIIcSZTWuNe+VKWv76uMy0O8horXl2x7M8+MmDoGHS8EnMLpjNBQUXMCZ9TN+dCUEfVLwJG56F3R8AGkZdYJ5LetZCiOv9Y8OSikbufH4jUzsUk91WSialEp+4iV1rP6S9qQGL1cqI8edQNmMWY847n8TUtFN78KIXCaJnKMPQtHoC1Lt8NLT7qHN66WypRjfvxu7aS4p7P9mBgxQadRSpBuJV97VLDWs8KrsE1RUyewTOpOwjrvWktSawZw+dS5fSsWQJ3vUbwDDwpyawqczGspFuto62Mr14LjeMvYGZ+TOxqCOHUxhGmOYD+6nesY2aHVup3rkNj8sJQEJKKoXjJlAwdjyF48aTU1SMxRr9BEZCCCGEGJp6zbRrs5kz7d58k8y0O8Aq2yp5c8+brKxZSWVbJQDDE4ebobTwAmbkzSDJ3kcvtqsaNj1vhtK2vRCXAhM+AxNvhBHTur6vHmz1cPszn5C8x8Mcn51R52Qz5bIiMBrZ9dEqKteuwllfh1IWRoyfQOn02ZROO5+k9OP01IpPTYLoacgfCtPY7qe+3Uedy0eDy0d9u496lxevs4E4117SPAcYQR2jVD3Fqp5Rqp4k5e96jSB22uILcCcVQVYJuaPHkzC8zAycKXnHHHd/iA4E8HzySSR8LiV4wBwi6xqZyZrRIZaNdLOvwMq0/BksKFrARSMuIishq9drhENBGvZUmcFz5zZqdm7H73EDkJKVQ+E4s7ezYNx4MvMLZbitEEIIIU7akTPtzifr1ltlpt1BoN5dz6qaVaysWcnqutW4g25sFhuTh03mgoILmF0wm5L0kqN/F9QaDqw2h+5u+wcE3ZBVap5Les4iSM3DFwxz/z+2svvDOi7yxqEAR7Kd4glZjJyQRWKyi32b1lKxZhVttdWgFIVjx1M6fRal088nJTP6yweK6EkQHSR8wTAubxCnJ4jTE8DlDdLmCVDvMgNnw6HQ2e4j5G7tCpfFFjNojrbUU6waSMbd9ZqGsuJNKiSUPhpbzhjih5dizR5j9mymFcIJXBIFINTWhnv5cjqWLMW9ciVGZyfabqdhXA5LR7pZVtRJe3ocM/NnsqBoAfNGzCPN0T3EIej3UberInJ+5zZqKysIBcxwnJFfaAbPyFDb1JwTu6CxEEIIIUQ0ZKbdwS0YDrKxaSMralawonoFVc4qAPKS8phdMJvZBbOZkTeDRHvikRv7O8wwuvFZM5wqC4y5GCZ9AV12GS+sb+C3b+4kq8NgdNBCSdiGwwAskF2UypiJ2aRn+2jYs55da1fRfHA/APll4yibMYvS6TNJzZbvqP1Fgmg/0lrjDhwKlAFcniDOQ+HSG1mP3Hd6gt3B0xvAFzR6vVYSXkapBopVHePjmyi1NTJK1ZMXqiEp7OreJwqdNgKVVYLqdc5mCaSPjPpiwMc6nkBVFR1LltK5dCnejRvBMDAy09g7IYt3C1r4ML8TlZDA7ILZLChawNzCuVgDGmd9Lc76OtrqanE21NFWW03jvj0Y4TAoRU5RcXePZ/lZMvxBCCGEEDF11Jl2b76FtCtlpt3BpN5dz4qaFaysXsmaujV4Qh7sFjuTh5u9pRcUXEBxWvGRvaXNVWYg3fQCdNSak2qecwPhc25ghx7Fmr1trNndwv7KNnLdmtFBK8MM84cIa7KNkROyKCwK09m8jap1q2natweA3DFllE2fRdmMWaQNy43123FGkSB6grTW/OyNHd3B0tvdg+n0BAkZx37PHDYL6Yl20hPiSEu0M8wRZrStkSLqyA/XkhOsIcN7kBT3fuJ8Tb03Tsk3w2WPGWnJLIGMUWCP77/jCwRwf/yxOdHQ0qUEq6sBCI4ZwY5xSfwzt5atmW7SSGZO4lTOsZeRG0ils7EJZ0Mdzvo6fJ0d3S+oFClZ2WTk5pFbUkbBuPHkl40jPim53+oshBBCCHGyZKbd00cwHGRD4wYzmNas7OotzU/K54JCcwjvtNxpvXtLjTDsXmJem3TnmxAOmOeTFkyCgimE8ydTZS9nZUMc63c00VzlIs8NRSELcSgMC8QXJDGqBBzGbg5s+YiGPeZ+h48eQ+n0WZRNn0lGXsFAvCWnNQmiJ2Ha/3sPuzUSKnsEy/SEI9czHJrMQC2pngPEufb2fa3NpGE9gubo7t7NzOIjZgHrT6HWVjqXLadzyRLcq1ZhuN3gcOA6t4RNBbDG0UQoaJDpTSA/mI6jwyDs7T7fFKVIzc4hPTefjNw80nPzu+6nDcvFJr8qCiGEEGKQ65pp97G/4vnoIywpKaRfdx2JUybjKC/HXijzVQw2dZ11XaF0Td0avCEvdoudqcOnmsN4C2dTnNqjt9TTCpXvQM06qPkE6reCEZmwMyUfCiZjFEzlYMI4lrUXsGmrG8/+Tgq8kBHpLQ0kWUnJC5OTeJDOmk3UV5kTLeUUFVM2fRalM2aRVTBiIN6O044E0f4QDoLzQCRg7jaXLVXmfVf1Ua612bNXM3IplMzREJ/6qauiDQOjvZ2w02neXK6u+yGnE8PlItTWRtDpxOdyEmjvwN3WgjvOjjcjjbZhqTRbQgT8QeJCPc6TUIrU7GFk5OX3CJxm6EwbliuXThFCCCHEGaNrpt3//AcM83ucJSkJR3k58WPLcZQdWpZhSTzKuYoi5gLhAOsb17OyeiUralawx2UOpS1ILui6PMx5uef17i0N+qB+ixlKD4XT1j2RJxXkjEUXTKY+eTwftpawcU8y4VofuQGFFUVAQSDdS1riQRydlbTuM0NpVuFIymbMomz6LLJGFMkPGMcgQfREhUPwyZM9QmeVGUKNntfaTOvRo3lY6EzMjGo3Wmu0x9MVJAPNzfiam/G1tuBva8XvcuJvb8ff0UHA4ybg8RDw+wgGg4QtipDFQsiiCFkthC0WQlYLIYuFsNV8XB/lP4ShNJ0JIXwpiszcAkpHn8vZY6aRlV9I2rDhWG0SNoUQQggxdBhuN/6qKnw7K/BX7MRXUYm/ogKjs9MsoBT2kSOILx+LY2w58eXlOMrHYi/Il/AxwGo6a1hVs4oV1StYW78Wb8hLnCWOicMmkp+cT05CDtkJ2eQkmsvshGxyEnKID3igZn0knEYCqqfFfFFbPDr3XBpTJ7O2eTwVdcPQLTaSDIVG02rtxB6/n6TgboKNe0BrMvILKZ12PlkFI0hITSMhJZXE1DQSUlOxO/rv9LrT0acOokqpy4CHASvwV631/xz2vAN4GpgCtAA3aK339fWagzqIag2/KDSXh4VNnTmaUMpIgtYkAj4vAacTf2sLfqeTgMuFv72dQEc7gc5Ogh43Qa+XgN9L0OcnFAwQDAYJhUOEDIOQNnoESgvaEt2HmVIKq9WCxWYFuwXDbiEYB367xhMXxmMJ4FY+OvERtBkEbQa+uDCO7Axmjp3HxaMv5dycc7Ge4Iy6QgghhBBDgdaaYE0N/ooKfDt34q+oxFexk+CBg+b3Q8CSnGz2npaXdwfU0lLpPR0ggXCAdQ3rWFmzkg0NG2j0NtLibSGsw0eUTbGnkJ2Y3R1UE7LJxkq2x0WOq46cpiqy67eTEvSiACMhm4OJ89ncMZUDzQVoTzwKhVt30k4VyXov9vZ9XW2jJ5vD0SOYppGYkkpCaioJKZH1SHA9dN+RlHRG/cDxqYKoUsoKVAIXA9XAx8BirfX2HmXuAM7RWt+ulFoEfEZrfUNfrzuYg6jWmhe/fhOBQIhgMEAoFDLDozYIaeAE2obSGqsGG2C1WMyb1YbNbsNit2GNs6Mddox4C0GHFW88uBMMXI4QLqsXl+7EqTtoDbfjswYJWg2Mw/KjzWIjw5FBeny6uXSkkxHfe1mUWsT4rPFnVMMWQgghhIglw+3Gv2sXvp0V+CrMgOqvqDDn3gBQiriiou7hveVjiS8vw5YvvacDwdAGbb42mr3NNHmbaPI00ext7lpv9jZ3PeYL+47Y3mGxk21NIMeAbL+bbI+TnFCYzEAi1sBMOjzT6WgvhrCdsPbj126C2kNYezG0F609YHix4MOivVi1F4vhxRr2og6dt3o4iwV7YjLxKWkkpqaSlJZOSno6iampPYKr2dt6qNfVMog7lz5tED0f+LHW+tLI+n0AWutf9CjzTqTMaqWUDagHcnQfLz6YgyjAE1fNx2JoFBosoJXGsELYqgnZNEGbJmDX+OwGvjgDd5ym0xGmIz5MZ7xBZ6KmPdEgaFMnFFwtykK6I73rdnig7Fr2CJ5J9jPrlxMhhBBCiNOFNowevacV5rKiguCBA11lLKmpxJeV4ejRe2pNTQWLBSxWlNUCFot5jVNLj/tWq/kdz2rt9fzpcC1UrXV3D6FSg/q7qtaazmCnGU493SG1K7B6uoNsR7Cj17ZKW8hvL6LEWUZiMBm7EY8t7MAWWVoNB9awA5vhwBqOw6LtkX0GQXvRRndg1dq8YXjQ2ouhPZF1L0r7j1Z1pn/zR8yePeOUv0cnq68gaoti+wLgYI/1amD6scporUNKKReQBTSfeHUHh823jcYfb8FqtWNVVqwWKzZlM5cWG1bVvUy1WMm02LqeP/Tc4etdyx6vZbfYe4XOlLgULGrwf7gIIYQQQghQFgtxI0YQN2IEKQsWdD0e7nTj31XZa3iv67XXMDye/tnxYUH1mIHVYgGrBXXo+6XWaDRozEmaIoGxKzgeuhkGOlL+0Lq5be/tjrrtsfqilOp1U4etY7GY/Tc91lGq+7HIunnDPKZjvZ7FYpZBHbYtkXJHbquUIidyw6IO2zYFVAoaTVCHCRpBAjpEMOQlEGwhEF6CoQ00hjkPDBpDa4gsI+86BgrD4iCs4jEsDgzlwLB039eW+MjSgVbDzKUtDkPZMZQVrSKvTRhNGF/dHmDwBtG+RBNEj/bzxeGtK5oyKKVuA24DGDlyZBS7HjgPLXxsoKsghBBCCCFOU9bkJBInTSJx0qSux7RhEKyuxr9rF4bbjTYMCBugDXTXMgyGBiOM7loeVs4w0MZh5cJhtO67nKl3UDND2GEBz2LpLncolCllPtZnoDvKttAjnGrzWHSPx7QRCbJ0B15092OHQu+hxwwd/esdd9ve4VnrQwH72NsqrXFgIc5iI0lrsCeBLcvcNloa84obOmwuDQMMD+iOyOOG+e+lDbSO/Ptr899Xdy3N24iyP51sEx1w0QTRaqDnhXIKgdpjlKmODM1NA1oPfyGt9aPAo2AOzT2ZCgshhBBCCHE6UhYLcSNHEjfIO2SEiIVoxoB+DJQqpYqVUnHAIuD1w8q8Dnw5cv864IO+zg8VQgghhBBCCDF0HbdHNHLO5zeAdzAv3/KE1nqbUuqnwDqt9evA48DflVJVmD2hi05lpYUQQgghhBBCnL6iGZqL1vot4K3DHvuvHvd9wOf6t2pCCCGEEEIIIc5EMj2rEEIIIYQQQoiYkiAqhBBCCCGEECKmJIgKIYQQQgghhIgpCaJCCCGEEEIIIWJKgqgQQgghhBBCiJiSICqEEEIIIYQQIqYkiAohhBBCCCGEiCkJokIIIYQQQgghYkqCqBBCCCGEEEKImJIgKoQQQgghhBAipiSICiGEEEIIIYSIKQmiQgghhBBCCCFiSoKoEEIIIYQQQoiYkiAqhBBCCCGEECKmJIgKIYQQQgghhIgppbUemB0r1QTsH5CdH1820DzQlRACaYti8JC2KAYTaY9isJC2KAaLwdoWi7TWOUd7YsCC6GCmlFqntZ460PUQQtqiGCykLYrBRNqjGCykLYrB4nRsizI0VwghhBBCCCFETEkQFUIIIYQQQggRUxJEj+7Rga6AEBHSFsVgIW1RDCbSHsVgIW1RDBanXVuUc0SFEEIIIYQQQsSU9IgKIYQQQgghhIipIR1ElVKXKaUqlFJVSqnvH+V5h1Lqxcjza5VSo2JfSzEURNEW71JKbVdKbVZKva+UKhqIeooz3/HaYo9y1ymltFLqtJqhT5w+ommLSqnrI5+N25RSz8W6jmLoiOLv9Eil1BKl1IbI3+orBqKe4symlHpCKdWolNp6jOeVUup3kXa6WSk1OdZ1PBFDNogqpazAH4HLgbOAxUqpsw4rdgvQprUeA/wW+GVsaymGgijb4gZgqtb6HOAV4FexraUYCqJsiyilUoBvAWtjW0MxVETTFpVSpcB9wCyt9XjgzphXVAwJUX42/gh4SWs9CVgEPBLbWooh4ingsj6evxwojdxuA/4UgzqdtCEbRIFpQJXWeo/WOgC8AFxzWJlrgL9F7r8CzFdKqRjWUQwNx22LWuslWmtPZHUNUBjjOoqhIZrPRYCfYf4Y4otl5cSQEk1b/CrwR611G4DWujHGdRRDRzTtUQOpkftpQG0M6yeGCK31cqC1jyLXAE9r0xogXSmVF5vanbihHEQLgIM91qsjjx21jNY6BLiArJjUTgwl0bTFnm4B3j6lNRJD1XHbolJqEjBCa/1GLCsmhpxoPhfLgDKl1Cql1BqlVF+9BEJ8GtG0xx8DNyqlqoG3gG/GpmpC9HKi3ykHlG2gKzCAjtazefgUwtGUEeLTirqdKaVuBKYCc09pjcRQ1WdbVEpZME9T+EqsKiSGrGg+F22Yw88uxBwlskIpNUFr7TzFdRNDTzTtcTHwlNb6QaXU+cDfI+3ROPXVE6LLaZVdhnKPaDUwosd6IUcOo+gqo5SyYQ616Ks7XIiTEU1bRCm1APghsFBr7Y9R3cTQcry2mAJMAJYqpfYBM4DXZcIicQpE+zf6n1rroNZ6L1CBGUyF6G/RtMdbgJcAtNargXggOya1E6JbVN8pB4uhHEQ/BkqVUsVKqTjME8tfP6zM68CXI/evAz7QcuFV0f+O2xYjwyH/ghlC5Twocar02Ra11i6tdbbWepTWehTm+coLtdbrBqa64gwWzd/ofwDzAJRS2ZhDdffEtJZiqIimPR4A5gMopcZhBtGmmNZSCLNdfikye+4MwKW1rhvoSh3LkB2aq7UOKaW+AbwDWIEntNbblFI/BdZprV8HHsccWlGF2RO6aOBqLM5UUbbFXwPJwMuR+bIOaK0XDlilxRkpyrYoxCkXZVt8B7hEKbUdCAP3aK1bBq7W4kwVZXv8LvCYUuo7mEMhvyKdF6K/KaWexzwdITtyPvJ/A3YArfWfMc9PvgKoAjzATQNT0+go+T8ihBBCCCGEECKWhvLQXCGEEEIIIYQQA0CCqBBCCCGEEEKImJIgKoQQQgghhBAipiSICiGEEEIIIYSIKQmiQgghhBBCCCFiSoKoEEIIIYQQQoiYkiAqhBBCCCGEECKmJIgKIYQQQgghhIip/w9ufX6r54GW2gAAAABJRU5ErkJggg==\n",
3647
      "text/plain": [
3648
       "<Figure size 1152x576 with 1 Axes>"
3649
      ]
3650
     },
3651
     "metadata": {
3652
      "needs_background": "light"
3653
     },
3654
     "output_type": "display_data"
3655
    }
3656
   ],
3657
   "source": [
3658
    "plt.figure(figsize=(16, 8))\n",
3659
    "for col in all_ich:\n",
3660
    "    ww = train_md[col].mean()\n",
3661
    "    plt.plot(x, train_md[col].groupby(grp).mean().values / ww)\n",
3662
    "plt.legend(all_ich)"
3663
   ]
3664
  },
3665
  {
3666
   "cell_type": "markdown",
3667
   "metadata": {},
3668
   "source": [
3669
    "# Between serieses"
3670
   ]
3671
  },
3672
  {
3673
   "cell_type": "code",
3674
   "execution_count": null,
3675
   "metadata": {},
3676
   "outputs": [],
3677
   "source": [
3678
    "tt = train_md[['SeriesInstanceUID','PatientID']].groupby('PatientID').agg(lambda x: x.nunique())\n",
3679
    "\n",
3680
    "tt = tt.sort_values('SeriesInstanceUID',ascending=False)\n",
3681
    "\n",
3682
    "tt.loc[tt.SeriesInstanceUID == 6].head()\n",
3683
    "\n",
3684
    "pp = preds_all.mean((0,1))\n",
3685
    "\n",
3686
    "train_md = pd.concat([train_md, pd.DataFrame(pp,columns=[s+'2' for s in all_ich])],axis=1)\n",
3687
    "\n",
3688
    "train_md = train_md.sort_values(['SeriesInstanceUID','pos_idx'])\n",
3689
    "\n",
3690
    "fig, axes = plt.subplots(2, 3, figsize=(30, 10))\n",
3691
    "serieses = train_md.loc[train_md.PatientID == 'ID_f41d724c'].SeriesInstanceUID.unique()\n",
3692
    "print('total number of serieses', len(serieses))\n",
3693
    "\n",
3694
    "for i, ax in enumerate(axes.flatten()):\n",
3695
    "    if i >= len(serieses): continue\n",
3696
    "    ser = serieses[i]\n",
3697
    "    a = ax.plot(train_md.loc[train_md.SeriesInstanceUID == ser,'any'].values)\n",
3698
    "    a = ax.plot(train_md.loc[train_md.SeriesInstanceUID == ser,'any2'].values)\n",
3699
    "    ax.set_ylim([0,1])\n",
3700
    "    ax.set_title(ser)\n",
3701
    "\n",
3702
    "train_md.loc[train_md.SeriesInstanceUID == 'ID_5752d1b055']\n",
3703
    "\n",
3704
    "\n",
3705
    "\n",
3706
    "sums1 = train_md[['SeriesInstanceUID'] + [s+'2' for s in all_ich]].groupby('SeriesInstanceUID').mean()\n",
3707
    "\n",
3708
    "sums2 = train_md[['PatientID'] + [s+'2' for s in all_ich]].groupby('PatientID').mean()\n",
3709
    "\n",
3710
    "train_md = train_md.join(sums1, on = 'SeriesInstanceUID',rsuffix='_s')\n",
3711
    "\n",
3712
    "train_md = train_md.join(sums2, on = 'PatientID',rsuffix='_p')\n",
3713
    "\n",
3714
    "train_md.head()\n",
3715
    "\n",
3716
    "lls = np.zeros(6)\n",
3717
    "for i,col in enumerate(all_ich):\n",
3718
    "    ll = log_loss(train_md[col], train_md[col+'2'])\n",
3719
    "    lls[i] = ll\n",
3720
    "    print('{:20s}{}'.format(col, ll))\n",
3721
    "print('total',(lls*class_weights).mean())\n",
3722
    "\n",
3723
    "lls = np.zeros(6)\n",
3724
    "for i,col in enumerate(all_ich):\n",
3725
    "    ll = log_loss(train_md[col], train_md[col+'2']*(train_md[col+'2_p']/train_md[col+'2_s'])**0.01)\n",
3726
    "    lls[i] = ll\n",
3727
    "    print('{:20s}{}'.format(col, ll))\n",
3728
    "print('total',(lls*class_weights).mean())"
3729
   ]
3730
  },
3731
  {
3732
   "cell_type": "markdown",
3733
   "metadata": {},
3734
   "source": [
3735
    "# Matching weights"
3736
   ]
3737
  },
3738
  {
3739
   "cell_type": "code",
3740
   "execution_count": 193,
3741
   "metadata": {},
3742
   "outputs": [
3743
    {
3744
     "name": "stdout",
3745
     "output_type": "stream",
3746
     "text": [
3747
      "            weight_fac\n",
3748
      "grp_weight            \n",
3749
      "0             0.220584\n",
3750
      "1             0.009550\n",
3751
      "            weight_fac\n",
3752
      "grp_weight            \n",
3753
      "0             1.000511\n",
3754
      "1             0.987797\n",
3755
      "            weight_fac\n",
3756
      "grp_weight            \n",
3757
      "0             0.999490\n",
3758
      "1             1.012266\n",
3759
      "                      weight_fac\n",
3760
      "grp_weight                      \n",
3761
      "(-1e-07, 0.882948]      1.057270\n",
3762
      "(0.882948, 0.898794]    1.072048\n",
3763
      "(0.898794, 0.906308]    0.897005\n",
3764
      "(0.906308, 0.913545]    1.186886\n",
3765
      "(0.913545, 0.91706]     0.826138\n",
3766
      "                    weight_fac\n",
3767
      "grp_weight                    \n",
3768
      "(-250.001, -155.0]    1.129195\n",
3769
      "(-155.0, -146.0]      1.463599\n",
3770
      "(-146.0, -139.5]      1.610627\n",
3771
      "(-139.5, -135.9]      1.948982\n",
3772
      "(-135.9, -133.0]      1.353873\n",
3773
      "                        weight_fac\n",
3774
      "grp_weight                        \n",
3775
      "(-253.40001, -153.887]    1.332844\n",
3776
      "(-153.887, -147.3]        1.416284\n",
3777
      "(-147.3, -143.661]        1.023889\n",
3778
      "(-143.661, -141.03061]    0.918627\n",
3779
      "(-141.03061, -138.637]    1.180680\n",
3780
      "                                  weight_fac\n",
3781
      "grp_weight                                  \n",
3782
      "(0.29296869999999997, 0.3984375]    1.337160\n",
3783
      "(0.3984375, 0.4082031]              1.011190\n",
3784
      "(0.4082031, 0.4140625]              0.710916\n",
3785
      "(0.4140625, 0.4179688]              0.917107\n",
3786
      "(0.4179688, 0.421875]               0.134509\n",
3787
      "                                  weight_fac\n",
3788
      "grp_weight                                  \n",
3789
      "(0.29296869999999997, 0.3984375]         1.0\n",
3790
      "(0.3984375, 0.4082031]                   1.0\n",
3791
      "(0.4082031, 0.4140625]                   1.0\n",
3792
      "(0.4140625, 0.4179688]                   1.0\n",
3793
      "(0.4179688, 0.421875]                    1.0\n",
3794
      "            weight_fac\n",
3795
      "grp_weight            \n",
3796
      "25.0          0.000000\n",
3797
      "27.0          0.000000\n",
3798
      "28.0          0.000000\n",
3799
      "29.0          0.000000\n",
3800
      "30.0          1.260849\n",
3801
      "            weight_fac\n",
3802
      "grp_weight            \n",
3803
      "25.0               0.0\n",
3804
      "27.0               0.0\n",
3805
      "28.0               0.0\n",
3806
      "29.0               0.0\n",
3807
      "32.0               0.0\n",
3808
      "                      weight_fac\n",
3809
      "grp_weight                      \n",
3810
      "(-826.212, -127.714]    1.472848\n",
3811
      "(-127.714, -45.2]       1.981911\n",
3812
      "(-45.2, -22.0]          0.000000\n",
3813
      "(-22.0, -2.7]           0.974458\n",
3814
      "(-2.7, 48.891]          0.844602\n",
3815
      "                      weight_fac\n",
3816
      "grp_weight                      \n",
3817
      "(-998.401, -314.713]    0.742841\n",
3818
      "(-314.713, -233.2]      1.384948\n",
3819
      "(-233.2, -204.6]        0.473240\n",
3820
      "(-204.6, -176.8]        2.329583\n",
3821
      "(-176.8, -121.524]      0.663088\n",
3822
      "            weight_fac\n",
3823
      "grp_weight            \n",
3824
      "20.0        321.160437\n",
3825
      "21.0          0.000000\n",
3826
      "22.0          0.000000\n",
3827
      "23.0          0.000000\n",
3828
      "24.0          0.827473\n",
3829
      "            weight_fac\n",
3830
      "grp_weight            \n",
3831
      "0.0           1.000287\n",
3832
      "1.0           1.000290\n",
3833
      "2.0           1.000284\n",
3834
      "3.0           1.000222\n",
3835
      "4.0           1.000431\n",
3836
      "                           weight_fac\n",
3837
      "grp_weight                           \n",
3838
      "(-1e-14, 2.443]              0.997660\n",
3839
      "(2.443, 2.51623530000001]    1.030205\n",
3840
      "(2.51623530000001, 2.551]    1.003057\n",
3841
      "(2.551, 2.58799999999999]    1.145803\n",
3842
      "(2.58799999999999, 2.621]    1.146857\n",
3843
      "            weight_fac\n",
3844
      "grp_weight            \n",
3845
      "0             1.012887\n",
3846
      "1             0.768090\n",
3847
      "            weight_fac\n",
3848
      "grp_weight            \n",
3849
      "0             1.000527\n",
3850
      "1             0.987403\n",
3851
      "            weight_fac\n",
3852
      "grp_weight            \n",
3853
      "0             0.999473\n",
3854
      "1             1.012672\n",
3855
      "                      weight_fac\n",
3856
      "grp_weight                      \n",
3857
      "(-1e-07, 0.882948]      0.984012\n",
3858
      "(0.882948, 0.898794]    1.074229\n",
3859
      "(0.898794, 0.906308]    1.013745\n",
3860
      "(0.906308, 0.913545]    0.988697\n",
3861
      "(0.913545, 0.91706]     1.082301\n",
3862
      "                    weight_fac\n",
3863
      "grp_weight                    \n",
3864
      "(-250.001, -155.0]    0.912302\n",
3865
      "(-155.0, -146.0]      1.009799\n",
3866
      "(-146.0, -139.5]      0.805539\n",
3867
      "(-139.5, -135.9]      0.777941\n",
3868
      "(-135.9, -133.0]      0.769025\n",
3869
      "                        weight_fac\n",
3870
      "grp_weight                        \n",
3871
      "(-253.40001, -153.887]    0.974192\n",
3872
      "(-153.887, -147.3]        0.891506\n",
3873
      "(-147.3, -143.661]        0.947499\n",
3874
      "(-143.661, -141.03061]    0.992884\n",
3875
      "(-141.03061, -138.637]    0.962131\n",
3876
      "                                  weight_fac\n",
3877
      "grp_weight                                  \n",
3878
      "(0.29296869999999997, 0.3984375]    0.860416\n",
3879
      "(0.3984375, 0.4082031]              1.424168\n",
3880
      "(0.4082031, 0.4140625]              0.819094\n",
3881
      "(0.4140625, 0.4179688]              0.908510\n",
3882
      "(0.4179688, 0.421875]               0.767331\n",
3883
      "                                  weight_fac\n",
3884
      "grp_weight                                  \n",
3885
      "(0.29296869999999997, 0.3984375]         1.0\n",
3886
      "(0.3984375, 0.4082031]                   1.0\n",
3887
      "(0.4082031, 0.4140625]                   1.0\n",
3888
      "(0.4140625, 0.4179688]                   1.0\n",
3889
      "(0.4179688, 0.421875]                    1.0\n",
3890
      "            weight_fac\n",
3891
      "grp_weight            \n",
3892
      "25.0          0.000000\n",
3893
      "27.0          0.000000\n",
3894
      "28.0          0.000000\n",
3895
      "29.0          0.000000\n",
3896
      "30.0          1.014485\n",
3897
      "            weight_fac\n",
3898
      "grp_weight            \n",
3899
      "25.0               0.0\n",
3900
      "27.0               0.0\n",
3901
      "28.0               0.0\n",
3902
      "29.0               0.0\n",
3903
      "32.0               0.0\n",
3904
      "                      weight_fac\n",
3905
      "grp_weight                      \n",
3906
      "(-826.212, -127.714]    1.314342\n",
3907
      "(-127.714, -45.2]       0.819393\n",
3908
      "(-45.2, -22.0]          0.000000\n",
3909
      "(-22.0, -2.7]           0.620704\n",
3910
      "(-2.7, 48.891]          0.953840\n",
3911
      "                      weight_fac\n",
3912
      "grp_weight                      \n",
3913
      "(-998.401, -314.713]    0.847546\n",
3914
      "(-314.713, -233.2]      1.083147\n",
3915
      "(-233.2, -204.6]        1.101247\n",
3916
      "(-204.6, -176.8]        1.218389\n",
3917
      "(-176.8, -121.524]      1.068306\n",
3918
      "            weight_fac\n",
3919
      "grp_weight            \n",
3920
      "20.0          3.264434\n",
3921
      "21.0          0.000000\n",
3922
      "22.0          0.000000\n",
3923
      "23.0          0.000000\n",
3924
      "24.0          0.942758\n",
3925
      "            weight_fac\n",
3926
      "grp_weight            \n",
3927
      "0.0           0.999284\n",
3928
      "1.0           1.011640\n",
3929
      "2.0           1.011288\n",
3930
      "3.0           1.012861\n",
3931
      "4.0           1.008862\n",
3932
      "                           weight_fac\n",
3933
      "grp_weight                           \n",
3934
      "(-1e-14, 2.443]              1.001713\n",
3935
      "(2.443, 2.51623530000001]    0.975150\n",
3936
      "(2.51623530000001, 2.551]    1.016525\n",
3937
      "(2.551, 2.58799999999999]    1.007861\n",
3938
      "(2.58799999999999, 2.621]    0.999059\n",
3939
      "            weight_fac\n",
3940
      "grp_weight            \n",
3941
      "0             1.006550\n",
3942
      "1             0.866234\n",
3943
      "            weight_fac\n",
3944
      "grp_weight            \n",
3945
      "0             1.000513\n",
3946
      "1             0.987744\n",
3947
      "            weight_fac\n",
3948
      "grp_weight            \n",
3949
      "0             0.999487\n",
3950
      "1             1.012320\n",
3951
      "                      weight_fac\n",
3952
      "grp_weight                      \n",
3953
      "(-1e-07, 0.882948]      0.993752\n",
3954
      "(0.882948, 0.898794]    1.047360\n",
3955
      "(0.898794, 0.906308]    1.034724\n",
3956
      "(0.906308, 0.913545]    1.027450\n",
3957
      "(0.913545, 0.91706]     1.012281\n",
3958
      "                    weight_fac\n",
3959
      "grp_weight                    \n",
3960
      "(-250.001, -155.0]    0.883197\n",
3961
      "(-155.0, -146.0]      0.947833\n",
3962
      "(-146.0, -139.5]      0.974187\n",
3963
      "(-139.5, -135.9]      0.937614\n",
3964
      "(-135.9, -133.0]      0.989689\n",
3965
      "                        weight_fac\n",
3966
      "grp_weight                        \n",
3967
      "(-253.40001, -153.887]    0.988138\n",
3968
      "(-153.887, -147.3]        0.976444\n",
3969
      "(-147.3, -143.661]        0.978552\n",
3970
      "(-143.661, -141.03061]    1.009163\n",
3971
      "(-141.03061, -138.637]    0.975390\n",
3972
      "                                  weight_fac\n",
3973
      "grp_weight                                  \n",
3974
      "(0.29296869999999997, 0.3984375]    1.108129\n",
3975
      "(0.3984375, 0.4082031]              1.165323\n",
3976
      "(0.4082031, 0.4140625]              0.978755\n",
3977
      "(0.4140625, 0.4179688]              0.959698\n",
3978
      "(0.4179688, 0.421875]               0.927049\n",
3979
      "                                  weight_fac\n",
3980
      "grp_weight                                  \n",
3981
      "(0.29296869999999997, 0.3984375]         1.0\n",
3982
      "(0.3984375, 0.4082031]                   1.0\n",
3983
      "(0.4082031, 0.4140625]                   1.0\n",
3984
      "(0.4140625, 0.4179688]                   1.0\n",
3985
      "(0.4179688, 0.421875]                    1.0\n",
3986
      "            weight_fac\n",
3987
      "grp_weight            \n",
3988
      "25.0          0.000000\n",
3989
      "27.0          0.000000\n",
3990
      "28.0          0.000000\n",
3991
      "29.0          0.000000\n",
3992
      "30.0          1.004215\n",
3993
      "            weight_fac\n",
3994
      "grp_weight            \n",
3995
      "25.0               0.0\n",
3996
      "27.0               0.0\n",
3997
      "28.0               0.0\n",
3998
      "29.0               0.0\n",
3999
      "32.0               0.0\n",
4000
      "                      weight_fac\n",
4001
      "grp_weight                      \n",
4002
      "(-826.212, -127.714]    1.194211\n",
4003
      "(-127.714, -45.2]       0.968002\n",
4004
      "(-45.2, -22.0]          0.000000\n",
4005
      "(-22.0, -2.7]           0.835044\n",
4006
      "(-2.7, 48.891]          0.904313\n",
4007
      "                      weight_fac\n",
4008
      "grp_weight                      \n",
4009
      "(-998.401, -314.713]    0.899753\n",
4010
      "(-314.713, -233.2]      1.040718\n",
4011
      "(-233.2, -204.6]        1.041095\n",
4012
      "(-204.6, -176.8]        1.170849\n"
4013
     ]
4014
    },
4015
    {
4016
     "name": "stdout",
4017
     "output_type": "stream",
4018
     "text": [
4019
      "(-176.8, -121.524]      1.147310\n",
4020
      "            weight_fac\n",
4021
      "grp_weight            \n",
4022
      "20.0          1.966588\n",
4023
      "21.0          0.000000\n",
4024
      "22.0          0.000000\n",
4025
      "23.0          0.000000\n",
4026
      "24.0          1.025124\n",
4027
      "            weight_fac\n",
4028
      "grp_weight            \n",
4029
      "0.0           0.997354\n",
4030
      "1.0           1.009193\n",
4031
      "2.0           1.009555\n",
4032
      "3.0           1.008279\n",
4033
      "4.0           1.005987\n",
4034
      "                           weight_fac\n",
4035
      "grp_weight                           \n",
4036
      "(-1e-14, 2.443]              1.002834\n",
4037
      "(2.443, 2.51623530000001]    0.980900\n",
4038
      "(2.51623530000001, 2.551]    1.014221\n",
4039
      "(2.551, 2.58799999999999]    0.996848\n",
4040
      "(2.58799999999999, 2.621]    0.979687\n"
4041
     ]
4042
    }
4043
   ],
4044
   "source": [
4045
    "data_md['weight'] = 1\n",
4046
    "\n",
4047
    "for k in range(3):\n",
4048
    "    #for col in ['PixelSpacing_0']:\n",
4049
    "    for col in significant_cols:\n",
4050
    "\n",
4051
    "        if len(data_md[col].unique()) <= 100:\n",
4052
    "            data_md['grp_weight'] = data_md[col]\n",
4053
    "        else:\n",
4054
    "            data_md['grp_weight'] = pd.qcut(data_md[col],100,duplicates='drop')\n",
4055
    "\n",
4056
    "        ww = data_md[['grp_weight','any','weight']].groupby('grp_weight')\\\n",
4057
    "            .apply(lambda x: x['any'].isnull().sum()/((x.weight[~x['any'].isnull()]).sum() + 1e-6))\n",
4058
    "        ww = pd.DataFrame(ww, columns = ['weight_fac'])\n",
4059
    "        print(ww.head())\n",
4060
    "        \n",
4061
    "        data_md = data_md.join(ww, on = 'grp_weight')\n",
4062
    "        data_md.loc[~data_md['any'].isnull(),'weight'] *= data_md.loc[~data_md['any'].isnull(),'weight_fac']\n",
4063
    "\n",
4064
    "        del data_md['weight_fac']\n",
4065
    "        del data_md['grp_weight']"
4066
   ]
4067
  },
4068
  {
4069
   "cell_type": "code",
4070
   "execution_count": 194,
4071
   "metadata": {},
4072
   "outputs": [],
4073
   "source": [
4074
    "train_md = data_md.loc[~data_md['any'].isnull()].copy().reset_index(drop=True)\n",
4075
    "for col in all_ich:\n",
4076
    "    train_md[col] = train_md[col].astype(int)\n",
4077
    "\n",
4078
    "test_md = data_md.loc[data_md['any'].isnull()].copy().reset_index(drop=True)"
4079
   ]
4080
  },
4081
  {
4082
   "cell_type": "code",
4083
   "execution_count": 195,
4084
   "metadata": {},
4085
   "outputs": [],
4086
   "source": [
4087
    "train_md.to_csv(PATH_WORK/'train_md.csv', index=False)\n",
4088
    "test_md.to_csv(PATH_WORK/'test_md.csv', index=False)"
4089
   ]
4090
  },
4091
  {
4092
   "cell_type": "code",
4093
   "execution_count": 196,
4094
   "metadata": {},
4095
   "outputs": [
4096
    {
4097
     "data": {
4098
      "image/png": "iVBORw0KGgoAAAANSUhEUgAABWYAAAVICAYAAAAnFgPBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdeZhkZXn38e9PRsAIyjYQZBuJoIIRovMqalQQF3CDxCWgiagkIybGuEbURNHEqEnUaCQaoihuLKIEjBpFhKgRiKCIIAqICCMIIwjIIsJ4v3+c01DTU9VdvVV1V30/13WurnrOdtfTp+quc5+lUlVIkiRJkiRJkgbnHsMOQJIkSZIkSZLGjYVZSZIkSZIkSRowC7OSJEmSJEmSNGAWZiVJkiRJkiRpwCzMSpIkSZIkSdKAWZiVJEmSJEmSpAGzMKslI8kXkxwy7DgAkjw/yZeHHcdki6mPukmyd5LVw45DknS3xZQ7zK+zk2RFkkqybNixSJLutpjyhzl2dsyxWmgWZkdYksuTPHHYcUyWZKMkb09yRZLbklyS5LVJMtV8VbV/VR0zD+t/YZJvzGD69T6Iq+qTVfXkeYhlYtk3t8PlSQ7vc94jknyis20YfZTGO5Nc1w7/ON3/ch7iW5Hk9CS3JvnBVNt5u70dneSmJD9L8qpJ4/dtl3Fru8yd+pk3yYZJTmz/Z5Vk7wV5sZIWHfNrz/WbX6df9kzy6z5tXroxyeVzXXef69wiyUlJbknykyTPm2LaKfN/kj2TnNvm13OT7NnPvEm2SvK/bfsNSc5M8piFfeWSFgtzbM/1m2OnX/ZMcuxrk1yQ5JdJfpzktXNdfx/rHHqOnW5eDYeFWQ3Dp4F9gacCmwJ/AqwC3ttt4vaDZdS31c2qahPgYOBNSfYbdkAzsAo4ENgDeCjwdOAlC7zOY4HvAFsCbwROTLK8x7RHALsAOwH7AH890b9JtgI+C/wtsAVwDnB8P/O2vgH8MfCz+XhRkjRH5tf1LeX8egtwNLDgO4sdjgR+DWwDPB/4QJLde0zbM/8n2RA4GfgEsDlwDHBy2z7lvMDNwIuB5e287wQ+F89UkjRc5tj1LeUcG+AFNHlmP+BlSQ5a4HUOPcf2Ma+GoaocRnQALgee2D5+IfC/wHuAG4DLgEe37VcC1wKHdMz7NJrC103t+CMmLfsFwE+A62iKWp3rugdwOPCjdvwJwBbtuH2BXwE7TFreI4G1wAPa52cAb2tjvg14QNv2px3zvBi4CPgF8CVgp45xBRwGXNKOP5Lmw/fB7frX0nzxv2G61wtc0S7v5nZ4VNtv3+iY5tHAt4Ab27+P7hh3BvB37Wv5JfBlYKt23Ip22cs6pv8W8Jr28XvbeG4CzgUe27bvR/Ohfkcb03c71rUgfTTFdvZNYFXH80OBs3pMuzewuuP5y4HvA9sDWwH/RbN9Xg98HbhHl2XsCtwObNrR9nXgsB7r/Cnw5I7nfwcc1z5eBXyzY9y9aba3B00376R1rAb2HvZ73sHBYTAD5lfz6wDya8fynghcPs0067xe4FnttvMQYGOaHbDraLbRbwHbdFnGvdvXvmtH28eBd/RYZ8/8DzyZJodm0v97v+nmnbSOewDPaF/b1sN+7zs4OCz8gDnWHDvAHNux3PcB/9pj3DqvlyWcY6eb12E4w6gfwdG6HgmcT3OW4aeA44D/R5Mw/hh4f5JN2mlvoUlcm9F84L80yYEASXYD/o3mKM+2wH2B7TrW83KaIzSPB+7H3R+YAE8Czq6qKzsDq6qzaYpb+3Y0TxyF3JQmgd6ljeUNwB/SnFHxdZqzKDs9vX19ewDPBZ5SVRfRfJCfWVWbVNVm071e4HHt383aec6cFMsWwOdpPsy3BN4NfD7Jlh2TPQ94EbA1sCHwmkmxThxVfQywO02CheaDfU+aszk/BXw6ycZV9d/APwDHtzHt0WV5891HvewOfLfj+Xfbtikl+VuaLwePr6rVwKtptoHlNEcR30CTALut77Kq+uV060yyOc022Cu+dWKvqltovozt3se8kjTB/Gp+XYj8OitJXkRzlukTq+oC4BCabWkHmn48jKZgMNmuwNqqurijbaq8N1X+3x04v6o68/j59Mi/3daT5HyanexTgA9V1bU94pA02syx5tgFzbHtZf6PBS7sY9qlnmOnm1dDYGF2vPy4qj5SVWtpLtfeAXhrVd1eVV+mOYLzAICqOqOqvldVv6mq82k+DB/fLufZwOeq6htV9WvgTaxbQHsJ8MaqWl1Vt9NcDv7s9hK0rYCre8R3dTt+wker6sKqurOq7pg07UuAt1fVRVV1J80H/J7puD8ozdGnG6rqCuB0muTQ1TSvdzpPAy6pqo+3sR4L/IDmDI8JH6mqi6vqNpqjr5Nj+TnNWaIfAg6vqtPauD5RVde1y30XsBHwwD7jmtc+msImNEdZJ9wIbNJ5H5tJkuTdwFOAfapqTdt+B82XpJ2q6o6q+vqkhNFrfRPr3LTHtBPju0071bKmm1eSJphfezC/zim/zsYraG59sHdVXdq23UGzs/iAqlpbVedW1U1d5p1Jfu02fWf+n25Z0353qKqHAvehKQz0fV9FSSPHHNuDOXbecuwRNLWxj0wz3Sjk2JnGoQGwMDterul4fBtAVU1u2wQgySPT/ODEmiQ30hz5mUg496O5NIF2GbfSnLo/YSfgpDQ/2HADzWUIa2nOgvw5TfGtm23b8ROu7DHdxDre27GO62kuYeg86tl5389bubvQtp5pXu907seko6Ht85nEslVVbV5VD66q93XE9eokF6X54Y8baI7G9RvXvPbRFG6m2XGacB/g5h5FVWiO6K6iSbidSeGfgEuBLye5LL1vID95fRPr/GWPaSfGd5t2qmVNN68kTTC/9mB+7RnXQnktcGQ1V6JM+DjNpaDHJbkqzY+A3LPLvDPJr92m78z/0y2rr+8OVfWrtlhweJL1zqySNBbMsT2YY3vG1bckL6M56/hpbUF+KqOQY2cahwbAwqx6+RTNpWM7VNV9gQ/SfCBCc1Rw+4kJk9yL5ijRhCuB/atqs45h46r6KfAV4JFJduhcWZJH0Bz9/GpHc6/C3sQ6XjJpHfeqqm/28dq6LXeq1ztVHABX0SSQTjvS3Ltl1pI8FngdzeUZm1dzOcaNM4hrvvuolwtpLiOZsAdTXwbyC5rLTz6Sjl9ZrqpfVtWrq2pnmiO1r0qyb5f5LwR2TtJ5VK/rOqvqFzTba6/41ok9yb2B3wEu7GNeSZoN86v5dSE9GfibJM+6a4XNVShvqardaO4n+HSandDJLgaWJdmlo22qvDdV/r8QeOikq2ceSo/8O816AO4J7DzFeEkCc6w5dmaxvpjmvsL7Tiq29jIKOXa6eTUEFmbVy6bA9VX1qzbhPK9j3InAM5I8Os2v972Fuz9ooUkIb5u43CDJ8iQHAFTVV4DTgM8k2T3JBkn2Aj4JfKCqLukzvg8Cr0/7K4ZJ7pvkOX3Oew2wfdb95cGpXu8a4Df03iH4ArBrkuclWZbkj4DdaH7Iai42Be5s178syZtY9+jWNcCK9P61z/nuo14+RlNE3S7J/WjuFfvRqWaoqjNo7u90UpJHtvE9PckD2iRxE80R6rVd5r0YOA94c5KNk/wBTTL5zBTx/U2SzZM8CPizjvhOAh6S5FlJNqa5pOn8qvpBH/OSZKN2PoAN23h63cJBksD8an7tM78muUebY+7ZPM3Gfcx3Ic2PqxyZ5JntcvZJ8rtJNqDJr3fQPb/eAnwWeGuSe7cHTw+gORuom6ny/xntOl7e5sqXte1fnW7eJHsl+f0kGya5V5LX0ZyxdvY0r12SzLF3M8dOIcnzaW6T8KSquqzP5S/5HNvHvBoCC7Pq5c9pPjR+SVOsOmFiRFVdCPwlzY3Xr6Y57f1aYOLU//fSHLn7cjv/WTQ3bZ/wLJp7wfw3zan0nwA+3C6zL1V1Es1Nt49LchNwAbB/n7N/leZD9WdJJi47mer13kr765ppLqnYa1Is19EcGXs1zeUwfw08vao6L2mZjS8BX6Q5uvYTmh/A6Lw05tPt3+uSfHvyzAvQR738O/A54HvtOj7ftk2pqk6luZn8KUkeDuxCczT6ZuBM4N/aAm43BwErac6+fQfw7GrvVZvk+Uk6j/i9meYHvX4C/A/wT9XceJ52nmfR/H9/QbOdHtTPvK0f0lw+tR3N/+s21j/yLEmdzK93r8v8OrXH0eSVL9CcxXQbza9iT6mqvkvTb/+RZH/gt2kKEjfRXJr7PzTbRjd/DtyLZrs7Fnhpu12S5LFJbu6Ytmf+r+b+jQfSnDV0A80vbB/Ytk85L829CI+k+Z//FHgqzSWmV0332iWNPXPs3esyx07t72nOmP5Wkpvb4YPTrWCp59g+5tUQpHreBlLqT5pfwbwB2KWqfjzseCRJGgXmV0mSFoY5VtJi4RmzmpUkz0jyW2nuyfnPNEdjLh9uVJIkLW3mV0mSFoY5VtJiZGFWs3UAzQ3Dr6K5BP2g8vTrkZXkwo5LPDqH5w87NkkaMebXMWJ+laSBMseOEXOslgpvZSBJkiRJkiRJA+YZs5IkSZIkSZI0YBZmJUmSJEmSJGnAlg07AICtttqqVqxYMewwJEmL1Lnnnvvzqlo+7DiWInOsJGkq5tjZMb9KkqbSb35dFIXZFStWcM455ww7DEnSIpXkJ8OOYakyx0qSpmKOnR3zqyRpKv3mV29lIEmSJEmSJEkDZmFWkiRJkiRJkgbMwqwkSZIkSZIkDdi0hdkkRye5NskFHW1bJDk1ySXt383b9iR5X5JLk5yf5GELGbwkSUuZOVaSJEmSxlc/Z8x+FNhvUtvhwGlVtQtwWvscYH9gl3ZYBXxgfsKUJGkkfRRzrCRJkiSNpWkLs1X1NeD6Sc0HAMe0j48BDuxo/1g1zgI2S7LtfAUrSdIoMcdKkiRJ0via7T1mt6mqqwHav1u37dsBV3ZMt7ptkyRJ/THHSpIkSdIYWDbPy0uXtuo6YbKK5lJMdtxxx3kOQ5I0DGd++DXrPH/Uof88pEhGkjlWmovT39783ef1w41DkqQR855TLwbglU/adciRSEvPbM+YvWbi8sn277Vt+2pgh47ptgeu6raAqjqqqlZW1crly5fPMgxJkkaOOVaSJEmSxsBsC7OnAIe0jw8BTu5of0H7y9F7ATdOXI4pSZL6Yo6VJEmSpDEw7a0MkhwL7A1slWQ18GbgHcAJSQ4FrgCe007+BeCpwKXArcCLFiBmSZJGgjlWkiRJksbXtIXZqjq4x6h9u0xbwF/MNShJksaBOVaSJEmSxtdsb2UgSZIkSZIkSZolC7OSJEmSJEmSNGAWZiVJkiRJIyPJ0UmuTXJBR9vxSc5rh8uTnNe2r0hyW8e4Dw4vcknSuJn2HrOSJEmSJC0hHwXeD3xsoqGq/mjicZJ3ATd2TP+jqtpzYNFJktSyMCtJkiRJGhlV9bUkK7qNSxLgucATBhmTJEndeCsDSZIkSdK4eCxwTVVd0tF2/yTfSfI/SR47rMAkSePHM2YlSZIkSePiYODYjudXAztW1XVJHg78Z5Ldq+qmyTMmWQWsAthxxx0HEqwkabR5xqwkSZIkaeQlWQb8IXD8RFtV3V5V17WPzwV+BOzabf6qOqqqVlbVyuXLlw8iZEnSiLMwK0mSJEkaB08EflBVqycakixPskH7eGdgF+CyIcUnSRozFmYlSZIkSSMjybHAmcADk6xOcmg76iDWvY0BwOOA85N8FzgROKyqrh9ctJKkceY9ZiVJkiRJI6OqDu7R/sIubZ8BPrPQMUmS1I1nzEqSJEmSJEnSgFmYlSRJkiRJkqQBszArSZIkSZIkSQNmYVaSJEmSJEmSBszCrCRJkiRJkiQNmIVZSZIkSZIkSRowC7OSJEmSJEmSNGAWZiVJkiRJkiRpwCzMSpIkSZIkSdKAWZiVJEmSJEmSpAGzMCtJkiRJkiRJA2ZhVpIkSZIkSZIGzMKsJEmSJEmSJA2YhVlJkiRJkiRJGjALs5IkSZKkkZLk6CTXJrmgo+2IJD9Ncl47PLVj3OuTXJrkh0meMpyoJUnjxsKsJEmSJGnUfBTYr0v7e6pqz3b4AkCS3YCDgN3bef4tyQYDi1SSNLbmVJhN8sokFya5IMmxSTZOcv8kZye5JMnxSTacr2AlSRoX5lhJkmavqr4GXN/n5AcAx1XV7VX1Y+BS4BELFpwkSa1ZF2aTbAe8HFhZVQ8BNqA5yvhOmqOQuwC/AA6dj0AlSRoX5lhJkhbMy5Kc397qYPO2bTvgyo5pVrdtkiQtqLneymAZcK8ky4DfAq4GngCc2I4/BjhwjuuQJGkcmWMlSZpfHwB+B9iTJq++q21Pl2lrckOSVUnOSXLOmjVrFi5KSdLYmHVhtqp+CvwzcAVNUrsROBe4oarubCfreaTRpCZJUnfmWEmS5l9VXVNVa6vqN8B/cPftClYDO3RMuj1wVZf5j6qqlVW1cvny5QsfsCRp5M3lVgab09yL5/7A/YB7A/t3mXS9I41gUpMkqRdzrCRJ8y/Jth1P/wC4oH18CnBQko2S3B/YBfi/QccnSRo/y+Yw7xOBH1fVGoAknwUeDWyWZFl7Rk/XI42SJGlK5lhJkuYgybHA3sBWSVYDbwb2TrInzYHNy4GXAFTVhUlOAL4P3An8RVWtHUbckqTxMpfC7BXAXkl+C7gN2Bc4BzgdeDZwHHAIcPJcg5QkacyYYyVJmoOqOrhL84enmP5twNsWLiJJktY3l3vMnk3zAyTfBr7XLuso4HXAq5JcCmzJFMlPkiStzxwrSZIkSaNvLmfMUlVvprkkpNNl3H0TdUmSNAvmWEmSJEkabbM+Y1aSJEmSJEmSNDsWZiVJkiRJkiRpwCzMSpIkSZIkSdKAWZiVJEmSJEmSpAGzMCtJkiRJkiRJA2ZhVpIkSZIkSZIGzMKsJEmSJEmSJA2YhVlJkiRJkiRJGjALs5IkSZIkSZI0YBZmJUmSJEmSJGnALMxKkiRJkiRJ0oBZmJUkSZIkSZKkAbMwK0mSJEmSJEkDZmFWkiRJkjQykhyd5NokF3S0/VOSHyQ5P8lJSTZr21ckuS3Jee3wweFFLkkaNxZmJUmSJEmj5KPAfpPaTgUeUlUPBS4GXt8x7kdVtWc7HDagGCVJsjArSZIkSRodVfU14PpJbV+uqjvbp2cB2w88MEmSJrEwK0mSJEkaJy8Gvtjx/P5JvpPkf5I8dlhBSZLGz7JhByBJkiRJ0iAkeSNwJ/DJtulqYMequi7Jw4H/TLJ7Vd3UZd5VwCqAHXfccVAhS5JGmGfMSpIkSZJGXpJDgKcDz6+qAqiq26vquvbxucCPgF27zV9VR1XVyqpauXz58kGFLUkaYRZmJUmSJEkjLcl+wOuAZ1bVrR3ty5Ns0D7eGdgFuGw4UUqSxo23MpAkSZIkjYwkxwJ7A1slWQ28GXg9sBFwahKAs6rqMOBxwFuT3AmsBQ6rquu7LliSpHlmYVaSJEmSNDKq6uAuzR/uMe1ngM8sbESSJHXnrQwkSZIkSZIkacAszEqSJEmSJEnSgFmYlSRJkiRJkqQBszArSZIkSZIkSQM2p8Jsks2SnJjkB0kuSvKoJFskOTXJJe3fzecrWEmSxoU5VpIkSZJG21zPmH0v8N9V9SBgD+Ai4HDgtKraBTitfS5JkmbGHCtJkiRJI2zWhdkk9wEeB3wYoKp+XVU3AAcAx7STHQMcONcgJUkaJ+ZYSZIkSRp9czljdmdgDfCRJN9J8qEk9wa2qaqrAdq/W89DnJIkjRNzrCRJkiSNuLkUZpcBDwM+UFW/B9zCDC6pTLIqyTlJzlmzZs0cwpAkaeSYYyVJkiRpxM2lMLsaWF1VZ7fPT6TZibwmybYA7d9ru81cVUdV1cqqWrl8+fI5hCFJ0sgxx0qSJEnSiJt1YbaqfgZcmeSBbdO+wPeBU4BD2rZDgJPnFKEkSWPGHCtJkiRJo2/ZHOf/S+CTSTYELgNeRFPsPSHJocAVwHPmuA5JksaROVaSJEmSRticCrNVdR6wssuofeeyXEmSxp05VpIkSZJG21zuMStJkiRJkiRJmgULs5IkSZIkSZI0YBZmJUmSJEkjJcnRSa5NckFH2xZJTk1ySft387Y9Sd6X5NIk5yd52PAilySNEwuzkiRJkqRR81Fgv0lthwOnVdUuwGntc4D9gV3aYRXwgQHFKEkacxZmJUmSJEkjpaq+Blw/qfkA4Jj28THAgR3tH6vGWcBmSbYdTKSSpHFmYVaSJEmSNA62qaqrAdq/W7ft2wFXdky3um2TJGlBLRt2AJIkSZIkDVG6tNV6EyWraG51wI477rjQMUlLyl5XHAWnb3l3wz6vH14w0hLiGbOSJEmSpHFwzcQtCtq/17btq4EdOqbbHrhq8sxVdVRVrayqlcuXL1/wYCVJo8/CrCRJkiRpHJwCHNI+PgQ4uaP9BWnsBdw4ccsDSZIWkrcykCRJkiSNlCTHAnsDWyVZDbwZeAdwQpJDgSuA57STfwF4KnApcCvwooEHLEkaSxZmJUmSJEkjpaoO7jFq3y7TFvAXCxuRJEnr81YGkiRJkiRJkjRgFmYlSZIkSZIkacC8lYEkSZLGxntOvfiux6980q5DjESSJEnjzjNmJUmSJEmSJGnALMxKkiRJkiRJ0oBZmJUkSZIkSZKkAbMwK0mSJEmSJEkDZmFWkiRJkiRJkgbMwqwkSZIkSZIkDZiFWUmSJEmSJEkaMAuzkiRJkiRJkjRgFmYlSZIkSZIkacAszEqSJEmSJEnSgFmYlSRJkiRJkqQBszArSZIkSZIkSQO2bNgBSJIkSZK00JI8EDi+o2ln4E3AZsCfAWva9jdU1RcGHJ4kaQzN+YzZJBsk+U6S/2qf3z/J2UkuSXJ8kg3nHqYkSePHHCtJ0vypqh9W1Z5VtSfwcOBW4KR29HsmxlmUlSQNynzcyuCvgIs6nr+TJqntAvwCOHQe1iFJ0jgyx0qStDD2BX5UVT8ZdiCSpPE1p8Jsku2BpwEfap8HeAJwYjvJMcCBc1mHJEnjyBwrSdKCOgg4tuP5y5Kcn+ToJJsPKyhJ0niZ6xmz/wL8NfCb9vmWwA1VdWf7fDWw3RzXIUnSODLHSpK0ANpbAT0T+HTb9AHgd4A9gauBd/WYb1WSc5Kcs2bNmm6TSJI0I7MuzCZ5OnBtVZ3b2dxl0uoxv0lNkqQuzLGSJC2o/YFvV9U1AFV1TVWtrarfAP8BPKLbTFV1VFWtrKqVy5cvH2C4kqRRNZczZh8DPDPJ5cBxNJdX/guwWZJl7TTbA1d1m9mkJklST+ZYSZIWzsF03MYgybYd4/4AuGDgEUmSxtKsC7NV9fqq2r6qVtDcn+erVfV84HTg2e1khwAnzzlKSZLGiDlWkqSFkeS3gCcBn+1o/sck30tyPrAP8MqhBCdJGjvLpp9kxl4HHJfk74HvAB9egHVIkjSOzLGSJM1BVd1Kc9/2zrY/GVI4kqQxNy+F2ao6AzijfXwZPe7JI0mSZsYcK0mSJEmjaS73mJUkSZIkSZIkzYKFWUmSJEmSJEkaMAuzkiRJkiRJkjRgFmYlSZIkSZIkacAszEqSJEmSJEnSgFmYlSRJkiRJkqQBszArSZIkSZIkSQNmYVaSJEmSJEmSBszCrCRJkiRJkiQNmIVZSZIkSZIkSRowC7OSJEmSJEmSNGAWZiVJkiRJkiRpwCzMSpIkSZIkSdKAWZiVJEmSJEmSpAFbNuwAJEmSJEkalCSXA78E1gJ3VtXKJFsAxwMrgMuB51bVL4YVoyRpPHjGrCRJkiRp3OxTVXtW1cr2+eHAaVW1C3Ba+1ySpAVlYVaSJEmSNO4OAI5pHx8DHDjEWCRJY8LCrCRJkiRpnBTw5STnJlnVtm1TVVcDtH+3Hlp0kqSx4T1mJUmSJEnj5DFVdVWSrYFTk/ygn5naIu4qgB133HEh45MkjQnPmJUkSZIkjY2quqr9ey1wEvAI4Jok2wK0f6/tMt9RVbWyqlYuX758kCFLkkaUhVlJkiRJ0lhIcu8km048Bp4MXACcAhzSTnYIcPJwIpQkjRNvZSBJkiRJGhfbACclgWZ/+FNV9d9JvgWckORQ4ArgOUOMUZI0JizMSpIkSZLGQlVdBuzRpf06YN/BRyRJGmfeykCSJEmSJEmSBszCrCRJkiRJkiQNmIVZSZIkSZIkSRqwWRdmk+yQ5PQkFyW5MMlfte1bJDk1ySXt383nL1xJkkafOVaSJEmSRt9czpi9E3h1VT0Y2Av4iyS7AYcDp1XVLsBp7XNJktQ/c6wkSZIkjbhZF2ar6uqq+nb7+JfARcB2wAHAMe1kxwAHzjVISZLGiTlWkiRJkkbfvNxjNskK4PeAs4FtqupqaHYsga3nYx2SJI0jc6wkSZIkjaY5F2aTbAJ8BnhFVd00g/lWJTknyTlr1qyZaxiSJI0cc6wkSZIkja45FWaT3JNmh/GTVfXZtvmaJNu247cFru02b1UdVVUrq2rl8uXL5xKGJEkjxxwrSZIkSaNt1oXZJAE+DFxUVe/uGHUKcEj7+BDg5NmHJ0nS+DHHSpIkSdLoWzaHeR8D/AnwvSTntW1vAN4BnJDkUOAK4DlzC1GSpLFjjpUkSZKkETfrwmxVfQNIj9H7zna5kiSNO3OsJEmSJI2+Of/4lyRJkiRJkiRpZizMSpIkSZIkSdKAWZiVJEmSJEmSpAGzMCtJkiRJGnlJdkhyepKLklyY5K/a9iOS/DTJee3w1GHHKkkaD7P+8S9JkiRJkpaQO4FXV9W3k2wKnJvk1Hbce6rqn4cYmyRpDFmYlSRJkiSNvKq6Gri6ffzLJBcB2w03KknSOPNWBpIkSZKksZJkBfB7wNlt08uSnJ/k6CSbDy0wSdJYsTArSZIkSRobSTYBPgO8oqpuAj4A/A6wJ80Zte/qMd+qJOckOWfNmjUDi1eSNLoszEqSJEmSxkKSe9IUZT9ZVZ8FqKprqmptVf0G+A/gEd3mraqjqmplVa1cvnz54IKWJI0sC7OSJEmSpJGXJMCHgYuq6t0d7dt2TPYHwAWDjk2SNJ788S9JkiRJ0jh4DPAnwPeSnNe2vQE4OMmeQAGXAy8ZTniSpHFjYVaSJEmSNPKq6m2pBVEAACAASURBVBtAuoz6wqBjkSQJvJWBJEmSJEmSJA2chVlJkiRJkiRJGjALs5IkSZIkSZI0YBZmJUmSJEmSJGnALMxKkiRJkiRJ0oBZmJUkSZIkSZKkAbMwK0mSJEmSJEkDZmFWkiRJkiRJkgbMwqwkSZIkSZIkDZiFWUmSJEmSJEkaMAuzkiRJkiRJkjRgFmYlSZIkSZIkacAszEqSJEmSJEnSgFmYlSRJkiRJkqQBszArSZIkSZIkSQO2IIXZJPsl+WGSS5McvhDrkCRpHJljJUlaGOZYSdKgzXthNskGwJHA/sBuwMFJdpvv9UiSNG7MsZIkLQxzrCRpGBbijNlHAJdW1WVV9WvgOOCABViPJEnjxhwrSdLCMMdKkgZu2QIsczvgyo7nq4FHLsB61nPmh1+zzvNHHfrPg1itJEmDMtQce9aOqwB45ZN2HcQqJUkapKHlWEnS+FqIwmy6tNV6EyWrgFXt05uT/HAe1r0V8PO7nv3pu+ZhkSNl3f5RJ/tmavZPb/bNVP70XfPVPzvNwzJGwZBz7Lt+DvCqeVjYACzF96YxD8Qb7orZbXnBGPNgmGPn17Q5doHy62KzFN8Lg2T/9Dapb94wtEAWKbedqY1i//SVXxeiMLsa2KHj+fbAVZMnqqqjgKPmc8VJzqmqlfO5zFFi//Rm30zN/unNvpma/TPvzLF9WmrxgjEPylKLeanFC8Y8KEsx5kVu2hy7EPl1sXG7mpr905t9MzX7Z2rj3D8LcY/ZbwG7JLl/kg2Bg4BTFmA9kiSNG3OsJEkLwxwrSRq4eT9jtqruTPIy4EvABsDRVXXhfK9HkqRxY46VJGlhmGMlScOwELcyoKq+AHxhIZY9jZG+rGQe2D+92TdTs396s2+mZv/MM3Ns35ZavGDMg7LUYl5q8YIxD8pSjHlRG2KOXUzcrqZm//Rm30zN/pna2PZPqtb7zRBJkiRJkiRJ0gJaiHvMSpIkSZIkSZKmsCQLs0n2S/LDJJcmObzL+I2SHN+OPzvJisFHORx99M2rknw/yflJTkuy0zDiHJbp+qdjumcnqSRj9auA/fRPkue229CFST416BiHpY/31o5JTk/ynfb99dRhxDkMSY5Ocm2SC3qMT5L3tX13fpKHDTpGTS/Jc9r39W+m+uzr9V5ofyzl7CSXtDl4wwHEvEWSU9t1nppk8y7T7JPkvI7hV0kObMd9NMmPO8btuRhibqdb2xHXKR3ti7Wf90xyZrsNnZ/kjzrGDaSf5/L9MMnr2/YfJnnKQsQ3y5h7fm/rtY0sgphfmGRNR2x/2jHukHY7uiTJIYsk3vd0xHpxkhs6xg2rj2edV4fRx1ra+s1L7bT3SfLTJO8fZIzDNNccOIrmkm/HwVxy+6ibrm86phuvekxVLamB5kbsPwJ2BjYEvgvsNmmaPwc+2D4+CDh+2HEvor7ZB/it9vFLx6Vv+u2fdrpNga8BZwErhx33YuofYBfgO8Dm7fOthx33Iuqbo4CXto93Ay4fdtwD7J/HAQ8DLugx/qnAF4EAewFnDztmh67/pwcDDwTO6PXZN9V7ATgBOKh9/MGJ98MCx/yPwOHt48OBd04z/RbA9R158KPAswfcz33FDNzco31R9jOwK7BL+/h+wNXAZoPq5z4/p7t+P2w/s78LbATcv13OBgPo1zl9b+u1jSyCmF8IvL/LvFsAl7V/N28fbz7seCdN/5c0P/g0tD5u1zurvDqMPnZY+sNMcinwXuBT3d7jozrMNQeO2jCXfDsOw1xz+ygP/eZkxrAesxTPmH0EcGlVXVZVvwaOAw6YNM0BwDHt4xOBfZNkgDEOy7R9U1WnV9Wt7dOzgO0HHOMw9bPtAPwdTQL+1SCDWwT66Z8/A46sql8AVNW1A45xWPrpmwLu0z6+L3DVAOMbqqr6Gk2xq5cDgI9V4yxgsyTbDiY69auqLqqqH04zWdf3Qptjn0CTc6HJwQcuXLR36cz3/azz2cAXO/LgMMw05rss5n6uqour6pL28VXAtcDyAcQ2YS7fDw8Ajquq26vqx8Cl7fKGHvMi/N7W73epbp4CnFpV17ffI04F9lugOCfMNN6DgWMXOKZpzSGvDqOPtfT1lZeSPBzYBvjygOJaLJZCDhwk6zFTW4q5fVCsx/SwFAuz2wFXdjxf3bZ1naaq7gRuBLYcSHTD1U/fdDqU5mj7uJi2f5L8HrBDVf3XIANbJPrZfnYFdk3yv0nOSjIuX/b76ZsjgD9Osprm13z/cjChLQkz/WzS4tXrf7klcEObczvbF9o2VXU1QPt362mmP4j1iy5vay8le0+SjRYiyEn6jXnjJOe0n7UTO4FLop+TPILmTIgfdTQvdD/P5fvhsD6j5vq9rds2stD6jflZ7f/7xCQ7zHDe+dT3OttLSe8PfLWjeRh93I9er8t8q9mY9jM+yT2AdwGvHXBsi8F85MBRYj1matZkerMe08OyYQcwC92OtNQsphlFfb/uJH8MrAQev6ARLS5T9k/7heM9NJfgjaN+tp9lNLcz2JvmyN7Xkzykqm6YPOOI6advDgY+WlXvSvIo4ONt3/xm4cNb9Mb1M3nRSfIV4Le7jHpjVZ3czyK6tNUU7XM2VcwzXM62wO8CX+pofj3wM5odqKOA1wFvnV2k66xrPmLesaquSrIz8NUk3wNu6jLdYuznjwOHdHz+LUg/T151l7Z+vx8O6zNqrt/b1ttGqmqhCwH9xPw54Niquj3JYTRnTT2hz3nn20zWeRBwYlWt7WgbRh/3Y7Fty1rk5uEz/s+BL1TVlaN44uMC58BRYz1matZkerMe08NSLMyuBnboeL49618yPDHN6iTLaC4rnupyoFHRT9+Q5Ik0SebxVXX7gGJbDKbrn02BhwBntF84fhs4Jckzq+qcgUU5PP2+t86qqjuAHyf5IU2h9luDCXFo+umbQ2kvF6yqM5NsDGxFcynTuOvrs0kLr6qeOMdF9Ppf/pzmUtpl7ZkR8/Y/nirmJNck2baqrm53hqZ6vz0XOKn9/JpY9tXtw9uTfAR4zWKJub0Ukqq6LMkZwO8Bn2ER93OS+wCfB/6mvbx6YtkL0s+TzOX74bA+o+b0va3HNrLQRcNpY66q6zqe/gfwzo5595407xnzHuG6ZvK/PQj4i86GIfVxP3q9rmH0sZaAefiMfxTw2CR/DmwCbJjk5qrq+eM9S8lC5sARZD1matZkerMe08NSvJXBt4Bd0vwq8YY0X6Im/0rqKcDEr5A+G/hqVY3DEZpp+6Y9NfzfgWeO0f1BJ0zZP1V1Y1VtVVUrqmoFzf1eRv5DoEM/763/pLlZOUm2orm1wWUDjXI4+umbK4B9AZI8GNgYWDPQKBevU4AXpLEXcGNHoUZLS9f3QptjT6fJudDk4H7OwJ2rznw/3TrXu3fkxL2O2/ueHQh0/QX0eTZtzEk2n7jcv/2sfQzw/cXcz+32cBLNfS8/PWncIPp5Lt8PTwEOSvMr0venOeD4fwsQ44xj7vW9rdc2skhi7ryH+DOBi9rHXwKe3Ma+OfBk1j2DfSjxtjE/kObHss7saBtWH/ejV14dRh9r6Zv2M76qnl9VO7b7SK+h+awfiaJsH+aUA0eQ9ZipWZPpzXpML7UIfoFspgPNL5FeTHPE+o1t21tp/mnQFEQ+TfPjDf8H7DzsmBdR33wFuAY4rx1OGXbMi6l/Jk17BmPyK4Az2H4CvJtmx+R7tL8MPg5DH32zG/C/NL8ueR7w5GHHPMC+OZbm12fvoDkSeihwGHBYx3ZzZNt33xu399VSGYA/aP9/t7d54ktt+/1oLl+cmG6990LbvnObcy9tc/BGA4h5S+A04JL27xZt+0rgQx3TrQB+Ctxj0vxfbbfJC4BPAJsshpiBR7dxfbf9e+hi72fgj9vPgPM6hj0H2c99fE73/H5Ic9bKj4AfAvsvdJ/OIOau39um2kYWQcxvBy5sYzsdeFDHvC9u+/9S4EWLId72+RHAOybNN8w+nnVeHUYfOyztoZ/P+EnTvxB4/7DjXkz9wxQ5cBSHueTbcRhmm9vHYegnJ3dMewZjst+Y9gVLkiRJkiRJkgZkKd7KQJIkSZIkSZKWNAuzkiRJkiRJkjRgFmYlSZIkSZIkacAszEqSJEmSJEnSgFmYlSRJkiRJkqQBszCrJSPJF5McMuw4AJI8P8mXhx3HZIupj7pJsiJJJVk27FgkaRgW0+e0uUwLrc35Dxh2HJI0LIspp5n3ZyfJ3klWDzsOjS4LsyMsyeVJnjjsOCZLslGStye5IsltSS5J8tokmWq+qtq/qo6Zh/W/MMk3ZjD9esXEqvpkVT15HmKZWPbN7XB5ksP7nPeIJJ/obBtGHyV5RZLLktyU5Kok71nowmuSLZKclOSWJD9J8rwppk2Sdya5rh3+sXNbS7JnknOT3Nr+3bNj3D5JTk9yY5LLuyx7RTv+1iQ/WIzvN2mpM5f1XL+5bPplz6iP2nk2bD/Pe+6ATd5BS3JG+/r3mDTdf7bte7fPj0hyR9tHNyT5ZpJHdUy/fZJPtrnqliT/l+Tpk5ZZ7bibk/w0ybuTbNCOu7Djf7A2ya86nr9hUvyV5K8nLXvi//j5Se2faGN/fsfybkvym47nN8+kn2eifa8d3X7P+FmSV00z/Svb6W5s59uoY9zfJflekjuTHDHFMj6SLkXlJAcluaj9H/woyWPn/AIlrcO833P95v3plz2TfdjOnDwx7DzXGKZZZ9/7jtPlviT7tsu4tV3mTh3jtkhyfJKft8Mnk9ynHbd1kmPT7LffmOR/kzxy4V61+mFhVsPwaWBf4KnApsCfAKuA93abOI1R31Y3q6pNgIOBNyXZb9gBzcDngIdV1X2AhwB7AC9f4HUeCfwa2AZ4PvCBJLv3mHYVcGAb10OBpwMvgWYHHDgZ+ASwOXAMcHLbDnALcDTw2h7LPhb4DrAl8EbgxCTL5/TKJC0V5rL1LeVcNuG1wLWzmO9i4AUTT5JsCewFrJk03fFtHy0HvgF8tt02tmif/xrYHdgKeA/wqSTPnrSMPdplPB74I+DFAFW1e1Vt0o77OvCyiedV9Q8d8x8CXN/+7WavJI+Z3Nju0E8sf3/gqo7lbzJN/8zFEcAuwE7APsBf99q2kjwFOJzmvbkC2Bl4S8cklwJ/DXx+vZnvXsbvA7/Tpf1JwDuBF9G85x8HXDbTFyNpyTLvr2+p5/3jO/NYVS30Z/pM9h2PoEfuS7IV8Fngb4EtgHOA4zvm/XuafdudafLZNu3yADYBvgU8vJ33GODzSRYyj2s6VeUwogNwOfDE9vELgf+l+ZJ/A80XyUe37VfS7IQc0jHv02g+NG5qxx8xadkvAH4CXEfzgdC5rnvQfCn+UTv+BGCLdty+wK+AHSYt75HAWuAB7fMzgLe1Md8GPKBt+9OOeV4MXAT8AvgSsFPHuAIOAy5pxx8JBHhwu/61wM3ADdO9XuCKdnk3t8Oj2n77Rsc0j6b5gLux/fvojnFnAH/XvpZfAl8GtmrHrWiXvaxj+m8Br2kfv7eN5ybgXOCxbft+NDtvd7QxfbdjXQvSR31uc1sCXwH+rcf4dV4v8Kx223kIsDFNgfQ6mm30W8A2XZZx7/a179rR9nHgHT3W+U1gVcfzQ4Gz2sdPBn4KZNL/e79Jy3gicPmktl2B24FNO9q+Dhw27Pe+g8MoDZjLzGUDymXA/dv17A+snmK6vTvHt/G+CVgNbNC2vQz4QNu2d9t2BPCJjvl2b+Pfqu3bC4B7TFrX62i20XS83gd0jD8BOLJLjOv0YUf7b7X/v4Pavl/ZMW7i//g64PSO9k+w/ntnnT6Yoq/uihf4/XY72Kf9H72H5j17I3A+8JAey/gp8OSO538HHNdj2k8B/9DxfF/gZ12mW+81te3LaN5DD+3S198EDp2PzzUHB4feA+Z98/4A8j6TcvI00+7Nunn/5cD3ge1pcvh/0Wyf19PsD96jyzJmtO/IFLmP5oDANzvG3Ztme3tQ+/yLwJ93jP8L4EtTvL6bgIcP+70/zsOoH8HRuh5J88V3S5ovrscB/48mYfwx8P6OIyW30CSuzWg+8F+a5ECAJLsB/0ZzpuK2wH2B7TrW83KaMxQfD9yPuz8wAZ4EnF1VV3YGVlVn0+y87NvRPHEUclOaBHqXNpY3AH9Ic9bJ12mOQHV6evv69gCeCzylqi6i+SA/s5qjYptN93ppzoiA9ohgVZ05KZYtaM68eB9N376b5qjTlh2TPY/mDIutgQ2B10yKdeKo6mNodtS+0zZ/C9iT5mjWp4BPJ9m4qv4b+AfuPsq3R5flzXcf9ZTkeUluAn7eLuvf+5jnRTRnnjyxqi6gOXPnvsAONP14GE2CmWxXYG1VXdzR9l2afutm93Z8t2l3B86vNiO1zp9iWZOXe1lV/bLPOCTND3OZuWxBchnwr+26uuWe6VxFs5M2cYnoC4CP9Zo4zeX1L6TZ0fs5zTb1mar6zaRJTwB2pMl9k5fxIOCxNGeB9utZNDusn6bZ2X1Bl2mOBHadz0uJ2zNZjwWeVVWn0/TT42he12Y0Z/5e12W+zWnef73y+GTdcv42k7bjqbwS+FpVnT8pjg2AlcDyJJcmWZ3k/Unu1edyJc2eed+8v1B5/xlJrk9zK6CX9jE9Sf6WJn8/vqpWA6+m2QaW05yZ+gaa4vFkfe879pH71sl1VXULzQGFifFHAk9Psnm7rGfRFGu7vZ49af63M/kuoXlmYXa8/LiqPlJVa2lOdd8BeGtV3V5VX6Y5evUAgKo6o6q+V1W/ab+cHkuTpACeDXyuqr5RVb+mOUuk88PnJcAbq2p1Vd1OczTq2Wnub7MVcHWP+K5ux0/4aFVdWFV3VtUdk6Z9CfD2qrqoqu6k+YDfs/PeKjRnUN5QVVcAp9Mkh66meb3TeRpwSVV9vI31WOAHwDM6pvlIVV1cVbfR7GRNjuXnNEfYPgQcXlWntXF9oqqua5f7LmAj4IF9xjWvfTSVqvpUNbcy2BX4IHDNNLO8guZy0b2raiIJ3EHzpeABVbW2qs6tqpu6zLsJzVHdTjfSfPnpZvL0NwKbJMksljWXOCTND3NZD+ay2eeyJH9Ac+bPSTOdt8PHgBckeSDNjvCZXaZ5bpIbaM4kejhNEQB6b1NXd4yf8O0kt9CcTXQGTaGhX4fQ7BCvpdlZPjjJPSdN8yuaM77+fgbLncpzgKOAp1bV/7Vtd9DkywfRnA18UVV1e/0TxZbJeXwmOZ8ppr9Lkh1otrc3dRm9DXBPms+Nx9JsY78H/M10y5U0Z+b9Hsz7c9qHPYHmLNvlwJ/R3Irh4CmmT5J3A08B9qmqiVsV3UFT6N+pqu6oqq9XVbfC7Ez2HafLfdMt69s0xdbr2mEtXb4rpLnv7MeBt1TV5OVpgCzMjpfOYtltAFU1uW0TgCSPTHMT6TVJbqQ5+jSRcO5Hs0NBu4xbWfcsh52Ak9L8sMUNNDsOa2m+1P6c5oOrm23b8ROu7DHdxDre27GO62kuYeg86vmzjse3cvcH3Hqmeb3TuR+Tjoa2z2cSy1ZVtXlVPbiq3tcR16vT/MjEje3rvO8M4prXPupHVV0CXMj0O4mvpbn0svPHVT5Oc/bOcWluRv6PXXYWoTnT5z6T2u5Dc4lNN5Onvw9wc5swZ7qsucQhaX6Yy3owl/WMa0pJ7g38I/CXM5mvi88CT2iX8/Ee05xQVZtV1dZV9YSqOrdt77VNbdsxfsLDaF7jH9GcSXbvfoJrC4/7AJ9sm06muY3Q07pM/h80Z5o+o8u4mXoFzev+3kRDVX0VeD/NWT3XJDmq3UGcbOJHxSbn8ZnkfKaYvtO/0BR7uu2cTpxF/a9VdXU1Zzm/m+Zek5IWlnm/B/N+z7imVVXfr6qr2hOCvklz+4XJ93TvtBnNmdBvn5Qn/onmbNMvp/lB7F4/gjaTfcfpct90y/o0zb3vN23bf0RzC5+7tFd8fI7mFn9v7xGzBsTCrHr5FHAKzX107ktzFuTEL05eTXM/FeCuN3XnJQ9XAvu3Ox4Tw8ZV9VOa+48+st05oGMZj6A5+vnVjuZuR5o61/GSSeu4V/uhOp1uy53q9U4VBzSXL+40qW1HmvvCzFqaX/p9Hc3lGZtXcznGjTOIa777qF/L6PKjGZM8GfibJM+6a4XNEca3VNVuNPc7ejrdL7G8GFiWZJeOtj1oCsLdXNiO7zbthcBD27NnJzx0imVNXu7OSTqPck4Vh6TBM5eZy/qxC8398r6e5Gc0BdZt0/wK8oo+lzGxk/9F4KX0Lsz28hXgWVn/h2KeS9MHnbfvoRonAGfS/QzPbv6E5rv/59rXeRlNYXa9XNue5fUWmnvaTfmL4314DnBgkldMWsf7qurhNJde7kqXH9qsql/QvFd75fHJuuX8a6pqvdskdLEv8E/t/31ip//MJM9r41jN3L4fSVp45n3z/mwVU+e7X9Dsn34kHT+QWVW/rKpXV9XONGcbvyrJvl3m73vfsY/ct06uaw8w/07H+D2Af6+qW6rqZprt4qkd028E/CfN//olU7xmDYiFWfWyKXB9Vf2qTTjP6xh3Is39WB6d5tfr38K6H2IfBN42cblBkuVJDgCoqq8ApwGfSbJ7kg2S7EVz9sYH2jMu+/FB4PVJdm/Xcd8kz+lz3muA7dvY+3m9a4Df0PyqYTdfoLkX2/OSLEvyR8BuNDcBn4tNgTvb9S9L8ibWPTJ2DbCiy07chPnuo66S/GmSrdvHuwGvp/kfT+VCmpu/H5nkme28+yT53TT3cbuJ5rKQtZNnrOYeOp8F3prk3m1iPIDeO8H/n707j7utrOv//3rrQXHAmI6GwAk0HOkr2olQcwI1NBP8OoSZHPtiJzNnLbEsaPqKppL+NO0YBhaOqEmGAyFE9gX0qMggKoiIyBGOCAqmKPD5/XFdN+xzc8/D3vfwej4e63HvvcbPvva697XWZ13rWu+hVZC7J7k3rR+g4/u0M/o2XpLkzkle1Md/psd0hyTb025fTJLtx8qkWh+35wJH9fFPoyV1PzzNZ5c0PNZlt7Eum9wFtBPr/frw/L7sfkzd8mkif0Lrd+6yWS53LK1cjkvy871eeTbtqc1/NMltkQDHABuT/PwMtnE4bT/fb2B4OvAbmbgP1n+m3X4636dsX0lLer4kyQsBkvxKb+m1Ha2PxLEHtkzkPbSLuTul9av7e9xWj0807xFJHpTWr95rB+dNsl2v1+9A2x+378cd0JLDD+G2soF2kj3WvcU/AS9Ocs++7pcx//8PSQvLev821vtTSHJIr1fSy+4ltDtJJlVVZ9D6KP5okl/t63lKkl9MEto57M1MfA4723PHqeq+jwL7Jnl6r9P+nPbclK/26Z8Hnp/kLmkXIDbS+6Tt9e5JtJbmh9ft+7bXCJiY1WReSEt8XU/7R//g2ISqupB2m977aVdyrqc9EfPGPstbaFfuPt2XP5t2q92Yp9P6gvkkrRn+vwDHMYtbCKv1Afd62m3vP6SdVD1phot/hpYY/G6SsdtOpvq8/0N/umbaLRUHjIvlGtrVs1fSbof5Y+Ap/Ta3+fgUreXN12m3lfyEbU8QP9T/XpPki+MXXoQymswjgfPT+rs7pQ9/Mt0GqurLtHJ7V5InAT9PqyR+SLt16D8Zd8vFgBcCd6Htd+8D/qDvlyR5VJIbBub9B9ptGufTyuDf+ziq9S91KO1k9TraE0AP7eOhdZr/4/6Z1vXXnx5Y92G0h4FcSzs5fkbd1t+QpNGzLrttW9Zlk6jWB953xwbabZO39PeTJQsnW9eVVfXZ2SzTl7sG+DVaC9av0L6DVwDPraoPTLHc+bT68natTQf173svWjdC3x0YTqbdgnm7fvX6Zz+K9vCWeanWD+BBwKuTPJ92kv4uWv059oT0N06y+FG02zC/Rfusf1vtATIkWZfkhiTr+nY+SeuW4vQ+/7f68mPeRavLx5LeP6a1JKaqrh63HwB8r1rfitBaD3+eti9fRHvIzd/MuVAkLQbr/du2Zb0/tcNo9d/1tCTo66vqhOk2UFWn0h6IdnKSX6bddfMftH3iLODvewJ3sm1OeO6Y5DlJBlvPTlr39WWeTvt+r6Xtp4cNLPt/aHX+FbRWsfehPbAMbrsz9YnAdb0OvSGtpbNGJJNfgJdmJu0pmNcB+1TVN0cdjyRJs2VdJknS6mG9L2mpsMWs5iTJbya5a1p/Jm+ktUa8bLRRSZI0c9ZlkiStHtb7kpYiE7Oaq0NofYZdSWu+f9gU/Z9pmUty4cBtDoPDc0YdmyTNg3XZKmJdJkmrnvX+KmK9r+XCrgwkSZIkSZIkachsMStJkiRJkiRJQ2ZiVpIkSZIkSZKGbM2oAwDYdddda6+99hp1GJKkJeoLX/jC96pq7ajjWI6sYyVJU7GOnRvrV0nSVGZavy6JxOxee+3F5s2bRx2GJGmJSvKtUcewXFnHSpKmYh07N9avkqSpzLR+tSsDSZIkSZIkSRoyE7OSJEmSJEmSNGQmZiVJkiRJkiRpyEzMSpIkSZIkSdKQmZiVJEmSJEmSpCEzMStJkiRJkiRJQ2ZiVpIkSZIkSZKGbM2oA5A0gdNf1/4+7jWjjUPSSCTZHjgTuDOtrj6pqo5KcjzwGOAHfdbnVdW5o4lSkjTm2FO/vs37lz/hfiOKRBqxsfMY8FxGkmZg2hazSd6d5OokFwyM2znJqUku7n936uOT5K1JLklyXpKHLWbwkiStUDcCB1bVQ4D9gIOTHNCn/VFV7dcHk7KSJEmStEzNpCuD44GDx407EjitqvYBTuvvAZ4E7NOHjcA7FiZMSZJWj2pu6G+360ONMCRJkiRJ0gKbtiuDqjozyV7jRh8CPLa/PgE4A3h1H/+eqirg7CQ7JtmtqrYsVMCSJK0GSe4IfAH4ReDtVXVOkj8A/ibJn9MvjFbVjaOMU5IEB1y+adyYN44kDs1Mr2M3A9+pqqck2Rt4P7Az8EXguVX101HGuNyMdedxGjyHGAAAIABJREFUwOXXAPDw++wyynAkadmY68O/7jWWbO1/79nH7w58e2C+K/o4SZI0C1V1c1XtB+wB7J9kX+A1wAOAX6GdPL56omWTbEyyOcnmrVu3Di1mSZKWiZcCFw28fz1wbL8j9FrgiJFEJUladeaamJ1MJhg34a2XnjRKkjS9qrqOdmfKwVW1pXdzcCPwT8D+kyyzqarWV9X6tWvXDjFaSZKWtiR7AL8B/GN/H+BA4KQ+ywnAoaOJTpK02sw1MXtVkt0A+t+r+/grgD0H5tsDuHKiFXjSKEnSxJKsTbJjf30X4PHAVwfq3tBOGi+YfC2SJGkCfwf8MXBLf78LcF1V3dTfe9enJGlo5pqYPRnY0F9vAD42MP7wNAcAP7B/WUmSZm034PQk5wGfB06tqo8DJyY5Hzgf2BX46xHGKEnSspLkKcDVVfWFwdETzOpdn5KkoZj24V9J3kd70NeuSa4AjgKOAT6Y5AjgcuCZffZTgCcDlwD/A/zuIsQsSdKKVlXnAQ+dYPyBIwhHkqSV4pHAU5M8GdgeuAetBe2OSdb0VrNT3vUJbAJYv379hMlbSZJmY9rEbFU9e5JJB00wbwF/ON+gJEmSJElaSFX1GtqDNEnyWOBVVfWcJB8CngG8n23vCJUkaVEt9MO/JEmSJElaTl4NvCLJJbQ+Z48bcTySpFVi2hazkiRJkiStJFV1BnBGf30psP8o45EkrU62mJUkSZIkSZKkITMxK0mSJEmSJElDZmJWkiRJkiRJkobMxKwkSZIkSZIkDZmJWUmSJEmSJEkaMhOzkiRJkiRJkjRkJmYlSZIkSZIkachMzEqSJEmSJEnSkJmYlSRJkiRJkqQhMzErSZIkSZIkSUNmYlaSJEmSJEmShszErCRJkiRJkiQNmYlZSZIkSdKqkGT7JJ9L8uUkFyb5iz7++CTfTHJuH/YbdaySpJVvzagDkCRJ20qyPXAmcGdaXX1SVR2VZG/g/cDOwBeB51bVT0cXqSRJy86NwIFVdUOS7YDPJvlEn/ZHVXXSCGOTJK0ytpiVJGnpGTtpfAiwH3BwkgOA1wPHVtU+wLXAESOMUZKkZaeaG/rb7fpQIwxJkrSKmZiVJGmJmeKk8UBgrCXPCcChIwhPkqRlLckdk5wLXA2cWlXn9El/k+S8JMcmufMIQ5QkrRImZiVJWoLGnzQC3wCuq6qb+ixXALuPKj5Jkparqrq5qvYD9gD2T7Iv8BrgAcCv0LoMevX45ZJsTLI5yeatW7cONWZJ0spkYlaSpCVo/Ekj8MCJZptoWU8cJUmaXlVdB5wBHFxVW/odKzcC/0Sre8fPv6mq1lfV+rVr1w45WknSSmRiVpKkJWzgpPEAYMckYw/u3AO4cpJlPHGUJGkCSdYm2bG/vgvweOCrSXbr40LrKuiC0UUpSVotTMxKkrTETHLSeBFwOvCMPtsG4GOjiVCSpGVrN+D0JOcBn6f1Mftx4MQk5wPnA7sCfz3CGCVJq8Sa6WeRJElDthtwQpI70i6ifrCqPp7kK8D7k/w18CXguFEGKUnSclNV5wEPnWD8gSMIR5K0ypmYlSRpiZnipPFSJujzTpIkSZK0/NiVgSRJkiRJkiQN2bwSs0lenuTCJBckeV+S7ZPsneScJBcn+UCSOy1UsJIkSZIkSZK0Esw5MZtkd+AlwPqq2he4I3AY8Hrg2KraB7gWOGIhApUkSZIkSZKklWK+XRmsAe6SZA1wV2ALcCBwUp9+AnDoPLchSZIkSZIkSSvKnBOzVfUd4I3A5bSE7A+ALwDXVdVNfbYrgN3nG6QkSZIkSZIkrSTz6cpgJ+AQYG/g3sDdgCdNMGtNsvzGJJuTbN66detcw5AkSZIkSZKkZWc+XRk8HvhmVW2tqp8BHwEeAezYuzYA2AO4cqKFq2pTVa2vqvVr166dRxiSJEmSJEmStLzMJzF7OXBAkrsmCXAQ8BXgdOAZfZ4NwMfmF6IkSZIkSZIkrSzz6WP2HNpDvr4InN/XtQl4NfCKJJcAuwDHLUCckiRJkiRJkrRirJl+lslV1VHAUeNGXwrsP5/1SpIkSZIkSdJKNp+uDCRJkiRJkiRJc2BiVpIkSZIkSZKGzMSsJEmSJGlVSLJ9ks8l+XKSC5P8RR+/d5Jzklyc5ANJ7jTqWCVJK5+JWUmSJEnSanEjcGBVPQTYDzg4yQHA64Fjq2of4FrgiBHGKElaJUzMSpIkSZJWhWpu6G+360MBBwIn9fEnAIeOIDxJ0ipjYlaSJEmStGokuWOSc4GrgVOBbwDXVdVNfZYrgN1HFZ8kafUwMStJ0hKTZM8kpye5qPd/99I+/ugk30lybh+ePOpYJUlabqrq5qraD9gD2B944ESzjR+RZGOSzUk2b926dbHDlCStAmtGHYAkSbqdm4BXVtUXk+wAfCHJqX3asVX1xhHGJknSilBV1yU5AzgA2DHJmt5qdg/gygnm3wRsAli/fv3tEreSJM2WLWYlSVpiqmpLVX2xv74euAhvqZQkad6SrE2yY399F+DxtHr2dOAZfbYNwMdGE6EkaTUxMStJ0hKWZC/gocA5fdSLkpyX5N1JdhpZYJIkLU+7AacnOQ/4PHBqVX0ceDXwiiSXALsAx40wRknSKmFXBpIkLVFJ7g58GHhZVf0wyTuAv6L1e/dXwJuA/zPBchuBjQDr1q0bXsCSJC1xVXUe7YLn+PGX0vqblSRpaGwxK0nSEpRkO1pS9sSq+ghAVV3VH1hyC/AuJjmBrKpNVbW+qtavXbt2eEFLkiRJkmbMxKwkSUtMktBuobyoqt48MH63gdmeBlww7NgkSZIkSQvDrgwkSVp6Hgk8Fzg/ybl93J8Az06yH60rg8uA3x9NeJIkSZKk+TIxK0nSElNVnwUywaRThh2LJEmSJGlx2JWBJEmSJEmSJA2ZiVlJkiRJkiRJGjITs5IkSZIkSZI0ZCZmJUmSJEmSJGnITMxKkiRJkiRJ0pCZmJUkSZIkSZKkITMxK0mSJEmSJElDZmJWkiRJkiRJkobMxKwkSZIkacVLsmeS05NclOTCJC/t449O8p0k5/bhyaOOVZK0OqwZdQCSJEmSJA3BTcArq+qLSXYAvpDk1D7t2Kp64whjkyStQiZmJUmSJEkrXlVtAbb019cnuQjYfbRRSZJWs3l1ZZBkxyQnJflqvx3k4Ul2TnJqkov7350WKlhJkiRJkuYryV7AQ4Fz+qgXJTkvybs9h5UkDct8+5h9C/DJqnoA8BDgIuBI4LSq2gc4rb+XJEmSJGnkktwd+DDwsqr6IfAO4L7AfrQWtW+aZLmNSTYn2bx169ahxStJWrnmnJhNcg/g0cBxAFX106q6DjgEOKHPdgJw6HyDlCRJkiRpvpJsR0vKnlhVHwGoqquq6uaqugV4F7D/RMtW1aaqWl9V69euXTu8oCVJK9Z8WszeB9gK/FOSLyX5xyR3A+7V++4Z68PnngsQpyRJkiRJc5YktIZFF1XVmwfG7zYw29OAC4YdmyRpdZpPYnYN8DDgHVX1UOBHzKLbAm8DkSRpYkn2THJ677/9wiQv7ePtx12SpLl7JPBc4MAk5/bhycAbkpyf5DzgccDLRxqlJGnVWDOPZa8Arqiqsc7ST6IlZq9KsltVbelXHq+eaOGq2gRsAli/fn3NIw5Jklaam4BXVtUXk+wAfCHJqcDzaP24H5PkSFq9++oRxilJ0rJRVZ8FMsGkU4YdiyRJMI8Ws1X1XeDbSe7fRx0EfAU4GdjQx20APjavCCVJWmWqaktVfbG/vp72cM3dsR93SZIkSVox5tNiFuDFwIlJ7gRcCvwuLdn7wSRHAJcDz5znNiRJWrWS7AU8FDiHcf24J7Efd0mSJElapuaVmK2qc4H1E0w6aD7rlSRJkOTutCdHv6yqftieWTKj5TYCGwHWrVu3eAFKkiRJkuZsPg//kiRJiyTJdrSk7IlV9ZE++qqxJ0dP1497Va2vqvVr164dTsCSJEmSpFkxMStJ0hKT1jT2OOCiqnrzwCT7cZckSZKkFWK+fcxKkqSF90jgucD5Sc7t4/4EOAb7cZckSZKkFcHErCRJS0xVfRaYrENZ+3GXJEmSpBXArgwkSZIkSZIkachMzEqSJEmSJEnSkJmYlSRJkiRJkqQhMzErSZIkSZIkSUNmYlaSJEmSJEmShszErCRJkiRpVUiyZ5LTk1yU5MIkL+3jd05yapKL+9+dRh2rJGnlMzErSZIkSVotbgJeWVUPBA4A/jDJg4AjgdOqah/gtP5ekqRFZWJWkiRJkrQqVNWWqvpif309cBGwO3AIcEKf7QTg0NFEKElaTdaMOgBJt3fWpdcAcPZNXwfg5U+43yjDkSRJklacJHsBDwXOAe5VVVugJW+T3HOEoUmSVglbzEqSJEmSVpUkdwc+DLysqn44w2U2JtmcZPPWrVsXN0BJ0qpgYlaSJEmStGok2Y6WlD2xqj7SR1+VZLc+fTfg6vHLVdWmqlpfVevXrl07vIAlSSuWiVlJkiRJ0qqQJMBxwEVV9eaBSScDG/rrDcDHhh2bJGn1sY9ZSZIkSdJq8UjgucD5Sc7t4/4EOAb4YJIjgMuBZ44oPknSKmJiVpIkSZK0KlTVZ4FMMvmgYcYiSZJdGUiSJEmSJEnSkJmYlSRJkiRJkqQhMzErSdISk+TdSa5OcsHAuKOTfCfJuX148ihjlCRJkiTNj4lZSZKWnuOBgycYf2xV7deHU4YckyRJkiRpAZmYlSRpiamqM4HvjzoOSZIkSdLiMTErSdLy8aIk5/WuDnYadTCSJEmSpLkzMStJ0vLwDuC+wH7AFuBNk82YZGOSzUk2b926dVjxSZIkSZJmYd6J2SR3TPKlJB/v7/dOck6Si5N8IMmd5h+mJEmrW1VdVVU3V9UtwLuA/aeYd1NVra+q9WvXrh1ekJIkSZKkGVuIFrMvBS4aeP962sNJ9gGuBY5YgG1IkrSqJdlt4O3TgAtGFYskSZIkaf7mlZhNsgfwG8A/9vcBDgRO6rOcABw6n21IkrTaJHkfcBZw/yRXJDkCeEOS85OcBzwOePlIg5QkSZIkzcuaeS7/d8AfAzv097sA11XVTf39FcDu89yGJEmrSlU9e4LRxw09EEmSJEnSoplzYjbJU4Crq+oLSR47NnqCWWuS5TcCGwHWrVs31zAkSZIkaeU7/XXbvn/ca0YThyRJWjDz6crgkcBTk1wGvJ/WhcHfATsmGUv47gFcOdHCPphEkiRJkjRMSd6d5OokFwyMOzrJd5Kc24cnjzJGSdLqMefEbFW9pqr2qKq9gMOAz1TVc4DTgWf02TYAH5t3lJIkSZK0ip116TXbDJqz44GDJxh/bFXt14dThhyTJGmVmtfDvybxauAVSS6h9Tlrn3iSJEmSpJGrqjOB7486DkmSYP4P/wKgqs4AzuivLwX2X4j1SpIkSZI0BC9KcjiwGXhlVV076oAkSSvfYrSYlSRJkiRpuXgHcF9gP2AL8KaJZkqyMcnmJJu3bt06zPgkSSuUiVlJkiRJ0qpVVVdV1c1VdQvwLia5A9QHWEuSFpqJWUmSJEnSqpVkt4G3TwMuGFUskqTVZUH6mJUkSZIkaalL8j7gscCuSa4AjgIem2Q/oIDLgN8fWYCSpFXFxKwkSZIkaVWoqmdPMPq4oQciSRJ2ZSBJkiRJkiRJQ2diVpIkSZIkSZKGzMSsJEmSJEmSJA2ZiVlJkiRJkiRJGjITs5IkSZIkSZI0ZCZmJUmSJEmSJGnITMxKkrTEJHl3kquTXDAwbuckpya5uP/daZQxSpIkSZLmx8SsJElLz/HAwePGHQmcVlX7AKf195IkSZKkZcrErCRJS0xVnQl8f9zoQ4AT+usTgEOHGpQkSZIkaUGZmJUkaXm4V1VtAeh/7znieCRJkiRJ82BiVpKkFSbJxiSbk2zeunXrqMORJEmSJE3AxKwkScvDVUl2A+h/r55sxqraVFXrq2r92rVrhxagJEmSJGnmTMxKkrQ8nAxs6K83AB8bYSySJEmSpHlaM+oAJEnStpK8D3gssGuSK4CjgGOADyY5ArgceOboIpQkLYazjnvVNu8ffsQbRxTJypXk3cBTgKurat8+bmfgA8BewGXAs6rq2lHFKElaPWwxK0nSElNVz66q3apqu6rao6qOq6prquqgqtqn//3+qOOUJGkZOh44eNy4I4HTqmof4LT+XpKkRWdiVpIkSZK0KlTVmcD4i5uHACf01ycAhw41KEnSqmViVpIkSZK0mt2rqrYA9L/3HHE8kqRVwj5mJUmSJEmaRpKNwEaAdevWjTgaSbc6/XXbvn/ca0YThzQHtpiVJEmSJK1mVyXZDaD/vXqimapqU1Wtr6r1a9euHWqAkqSVycSsJEmSJGk1OxnY0F9vAD42wlgkzdFZl17DWZdew7Gnfn3UoUgzZmJWkiRJkrQqJHkfcBZw/yRXJDkCOAZ4QpKLgSf095IkLbo59zGbZE/gPcDPA7cAm6rqLUl2Bj4A7AVcBjyrqq6df6iSJEmSJM1dVT17kkkHDTUQSZKY38O/bgJeWVVfTLID8IUkpwLPA06rqmOSHAkcCbx6/qFKkiRJ0tJ31nGvuvX1w49444ynSZKk1WXOXRlU1Zaq+mJ/fT1wEbA7cAhwQp/tBODQ+QYpSZIkSZIkSSvJgvQxm2Qv4KHAOcC9qmoLtOQtcM+F2IYkSZIkSZIkrRTzTswmuTvwYeBlVfXDWSy3McnmJJu3bt063zAkSZIkSZIkadmYTx+zJNmOlpQ9sao+0kdflWS3qtqSZDfg6omWrapNwCaA9evX13zikCRJkqTlZrC/WUmStPrMucVskgDHARdV1ZsHJp0MbOivNwAfm3t4kiRJkiRJkrTyzKfF7COB5wLnJzm3j/sT4Bjgg0mOAC4Hnjm/ECVJkiRp9bFFrSRJK9ucE7NV9Vkgk0w+aK7rlSRJkqSVwuSqJEmazLwf/iVJkiRJkiRJmp15PfxLkiQNV5LLgOuBm4Gbqmr9aCOSJEmSJM2FiVlJkpafx1XV90YdhCRJkiRp7uzKQJIkSZIkSZKGzBazkiQtLwV8OkkB/1BVm8bPkGQjsBFg3bp1Qw5PkqTlye6CJEnDZmJWkqTl5ZFVdWWSewKnJvlqVZ05OENP1m4CWL9+fY0iSEmSlim7C5IkDY1dGUiStIxU1ZX979XAR4H9RxuRJEmSJGkuTMxKkrRMJLlbkh3GXgNPBC4YbVSSJK0YY90FfaF3CyRJ0qKyKwNJkpaPewEfTQKtDn9vVX1ytCFJkrRiTNldkH24S5IWmolZSZKWiaq6FHjIqOOQJGklGuwuKMlYd0FnDky3D3dJ0oKyKwNJkiRJ0qpmd0GSpFGwxawkSZIkabWzuyBJ0tCZmJUkSZIkrWp2FyRJGgW7MpAkSZIkSZKkITMxK0mSJEmSJElDZlcGkiRJkiRpyTn21K9zwOWbAHj4fXaBx71mxBFJ0sIyMStJkiRJknT667Z9byJY0iIzMStJkiRJkpa38UnVQbNIsJ516TW3vn744+YTkCRNz8SsJEmSJEkanUmSqgdcfs2E4ycymFAdzwSrpKXKxKwkSZIkzcKxp359m/cHjCgOaVkZTL4OtGBt/cjOPAE7Mqe/7tbk79nrNvLyJ9xvxAFJWglMzEqSJEnSdAaSSssiiSSN0FmXXgOXvmrCaQ+/zy5DjmZbZx23bVwPP+KN81/pJElnSZqOiVlJkiRJGm/crdVT3SYtaebGJ23n2uJ8fIJ1zqbqm3YWbm1Ne9PXt21NO0HSdqzV/QGXb7otUT1VQtfEr7RimZiVJEmSpHFMxGpV64nAwVv3xxv2rfxTtcKddtkpkriL8b8+2N3JAZdfM+dWwrclcFuMo25tLGnhmZiVJEmSJEkaZ7KE7gGXb+Ks42axnrHkb08sHzDFtIffZ5cZt4pt/fNumvVykpYOE7OSJEmSJI3AovR3usjGEoGcbiJQkuZrURKzSQ4G3gLcEfjHqjpmMbYjSdJqYx0rSfMzmAhbDkkwDc+qr2MXqK9VLZ6p+uedTVcPt+sSwQS7NDILnphNckfg7cATgCuAzyc5uaq+stDbkiRpNbGOlSRpcSzrOnZ8QnUwyTaDaTPpY/XWVrIDBhOBc32Al25vGOU6+J1P12/tjC9mTbWvSZrUYrSY3R+4pKouBUjyfuAQYOlXaJIkLW3WsZK0gBbsqe5aCZZ+HTuY+BqX9NomuTpVq8k5PjxLK9dZl17D2TcNPqzs9kn4ma5n0MMfN6+wpFVjMRKzuwPfHnh/BfCri7AdSZJWG+tYSZIWx5KoY489dYYJMhOsWkBzTsZOcXFrcNrZ6zZuM+3laz488UK2sl04U1zI0dKyGInZTDCubjdTshEY+++8IcnXFmDbuwLfW4D1DNNyi3m5xQvLOuY3AfCK0cYyU8u4nJeN5RYvLFzMv7AA61gJrGOXJstmapbP5CybqVk+U3n+m6xjF9a0dewi1a/jvGnhV7lw/J+ckVl9h8urTJ8/1/1z2+UmP7/9kzmufxu7wpu+t0zOoYdk3uW6vPbTpWNG9etiJGavAPYceL8HcOX4mapqEzC3yzKTSLK5qtYv5DoX23KLebnFC8Y8LMa8+JZbvLA8Y17irGOXIMtmapbP5CybqVk+U7N8Fty0dexi1K/LifvcwrNMF55luvAs08V1h0VY5+eBfZLsneROwGHAyYuwHUmSVhvrWEmSFod1rCRp6Ba8xWxV3ZTkRcCngDsC766qCxd6O5IkrTbWsZIkLQ7rWEnSKCxGVwZU1SnAKYux7mksx9tKllvMyy1eMOZhMebFt9ziheUZ85JmHbskWTZTs3wmZ9lMzfKZmuWzwEZYxy4X7nMLzzJdeJbpwrNMF1GqbvfMEEmSJEmSJEnSIlqMPmYlSZIkSZIkSVNYdonZJM9McmGSW5JM+lS4JAcn+VqSS5IcOTB+7yTnJLk4yQd6x+6LHfPOSU7t2zw1yU4TzPO4JOcODD9JcmifdnySbw5M22/U8fb5bh6I6eSB8Uu1jPdLclbff85L8lsD04ZWxpPtmwPT79zL7ZJejnsNTHtNH/+1JL++WDHOMt5XJPlKL9PTkvzCwLQJ95ElEPPzkmwdiO35A9M29P3o4iQbllDMxw7E+/Uk1w1MG3o5J3l3kquTXDDJ9CR5a/885yV52MC0kZSxpjef36fVYD6/h6vBdOUzMN8zklSmOI5baWZSNkme1fefC5O8d9gxjtIM/rfWJTk9yZf6/9eTRxHnKMynvpXmKzM8L+zz3iPJd5K8bZgxLjczKdNMcd6q23jcuvA81h2RqlpWA/BA4P7AGcD6Sea5I/AN4D7AnYAvAw/q0z4IHNZfvxP4gyHE/AbgyP76SOD108y/M/B94K79/fHAM4ZYxjOKF7hhkvFLsoyB+wH79Nf3BrYAOw6zjKfaNwfmeSHwzv76MOAD/fWD+vx3Bvbu67njEoj3cQP76h+MxTvVPrIEYn4e8LYJlt0ZuLT/3am/3mkpxDxu/hfTHkgxynJ+NPAw4IJJpj8Z+AQQ4ADgnFGWscOMvtM5/z6thmG+v4crfZjp7xiwA3AmcDaTHMettGGG+84+wJfGfg+Be4467iVWPpvox5O046HLRh33EMtnTvWtg8NCDMziPBZ4C/DeiY6xHWZXpkxx3upwaxl53DqaMl21x7qLOSy7FrNVdVFVfW2a2fYHLqmqS6vqp8D7gUOSBDgQOKnPdwJw6OJFe6tD+rZmus1nAJ+oqv9Z1KgmN9t4b7WUy7iqvl5VF/fXVwJXA2uHENugCffNcfMMfpaTgIN6uR4CvL+qbqyqbwKX9PWNNN6qOn1gXz0b2GORY5rOTMp4Mr8OnFpV36+qa4FTgYMXKc5Bs4352cD7hhDXpKrqTNoFpMkcArynmrOBHZPsxujKWNObz+/TarAcfw+Haaa/Y39FOyn9yTCDG7GZlM3vAW/vv4tU1dVDjnGUZlI+Bdyjv/454MohxjdS86hvpYUwo/PCJL8M3Av49JDiWs6Wy3nrUudx68LzWHdEll1idoZ2B7498P6KPm4X4Lqqumnc+MV2r6raAtD/3nOa+Q/j9kmXv+nNxY9NcufFCHLATOPdPsnmJGend7vAMinjJPvTrgJ9Y2D0MMp4sn1zwnl6Of6AVq4zWXahzXabR9BabYyZaB9ZbDON+en9+z4pyZ6zXHahzXi7/XaRvYHPDIweRTlPZ7LPNKoy1vTm8/u0Gsz393Clm7Z8kjwU2LOqPj7MwJaAmew79wPul+S/+2/5arpgNZPyORr4nSRXAKfQ7hxRY72qxTTtOVaSOwBvAv5oyLEtVwtx3iqPWxeDx7ojsmbUAUwkyX8APz/BpD+tqo/NZBUTjKspxs/bVDHPcj27Ab8EfGpg9GuA79J+kDcBrwb+cm6R3rqdhYh3XVVdmeQ+wGeSnA/8cIL5lmIZ/zOwoapu6aMXvIwn2/wE48aXz9D33ynMeJtJfgdYDzxmYPTt9pGqWuyDipnE/G/A+6rqxiQvoF1JPXCGyy6G2Wz3MOCkqrp5YNwoynk6S2k/1szM5/dpNZjv7+FKN2X59BP3Y2ldyaw2M9l31tC6M3gsrfXJfyXZt6quG7/gCjST8nk2cHxVvSnJw4F/7uVzywTLrjar+XdZC2ABzrFeCJxSVd+2MWKzyOetajxuXXge647IkkzMVtXj57mKK4A9B97vQbvl6Xu023vW9CsmY+PnbaqYk1yVZLeq2tJ/XKe6Pe1ZwEer6mcD697SX96Y5J+AVy2FePttFVTVpUnOAB4KfJglXMZJ7gH8O/DafrvX2LoXvIwnMdm+OdE8VyRZQ7tl7/szXHahzWibSR5PO9B4TFXdODZ+kn1ksROG08ZcVdcMvH0X8PqBZR87btkzFjzC25vNd3sY8IeDI0ZUztOZ7DONqow1vfn8Pq0G8/o9XAWmK58dgH2BM/qJ+88DJyd5alVtHlpSexjxAAAgAElEQVSUozHT/62z+/HfN5N8jZao/fxwQhypmZTPEfRub6rqrCTbA7sy9TH1ajGK40OtIAtwjvVw4FFJXgjcHbhTkhuqatKHQK50i3neqlt53LrwPNYdkZXalcHngX2S7J3kTrRExslVVcDptD5cATYAM2mBO18n923NZJu36ztyrJ+o3h/KocCET2VdQNPGm2Snsdv9k+wKPBL4ylIu474vfJTWD9eHxk0bVhlPuG+Om2fwszwD+Ewv15OBw9KeLrk37YTtc4sU54zj7bem/gPw1ME+8SbbRxY53pnGPNj32lOBi/rrTwFP7LHvBDyRbVuvjyxmgCT3pz0w66yBcaMq5+mcDBye5gDgB/0CyKjKWNObz+/TajDn38NVYsryqaofVNWuVbVXVe1F65dsNSRlYWb/W/9Ke6DG2G/5/WgPR1wNZlI+lwMHASR5ILA9sHWoUS5dk9W30kKY9hyrqp5TVev6b/uraOdaqzYpOwPzOm/VrTxuXXge645KLYEnkM1mAJ5Gy+TfCFwFfKqPvzftFoqx+Z4MfJ3WauxPB8bfh5bMugT4EHDnIcS8C3AacHH/u3Mfvx74x4H59gK+A9xh3PKfAc6nJQv/Bbj7qOMFHtFj+nL/e8RSL2Pgd4CfAecODPsNu4wn2jdp3SY8tb/evpfbJb0c7zOw7J/25b4GPGmxy3WG8f5H/18cK9OTp9tHlkDMrwMu7LGdDjxgYNn/08v+EuB3l0rM/f3RwDHjlhtJOdMuIG3p/1NX0FozvQB4QZ8e4O3985zPwNPXR1XGDvPfD6f6fVoNw1x/D1fLMJPfsYF5zxj8XVjpwwz2nQBvpl1YOx84bNQxL7HyeRDw372uOxd44qhjHmLZzLm+dXCY78AMz2MH5n8e8LZRx72Uh5mUKVOctzpsU5Yetw6/TFf1se5iDemFK0mSJEmSJEkakpXalYEkSZIkSZIkLVkmZiVJkiRJkiRpyEzMSpIkSZIkSdKQmZiVJEmSJEmSpCEzMStJkiRJkiRJQ2ZiVpIkSZIkSZKGzMSsFkWS5yT59BTTH5Xka8OMaSaSvDPJn406Ds1fksuSPH7UcUjSQrOO1aglOSPJ80cdhyStBtb7iydJJfnFUceh1c3E7JAtxWRRkr36D9INfbgsyZHzWWdVnVhVTxzYxjY/eFX1X1V1//lsY9y6f9Rj/06SNye54wyWe16Sz46L+wVV9VcLENNjk1wxi/lfnuS7SX6Q5N1J7jzJfGPf1Zr+/vj+/qnj5vu7Pv55/f3zktzcy+iHSc5N8pSB+XdM8o4ew/8kOT/J745b52VJftzX8d2+7bv3aZ8Y2H9+luSnA+/fObCOvZPckuTvJ/hs1bd7h4Fxf92386iB9f1o3P56Q5J1My3r2Ujz+iTX9OENSTLF/L+d5Fs9xn9NsvPAtJ2TfLRP+1aS3x6Y9rj+2a/r2/lokt3HLfuBJN/rw4lJ7rEYn1lazqxjb51uHXvbvPsm+VT/7awZzH9rWSY5ur9/ybh5XtbHHz0Qzy29jK5P8rXBOjTJnZO8LsnlvR69OMkfDdYnaYnOn/R1fC/JR5Ls1qe9c2D/+WmvZ8fef2JgHXfr406Z4HNdluSqJHcbGPf8vt114+rUwe/8hiSPmklZz0VmePzT5z0oyVfTjlNOT/ILA9Pu3Jf/YV/fK8Yt+/wkl/TP88kk9x43/WFJzuzTr0ry0oX/tJIWmvX+rdOt92+bd0OSL/T64Iq087c1841hmm1OWQdNMP+kdV/ff07vdd1XJ9u/k3wmA3mBPu4RST7Xj0XOS/JrC/cptZhMzGrQjlV1d+DZwJ8nOXjUAc3CQ3rsBwG/DfzeiOOZsSS/DhxJi30v4D7AX8xiFV8HNgysbw3wTOAb4+Y7q5fRjsBxwAfTEn53Av4D+AXg4cDPAX8EHDNBpfKbfR37AQ8FXgNQVU+qqrv3aScCbxh7X1UvGFj+cOBa4LBJTr7uDRw2fmQ/2Bhb/4P76B0HtnH51EU0ZxuBQ4GHAP8LeArw+xPNmOTBwD8AzwXuBfwPMJiAfjvw0z7tOcA7+jIAXwF+vap2pJXBxcA7Bpb9a2An2r5x376Oo+f96SQNk3XsaPwM+CBwxByX36aO7Q7v4wdd2cvoHsCrgXcleVCf9iFa2T0Z2IFWT2wE3jJuHS/q6/hF4O7AG+HWE9uxOvD/Ah8YqP+eNLD8M4AbgSeOJXXHWQPcLuFYVZcPrO/uffRDBsb910QFM1+zOf5JsivwEeDPgJ2BzcAHBmY5GtiHdizzOOCPx/7HkjyGVm6H9GW/Cbxv3Lo/SavDd6GV/6Qt0yRphqz3R+OuwMuAXYFfpX2GVy3yNo9mkjpovBnUfe8DvkSrj/4UOCnJ2nHreA6tTh8ctzNwMvC3tPP9NwD/lmSn+X00DYOJ2RHqV5X+O8mxaS3lLu1XOZ6X5NtJrk4ymHD7jSRf6ldivp3eUmNg+uFpLfGuSfJng1cQk9whyZFJvtGnfzADrfkGVdVZwIXAvn3ZRyT5fL+i8/kkjxj3GS7tV2W+2X8ktrliluTMPvuX+5W33xp/1SvJA9NabVyX5MIMtABNazH59iT/3rdzTpL7ThL7V4H/Goh97DNfn+QrSZ42tj3gncDDe0zXDWzrrwe2/ZS01qXXJfl/Sf7XwLTLkryqX436QVqLxu3TWqN8Arh3brtSuk3LjHE2AMdV1YVVdS3wV8Dzpph/vH8DHjnwo3swcB7w3UnK6Bbg3cBdaBXBc4F1wDOr6ptV9bOq+iTwEuAvM0HLzKr6LvApWoJ2Ng4HXks7Uf7NCaa/AfiLLPBVzSQP6PvnYf39q9OuAI+1bDpokkU3AG+qqiuq6jvAm5j8u3kO8G9VdWZV3UA7efzfSXbo+8TTgT+rqhuq6rO0ivO5AFV1VVVdObCum2knhmP2Bv61qn5YVT8APsptCWpJE7COtY7tMX+tqo7rZT4Xnwfumn4hrf+9Sx8/0faqqv6VdhHyQb1+eSLw9Kq6oKpuqqqzgd8B/jAT3D5ZVdcB/8rs69gNtHI/j1Ynjfe3wKuS7DjL9U4pyW79e3pVfz/hfjtJvDM9/vnfwIVV9aGq+gntJPghSR7Qpx8O/FVVXVtVFwHvGljXbwIf6tv5ad/Oowf281cAn+ot0m6squv7OiQtI9b71vs95nf0Rj0/7edvJwKPnGz+QUl+re8Lj0tzbN9vftDj2neSRaeqg8abtO5Lcj/gYcBRVfXjqvowcD7tPHIsxp8DjgL+eNx6HwFc1evJm6vqX4CttPpTS5yJ2dH7VdoB9C7Ae4H3A79CS8r8DvC29NvFgR/R/ul3BH4D+IMkhwKktcr4e9qB+G60Vo+737YZXkJr+fcYWou8a2kt+LbRf4AeSUv6fKlXMP8OvLXH+Gbg35Ps0n8k3wo8qap2oP0YnDt+nVX16P5yrPXFYAsHkmxHSy5+Grgn8GLgxCSDt2M8m3YlaSfgEuBvJirMXg6Pol1lgtZq9FG9PP4C+Jcku/UfzBfQW5H2lorj1/UwWgLz9/tn/wfg5Gzb0vNZtETo3rQWlc+rqh8BT6K3nunDlUzuwcCXB95/GbhXkl2mWGbQT2hJvrGWpocD75ls5rSk5/OBG2gtM58AfKLHPejDwPa0VrTj17EH7TNeMsMYSbsVcg/aPv7BHud4HwF+yOwS09Nt92G0fevFVfX+vl+9CPiVvt/+OnDZJItP9N1MlhDdZt6q+gathez9+nBzVQ22sNpmXWm3kl4H/Jh2VfcNA/O+HXhKkp3SEvBPpx2gSJqadax17EL4Z26rszYwdR17h36iuiPtZOoJwDlV9e3B+arqHOAKWouZ8evYhXYiNZs6dh3wWNoJ6IlMXMduBs5gAVsOJdkL+E/gbVX1xpnut91sjn/G17E/ou1/D+714r0nWNdYHZs+MPAeeqIBOAD4fk8SXJ3k37JIXSRJWnTW+9b74z2aGVycTWvJ+j7ahdTTaRdVH007j9sR+C3gmgmWm64OGm+quu/BwKVVdf0U6/q/tDsrxzfCGl/XjY2bLJmsJcTE7Oh9s6r+qapupt2StSfwl/2K/adpiZ1fBKiqM6rq/Kq6parOo/1wPKav5xm01nqf7a0B/hwY7Evt94E/7S3/bqS1NHhGtm2Z+D3g+8A/AkdW1Wm0Suriqvrn3srjfcBXua214y3AvknuUlVbqmouLVIOoN2yd0y/svUZ4OO0CmPMR6rqc1V1E+2EY3wrki8muZZWCf0j8E+9zD5UVVf2MvsALRG5/wzj+j3gH6rqnH7V6QTaLYIHDMzz1r7+7/dtz7Z1C7TP/oOB92Ovd5jFOt4DHN6voD2G1tJmvAN64u+7tLJ9Wm99uSuwZfzMvay/16eP+dck1wPfBq6mXa2bqQ20BPC1tAOlJyW55/jN0lqa/nmm6GduFh5FS1pvqKqP93E3A3emtWTarqou60nUiUz03dw9mbCf2fHzjs2/wzTTgFtvJd2RVt6vpf2fjfkicCfawcA1/TPcrp9eSbdjHWsduxD+BXh2P9k9rL8f7969jv0erW58blV9jUnq2G4L29axb03yA26re188ixgPB86rqq/Q9t0HJ3noBPP9OfDijLstco4eREv0HlVVmwbGz3S/nc3xz3R1LNx+XWPrOQV4VpL/leQu3Pb/e9c+fQ/aMcpLaXcQbdPVgaRlxXrfev9Waf29r6d3DTSFZwKbgCdX1ef6uJ/R6pEHAKmqi6pqovp8ujpoovknq/umPGdMsp7W+vf/m2C9/492LPLsJNultQ6/L7fVdVrCTMyO3lUDr38M7bbmcePGHrD0q2kdQW/tB+4v4LYD+nvTkmX0dfwP217R+QXgo2m3DVwHXERL7txrYJ5dq2qnqnpgVb11YL3fGhfzt4Dd+9Wr3+pxbEm7HeIBzN69gW9Xu8V+m20MvB+8IvQ/3PYDOOZhPfb7VtVrx9aVdgvKuQOfe1+2PQmayi8Arxxbti+/Z493pnHNxA20PunGjL2+foJ5J1Tt1vi1tITex6vqxxPMdnZV7VhVu1bVAVX1H33892hXgrfRDyx27dPHHFrtCu5jaZXUjMqynwg9k1bxj93Sczmtz6Lxn+WUPm3jTNY9jRcA/6/aVc+x9V9C63foaODqJO/P5LfDTPTd3FBVEz1AZvy8Y/NfP820bfQDkROAjw0c3H2I1p/hDn25bzBxYkDStqxjrWPnrVo/5pfQWqlcXONav3ZX9jp256rar6re38dPWMd2u7FtHfuSqvo5WiuhnWgJw5k6nNvq2CtprVjH941LVV1AO0Gf14NouucA3wFOGlj/bPbb2Rz/TFfHwu3XdX2P6TRasvzDtH3/sj5t7LbfHwMfrarPV+sm4S+AR/SL3ZKWF+t96316rIcCx9BaIH9vmtlfBnywqs4fG9ET2m+jtYS+KsmmTPzw5SnroEnmn6zum7SuS3tA9t8DL+0J9W1U1TW0vtRfQfs/OJj2HJkZP5Bco2Nidnl5L6313579wP2d3NZcfQsDB/A9ETZ4K9i3aT9KOw4M21frd2UqV9J+RAetox2IU1Wfqqon0E4uvkrrT2W2rgT27D82t9vGXKU9rfddtNvWd6nWGvECbiuz6Z7O/G3gb8aV2V37lc3pTPvk5wEX0h4uNeYhtP5hbnerxDT+BXglU9xiOYn/oLVevdu48U+nXcU8e/wCVfWfwPFMf/VxzNNolcrfpz2B8ru0g4OJbrWElmD+U+Z/he8FwLokxw6OrKr3VtWv0fbtAl4/yfITfTeTXbneZt4k96G1zP16H9Yk2WeG61pDu/XoHgPz/kNV/aha/7XvpD1ERtLCsY6dhWVUxy6U9zD3OvZXk+w5ODLJ/rQT0s+MX6CfGP418PZJ7tDYRlr/hPsArxmoY3+V1sp3oj7bj6K1XNp9gmmzcTQtsfzeDDyxexb77WyOf8bXsXejtQQa66NvywTrurWOraq3V9U+VXVPWoJ2DW1/hXbb8+A+NfZ62rKXtKxZ78/Ccqr30x689S7ag6vPn25+WgOiQ5O8bJuNVr21qn6Z1pXA/WgPyGbcPNPWQeNMVfddCNwnyQ7jpl9IOy9cD3yg1/Njfd1fkdZlIFX1n1X1K1W1M+1ZJvcHPoeWPBOzy8sOwPer6if9gH6wteFJwG+mdSZ+J9rV/sEDyncCf9N/UEmyNskhM9jmKcD9kvx2kjVJfot269rHk9wryVP7wfGNtCs8N0+ynqtoD5qayDm0Pn7+uDe7fyztdo73TzL/TN2N9iO+FW69lWGwj5WrgD16eU3kXcAL+tXUJLlbWifxM+li4Cpglxm2tngPcESSB6X1UfNaWtJztt5K68vuzOlmHOefaVfSPpRkr/4d/Hpf39HVujuYyN8BT0gyk1tMNtD6FPol2i0p+9Fuw9gvyS+Nn7mqzqD1zXe71j6zdD3tauGjkxwDkOT+SQ5M6yrhJ7Qr55Ptt+8BXpFk996q9pVM/t2cSPsffFT/n/hL2m1C1/cr4B+hPUztbml9TR1CK3uS/O8e1x3Sbi99M/Cl3noWWsX7/CR36QeGG9m2byJJ82cdOzvLoo7t696e1h0MaQ8SmUtXOR+g9Tf3wdks1O9OOQ34cJIHJ7ljkgNodcY7quriSRY9gXaB7qmTTB+0ATiVtu+M1bH70i5uPmmCmC7pn+cls/ksE/gZ7WT2bsA/9zpsNvvtbI5/Pkq7vffp/fv8c1rXDWPd/rwHeG1aX+wPoCWej4dbv/N9+76wjna76lv6yTS0W3SflmS/tO4q/gz4bLWHsElauaz3Z2e51PsH0urYp9dt3RJM50pan+8vSfLCvp5f6bFuRyvPnzB1fTZhHTTJvBPWfdWeR3IucFSvu55Gu4vmw7QuDe7NbfX8WCOdX6Z95yR5aP/O70FrQHVFVX1qhmWgETIxu7y8kJbYuZ52QHrryUG1/mdeTPvB3UJLSF1N+1EHeAvtiuCn+/Jn01pTTKlfuXkKLSF1De3pf0/ptwPcoY+/ktZ/zmN6jBM5Gjgh7baFZ43bxk9pJx5PorW8+Hvg8IGD7Tmp1s/am4CzaD/mvwT898Asn6Fdffpuktvd3lBVm2k/qm+jdeh+CTN8KFWP/X3Apf0zT/XkyE/SHvR0Ou02k28xu75bx9bz/fr/2bv/eLuq+s7/r3eTgq0/0IboKJCCQ7AFW62mGMe2I1U0dqzRr1hDbcUOM5m20nawTge0OgyWQdratP1KralQgWqR0tJm2ihijePYb/gRv6IYEHoNNMTYggEZUYGGfuaPvW84HM65uSc595x77n09H4/zuHuvvfY+n7X3OWfdvfbaa1f9bVXP2+xnWu9B4KU0VzGvo3n41u/QjJv0WzOsdzdNxfKOmbaf5Aiaiu53q+ofO16fBT5G/8bXXwd6Pt10EO2J1ck0vYLfRdOL9d00n7V/pDnxfVuf1d9PM77RTTRXhP+mTZsu2/155Arldpoeuh+i+e49kUd/H36R5kned9F8Nn6hHhk36giaffGN9r3+haaX8bR/DxxN04D+FZp/xN40yH6QtF/WsQOYlDqWpmfSt3mk58q3gVtn8z5d7/ntqvpE9R4qaH9eS1PHf4zmRPtPgIuYYQzZ9rj9PvuvYx9H87CU/7erjr2d5uJfvzr2XJqT7IPSxvn/0NSlF9P0RJ3V53Z///+keZL4G9q8d9Psx/NoPi8v4JGHntKu9+V2G/8L+K12+9A8yPTDNPv+eprP7L792t6u+jaaOv4umvEnHzPUkqQFx3p/ABNU77+D5uFkm9tztfuT7PehydUMW/QS4L8m+Q80PVT/qI31H2iOV7+7RfvWQWke8Hx/e2FwNuf+62h6xt5Lc856SlXdXY199TxtAzlNb9uH2ulfoznmd9L0uu48n9Q8lgHbcDQh0jxt8uvAyvafc0mSNATWsZIkLR7W+5Lmkj1mF5AkP5nku9vbH36bpufdHeONSpKkyWcdK0nS4mG9L2lUbJhdWNbS3Pqwm+YhEOsGva1dcyPJRztupeh89buFXpI0v1jHzlPWsZKkOWC9P09Z72uhcSgDSZIkSZIkSRoxe8xKkiRJkiRJ0ogtHXcAAIcffngdffTR4w5DkjRPffazn/1aVS0fdxyTyDpWkjQT69gDY/0qSZrJbOvXedEwe/TRR7Nt27ZxhyFJmqeS/MO4Y5hU1rGSpJlYxx4Y61dJ0kxmW786lIEkSZIkSZIkjZgNs5IkSZIkSZI0YgM1zCa5OMldSb7YZ3mS/H6SqSRfSPK84YQpSZIkSZIkSQvHoD1mPwismWH5K4CV7Ws98L4DC0uSJEmSJEmSFq6BGmar6tPAPTNkWQtcWo1rgScnefrBBChJkiRJkiRJC82wx5g9ArizY35XmyZJkiRJkiRJag27YTY90qpnxmR9km1Jtt19991DDkOSJEmSJEmS5q+lQ97eLuCojvkjgd29MlbVRmAjwKpVq3o23koz2nI+nHT2uKOQJGlR2HDNbfumzzz5uDFGIknS4tBZ94L1r7QQDbvH7CbgjWmsBu6rqq8O+T0kSZIkSZIkaaIN1GM2yZ8CLwYOT7IL+G/AdwJU1R8Cm4GfAKaAbwE/N8xgJUmSJEmSFrwt57N65x4Arl2xfszBSJorAzXMVtWp+1lewJsPKiJJkiRJkiRJWuCGPcasJEmSJEmShmT1zo3NxJZlPmdFWmCGPcasJEmSJEmSJGk/bJiVJGkOJFmT5NYkU0nO6rH80CQfaZdfl+ToNv3EJDe2r88neU3HOnckualdtm10pZEkSZIkDZsNs5IkDVmSJcCFwCuA44FTkxzfle104N6qOhbYAFzQpn8RWFVVzwXWAO9P0jn00ElV9dyqWjWnhZB6WL1zY3M75Zbzxx2KpEXsQC9+tsvObtNvTfLyjvQnJ7kyyZeS3JLkhaMpjSRpMbNhVpKk4TsRmKqqHVX1EHA5sLYrz1rgknb6SuAlSVJV36qqvW3644AaScSSJE2Ag7n42eZbB5xAc/HzD9rtAfwe8LGq+j7gOcAtc10WSZJsmJUkafiOAO7smN/VpvXM0zbE3gcsA0jygiTbgZuAn+9oqC3g40k+m2T9HMYvSdJ8dcAXP9v0y6vqwaq6HZgCTkzyJODHgIsAquqhqvr6CMoiSVrkbJiVJGn40iOtu+dr3zxVdV1VnQD8MHB2kse1y19UVc+j6SX05iQ/1vPNk/VJtiXZdvfddx9YCSRJmp8O5uJnv3WfCdwN/HGSzyX5QJLHz034kiQ9woZZSZKGbxdwVMf8kcDufnnaMWQPA+7pzFBVtwDfBJ7dzu9u/94FXEXTa+gxqmpjVa2qqlXLly8/6MJIkjSPHMzFz37pS4HnAe+rqh+iqXt7jV3rhU9J0lDZMCtJ0vDdAKxMckySQ2jGs9vUlWcTcFo7fQrwyaqqdp2lAEm+F3gWcEeSxyd5Ypv+eOBlNA8KkyRpMTmYi5/91t0F7Kqq69r0K2kaah/FC5+SpGGzYVaSpCFrb5s8A7ia5uEhV1TV9iTnJnlVm+0iYFmSKeAtPNIz50eAzye5kaZX7C9W1deApwGfSfJ54Hrgb6rqY6MrlSRJ88IBX/xs09clOTTJMcBK4Pqq+kfgziTPatd5CXDzXBdEkqSl4w5AkqSFqKo2A5u70t7ZMf0A8Loe610GXNYjfQfNU6IlSVq0qmpvkumLn0uAi6cvfgLbqmoTzcXPy9qLn/fQNN7S5ruCptF1L/Dmqnq43fQvAR9qG3t3AD830oJJkhYlG2YlSZIkSRPjQC9+tsvOA87rkX4jsGq4kUqSNDOHMpAkSZIkSZKkEbNhVpIkSZIkSZJGzIZZSZIkSZIkSRoxx5iVJEmSJEma57bu2MO1e2/bN3/myceNMRpJw2CPWUmSJEmSJEkaMRtmJUmSJEmSJGnEHMpAkiRJkiRpAqzeubFj7rfHFoek4bDHrCRJkiRJkiSNmA2zkiRJkiRJkjRiNsxKkiRJkiRJ0ojZMCtJkiRJkiRJI+bDvyRJktTflvMBWL1zz5gDkSRJkhYWe8xKkiRJkiRJ0ojZY1aSJEmSJGke2HDNbYB3qkiLhT1mJUmaA0nWJLk1yVSSs3osPzTJR9rl1yU5uk0/McmN7evzSV4z221KkiRJkibHwA2zszjRXJFkS5LPJflCkp8YTqiSJE2GJEuAC4FXAMcDpyY5vivb6cC9VXUssAG4oE3/IrCqqp4LrAHen2TpLLcpSZIkSZoQAw1l0HFSeDKwC7ghyaaqurkj268DV1TV+9oTxs3A0UOKV5KkSXAiMFVVOwCSXA6sBTrry7XAOe30lcB7k6SqvtWR53FADbBNaTjaB35JkqT5a+tFbwXg2hXrOfPk48YcjaQDMWiP2X0nhVX1EDB9UtipgCe104cBuw8uREmSJs4RwJ0d87vatJ55qmovcB+wDCDJC5JsB24Cfr5dPpttSpIkSZImxKANs7M5KTwH+Jkku2h6y/7SAUcnSdJkSo+0mm2eqrquqk4Afhg4O8njZrnNZsPJ+iTbkmy7++67BwhbkiRJkjQqgzbMzuak8FTgg1V1JPATwGVJHvM+njRKkhawXcBRHfNH8tg7SPblSbKU5i6TezozVNUtwDeBZ89ym9PrbayqVVW1avny5QdRDEmS5p8DfcBmu+zsNv3WJC/vSL8jyU3twze3jaYkkqTFbqAxZpndSeHpNA8roaq2tr18Dgfu6sxUVRuBjQCrVq3q2eNHkqQJdQOwMskxwFeAdcBPd+XZBJwGbAVOAT5ZVdWuc2dV7U3yvcCzgDuAr89im9LQbN2xZ9whSNJjzPK5J/sesJlkHc0DNl/fPgNlHXAC8AzgE0mOq6qH2/VOqqqvjawwkqRFb9Aes/tONJMcQlOpberKsxN4CUCS76d5cIldYiVJi0Y7JuwZwNXALTQPxdye5Nwkr2qzXQQsSzIFvAWY7vHzI8Dnk9wIXAX8YlV9rd82R1cqSZLmham9yvgAACAASURBVNk892QtcEk7fSXwkiRp0y+vqger6nZgqt2eJEljMVCP2bb3zvRJ4RLg4ukTTWBbVW0CfhX4oyRn0gxz8KaqskesJGlRqarNNGOtd6a9s2P6AeB1Pda7DLhsttuUJGmR6fXckxf0y9Oew04/YPMI4NqudaefmVLAx5MU8P72Dk9JkubUoEMZzOZE82bgRQcfmiRJkiRJj3IwD9icad0XVdXuJE8Frknypar69KM2mqwH1gOsWLFisKglSeph0KEMJEmSJEkal4N5wGbfdatq+u9dNEMJPWaIAx+uKUkaNhtmJUmSJEmTYjbPPZl+wCZ0PGCzTV+X5ND2YZorgeuTPD7JEwGSPB54GfDFEZRFkrTIDTyUgSRJkiRJ4zDL555cBFzWPmDzHprGW9p8VwA3A3uBN1fVw0meBlzVPB+MpcCHq+pjIy+cdIBW79wIW5Y1MyedPd5gJA3EhllJkiRJ0sQ40AdstsvOA87rStsBPGf4kUqSNDOHMpAkSZIkSZKkEbNhVpIkSZIkSZJGzIZZSZIkSZIkSRoxx5iVJEkSG665bd/06p17xhiJJEmStDjYMCtJkqTmic6SJEmSRsaGWUmSJEmSpHHbcr53rUiLjA2zkiRJkiRJE2zrjqZB99q9zdBEZ5583DjDkTRLPvxLkiRJkiRJkkbMhllJkiRJkiRJGjEbZiVJkiRJkiRpxGyYlSRpDiRZk+TWJFNJzuqx/NAkH2mXX5fk6Db95CSfTXJT+/fHO9b5VLvNG9vXU0dXIkmSJEnSMPnwL0mShizJEuBC4GRgF3BDkk1VdXNHttOBe6vq2CTrgAuA1wNfA36yqnYneTZwNXBEx3pvqKptIymIJEmSJGnO2GNWkqThOxGYqqodVfUQcDmwtivPWuCSdvpK4CVJUlWfq6rdbfp24HFJDh1J1JIkSZKkkbFhVpKk4TsCuLNjfheP7vX6qDxVtRe4D1jWlee1wOeq6sGOtD9uhzF4R5IMN2xJkiRJ0qjYMCtJ0vD1ajCtQfIkOYFmeIP/1LH8DVX1A8CPtq+f7fnmyfok25Jsu/vuuwcKXJIkSZI0GjbMSpI0fLuAozrmjwR298uTZClwGHBPO38kcBXwxqr68vQKVfWV9u83gA/TDJnwGFW1sapWVdWq5cuXD6VAkiRJkqThsmFWkqThuwFYmeSYJIcA64BNXXk2Aae106cAn6yqSvJk4G+As6vq76YzJ1ma5PB2+juBVwJfnONySJIkSZLmiA2zkiQNWTtm7BnA1cAtwBVVtT3JuUle1Wa7CFiWZAp4C3BWm34GcCzwjnYs2RuTPBU4FLg6yReAG4GvAH80ulJJkiRJkoZp6bgDkCRpIaqqzcDmrrR3dkw/ALyux3q/AfxGn80+f5gxSpI0iZKsAX4PWAJ8oKre3bX8UOBSmnpzD/D6qrqjXXY2cDrwMPDLVXV1x3pLgG3AV6rqlSMoiiRpkbPHrCRJkiRpIrSNpxcCrwCOB05NcnxXttOBe6vqWGADzcM0afOtA04A1gB/0G5v2q/Q3OkiSdJI2DArSZIkSZoUJwJTVbWjqh4CLgfWduVZC1zSTl8JvCRJ2vTLq+rBqrodmGq3N/3gzX8HfGAEZZAkCXAoA0mSJB2ILec/Mn3S2eOLQ9JicwRwZ8f8LuAF/fJU1d4k9wHL2vRru9Y9op3+XeDXgCfOQcySJPVkj1lJkiRJ0qRIj7SaZZ6e6UleCdxVVZ+d8Y2T9Um2Jdl29913zy5aSZJmMHDDbJI1SW5NMpXkrD55firJzUm2J/nwwYcpSZIkSRK7gKM65o8EdvfLk2QpcBhwzwzrvgh4VZI7aIZG+PEkf9L9xlW1sapWVdWq5cuXD6c0kqRFbaChDDoGWj+ZplK7Icmmqrq5I89K4GzgRVV1b5KnDjNgSZIkjdfWHXseNf/Ck8YUiKTF6AZgZZJjgK/QPMzrp7vybAJOA7YCpwCfrKpKsgn4cJLfAZ4BrASur6qtNOewJHkx8Naq+plRFEaStLgNOsbsvoHWAZJMD7R+c0ee/whcWFX3AlTVXcMIVJIkSZK0uLVjxp4BXA0sAS6uqu1JzgW2VdUm4CLgsiRTND1l17Xrbk9yBc35617gzVX18FgKIs2R1Ts3NhNbljkGvDQBBm2Ync1A68cBJPk7morynKr62AFHKEmSJElSq6o2A5u70t7ZMf0A8Lo+654HnDfDtj8FfGoYcUqStD+DNszOZqD1pTS3hLyYZsye/53k2VX19UdtKFkPrAdYsWLFgGFIkiRJkiRJ0uQa9OFfsx1o/a+q6p+r6nbgVpqG2kdx4HRJkiRJkiRJi9WgPWZnM9D6XwKnAh9McjjN0AY7DjZQSZIkDdeGa27bN716jHFIkiRJi9FADbOzHGj9auBlSW4GHgb+S1Xt6b9VSZIkjcO+B4RIkiRJGrlBe8zOZqD1At7SviRJkiRJkiRJXQYdY1aSJEmSJEmSdJBsmJUkSZIkSZKkEbNhVpKkOZBkTZJbk0wlOavH8kOTfKRdfl2So9v0k5N8NslN7d8f71jn+W36VJLfT5LRlUiSJEmSNEw2zEqSNGRJlgAXAq8AjgdOTXJ8V7bTgXur6lhgA3BBm/414Cer6geA04DLOtZ5H7AeWNm+1sxZISRJkiRJc8qGWUmShu9EYKqqdlTVQ8DlwNquPGuBS9rpK4GXJElVfa6qdrfp24HHtb1rnw48qaq2tg/avBR49dwXRZIkSZI0F2yYlSRp+I4A7uyY39Wm9cxTVXuB+4BlXXleC3yuqh5s8+/azzYlSZIkSRNi6bgDkCRpAeo19msNkifJCTTDG7xsgG1Or7ueZsgDVqxYsb9YJUmSJEljYI9ZSZKGbxdwVMf8kcDufnmSLAUOA+5p548ErgLeWFVf7sh/5H62CUBVbayqVVW1avny5QdZFEmSJEnSXLBhVpKk4bsBWJnkmCSHAOuATV15NtE83AvgFOCTVVVJngz8DXB2Vf3ddOaq+irwjSSrkwR4I/BXc10QSZIkSdLcsGFWkqQha8eMPQO4GrgFuKKqtic5N8mr2mwXAcuSTAFvAc5q088AjgXekeTG9vXUdtkvAB8ApoAvAx8dTYkkSZIkScPmGLOSJM2BqtoMbO5Ke2fH9APA63qs9xvAb/TZ5jbg2cONVJIkSZI0DvaYlSRJkiRJkqQRs2FWkiRJkiRJkkbMhllJkiRJkiRJGjEbZiVJkiRJEyPJmiS3JplKclaP5Ycm+Ui7/LokR3csO7tNvzXJy9u0xyW5Psnnk2xP8t9HVxpJ0mJmw6wkSZIkaSIkWQJcCLwCOB44NcnxXdlOB+6tqmOBDcAF7brHA+uAE4A1wB+023sQ+PGqeg7wXGBNktWjKI8kaXGzYVaSJEmSNClOBKaqakdVPQRcDqztyrMWuKSdvhJ4SZK06ZdX1YNVdTswBZxYjfvb/N/ZvmquCyJJkg2zkiRJkqRJcQRwZ8f8rjatZ56q2gvcByybad0kS5LcCNwFXFNV181J9JIkdVg67gAkSZK0QGw5/5Hpk84eXxySFrL0SOvu3dovT991q+ph4LlJngxcleTZVfXFR200WQ+sB1ixYsWgcUsjtXXHHq7dexsAZ5583JijkdSPPWYlSZIkSZNiF3BUx/yRwO5+eZIsBQ4D7pnNulX1deBTNGPQ0rVsY1WtqqpVy5cvP7hSSJKEDbOSJEmSpMlxA7AyyTFJDqF5mNemrjybgNPa6VOAT1ZVtenrkhya5BhgJXB9kuVtT1mSfBfwUuBLIyiLJGmRcygDSZIkSdJEqKq9Sc4ArgaWABdX1fYk5wLbqmoTcBFwWZIpmp6y69p1tye5ArgZ2Au8uaoeTvJ04JIkS2g6L11RVX89+tJJkhYbG2YlSZIkSROjqjYDm7vS3tkx/QDwuj7rngec15X2BeCHhh+pJEkzcygDSZIkSZIkSRoxG2YlSZIkSZIkacRsmJUkSZIkSZKkERu4YTbJmiS3JplKctYM+U5JUklWHVyIkiRNnv3Vl+0ToT/SLr8uydFt+rIkW5Lcn+S9Xet8qt3mje3rqaMpjSRJkiRp2AZqmG2fUnkh8ArgeODUJMf3yPdE4JeB64YRpCRJk2SW9eXpwL1VdSywAbigTX8AeAfw1j6bf0NVPbd93TX86CVJkiRJo7B0wPwnAlNVtQMgyeXAWuDmrnzvAn6T/ieVkiQtZLOpL9cC57TTVwLvTZKq+ibwmSTHjjBeSZIkjcGGa27bN716554xRiJpHAYdyuAI4M6O+V1t2j5Jfgg4qqr++iBjkyRpUu23vuzMU1V7gfuAZbPY9h+3wxi8I0mGEawkSZIkafQG7THb6wSw9i1MvoPmdsw37XdDyXpgPcCKFSsGDEOSpHltxvpygDzd3lBVX2mHDPpz4GeBSx/z5taxGqOtO5rePtfubXoAnXnyceMMR5IkSZq3Bu0xuws4qmP+SGB3x/wTgWcDn0pyB7Aa2NTrAWBVtbGqVlXVquXLlw8YhiRJ89r+6stH5UmyFDgMuGemjVbVV9q/3wA+TDNkQq981rGSJEmSNM8N2jB7A7AyyTFJDgHWAZumF1bVfVV1eFUdXVVHA9cCr6qqbUOLWJKk+W/G+rK1CTitnT4F+GRV9e0xm2RpksPb6e8EXgl8ceiRS5IkSZJGYqChDKpqb5IzgKuBJcDFVbU9ybnAtqrqPumUJGnRmWV9eRFwWZIpmp6y66bXb+86eRJwSJJXAy8D/gG4um2UXQJ8AvijERZL6mvrRT7vVZIkSRrUoGPMUlWbgc1dae/sk/fFBxaWJEmTbX/1ZVU9ALyuz7pH99ns84cVnyRJkiRpvAZumJUkSZIkSdLBW71z49xve8syOOnsOXsfSQdu0DFmJUmSJEmSJEkHyYZZSZIkSZIkSRoxG2YlSZIkSZIkacRsmJUkSZIkSZKkEfPhX5IkSYvJlvPHHYEkSZIk7DErSZIkSZIkSSNnw6wkSZIkaWIkWZPk1iRTSc7qsfzQJB9pl1+X5OiOZWe36bcmeXmbdlSSLUluSbI9ya+MrjSSpMXMhllJkiRJ0kRIsgS4EHgFcDxwapLju7KdDtxbVccCG4AL2nWPB9YBJwBrgD9ot7cX+NWq+n5gNfDmHtuUJGnoHGNWkiRpkdhwzW2s3rln3GFI0sE4EZiqqh0ASS4H1gI3d+RZC5zTTl8JvDdJ2vTLq+pB4PYkU8CJVbUV+CpAVX0jyS3AEV3blCRp6OwxK0mSJEmaFEcAd3bM72rTeuapqr3AfcCy2azbDnvwQ8B1Q4xZkqSe7DErSZKkoVu9c2MzsWUZnHT2eIORtJCkR1rNMs+M6yZ5AvDnwH+uqv/zmDdO1gPrAVasWDHbeCVJ6sses5IkSZKkSbELOKpj/khgd788SZYChwH3zLRuku+kaZT9UFX9Ra83rqqNVbWqqlYtX758CEWRJC129piVJEla6LacD+D4spIWghuAlUmOAb5C8zCvn+7Kswk4DdgKnAJ8sqoqySbgw0l+B3gGsBK4vh1/9iLglqr6nRGVQ5IkG2YlSZIkSZOhqvYmOQO4GlgCXFxV25OcC2yrqk00jayXtQ/3uoem8ZY23xU0D/XaC7y5qh5O8iPAzwI3Jbmxfau3VdXm0ZZOkrTY2DArSdIcSLIG+D2ak8YPVNW7u5YfClwKPB/YA7y+qu5IsozmCdI/DHywqs7oWOf5wAeB7wI2A79SVd3j6kmStKC1Daabu9Le2TH9APC6PuueB5zXlfYZeo8/K0nSnHKMWUmShizJEuBC4BXA8cCpSY7vynY6cG9VHQtsAC5o0x8A3gG8tcem30fz0JGV7WvN8KOXJEmSJI2CDbOSJA3ficBUVe2oqoeAy4G1XXnWApe001cCL0mSqvpm23Pngc7MSZ4OPKmqtra9ZC8FXj2npZAkSZIkzRmHMpAkafiOAO7smN8FvKBfnna8vPuAZcDXZtjmrq5tHjGUaLWgbbjmNh/6JUmSJM1DNsxKkjR8vcap6x4LdjZ5Dih/kvU0Qx6wYsWKGTapBW/L+TbKSpIkSfOUQxlIkjR8u4CjOuaPBHb3y5NkKXAYzZOjZ9rmkfvZJgBVtbGqVlXVquXLlw8YuiRJkiRpFGyY1cTZcM1tbLjmNrbusAeQpHnrBmBlkmOSHAKsAzZ15dkEnNZOnwJ8sh07tqeq+irwjSSrkwR4I/BXww9dkiRJkjQKDmUgSdKQtWPGngFcDSwBLq6q7UnOBbZV1SbgIuCyJFM0PWXXTa+f5A7gScAhSV4NvKyqbgZ+Afgg8F3AR9uXNK9t3bEHdrwVgBc+cxmcdPaYI5IkSZLmBxtmJUmaA1W1GdjclfbOjukHgNf1WffoPunbgGcPL0otRBuuuW3ftOPLSpIkSfOXDbOSJEkLyOqdG8cdgiRJkqRZcIxZSZIkSZIkSRoxG2YlSZIkSZIkacQGbphNsibJrUmmkpzVY/lbktyc5AtJ/jbJ9w4nVEmSJEmSJElaGAYaYzbJEuBC4GRgF3BDkk3tk6KnfQ5YVVXfSvILwG8Crx9WwJIkSZpMW3fs4dq9jzyc7MyTjxtjNJIkSdJ4Ddpj9kRgqqp2VNVDwOXA2s4MVbWlqr7Vzl4LHHnwYUqSJEmSJEnSwjFow+wRwJ0d87vatH5OBz46aFCSJEmSJEmStJANNJQBkB5p1TNj8jPAKuDf9lm+HlgPsGLFigHDkCRJkiRJkqTJNWiP2V3AUR3zRwK7uzMleSnwduBVVfVgrw1V1caqWlVVq5YvXz5gGJIkSZIkSZI0uQZtmL0BWJnkmCSHAOuATZ0ZkvwQ8H6aRtm7hhOmJEmSJEmSJC0cAw1lUFV7k5wBXA0sAS6uqu1JzgW2VdUm4LeAJwB/lgRgZ1W9ashxS5IkCdhwzW2Pml89pjhma/XOjR1zvz22OCRJkqRxG3SMWapqM7C5K+2dHdMvHUJckiRJkiQ9RpI1wO/RdBb6QFW9u2v5ocClwPOBPcDrq+qOdtnZNA+pfhj45aq6uk2/GHglcFdVPXtERZEkLXIDN8xKkiRpfnl0L1RJWriSLAEuBE6meQbKDUk2VdXNHdlOB+6tqmOTrAMuAF6f5Hia4fhOAJ4BfCLJcVX1MPBB4L00DbqSJI2EDbOSJEmSpElxIjBVVTsAklwOrAU6G2bXAue001cC700zzt5a4PL2AdW3J5lqt7e1qj6d5OiRlEAasa079nDt3keGPjrz5OPGGI2kToM+/EuSJEmSpHE5ArizY35Xm9YzT1XtBe4Dls1yXUmSRsaGWUmS5kCSNUluTTKV5Kweyw9N8pF2+XWdvXSSnN2m35rk5R3pdyS5KcmNSbaNpiSSJM0r6ZFWs8wzm3X7v3GyPsm2JNvuvvvu2a4mSVJfDmUgSdKQzeH4dwAnVdXXRlYYaS5tOf+R6ZPOHl8ckibJLuCojvkjgd198uxKshQ4DLhnluv2VVUbgY0Aq1atmnWDriRJ/dhjVpKk4ds3/l1VPQRMj3/XaS1wSTt9JfCS7vHvqup2YHr8O2nB2bpjz77Xhmtu2/8KkgQ3ACuTHJPkEJqLmZu68mwCTmunTwE+WVXVpq9r71o5BlgJXD+iuCVJegwbZiVJGr65Gv+ugI8n+WyS9XMQtyRJ81pbZ54BXA3cAlxRVduTnJvkVW22i4Bl7cO93gKc1a67HbiC5kFhHwPePH1HSpI/BbYCz0qyK8npoyyXJGlxcigDSZKGb67Gv3tRVe1O8lTgmiRfqqpPP+bNm0bb9QArVqyYfdSaLO0wAKt37hlzIJI0WlW1GdjclfbOjukHgNf1Wfc84Lwe6acOOUypv86hfEZk9c6NHXO/PfL3l9SbPWYlSRq+Qca/Y7bj31XV9N+7gKvoM8RBVW2sqlVVtWr58uUHXRhJkiRJ0vDZMCtJ0vANffy7JI9P8kSAJI8HXgZ8cQRlkSRJkiTNAYcykCRpyKpqb5Lp8e+WABdPj38HbKuqTTTj313Wjn93D03jLW2+6fHv9tKOf5fkacBVzfPBWAp8uKo+NvLCaV7YcM1tC24Ig9U7N8KWZc3MSWePNxhJkubQ1h0Lqw6XdOBsmJUkaQ4Me/y7qtoBPGf4kUqSJEmSxsGhDCRJkiRJkiRpxOwxK0mSNJ91PrnZW/wlSZKkBcMes5IkSZIkSZI0YvaYlSRJmuemHxJy7d7bxhyJJEmSpGGxYVaSJEnzwkwN0GeefNyow5EkSZLmlA2zkiRJ803nuLKSJEmSFiQbZiVJkuah6d6jnVbv3DiGSCRJkiTNBRtmJUmSNK/0boD+7ZHHIUmSJM2l7xh3AJIkSZIkSZK02NgwK0mSJEmSJEkj5lAGkiRJ88CGa27bN71652PHl5UkSZK0sNhjVpIkSZIkSZJGzB6zkiRJkiRJc23L+eOOoNEZx0lnjy8OSTbMSpIkzQerd24cdwjzWudQD2eefNwYI1lY3K+StPhs3fHIkEkvPGmMgUiyYVaSJEnz36Mbrn97bHEsGG1vqdU793DtivVjDkaSFrbpi2COIS+p28ANs0nWAL8HLAE+UFXv7lp+KHAp8HxgD/D6qrrj4EOVJGlyHEx9meRs4HTgYeCXq+rq2WxTE2T6FkJvHzwgWy96677pa1esX9w9Pbecv6/nU68G1tU7N/LCZy5rZk46e7DGAW911TxlHStJWigGaphNsgS4EDgZ2AXckGRTVd3cke104N6qOjbJOuAC4PXDCliSpPnuYOrLJMcD64ATgGcAn0gy3eq0v21qvulq2OpuFLt27yO3ka8eaWALx+qdG2HLsscuWOANib0aWPsNh7HvltUdb+35Odu33pZlj9pvnbe6dn5WoR32wIZbjYF1rDRcXuyUxmvQHrMnAlNVtQMgyeXAWqCzwloLnNNOXwm8N0mqqg4yVmkfx+GTNM8dcH3Zpl9eVQ8CtyeZarfHLLap+aCjsaqzYatXo5j12XA8aj/DIz1Ex2TDNbf1PbYvPH32wzB0niw/ar0t58/J7bBbd+zpe7GgszzXrljflrF3w2132Tt77O4zSKNuv4fldKznWLmLinWsJssc/WbPhdU7N7L1omZ6+i4Mf1OluTVow+wRwJ0d87uAF/TLU1V7k9wHLAO+dqBBaoHacv6+f6inTzyuXbF+3z/z09OdadCnR1H7D/uGva9t8nSdPHTfxtf9nlY2kobsYOrLI4Bru9Y9op3e3zY1RJ0NPd0e01uwQ3cjocakPT5bd/QfQ3W/9f8MjYeP9Fh9bAPsTL2fOxtbu73wmcv6NlLOtN4wzeZiQc8yz7DevqEWHtV4O7tG3RnteGSfdO7zDdc8crx7/Q84K/OwN3B3g/8gjfwLjHWs9quzDvci6IGZ3m/TDbWDmqlOk/SIQRtm0yOtuyfsbPKQZD0w/V/T/UluHTCWXg5nYTQAL6JyvK1r/j09pt9DX/+he1n39nqt/9j3fEv/d1hEx2IiWI75ZZTl+N4Rvc+wHEx92S/9O2axzWbDc1PHdprkz/BQYp+h3phLk7zfYazx9/5fYoDjeDi8bUSx9/pf5qDMo89Nv//pZvhf74Di77e9A923B3xM5nbfP+b/4ANmHTvLOtZz2Dlh+Rd0+ff7+7nAyz8ri30fLOTyz6p+HbRhdhdwVMf8kcDuPnl2JVkKHAbc072hqtoIDPXSVZJtVbVqmNscB8sxfyyEMoDlmG8sx6JwMPXlTOvub5vA3NSxnSb52Bv7+Exy/MY+PpMc/yTHPs+NrY71HHb4LL/lX8zlB/fBYi8/9L4yOJMbgJVJjklyCM3A6Zu68mwCTmunTwE+6fiykqRF5mDqy03AuiSHJjkGWAlcP8ttSpK00FnHSpIWjIF6zLbj85wBXA0sAS6uqu1JzgW2VdUm4CLgsnYg9XtoKjVJkhaNg6kv23xX0DxwZC/w5qp6GKDXNkddNkmSxsk6VpK0kAw6lAFVtRnY3JX2zo7pB4DXHXxoB2ShjOptOeaPhVAGsBzzjeVYBA6mvqyq84DzZrPNMZnkY2/s4zPJ8Rv7+Exy/JMc+7y2wOrYxf45sfyL22IvP7gPFnv5iaMMSJIkSZIkSdJoDTrGrCRJkiRJkiTpIE1kw2yS30rypSRfSHJVkie36Ucn+XaSG9vXH3as8/wkNyWZSvL7STK+EuyLqWc52mVnt7HemuTlHelr2rSpJGeNJ/JHS/K6JNuT/EuSVR3pk3Y8epajXTYxx6NTknOSfKXjGPxEx7KeZZqP5vt+nkmSO9rP+o1JtrVp35PkmiR/3/59yrjj7Jbk4iR3JfliR1rPuNP4/fb4fCHJ88YXuYZp0uvbSa5nJ7luXUj16aTXo/N1v/YzaXWmdaX2Z5i/h2keTHZd+9n6SJqHlE2UA/lNnbTfsUEs5LJ1GuS3fSH8Vg6rbkhyWpv/75Oc1uu95qM+5fe7P5OqmrgX8DJgaTt9AXBBO3008MU+61wPvBAI8FHgFfO4HMcDnwcOBY4BvkwzCP2SdvqZwCFtnuPnQTm+H3gW8ClgVUf6pB2PfuWYqOPRVaZzgLf2SO9ZpnHH26cM834/7yf+O4DDu9J+EzirnT5r+rs/n17AjwHP6/wO94sb+In2exxgNXDduOP3NbTPwUTXt5Ncz05y3bqQ6tNJrkfn836dIeaJqjOtK33N4jMytN9D4ApgXTv9h8AvjLt8B7A/BvpNncTfsQH2xYItW4+yzvq3fSH8Vg6jbgC+B9jR/n1KO/2UcZftIMrvd3+G10T2mK2qj1fV3nb2WuDImfIneTrwpKraWs3RvxR49RyHuV8zlGMtcHlVPVhVtwNTwInta6qqdlTVQ8Dlbd6xqqpbqurW2eafx8ejXzkm6njMUr8yzUeTvJ/7WQtc0k5fwjz4/Herqk/TPMW4U7+41wKXVuNa4Mnt91wTbtLr20muZye5bl0k9ekk1KOTuF97mbd1pnWl9mdYv4dJAvw4cGW7/rz68ecuZwAAIABJREFULgzBQqofZmshl202Fuxv5ZDqhpcD11TVPVV1L3ANsGbuoz94fcrfz2L87j/GRDbMdvn3NFcYph2T5HNJ/leSH23TjgB2deTZ1abNJ53lOAK4s2PZdLz90uezST0enSb9eJzR3hZxcR65/W9SYofJirWXAj6e5LNJ1rdpT6uqrwK0f586tugG0y/uST9Gmp1Jr28XUj07aft+2qTu90mtRychxm4Loc60rtRsDPp7uAz4esfFxkn+/Azym7qQvzcLuWzdBvltX6j7ZdDyLsT94He/j6XjDqCfJJ8A/lWPRW+vqr9q87wd2At8qF32VWBFVe1J8nzgL5OcQNMtvFvNQdiPcYDl6Bdvr4b0eVOOHibyePRarUfaWI9Hp5nKBLwPeBdNXO8C3kPTODG2Y3AAJinWXl5UVbuTPBW4JsmXxh3QHJj0Y7SoTXp9O8n17CTXrQupPl3A9egkxNhtIdeZk3g8NAsj+j2cmM/PkH9T58X51hyZmGM6BIP8ti+m/QL9y7vQ9oPf/RnM24bZqnrpTMvbwY9fCbykvWWPqnoQeLCd/mySLwPH0bSud95+eSSwey7i7nYg5aCJ96iObJ3x9kufU/srR591Ju549DHvjken2ZYpyR8Bf93OzlSm+WaSYn2Mqtrd/r0ryVU0t2X8U5KnV9VX21tV7hprkLPXL+6JPkaL3aTXt5Ncz05y3bqQ6tMFXI9OQoyPskDqTOvKRWZEv4dfo7nFeWnba3befn7m4Dd1oX5vFs1vwoC/7Qt1vwxa3l3Ai7vSPzWCOOdEVf3T9LTf/ceayKEMkqwB/ivwqqr6Vkf68iRL2ulnAiuBHW1X8W8kWd2Oz/NGoN/Vy5HpVw5gE7AuyaFJjqEpx/XADcDKNE/kPARY1+adlybteMxgYo9H13g8rwGmn4zYr0zz0bzfz/0keXySJ05P0zyI6Is08U8/WfM05vfnv1O/uDcBb0xjNXDf9K06mmyTXt8uxHp2UvZ9HxO33ye8Hp23+7WXBVRnWldqNgb6PWwvLG4BTmnXn4TvwmMcwG/qRP2ODWghl22fA/htX6i/lYOW92rgZUmekua2/5e1aRPJ7/5+1Dx4AtmgL5oBge8Ebmxff9imvxbYTvPEtv8f+MmOdVbRHPwvA+8FMl/L0S57exvrrXQ8VZnmqX23tcvePu4ytDG9huZKx4PAPwFXT+jx6FmOSTseXWW6DLgJ+ALND9nT91em+fia7/t5hrif2X7+P99+F97epi8D/hb4+/bv94w71h6x/ynNLdP/3H4vTu8XN80tKBe2x+cmOp467GuyX5Ne305yPTvJdetCqk8nvR6dr/u1T6wTV2daV/qaxWdkaL+H7Xfk+rZu+zPg0HGX7wD2x8C/qZP0O3YA+2PBlq2jjAP9ti+E38ph1Q00t/pPta+fG3e5DrL8fvdneKUtsCRJkiRJkiRpRCZyKANJkiRJkiRJmmQ2zEqSJEmSJEnSiNkwK0mSJEmSJEkjZsOsJEmSJEmSJI2YDbOSJEmSJEmSNGI2zC5CST6a5LQhbOeOJC8dRkwH+P5vSPLxcb2/DkySo5NUkqXjjkWShsn6VePW1q/HjjsOSZIkzY4NswtUe1L37ST3J/mnJH+c5AkAVfWKqrpkyO/35CQXJ/nHJN9IcluS/zrM9+hWVR+qqpfN5XskObQt1/9py/aWGfK+KclnOubvSPJQksO78t3Ynjgd3c5/sM13f5J7klyT5Ps68h+fZFOS+9p9uyXJv+lYPt3QeX/7uiPJWR3L7+94/UvH5+L+JG/oir+S/FRXvC9u0y/sSv9Mu87bOrb3QJKHO+a3D7K/B5Hke5JcleSbSf4hyU/PkDdJLkiyp339ZpJ0LH9uks8m+Vb797ld6z8vyac7vk+/0rX8V5Lc3sZyS5Ljhl9iSfOB9etwJPmpJP9f+7v7qf3kfXGSXR3zn2rrped05fvLNv3F7fw5Sf65PVZfb9/vhR35j0zyobZe+GaS65O8smub1S67P8lXkvxOkiXtsu0d9d3DbR04Pf+2rvgrya91bXu6/v6brvQ/aWN/Q8f2vt3W4fvq9Nnu60FlgP992vxntvnua9c7tKuMW9rj/KV0XHBIsi7Jre16dyW5JMmTOpZ/f5JPtsunkrxmbkosab5rf/eeeYDrfirJfxh2TBLY6UjDYcPswvaTVfUE4HnADwO/PofvtQF4AvD9wGHAq4Avz+H7jco5wErge4GTgF9LsmaA9W8HTp2eSfIDwHf1yPeb7bE6ErgL+GCb/18DfwfcBBwDPAO4Cvh458ll68ntNk4B3pHkZICqesL0C9hJ+7loXx/qWP804J72b7dvAm9M25jcqar+R8f2fx7Y2rH9E2bYNwfrQuAh4GnAG4D3Jen3fuuBVwPPAX4QeCXwnwCSHAL8FfAnwFOAS4C/atNJ07D+MeD9wDLgWGBfT7L2H73TgX9H8x14JfC1IZZT0vxj/Xrw7gF+F3j3Aa5/G/DG6Zkky4DVwN1d+T7SHqvlwGeAv0jje9r5h4ATgMNp9vWHk5zStY3ntNv4t8DrgX8PUFUndNR//xs4o6P++x8d689UvwKsTvKi7sS2gXx6+68AdnfV6XPlHGb5v0+SlwNnAS8BjgaeCfz3jix/CnyOpv58O3BlkuXtsr8DXlRVh7XrLQV+o93uUpq6+a+B76Gpx//EC5/S5EtydpLNXWl/3ydtHew7n9kxyjhnkuRJSX43yc620XiqnT98/2vvd9tzdtfMIBfeYqejBdnpKM0F/0vSXBC9K8k5Xdt+V5KbkuztXqa5Y8PsIlBVXwE+CjwbHn3VMMn7klw5nbf9gv/t9Bc7ySvbH9vpniY/2Odtfhj4cFXdW1X/UlVfqqrO7VaSX06yI8nXkvxWku9ol/3rND0i9rTLPpTkyR3rHpXkL5Lc3eZ5b5veXVlUkp9PU4nfm+TCjnIsSfKedvu3Jzkjs7uy9UbgXW25bgH+CHjTrHZ84zI6ThxpTsou7Ze5qr4FfJj2WNGcHG2tqrdX1T1V9Y2q+v12uxf02cY2YDvw3F7Le0nyvTQnnOuBlyd5WleWr9M0Fv+32W5zgPd+bVvhPjvJ49L0FNrTfuZu6BELSR4PvBZ4R1XdX1WfATYBP9vnbU4D3lNVu9rvw3t45Di+mOZk8Her6sF2/wb48Xb5W4Cr2xPkB9tjcEsbx3fQ7JMzq+rmany5qu4Zwq6RNM9Zvx54/VpVn6iqK4DdA+zyTh8CXp+29yrNRdCraBpae73fP9NcePtXNI2EZwL3A6dX1T9W1ber6k+B84D3dJ7gdGxjiqYxcZD69btpLpi+GViZZFWPbL9J2yA5TEl+JMmdSU5KY0N7EnZfki8keXafVQf53+c04KKq2l5V9wLvms6bphH1ecB/a/fvn9NcaH4tQFXdWVWdFzIfprn4CfB9NBejN1TVw1X1SZp936+elzQ5Pg28KI/cffCvgO8EnteVdmybd15J03njb2ku6q0BngT8G2APcOIYQ5tusJupjecc7HQEi7jTEc1F6O+muZh6IvCzSX6uY9tTwK8Bj7qbR3PLhtlFIMlRwE/Q9Fjo9qvAD7YnYT9K0/PvtKqqJM8DLqb5ki+j6TG4KR23qHW4Fjgvyc8lWdknlNcAq2j+SV9L2+OEphHsfJof5u8HjqKpNGgr578G/oHmx+MI4PIZivtKmpPY5wA/Bby8Tf+PNL1Nntu+/6tn2Abtez+ljenzHcmfp6mEZ+ta4ElpbsdbQtPT5k9meM8n0PwQTx+rk4E/65H1Cpp/aL67xzZW0zQSTA0Q5xuBbe1J0y1tDN3OA16b5FkDbHdGbSVwAfDSqvoiTcV5GM1nYBlNZfjtHqseBzxcVbd1pM10bE6g/3E8AfhCVVXH8i90LF8N3NM2nNyV5H8mWdEuO7J9Pbs9+b09yX/fzz9EkhYI61fgAOrXIdkN3AxMD7nwRma48Nnu2zcBu9rGwJOBP6+qf+nKegWwgqae6d7G9wE/ymD162tpGoD/DLiaR1+snXYhcFyG2EMqTU/WPwVeW1VbaPbTj9GU68k0/4/s6bHeoP/79Kpfn5amB/MJwI6q+ka/bbWNx/cB36DZV787vahXsXjkwrWkyXUDTUPs9EWuHwO2ALd2pX25qnbDo8fPTtMj88Ikf5Omx+V1bYMf7fKT0wydcl97wbGzJ+F3JPn1ND0S70pyaZLD2mWXJPnVdvqI9j1/sZ0/Nk3vz9D8jq8AXtN2zPiXqrqrqt5VVZvb/M9I8udpLnzenuSXO2I4J8kV7Xt/I82wOKvaZZe12/6faXpo/lqbvro9F/l6ks+nHbKnXfapJOcl+TvgWzR3IPRjp6PGYu509JM0Deffqqo7gIt45P9GquqSqvooTb2sEbHxYGH7yyRfp7lV738B/6M7Q/tj+TPA79A0GP5SVU2P4/YfgfdX1XVtb4VLgAdpGqq6/RJN75UzgJvT3M7xiq48F7Q/wDtp/vE+tY1hqqquaX847m5j+bftOifSnCD8l6r6ZlU90P5Q9fPuqvp6+x5beOQH/KeA32t/vO5ldrdOTt8meF9H2n3AE2exbqfpCuxk4EvAV3rkeWt7rKba931Tm3448NUe+b9K8/19Skfa15J8G9gK/AHwlwPE+EaaSpP272OuLFbVPwJ/CJw7wHZn8p+B/wK8uO2FBPDPtMMFtJ+5z1bV/+mx7hN49HGBmY9Nd/77gCe0/1ztb1tH0uyPX6H5R+l2mpPd6WXQnPD+AM2V51NpGmAkLVzWrwdXvw7LpTQ9Xp5F07Nma488P9UeqzuB/8venYdLUpWHH/++MgjKvgzKPhhBBRQkqERFcUEBFTAoQhCGBCWuiIiKqHFXJCrGn0QD0bCJgoARBY2IgGIEHZRtRGQRmMmwr46CLL6/P85ppqbpe2/fmXvr9u35fp6nnttdVV19TnXdfrvec+rU37IocTxafO0s7/h1RPyJ0nB5PiXG9ms2ZTiFRyjxde+IWL5rnQcojZ8T1Wv29cAxwC6Z+cs67yFKXHs6EJl5VWb2qv94f/v0iq/U9ceM1Zl5YZahDDYA/hW4oS76HaWX1XsjYvmIeAXl2H1Mg7Sk6SUzHwQupiRfqX9/RompzXmj9ZbdmzJsyhqU86dPwaNDkJ1OGWJobcrQP82hYvav00soCcyVgS/XZRdQklpQvm+uZ1HMfBHws9qR4+XADzOz51jftYPG9ygNUetThno5uDaYdexKaQxdnZKA+3LdN/uyeC/QIyNifUrvxU9ShnY5FDg9Fg0LAyWBdyDl+/XGEcplp6PFLaudjmDxxk8bPQeAidnhtntmrp6ZG2fm2zKz15cA9Uf79ZR/ylMbizYG3lNbd+6pJzYbUr7Qu7dxf+32/7eUL51TgW9HGcOtY17j8Y2d7UTEOhHxrSg31biP8uXeOSHaELgxMx/us863NB7/mUUnGOt1vX/z8Ug6wXbVxrxVGX/r0YnAP1B+BIzUovi5+lk9OTN3zczO+IF3AOv2WH9d4K/A3Y15a1PqeyjlR0X3iV9PUca124RFPaVOBp4ZXTfAqj5LaXXcqsey8XovcHQjUQFlX/0P8K2IWBBlvJxe9VjI4p8LjP7ZdK+/KrCwBqyxtnU/8J3M/FVmPkD5Efj82rre+Z86siYsbqD0fNtlhHJIGg7G16WLrxPlDEoPkHdS4kcvp9bPap3MfGlmXlLnjxZfO8s7tqHU9w3A84CV+ilclB7VL6Ek1qFcWrgiZUzybsdSepq+pp9tj+FgSr2v6MzIMhTAlym9c2+NiGOicaOthvH+9ukVX6nr9x2ra4+fH1J/i2QZemJ3yr66hdID/VRgfvdrJU1LF7AoCbs9JTH7s655F4zy+jMy85c1hn2DRY2FuwC/zczT6vfIF1k8fu0DfCEzr6+J1Q8Ae0UZfucCYPuaWH0RZZiZTlL3xY3yrEXvhr2O5wAzM/PjmflglrFxjwX2aqxzYWaeXRvtTqRcjTKSNwJn1/X/mpnnAHNY/HzjuCxDyjxc692LnY4aluFORz8EDouIVWov9H/CRs8pZ2JWRMTbgRUolwU27xg8D/hUPaHpTE/MMgbbiOqXzacpJy6bNBZt2Hi8EYvGlfsMkMCzMnNVSvDptOLMAzaKpb/L4c0s6t3YXZaeas+fm1k8UG5FuZSib5l5I6WX5S6Uk8jx+DGl50u3PSmXgfy5670eyczPU3rfvK3P95hN2d+XRsQtlBZs6HG5ZWbeSfmB84k+tz2aVwAfiog9Gtt/KDM/lpmbU8ZqenWvclBu+jIjFr+sd7TPZi4jf45zKZcbN1sOn9VYfjnl+Hy0mPVvUC65erBruSQBxtfJVmPgD4C3MnJidiQ/pvSU6f4tvCdl3zR7rZDFqZQTxH/p8z32pfzW/l6Nr9dTErO94utDlIa/T9D7Mv7xeD2we0Qc3PUeX6oJ/i0ovXPe26Mc4/3t0yu+3lp/L8wFnhIRq3QtH2lbM4BHL0fOzMsz88WZuVZmvpLSu+2XI7xW0vTyU+CFtRfnzMy8BvhfSueHNSg9+EbrMdtXY2HthNFsMFyPxXuU3kj57nlS7RizkJLk3Z4y3M+C2qOymZi9k94Nex0bA+t1Nb4eThk7dKTyrzhKPN4YeH3X9l7YVQY7HVV2OhpzWwdROhddQ2kw/iY2ek45E7PLuCg3Zvgk5WRtX8oA4J0vrWOBt0TE86JYKSJe1fUDu7OdD0fEcyLi8RGxIuWy73soiauO90bEGrUHybuAU+r8VShfIPfUSzWaJwq/pJwgHFHff8XocefiPpwKvCvKeEGrA+/v83UnUJKHa0QZW+7N1MHLx+kA4KWZ+adxvq7TO/NTUe7UuEpEvJNyUjdaHY6gfJYrjrbxunxPyqUvWzemdwL7jPAD4QuUpOkzxlmXbnMpA+YfHRG71vK8JCKeWS+NuY/SyvhI9wvrfjwD+Hg9Ll5AGVdxpBPzE4BD6ue/HqXnzXF12fn1PQ6KcqfSd9T5P6l//wt4bZS7Wy4PfJjSyn1PTQqcQtnXq0TEBpRj5PtLuE8kDQnj6+ii3DRsRcoJ8ePq+/d10tXlcODF9YqF8TiKcqLytYh4cn3/vYEPUoZ3GKnB7QjgwCg3phnLfpQ43oyvewCvijIGa7cTKYn88dyIpZcFlEtnD4pF4yM+px5vy1NuevIAPeJrNZ7fPicAB0S5y/YalMuHjwOol2ReCnyk7t/XUho+T69l2iciNqr/AxtTLis9t7PhiHhWfd0TI+JQyon7SOWQNL38gnKJ94GUm0F1Gh8X1HkLMvMPS7Ddm2k0ENaOF80GwwWURGfHRsDDwK31+QWUm009vvbkv4DyXb4G5fsMSsPeK6OMC9rLPOAPXY2vq2Rmv1fUdcefecCJXdtbKTOPGOU1j92onY7sdFTKdFdm7lOT5ltQcoI2ek4xE7PLsJp0O4kyNt1ltaXycODEiFghy0Dbb6Zc+nY35VKE/UfYXFISWHdQAt6OwKty8bF3vgtcQglqZ1EGmoZy0rINpYv9WTS+4OvlHa+h3JXzJkprzhuWoLrHAj+i9H78DXA2JQiPdFLS8RHK2EQ3UgLzv2bmD8f75pl5Xd2f433dNZQW0a0o467dTDmpe2Vm/nyUl55F+czePMZb7E5pMTshy12pb6mXdXwNWI4eJ4f1R9ORlDGOlkpmXkYJUMdGGTPxycBplKTsVZR9PtK4RW+j3AX0NkpL31szcy5ARGwfEc1j7z8oYz1dAVxJ2T//UcvwIGU/7EdJdvwT5TLlB+vyn1D+L86q7/VUSitxxzsoiY8FlB+ZJ1Nu6iNpGWV87Su+7kuJP1+h9Ey6v25rXDJzQY4+Nu5Ir7uTEl9XpNxE7E7gEGDfzDxllNddQYlNj+lt2hRlTLxZlN4ztzSmMymf997dr6mfyUeYmPh6EyU5+/6IeBMlCX0s5Xi7kVLfz43w8hF/+9RE6sKoN8Gs84+kjDt8Y52aN1PZi3Jjus74w6/LMt4xwOaUHnILKYmZq1n8d8u+lN89t9W67JiZf1mS/SFpsGQZAmgO5Xv3Z41FF9Z5o/WWHc1ZwBYR8fc1Fh9EOb/o+Cbw7ojYJMr4p5+mjAPeGdbnAspv+877n0/psHJh/Y6G0og2jzLO69Oj3FBsrYg4PCJ2oSS57ouI90fEE2pD5JYR8Zw+63Ari9/A6yTgNRHxyk6jZkTsUDuEjJedjh5rmep0FBF/U4/X5er594E0xriPMq77ipRc4Yx6vC23hPtE/cpMJ6dJnygnlk+d6nI0yrMzZWy9KS+Lk5OTk5PTkk7GVycnJyen6TixaLidbRrz9qzz/rlr3UdjHSUB9cnGsh2A+Y3nO1F6IN5LaQC9AHhTXfY4ynA084DbKUnPNRqvfVp9r9n1+WqUxsb3d5VnNUpPy3mUxqXrKAm+tery9ShJ4FsoDVMXUW4IBfBR4KTGtmbV95xRn+9GaTC9Bzi0zntercddtdxnARvVZed36tfHPl+B0oHkPkoC+JBR1t2fkpDuPL+hU4eu9WbU8s/q9fn0WH9LytWF99V9dz7wwpH2R50XlMTnO7u2tViZKI2BNwPLd623IqWB+9Xdx0td/r76nvuPtg9GqE/357dt3bc7Uxphr6ZcqXIr8KVmvbq2syZlHN0/1c//HxrLtqcMVdDcH0fW4+Gu+jgay59NabC/H/g18Oyu/7EFlCE0LqV0+GqW47han+a0/2j7wGnpp6g7X5pUEZHAprloIOy23/8JlBtw/Igyvs/pwEWZefCoL5QkaYAZXyVJkqTpy6EMtKwIyqUTd1MutbyKevOOekler2n7KSyvJEnTgfFVkiRJWkL2mJUkSZIkSZrmuu6z0bRzZv5shGWSppCJWUmSJEmSJElqmUMZSJIkSZIkSVLLZkx1AQDWXnvtnDVr1lQXQ5I0oC655JI7MnPmVJdjOjLGSpJGY4xdMsZXSdJo+o2vA5GYnTVrFnPmzJnqYkiSBlRE3DjVZZiujLGSpNEYY5eM8VWSNJp+46tDGUiSJEmSJElSy0zMSpIkSZIkSVLLTMxKkiRJkiRJUstMzEqSJEmSJElSy0zMSpIkSZIkSVLLTMxKkiRJkiRJUstMzEqSJEmSJElSy0zManKd95mpLoEkScPJGCtJkiRNayZmJUmSJEmSJKllfSVmI+KGiLgiIi6NiDl13poRcU5EXFP/rlHnR0R8KSKujYjLI2KbyayAJEnTmTFWkqTB0CsmS5I0mcbTY/Ylmbl1Zm5bnx8GnJuZmwLn1ucAOwOb1ulA4CsTVVhJkoaUMVaSpMHQHZMlSZo0SzOUwW7A8fXx8cDujfknZHERsHpErLsU7yNJ0rLGGCtJkiRJQ67fxGwCP4qISyLiwDrvSZl5M0D9u06dvz4wr/Ha+XWeJEl6LGOsJEmDoVdMliRp0szoc70XZOaCiFgHOCcifjfKutFjXj5mpRLoDgTYaKON+iyGJElDxxgrSdJgeExMzsyfdhYaXyVJE62vHrOZuaD+vQ34DvBc4NbO5ZP172119fnAho2XbwAs6LHNYzJz28zcdubMmUteA0mSpjFjrCRJg2GEmNxcbnyVJE2oMROzEbFSRKzSeQy8ArgSOBOYXVebDXy3Pj4T2K/eOXo74N7O5ZiSJGkRY6wkSYNhlJgsSdKk6WcogycB34mIzvonZ+YPI+JXwKkRcQBwE/D6uv7ZwC7AtcCfgX+c8FJLkjQcjLGSJA2GnjF5aoskSRp2YyZmM/N6YKse8+8EXtZjfgJvn5DSSZI0xIyxkiQNhpFisiRJk6mvMWYlSZIkSZIkSRPHxKwkSZIkSZIktczErCRJkiRJkiS1zMSsJEmSJEmSJLXMxKwkSZIkSZIktczErCRJkiRJkiS1zMSsJEmSJEmSJLXMxKwkSZIkSZIktczErCRJkiRJkiS1zMSsJEmSJEmSJLXMxKwkSZIkSZIktczErCRJkiRJkiS1zMSsJEmSJEmSJLXMxKwkSZIkSZIktczErCRJkiRJkiS1zMSsJEmSJEmSJLXMxKwkSZIkSZIktczErCRJkiRJkiS1zMSsJEmSJEmSJLXMxKwkSZIkSZIktczErCRJkiRJkiS1zMSsJEmSJEmSJLXMxKwkSZIkSZIktczErCRJkiRJkiS1zMSsJEmSJEmSJLWs78RsRCwXEb+JiO/X55tExMURcU1EnBIRj6/zV6jPr63LZ01O0SVJmv6Mr5IkSZK0bBpPj9l3AVc1nn8WOCozNwXuBg6o8w8A7s7MpwJH1fUkSVJvxldJkgZEd4OpJEmTqa/EbERsALwK+M/6PICXAqfVVY4Hdq+Pd6vPqctfVteXJEkNxldJkgZOd4OpJEmTpt8es18E3gf8tT5fC7gnMx+uz+cD69fH6wPzAOrye+v6kiRpccZXSZIGRHeDqSRJk23MxGxEvBq4LTMvac7usWr2say53QMjYk5EzLn99tv7KqwkScNisuJr3bYxVpKk8etuMJUkaVL102P2BcCuEXED8C3KJZZfBFaPiBl1nQ2ABfXxfGBDgLp8NeCu7o1m5jGZuW1mbjtz5sylqoQkSdPQpMRXMMZKkjReIzSYdq9jw6ckaUKNmZjNzA9k5gaZOQvYC/hJZu4DnAe8rq42G/hufXxmfU5d/pPM7NmjR5KkZZXxVZKkgfKYBtOIOKm5gg2fkqSJ1u8Ys728HzgkIq6ljHH3tTr/a8Badf4hwGFLV0RJkpYpxldJklo2QoPpG6e4WJKkITdj7FUWyczzgfPr4+uB5/ZY5wHg9RNQNkmSlgnGV0mSJEla9owrMStJkiRJ0jBrNphKkjSZlmYoA0mSJEmSJEnSEjAxK0mSJEmSJEktMzErSZIkSZIkSS0zMStJkiRJkiRJLTMxK0mSJEmSJEktMzErSZIkSZIkSS0zMStJkiRJkiRJLTMxK0mSJEmSJEktMzErSZIkSZIkSS0zMStJkiRJkiQ/Xcm5AAAgAElEQVRJLTMxK0mSJEmSJEktMzErSZIkSZIkSS0zMStJkiRJkiRJLTMxK0mSJEmSJEktMzErSZIkSZIkSS0zMStJkiRJkiRJLTMxK0mSJEmSJEktMzErSZIkSZIkSS0zMStJkiRJkiRJLTMxK0mSJEmSJEktMzErSZIkSZIkSS0zMStJkiRJkiRJLTMxK0mSJEmSJEktMzErSZIkSZIkSS0zMStJkiRJkiRJLRszMRsRK0bELyPisoiYGxEfq/M3iYiLI+KaiDglIh5f569Qn19bl8+a3CpIkjQ9GWMlSRoMI8VkSZImUz89Zv8CvDQztwK2BnaKiO2AzwJHZeamwN3AAXX9A4C7M/OpwFF1PUmS9FjGWEmSBsNIMVmSpEkzZmI2i4X16fJ1SuClwGl1/vHA7vXxbvU5dfnLIiImrMSSJA0JY6wkSYNhlJgsSdKk6WuM2YhYLiIuBW4DzgGuA+7JzIfrKvOB9evj9YF5AHX5vcBaE1loSZKGhTFWkqTB0B2TM/PiqS6TJGm49ZWYzcxHMnNrYAPgucAzeq1W//bqufOYlsaIODAi5kTEnNtvv73f8kqSNFSMsZIkDYbumBwRWzaXG18lSROtr8RsR2beA5wPbAesHhEz6qINgAX18XxgQ4C6fDXgrh7bOiYzt83MbWfOnLlkpZckaUgYYyVJGgyNmLxT13zjqyRpQo2ZmI2ImRGxen38BODlwFXAecDr6mqzge/Wx2fW59TlP8lMx+aRJKmLMVaSpMEwQkz+3dSWSpI07GaMvQrrAsdHxHKURO6pmfn9iPgt8K2I+CTwG+Brdf2vASdGxLWUXjx7TUK5JUkaBsZYSZIGQ8+YPMVlkiQNuTETs5l5OfDsHvOvp4yF1z3/AeD1E1I6SZKGmDFWkqTBMFJMliRpMo1rjFlJkiRJkiRJ0tIzMStJkiRJkiRJLTMxK0mSJEmSJEktMzErSZIkSZIkSS0zMStJkiRJkiRJLTMxK0mSJEmSJEktMzErSZIkSZIkSS0zMStJkiRJkiRJLTMxK0mSJEmSJEktMzErSZIkSZIkSS0zMStJkiRJkiRJLTMxK0mSJEmSJEktMzErSZIkSZIkSS0zMStJkiRJkiRJLTMxK0mSJEmSJEktMzErSZIkSZIkSS0zMStJkiRJkiRJLTMxK0mSJEmSJEktMzErSZIkSZIkSS0zMStJkiRJkiRJLTMxK0mSJEmSJEktMzErSZIkSZIkSS0zMStJkiRJkiRJLTMxK0mSJEmSJEktMzErSZIkSZIkSS0bMzEbERtGxHkRcVVEzI2Id9X5a0bEORFxTf27Rp0fEfGliLg2Ii6PiG0muxKSJE1HxlhJkgbDSDFZkqTJ1E+P2YeB92TmM4DtgLdHxObAYcC5mbkpcG59DrAzsGmdDgS+MuGlliRpOBhjJUkaDCPFZEmSJs2YidnMvDkzf10f/xG4Clgf2A04vq52PLB7fbwbcEIWFwGrR8S6E15ySZKmOWOsJEmDYZSYLEnSpBnXGLMRMQt4NnAx8KTMvBlKEAPWqautD8xrvGw+BjRJkkZljJUkaTB0xWRJkiZN34nZiFgZOB04ODPvG23VHvOyx/YOjIg5ETHn9ttv77cYkiQNHWOsJEmDYbSYbHyVJE20vhKzEbE8JTh9IzPPqLNv7Vw+Wf/eVufPBzZsvHwDYEH3NjPzmMzcNjO3nTlz5pKWX5Kkac0YK0nSYBghJj/K+CpJmmhjJmYjIoCvAVdl5hcai84EZtfHs4HvNubvV+8cvR1wb+dyTEmStIgxVpKkwTBKTJYkadLM6GOdFwD7AldExKV13uHAEcCpEXEAcBPw+rrsbGAX4Frgz8A/TmiJJUkaHsZYSZIGQ8+YnJlnT2GZJElDbszEbGZeSO8x7QBe1mP9BN6+lOWSJGnoGWMlSRoMY8RkSZImRd83/5IkSZIkSZIkTQwTs5IkSZIkSZLUMhOzkiRJkiRJktQyE7OSJEmSJEmS1DITs5IkSZIkSZLUMhOzkiRJkiRJktQyE7OSJEmSJEmS1DITs5IkSZIkSZLUMhOzkiRJkiRJktQyE7OSJEmSJEmS1DITs5IkSZIkSZLUMhOzkiRJkiRJktQyE7OSJEmSJEmS1DITs5IkSZIkSZLUMhOzkiRJkiRJktSyGVNdAA2vo875PdvddCcXPfx7AN6942ZTXCJJkoZDM8YaXyVJkqTpyR6zkiRJkiRJktQyE7OSJEmSJEmS1DITs5IkSZIkSZLUMhOzkiRJkiRJktQyE7OSJEmSJEmS1DITs5IkSZIkSZLUMhOzkiRJkiRJktQyE7OSJEmSJEmS1DITs5IkSZIkSZLUsjETsxHx9Yi4LSKubMxbMyLOiYhr6t816vyIiC9FxLURcXlEbDOZhZckaTozxkqSNBh6xWRJkiZbPz1mjwN26pp3GHBuZm4KnFufA+wMbFqnA4GvTEwxJUkaSsdhjJUkaRAcx2NjsiRJk2rMxGxm/hS4q2v2bsDx9fHxwO6N+SdkcRGwekSsO1GFlSRpmBhjJUkaDCPEZEmSJtWSjjH7pMy8GaD+XafOXx+Y11hvfp0nSZL6Y4yVJEmSpGXARN/8K3rMy54rRhwYEXMiYs7tt98+wcWQJGnoGGMlSZpCxldJ0kRb0sTsrZ3LJ+vf2+r8+cCGjfU2ABb02kBmHpOZ22bmtjNnzlzCYkiSNHSMsZIkDSDjqyRpoi1pYvZMYHZ9PBv4bmP+fvXO0dsB93Yux5QkSX0xxkqSJEnSMmDMxGxEfBP4BfC0iJgfEQcARwA7RsQ1wI71OcDZwPXAtcCxwNsmpdSSJA0BY6wkSYNhhJgsSdKkmjHWCpm59wiLXtZj3QTevrSFkiRpWWCMlSRpMIwSkyVJmjQTffMvSZIkSZIkSdIYTMxKkiRJkiRJUstMzEqSJEmSJElSy0zMSpIkSZIkSVLLTMxKkiRJkiRJUstMzEqSJEmSJElSy0zMSpIkSZIkSVLLTMxKkiRJkiRJUstMzEqSJEmSJElSy0zMSpIkSZIkSVLLTMxKkiRJkiRJUstMzEqSJEmSJElSy0zMSpIkSZIkSVLLTMxKkiRJkiRJUstMzEqSJEmSJElSy0zMSpIkSZIkSVLLTMxKkiRJkiRJUstMzEqSJEmSJElSy0zMSpIkSZIkSVLLTMxKkiRJkiRJUstMzEqSJEmSJElSy0zMSpIkSZIkSVLLTMxKkiRJkiRJUstMzEqSJEmSJElSy0zMSpIkSZIkSVLLTMxKkiRJkiRJUstmTMZGI2In4N+A5YD/zMwjJuN9JEla1hhjJUmaHFMRY4865/eLPX/3jptN9ltKkgbIhPeYjYjlgKOBnYHNgb0jYvOJfh9NH9vddMxUF0GShoIxVt2MsZI0MYyxkqSpMBlDGTwXuDYzr8/MB4FvAbtNwvtoOjrvM1NdAkmazoyxGpkxVpKWhjFWktS6yRjKYH1gXuP5fOB53StFxIHAgfXpwoi4ehLKsjZwxyRsd6pM4/p8nkMefXx458E0rs+Ihq1Ow1YfGL46LSv12bjtggyoQYmxw3bcwXSu05s+33gytDF22OoDw1enYasPDF+djLGjGzPGjiO+LvGxc8jYq0ym6XrMW+72TdeyW+52Levl7iu+TkZiNnrMy8fMyDwGmNTr7yJiTmZuO5nv0SbrM/iGrU7DVh8YvjpZn2XOQMTYYfychq1O1mfwDVudhq0+MHx1Grb6TIIxY2y/8XW67mvL3a7pWm6YvmW33O2y3P2ZjKEM5gMbNp5vACyYhPeRJGlZY4yVJGlyGGMlSa2bjMTsr4BNI2KTiHg8sBdw5iS8jyRJyxpjrCRJk8MYK0lq3YQPZZCZD0fEO4D/AZYDvp6Zcyf6ffo0bLcqtj6Db9jqNGz1geGrk/VZhgxQjB3Gz2nY6mR9Bt+w1WnY6gPDV6dhq8+EmuAYO133teVu13QtN0zfslvudlnuPkTmY4amkyRJkiRJkiRNoskYykCSJEmSJEmSNAoTs5IkSZIkSZLUsmmfmI2InSLi6oi4NiIO67H8LRFxRURcGhEXRsTmU1HO8RirTo31XhcRGRHbtlm+8erjM9o/Im6vn9GlEfGmqShnv/r5fCJiz4j4bUTMjYiT2y7jePXxGR3V+Hx+HxH3TEU5+9VHfTaKiPMi4jcRcXlE7DIV5RyPPuq0cUScW+tzfkRsMBXl7FdEfD0ibouIK0dYHhHxpVrfyyNim7bLqOGLscMWX8EYa4xt37DFWOOr8XUi9Rtnpkqv4yMi1oyIcyLimvp3jTp/II6ViNiwfqdcVb/33zUdyl3LsmJE/DIiLqtl/1idv0lEXFzLfkqUm80RESvU59fW5bOmquy1PMvV7/LvT5dyR8QNsei36Zw6bzocK6tHxGkR8bt6rP/dNCn302LRb5hLI+K+iDh4mpT93fX/8sqI+Gb9f52aYzwzp+1EGZT9OuApwOOBy4DNu9ZZtfF4V+CHU13upa1TXW8V4KfARcC2U13upfyM9ge+PNVlncD6bAr8BlijPl9nqsu9tHXqWv+dlJshTHnZl+IzOgZ4a328OXDDVJd7Aur0bWB2ffxS4MSpLvcYdXoRsA1w5QjLdwF+AASwHXDxVJd5WZuGLcYOW3wdx2dkjB3wOnWtb4wdvPoYX50m7Hia6qnX8QEcCRxWHx8GfHaQjhVgXWCb+ngV4Pf1u2Wgy13LEsDK9fHywMW1TKcCe9X5X218Z74N+Gp9vBdwyhQfL4cAJwPfr88HvtzADcDaXfOmw7FyPPCm+vjxwOrTodxddVgOuAXYeNDLDqwP/AF4Qn1+KuU385Qc49O9x+xzgWsz8/rMfBD4FrBbc4XMvK/xdCVg0O92Nmadqk9QDvYH2izcEui3PtNFP/V5M3B0Zt4NkJm3tVzG8RrvZ7Q38M1WSrZk+qlPAqvWx6sBC1os35Lop06bA+fWx+f1WD5QMvOnwF2jrLIbcEIWFwGrR8S67ZRO1bDF2GGLr2CMNca2b9hirPHV+DqRBv47eYTjYzdKUoj6d/fG/Ck/VjLz5sz8dX38R+AqSlJloMsNUMuwsD5dvk5JaeQ5rc7vLnunTqcBL4uIaKm4i4lydcCrgP+sz4NpUO4RDPSxEhGrUhpNvgaQmQ9m5j0MeLl7eBlwXWbeyPQo+wzgCRExA3gicDNTdIxP98Ts+sC8xvP5dd5iIuLtEXEd5UTroJbKtqTGrFNEPBvYMDO/32bBllBfnxGwR+3KflpEbNhO0ZZIP/XZDNgsIn4eERdFxE6tlW7J9PsZEREbA5sAP2mhXEuqn/p8FHhjRMwHzqb0UBpk/dTpMmCP+vi1wCoRsVYLZZssfR+XmjTDFmOHLb6CMdYY275hi7HGV+PrRJqu+/ZJmXkzlCQosE6dP3D1qZcPP5vS83RalLsOB3ApcBtwDqVX9T2Z+XCP8j1a9rr8XmCqvm++CLwP+Gt9vhbTo9wJ/CgiLomIA+u8QT9WngLcDvxXlKEj/jMiVmLwy91tLxY1Lg902TPz/4DPATdRErL3ApcwRcf4dE/M9spQP6a3TmYenZl/A7wf+NCkl2rpjFqniHgccBTwntZKtHT6+Yy+B8zKzGcBP2ZRS8Qg6qc+MyiXWu5A6fnynxGx+iSXa2n09X9U7QWclpmPTGJ5llY/9dkbOC4zN6BcTnFi/d8aVP3U6VDgxRHxG+DFwP8BDz/mVdPHeI5LTY5hi7HDFl/BGGuMbd+wxVjja2F8nRjDtm8Hqj4RsTJwOnBw1xU7j1m1x7wpK3dmPpKZWwMbUHpVP6PXavXvQJQ9Il4N3JaZlzRn91h1oMpdvSAztwF2Bt4eES8aZd1BKfcMyhAjX8nMZwN/olz+P5JBKfej6lisu1KG/xl11R7zpuIYX4PSC3YTYD3KlX8791i1lWN8UH8k9Ws+0Oz5sQGjXy71LRZ1RR5UY9VpFWBL4PyIuIEyLseZMbg3KBnzM8rMOzPzL/XpscDftlS2JdHPMTcf+G5mPpSZfwCuppxEDqrx/B81W8EGVT/1OYAyfgyZ+QtgRWDtVkq3ZPr5P1qQmX9fg/kH67x72yvihBvv97sm3rDF2GGLr2CMNca2b9hirPHV+DqRpuu+vbVzKXH92xkiZmDqExHLU5Ky38jMM+rsgS93U700/XzK74vV6+XTsHj5Hi17Xb4aow9NMlleAOxafw99i3J59xcZ/HKTmQvq39uA71CS4YN+rMwH5mfmxfX5aZRE7aCXu2ln4NeZeWt9Puhlfznwh8y8PTMfAs4Ans8UHePTPTH7K2DTeue0x1N+0J7ZXCEimj/WXwVc02L5lsSodcrMezNz7cyclZmzKDcn2TUz50xNccfUz2fUHFNkV8q4QYNqzPoA/w28BCAi1qZcdnl9q6Ucn37qREQ8DVgD+EXL5RuvfupzE2UMHCLiGZSTxttbLeX49PN/tHajR9IHgK+3XMaJdiawXxTbAfd2LodRa4Ytxg5bfAVjrDG2fcMWY42vxteJ1Nf/+wA6E5hdH88GvtuYP+XHSkQEZezNqzLzC41FA11ugIiY2bmqIyKeQEkGXUUZr/p1dbXusnfq9DrgJ5nZem/CzPxAZm5Qfw/tVcuxDwNe7ohYKSJW6TwGXgFcyYAfK5l5CzCv/haAEkN/y4CXu0v3GPmDXvabgO0i4on1O6azz6fmGM8BuHvb0kyUS6R+Txmr5YN13scpJ1MA/wbMBS6tO3mLqS7z0tapa93zGfy7Ro/1GX2mfkaX1c/o6VNd5qWsTwBfoPxjX0G9q98gT/0cc5Qx446Y6rJO0Ge0OfDzesxdCrxiqss8AXV6HSUp9nvKIP0rTHWZx6jPNynj+TxEaYE8AHgL8Ja6PICja32vGPTvuWGdhi3GDlt87fMzMsYOeJ3qc2Ps4NbH+Oq0VMfTIE0jHB9rUW5wd039u+YgHSvACymXDF9ev1Murft5oMtdy/Is4De17FcC/1LnPwX4JXAt5dLvFer8Fevza+vypwzAMbMD8P3pUO5avsvqNLfxnT4djpWtgTn1WPlvSmPtwJe7lueJwJ3Aao15A1924GPA7+r/5onAClN1jEd9E0mSJEmSJElSS6b7UAaSJEmSJEmSNO2YmJUkSZIkSZKklpmYlSRJkiRJkqSWmZiVJEmSJEmSpJaZmJUkSZIkSZKklpmYlSRJkqZIRMyKiIyIGVNdFklSOyJibkTsMNXlGGYRcX5EvGmqyyGNxcTsMiYiFkbEU5bwtX6xaVLVE9OnTnU5JElLLyL2j4gLG89viIgHI2LtrvUurd//s+rz4+p6CyPirog4JyKe3lh/84g4MyLujYg/RsR5EfH8xvJOonNhnW6IiMMayxc2pr9GxP2N5/t0lT8jYs+u8u5Q5x/dNf/C+prDG9t7ICIeaTyfu/R7treIWDMivhMRf4qIGyPiH0ZZNyLisxFxZ52OjIhoLD8mIq6u+2f/rtfuVZfdGxG3RcTxEbFqj/fYtNb/pAmtqCQNgczcIjPPX5LXNs+ZIuKj9flBXescXOd/tD7foX6nL6yx8+qI+MfG+itExGci4qYaF6+JiPd2xYbz6/f6woi4IyLOiIh167KvNmLdgxHxUOP5DxrbWKnOO7tHvW6IiFsjYqXGvDfV992oK35njXed59svyb7sR0S8OyJuqXHv6xGxwijrviwifhcRf66/TzZuLNszIv63Lju/x2u3johL6vJLImLrxrKDI+L6iLgvIhZExFFhg+7QMDE7jUXEB7q/0OoXaK95ewFk5sqZeX2b5RxNRKwaEV+sAWBhRFxbn6899qvH3PYNEfHyiShnj22P+qXate4OETG/8fz8Gki26lrvv+v8HerzjzYC2j31/f6usf4GEfGNKCdUf4qIX0bEq7u22QxY/xcRX4iI5eqyuY1A9kgjyC6MiMO7yp8R8b6ubXdOfM/qmn9SLfs+je3dH4t+CCyMiIX97uvxivKj4us1aN0SEYeMsf6IgbbW8bz6Of+ueTxFxOwaMO+LiPlRTmpndL327Ii4u27/ywZPSeIPwN6dJxHxTOAJPdY7MjNXBjYAbgOOq+v/DfBz4ApgE2A94DvAj5oxslq9buN1wIcjYkd49LfQynXZTcBrGvO+0Xj9bOCu+rfbn4D9oiaTmzLz043tvwX4RWP7W4yyb5bW0cCDwJOAfYCvRMRI73cgsDuwFfAs4NXAPzeWXwa8Dfh1j9f+HHhBZq4GPAWYAXxyhPL8avzVkCSN0+95bKzar85vWlBj06rA+4FjI2LzuuzbwMuAXYBVgH0pseLfurbxjrqNpwIrA58DyMy3NGLfp4FTGrFv58brXwf8BXhF1KRulxnAu7pnZuZNXfEbYKvGvJ/12jFLKyJeCRxG2TezKHHvYyOsuzZwBvBhYE1gDnBKY5W7gC8CR/R47eOB7wInAWsAxwPfrfMBvgdsk5mrAltS4vdB3dvR9GRidnr7KfCCRqLtycDywDZd855a1x0o9UvmXGALYCdKgHg+cCfw3CksWqcnyWj/HyN+qfbp95Rg2Xm/tYDtgNu71julBp6ZwIXAGbVsa9bnD1L239rAUcDJEfG6rm1sVbfxYuANwD/Bo620ncD2M2qQrdOnG68f7cQUYLuIeEH3zMz8RmP7O1N/CHQF08nwUWBTYGPgJcD7ImKnXiv2EWi/CfwGWAv4IHBaRMysy54IHEzZ98+r2zi08dp/pyQT1gW2puz/ty1t5SQNh9p4+IGI+G1twPmviFixsfzNtbHyrii9Q9er8yNKL4nbaoPS5RGx5RjvdVxE/HtE/KA2jv08Ip4cpSH07trw9OzG+odFxHVRetT8NiJe21j2lYg4rfH8sxFxbsSiHjVjOJFG/KPElhNGWjkz/wycTDkJgfId/4vM/GBm3pWZf8zML9XtfnaEbcwB5lK+i/sSpYfLiyknpa+MiCd1rXIPJVn8kX63OY733qMeH1tGxIq1wfPOKI20v+pRFqL0LtoD+HBmLszMC4EzKSfWvcwGPp+Z8zPz/4DPA/t3Fmbm0Zl5LvBA9wszc15m3tGY9Qjlt2azPHtR9tG546m7JE2kAY+1j3YiitKp5dSIOKHG3rkRse04qvor4Imdxrj69wmM0DiWxX8DdwObR8TLgFcAe2TmlZn5cGZeBLwReHv0uKIxM+8B/ptxxNZqNvBV4HJKI2K3fwUOjYjVx7ndUUXEuvVzPLQ+3z9KD9Q/RsQfonHFTI/yfi0z52bm3cAnaMTLLn8PzM3Mb2fmA5TfLFtFveonM3+cmacCC3q8dgdKUvqLmfmX+tsmgJfW115X9zl1/l/pir2avkzMTm+/oiRiO1+GLwLOA67umnddZi6Ax1z2cFxEHB0RZ9UvpIuj9EShLt+xBpB7I+LLlC+AzrLHRcSHolwqd1sNIqvVZcdHxHvq4/Xre76tPn9qDXxBOTHbCHhtZv42M/+ambdl5icy8+y6/noRcXpE3F6/MA9qlGHEABYRJ9Ztf68GxvfV+dtF6Xl6T0RcFo1xfaL0ZP1URPwc+DMlSdfTGF+q/fgG8IaoCXRK76HvUBKtvd7vIUqr2ZMpScJ3AwuBAzLzlsy8PzO/CXwK+HyvE+TMvJbSy2U8J6ZPpLRqvh3YdIQfCEfSu6fMUomIF0bEvIh4yTh/HO0HfCIz787Mq4BjGTl4jhhoI2IzYBvgI3X/nk7pobUHQGZ+JTN/lpkP1pPabwDNBPUmwKmZ+UBm3gL8kJJEl6SOfYBXAn8DbAZ8CCAiXgp8BtiT0rhzI/Ct+ppXUGL7ZsDqlAa3O/t4rz3r9tem9FT5BaU35NrAacAXGuteB2wPrEZprDopFvVqeQ/wrHpCsz1wADA7M7PPOl8ErBoRz6gx8A2U3iE9RcTKlP30mzprR0qvnm6nUhqrn9hjG9tRErvX9llGKLFkTv3uv4reJ4+fAvaIiKeNY7ujinJZ6WeBl2fmlZQ4tRqwISX+vwW4v8dLNwMeycxm76jLGDnubFGX97Nur3K+MCLuBf5IiYtfbCxbFfg45ViRpKk2qLG22671/VenNKx9uc/6dTQbPkdt9Kzn8q+t73UFJbZenJnzmutl5sXAfEoHlO5trEVJRPYdWyNiI0oC8ht12q/HanOA81m8w8tSiXJ1ywXAlzPzc1EaM78E7JyZq1A6h106wst7xcsn1fqPum5m/onym6qf+LoFcHnX76nLm6+NiH+IiPuAOyg9Zv+jj+1qGjAxO41l5oPAxZSgQf37M0pPyua80XrL7k056VqD8qX6KXi0G/7pLAos17F40mn/Or2EksBcmUXB4wLKFy6U3ibX17+PlrF+4bwc+GFm9rysPUqP1e9RvtzWpwSEg6P0cuzoGcAyc18WvzzxyIhYHziLkkRck/Jlf3os6gEJiy7ZWIUSnCfLAuC3lKAPJSiNFjxXoOzv+bWXyo7A6Zn5165VT6UkpDfrsY2nU060x3NiugclAfxt4H/oHTyPBjaLCRw2on7G36S02p5Hnz+OImINymWt/Z5sjhZotwCuz8w/9rmtF1F6ZHX8G7BXRDyxHns7U5KzktTx5dr78C5K/O1c4r8P8PXM/HVm/gX4APB39cTiIUqMejoQmXlVZt7cx3t9JzMvqT04vgM8kJknZOYjlMvsHu3FU3t6LKgNpqcA11CvZKk9WN9IObk8CXhnZs7vfrMxdE4edwR+B/xfj3UOjYh7KDFrZRY1sK0N9KrvzZTftWs05t0REfdTToz/ndKzp1/7UXrqUv8+5qqR2uj2VUoSciIcDLwX2KE2pkL5vNcCnpqZj9TP8L4er10ZuLdr3r2UY6WX7vXvBVbu1bDbS2ZemGUogw0ovZtuaCz+BKXRc16v10pSywYy1vZwYWaeXdc9kZJ4G4+TgL0jYnlgL3o3eq5XY+sdlCs+9s3Mqxk5tlLnN4cZ/FJtmLujzn/nOMq4HyX5+FvKud4W0ehF3PAvwDu7ztOX1AIjFw8AACAASURBVOaURO9HMvOYxvy/AltGxBMy8+bMHGkM+F7xEnrH1/HG4nG9NjNPzjKUwWaU3x+39rFdTQMmZqe/C1iUhN2ekpj9Wde8C0Z5/RmZ+cvMfJjSatXpTbkL8NvMPK321vwicEvjdfsAX8jM62ti9QOUJNSM+n7b18Tqiyg9KjtJ3Rc3yrMWIwcAgOcAMzPz47VX4vWU3o97NdYZTwB7I3B2Xf+vmXkOpUVul8Y6x9Xekw/Xek+mEyjj0z2NMg7eL3qss2cNnvOAv6WMBwejn5h2lnf8OiL+ROnxcz7l5LRfsynDKTxCOTHtBPumByg/ciaq1+zrgWOAXTLzl3Vevz+OOkMkdAfP8ZyYUtfvO7DWHk7bUsdYqi6gJHHvo7Q0z2F8SQFJw6+ZuLqR0rBE/fto42CNs3cC62fmTyiNkEcDt0a5SdNjbrzUQ/PH+/09nj86xExE7Bflhlz31Bi0JY24Ur+br6dcSXNqH+/d7UTgHyjJ1pEaJT+Xmatn5pMzc9fMvK7Ov4PSs6nbupSTrLsb89au9TqU0mDcHb96ijI8zyYs6jl1MvDMaNyEo+GzlKEOxnsC3ct7gaO7Et0nUhpGvxXlZh9H9ojDUBpRu4+DVSk9WnvpXn9VYOE4ej4DUK8Y+SF1X9V99HLK8EqSNAgGMtb20DzX/jOwYozj/hSZeROlMfPTwDUjNI4tqLF1zczcOjM7cW6k2Eqd3xy+5qDaMPcsSmPoBv2WkZKY/UYt7wLK+VKvhs8rge9ThpxbWvtQGoAfHYap9mR9A+UqlJujXEH89BFe3yteQu/4Ot5YvESvzcxrKB2CxnNerwFmYnb6+ynwwtpTcGb9J/1f4Pl13paM3mO2OwB0gsV6NIJY/aHe/HJfLJDVxzOAJ9WTp4WUJO/2lC/VBTUB2UzM3snIAQDKGKHrdU4M68nh4ZSbWoxU/tEC2MbA67u298KuMrTZu+MMypgx76ScePVyag2e62TmSzPzkjp/tBPTzvKObSif6xsoY6Gu1P2iXiJiQ0qP6M6NUL4LrAi8qsfqx1J6mr6mn22P4WBKva/ozBjHj6NO7+vu4DmeE1Pq+n0Fx4jYnTLW8M61N3Ont/f/UD7jlSjJgTUYYfxDScusDRuPN2LR8DgLKDELeHT80LWoPUsz80uZ+beUxp/NKAm9CRFlbNVjgXcAa2Xm6sCVLD6c0duBFWo539drO6PJzBspNwHbhfI9OR4/pjTgdduTMvbsn7ve65HM/DylEbHfcb5nU+p7aUTcQrk6CXpcNZKZd1Iarz/R57ZH8wrgQxGxR2P7D2XmxzJzc8qllq/uVQ7K2PUzImLTxrytWPxKjqa5LN6YPdq6Y5lBuUQYSgJ8FnBT3XeHUoZ76HUTMUlqw8DF2kl0AmUYmRGvxBzBj4Hn1fO/R0XEcyn77yfdL6jnap8Eju7naouIeD7lPiAfiHJj5Fso56Z7j3D+/hHgzZQrZ5fGRynnxic3hhEkM/8nM3eknD//jvLbp5de8fLWGv9HXbceU39Df/F1LmWoqOa+fNYor23GXk1zJmanv19Qxh47kDJ+KPUStwV13oLM/MMSbPdmGkGsfkE0v6gXC2SUIPcwi1oFL6CMTfr42pviAsqJxBosGr/lx5ReJiMlCucBf6iJyc60SmbuMsL63bp7fcwDTuza3kqZecQor5k09eTxB8BbGTkxO5IfU050uv+H96TUc7E7cGZxKuV4+Zc+32NfynfE92rgvJ6SmO11YvoQZUiMT9A4eV9Crwd2j4iDu95jzB9HWcaJvZn+TzZHC7RzgadExCpdyx/dVpSbih1LGTLjisZ6a1L+X76cZfD2O4H/YvHe2ZL09ojYIMoNHQ9n0Z17Twb+MSK2rkPZfJoy9tsNEfGciHhe7TX5J0rC8ZEJLNNKlFh4Ozx6RcCjY3pHGX/7k5SrUPal3GBxvDf+gDI27Utrr5Xx+Bil8flTEbFmRKwSEe+kxKb3j/K6I2pZVxxlHeryPSm/obZuTO8E9hnh5PELlKTpM8ZZl25zKTdDPToidq3leUlEPLOeTN5HuYLkMZ933Y9nAB+PiJVqr9/dGPn3xQnAIVHuBbAe5UT+uM7CiHh83RcBLB/lJmSPq8v2iYiNotiYctVM5yZfx1BOFDv77auUYaSaw1BJUpsGMdZOllMojXzjupolM39M+R4/PSK2iIjloozP/g3gK7XzVy/HA+tQhhccy2zgHMrQAp0YsSXlhso79yjTtbU+B3UvG6eHKOeXKwEnRhlf90kRsWvNQ/yF0iFnpM/3BOCAiNi8dnz7EI142eU7lOER9qgx9F8oQzf8DqDu1xUpSdXH1djauQrm/FqGgyJihYh4R53/k/raN0XEOvXx5pQrlr3B5pAwMTvNZeb9lEukD6EMYdBxYZ03Wm/Z0ZxFGfPl7+tJyEGUG091fBN4d0RsEuXGHJ+mXPL+cF1+AaW3Tef9z6ec1FxYL4uHcrIwjxIAnl6/JNeKiMMjYhfgl8B9EfH+iHhC/SLbMiKe02cdbmXxG3idBLwmIl7Z+VKMiB0iYjyXXwBjfqmOx+HAizPzhnG+7ihK782vRbnb54oRsTfwQeC9o1yKeARwYEQ8eYTlTftRToCbJ6Z7AK+K3oOdn0jpQbXT+KryGAso4wkfFItuGjeeH0cnUHocrRHlkpQ3M3LwHDHQZrmByqXAR+r+fS2l1fL0WqaXUn6s7NEYcoH62jsovcHeGhEzotxVdDaLj2crSScDP6I0fF1PHRImM88FPkz5vrmZkujqDOOzKqVB6G7K1Sp3svgwKkuljvv2eUpD3q3AM6kNv/X3wEnAZzPzsnqidjjlRGeFcb7PdZk5ZwnKdw3lapetKOOa3kyJTa/MzJ+P8tKzKPvszWO8xe6Uy01PyHJzzVuyjCX7NWA5esS42iB+JKVRbqlk5mWUXrHHRsTOlN9ep1GSsldRfl+NdLO0t1Huwn0b5XfaW7OOmRcR20dEc0z//6CM438FpUf0WSx+E5EfUfbD8ynJ1vtZNEzW5pSrsxZSjo2rqfs1M//ctd8WUsZYvH2JdogkLb2Bi7WTJcsNi39ccwTjtQflRuI/pHx3n0SJfSOOIZvlnjdfouzHETUaPf9fM0bUDmQn0mM4g+rj9Hm152hqOf+ekkT+OuUc/j2U8867KFf19ryqJjN/SInx51GOhRspvXk7dZsbEfvUdW+n7MdPUY6d57H4MIz7UuLpVyhXFt9P7alby7g75Rz8HuCfgN3rfChDQ14RZYjCs+t0+BLuEg2azHSa5hPlbpIJbNOYt2ed989d6yblBhJQElCfbCzbgXJzqc7znSg9L++lXEZ+AfCmuuxxlBageZReNScBazRe+7T6XrPr89UoPWrf31We1SiXAM6jBIDrKD1P1qrL16OcXNxC+XK7iHKnYiiXJZzU2Nas+p4z6vPdKDcAuwc4tM57Xq3HXbXcZwEb1WXnd+rXxz7fv75XczpuhHW79+uI70MZi3SHXvXrse5Gdd/cRUlW/grYbaTPuzHvB8Dnu+YtViZgO0ryc2aP951LSbovtr+7jruPjrYPRqlT8/jchBL43kRJ1F5ej5E7KAnRlUfYxgqUgHsfJalwSNc+W9j5zOu8Q+p691F6ta7QdUydTwmaV3eOvbrsPMoxvbAx/aCxfOv62rtrmb8NrDOV3xVOTk6DM1GSii+f6nI4OTk5OTkN62SsdXJymg5TZLZ25bYkSZKAiLiB0iD246kuiyRJw8hYK2k6cCgDSZKkaa5eSrewx7TPVJdNkqRhYKyVNBnsMSuNoGsstqadM/NnIyyTJEmSJEmSxmRiVpIkSZIkSZJa5lAGkiRJkiRJktSyGVNdAIC11147Z82aNdXFkCQNqEsuueSOzJw51eWYjoyxkqTRGGOXjPFVkjSafuPrQCRmZ82axZw5c6a6GJKkARURN051GaYrY6wkaTTG2CVjfJUkjabf+OpQBpIkSZIkSZLUMhOzkiRJkiRJktQyE7OSJEmSJEmS1DITs5IkSZIkSZLUMhOzkiRJkiRJktQyE7OSJEmSJEmS1DITs5IkSZIkSZLUshlTXQBJkiQNgfM+89h5L/lA++WQJGmYNeOtcVaa9uwxK0mSJEmSJEktMzErSZIkSZo2ImKniLg6Iq6NiMN6LF8hIk6pyy+OiFl1/loRcV5ELIyIL4+w7TMj4srJrYEk6f+zd/dxk1T1nfc/350RfAQUJ1EYDBhAHdxEzdwEYx5UVMAYx11Bh6igIWGTiIka4w1mRUMkhtwqxhV1J4JBggKLJpm4GIIBN8suIiMadUDIZCQwgjoCoqCAg7/7jzrX0NPT1xN09/X0eb9e/bqqTp2qOqe6rz5dvzp1Sh0Ds5IkSZKkBSHJMuAM4AhgFXB0klV92Y4Dbq+q/YHTgdNa+t3AW4E3TbLt/wzcOYpyS5I0iIFZSZIkSdJCcTCwqao2V9W9wHnAmr48a4Cz2/SFwKFJUlV3VdXldAHaHSR5JPBG4B2jK7r04Jx+yfVcsfnW7S9JC5+BWUmSJEnSQrE3cFPP/JaWNjBPVW0D7gD2nGa7fwK8G/jBcIopSdL0DMxKkiRJkhaKDEirB5Dn/szJ04D9q+pvptxxcnySDUk2bN26dfqSSpI0DQOzkiRJkqSFYguwT8/8SuDmyfIkWQ7sDtw2xTafCfxckhuAy4EDk3y2P1NVrauq1VW1esWKFQ+4ApIkTTAwK0mSpAeld8w7SRqxq4ADkuyXZBdgLbC+L8964Ng2fSRwaVVN2mO2qj5YVXtV1b7ALwLXV9Wzh15ySZL6LJ/rAkiSJEmSNBNVtS3JCcDFwDLgrKramOQUYENVrQfOBM5Jsomup+zaifVbr9jdgF2SvAR4QVVdM+56SJIEIwrMJnkD8Jt04/h8BXhNVe305EtJkiRJkmajqi4CLupLO7ln+m7gqEnW3Xeabd8APPVBF1KSpBkY+lAGSfYGfg9YXVVPpbuKuXbqtSRJkiRJkiRp6RjVGLPLgYe1gdYfzs6DsUuSJEmSJEnSkjX0wGxVfQN4F3AjcAtwR1X947D3I0nSfJbk8CTXJdmU5MQBy3dNcn5bfmWSfVv6nkkuS3Jnkvf35H94kv+Z5GtJNib5s/HVRpIkSZI0bKMYyuDRwBpgP2Av4BFJXjkg3/FJNiTZsHXr1mEXQ5KkOZNkGXAGcASwCjg6yaq+bMcBt1fV/sDpwGkt/W7grcCbBmz6XVX1ZODpwLOSHDGK8kuSJEmSRm8UQxk8D/h6VW2tqh8BnwR+oT9TVa2rqtVVtXrFihUjKIYkSXPmYGBTVW2uqnuB8+guWvZaA5zdpi8EDk2Sqrqrqi6nC9BuV1U/qKrL2vS9wNXAylFWQpIkSZI0OstHsM0bgUOSPBz4IXAosGEE+5Ekab7aG7ipZ34L8POT5amqbUnuAPYEvjPdxpPsAfwa8BdDKa00RFdsvnX79Oe2Xc8bnn/gHJZGkiRJmr9GMcbslXQ9f64GvtL2sW7Y+5EkaR7LgLR6AHl23nD3YM2PA++rqs2T5HG4IEmSJEma50YxlAFV9baqenJVPbWqXlVV94xiP5IkzVNbgH165lcCN0+WpwVbdwdum8G21wH/WlXvnSyDwwVJkiRJ0vw3ksCsJElL3FXAAUn2S7ILsBZY35dnPXBsmz4SuLSqpuwxm+QddAHc1w+5vJIkSZKkMRvFGLOSJC1pbczYE4CLgWXAWVW1MckpwIaqWg+cCZyTZBNdT9m1E+snuQHYDdglyUuAFwDfA/4I+BpwdRKA91fVh8dXM0mSJEnSsBiYlSRpBKrqIuCivrSTe6bvBo6aZN19J9nsoHFpJUmSJEkLkEMZSJIkSZIkSdKY2WNWkiRJkiRpvrrsnQAccuOtc1wQScNmj1lJkiRJkiRJGjMDs5IkSZIkSZI0ZgZmJUmSJEkLRpLDk1yXZFOSEwcs3zXJ+W35lUn2bel7JrksyZ1J3t+T/+FJ/meSryXZmOTPxlcbSdJSZmBWkiRJkrQgJFkGnAEcAawCjk6yqi/bccDtVbU/cDpwWku/G3gr8KYBm35XVT0ZeDrwrCRHjKL8kiT1MjArSZIkSVooDgY2VdXmqroXOA9Y05dnDXB2m74QODRJququqrqcLkC7XVX9oKoua9P3AlcDK0dZCUmSwMCsJEmSJGnh2Bu4qWd+S0sbmKeqtgF3AHvOZONJ9gB+DfinB11SSZKmYWBWkiRJkrRQZEBaPYA8O284WQ58HHhfVW0esPz4JBuSbNi6deuMCitJ0lQMzEqSJEmSFootwD498yuBmyfL04KtuwO3zWDb64B/rar3DlpYVeuqanVVrV6xYsWsCy5JUj8Ds5IkSZKkheIq4IAk+yXZBVgLrO/Lsx44tk0fCVxaVVP2mE3yDroA7uuHXF5Jkia1fK4LIEmSJEnSTFTVtiQnABcDy4CzqmpjklOADVW1HjgTOCfJJrqesmsn1k9yA7AbsEuSlwAvAL4H/BHwNeDqJADvr6oPj69mkqSlyMCsJEmSJGnBqKqLgIv60k7umb4bOGqSdfedZLODxqWVJGmkHMpAkiRJkiRJksbMwKwkSZIkSZIkjZmBWUmSJEmSJEkaMwOzkiRJkiRJkjRmBmYlSZIkSZIkacwMzEqSNAJJDk9yXZJNSU4csHzXJOe35Vcm2bel75nksiR3Jnl/3zo/l+QrbZ33JfEJ0pIkSZK0QBmYlSRpyJIsA84AjgBWAUcnWdWX7Tjg9qraHzgdOK2l3w28FXjTgE1/EDgeOKC9Dh9+6SVJkiRJ42BgVpKk4TsY2FRVm6vqXuA8YE1fnjXA2W36QuDQJKmqu6rqcroA7XZJHg/sVlVXVFUBHwVeMtJaSJIkSZJGxsCsJEnDtzdwU8/8lpY2ME9VbQPuAPacZptbptmmJEmSJGmBMDArSdLwDRr7tR5AngeUP8nxSTYk2bB169YpNilJkiRJmisGZiVJGr4twD498yuBmyfLk2Q5sDtw2zTbXDnNNgGoqnVVtbqqVq9YsWKWRZckSZIkjYOBWUmShu8q4IAk+yXZBVgLrO/Lsx44tk0fCVzaxo4dqKpuAb6f5JAkAY4B/m74RZckSZIkjcPyuS6AJEmLTVVtS3ICcDGwDDirqjYmOQXYUFXrgTOBc5Jsouspu3Zi/SQ3ALsBuyR5CfCCqroG+B3gr4CHAZ9uL0mSJEnSAmRgVpKkEaiqi4CL+tJO7pm+GzhqknX3nSR9A/DU4ZVSkiRJkjRXHMpAkiRJkiRJksbMwKwkSZIkSZIkjdlIArNJ9khyYZKvJbk2yTNHsR9JkiRJ0tKS5PAk1yXZlOTEAct3TXJ+W35lkn1b+p5JLktyZ5L3963zc0m+0tZ5X3vQpiRJIzWqHrN/AfxDVT0Z+Fng2hHtR5IkSZK0RCRZBpwBHAGsAo5Osqov23HA7VW1P3A6cFpLvxt4K/CmAZv+IHA8cEB7HT780kuStKOhB2aT7Ab8Mt3Tpqmqe6vqu8PejyRJkiRpyTkY2FRVm6vqXuA8YE1fnjXA2W36QuDQJKmqu6rqcroA7XZJHg/sVlVXVFUBHwVeMtJaSJLEaHrMPhHYCnwkyReTfDjJI0awH0mSJEnS0rI3cFPP/JaWNjBPVW0D7gD2nGabW6bZpiRJQzeKwOxy4BnAB6vq6cBdwKBxf45PsiHJhq1bt46gGJIkSZKkRWbQ2K/1APLMOr/nsJKkYVs+gm1uAbZU1ZVt/kIGBGarah2wDmD16tVTNZKSJEmSJEF3vrlPz/xK4OZJ8mxJshzYHbhtmm2unGabnsNq7E6/5HoADrnx1jkuiaRRGXqP2ar6JnBTkie1pEOBa4a9H0mSJEnSknMVcECS/ZLsAqwF1vflWQ8c26aPBC5tY8cOVFW3AN9PckiSAMcAfzf8okuStKNR9JgFeB1wbmsoNwOvGdF+JEmSJElLRFVtS3ICcDGwDDirqjYmOQXYUFXr6R5EfU6STXQ9ZddOrJ/kBmA3YJckLwFeUFXXAL8D/BXwMODT7SVJ0kiNJDBbVV8CVo9i25IkSZKkpauqLgIu6ks7uWf6buCoSdbdd5L0DcBTh1dKSZKmN6oes5IkSVrsLnsn4Nh3kiRJ0gMx9DFmJUmSJEmSJElTMzArSZIkSZIkSWNmYFaSJEmSJEmSxszArCRJkiRJkiSNmYFZSZIkSZIkSRozA7OSJI1AksOTXJdkU5ITByzfNcn5bfmVSfbtWXZSS78uyWE96W9IsjHJV5N8PMlDx1MbSZIkSdKwGZiVJGnIkiwDzgCOAFYBRydZ1ZftOOD2qtofOB04ra27ClgLHAQcDnwgybIkewO/B6yuqqcCy1o+SZIkSdICZGBWkqThOxjYVFWbq+pe4DxgTV+eNcDZbfpC4NAkaennVdU9VfV1YFPbHsBy4GFJlgMPB24ecT0kSZIkSSNiYFaSpOHbG7ipZ35LSxuYp6q2AXcAe062blV9A3gXcCNwC3BHVf3jSEovSZIkSRo5A7OSJA1fBqTVDPMMTE/yaLretPsBewGPSPLKgTtPjk+yIcmGrVu3zqLYkiRJkqRxMTArSdLwbQH26Zlfyc7DDmzP04Ym2B24bYp1nwd8vaq2VtWPgE8CvzBo51W1rqpWV9XqFStWDKE6kiRJkqRhMzArSdLwXQUckGS/JLvQPaRrfV+e9cCxbfpI4NKqqpa+NsmuSfYDDgA+TzeEwSFJHt7Goj0UuHYMdZEkSZIkjcDyuS6AJEmLTVVtS3ICcDGwDDirqjYmOQXYUFXrgTOBc5Jsouspu7atuzHJBcA1wDbgtVV1H3BlkguBq1v6F4F1466bJEmSJGk4DMxKkjQCVXURcFFf2sk903cDR02y7qnAqQPS3wa8bbgllSRJkiTNBYcykCRJkiQtGEkOT3Jdkk1JThywfNck57flVybZt2fZSS39uiSH9aS/IcnGJF9N8vEkDx1PbaQH7vRLrt/+krQwGZiVJEmSJC0ISZYBZwBHAKuAo5Os6st2HHB7Ve0PnA6c1tZdRTd00EHA4cAHkixLsjfwe8Dqqnoq3TBEa8dRH0nS0mZgVpIkSZK0UBwMbKqqzVV1L3AesKYvzxrg7DZ9IXBoe3DmGuC8qrqnqr4ObGrbg26Yv4clWQ48HLh5xPWQJMnArCRJkiRpwdgbuKlnfktLG5inqrYBdwB7TrZuVX0DeBdwI3ALcEdV/eNISi9JUg8Ds5IkSZKkhSID0mqGeQamJ3k0XW/a/YC9gEckeeVOO06OT7IhyYatW7fOstiSJO3MwKwkSZIkaaHYAuzTM7+SnYcd2J6nDU2wO3DbFOs+D/h6VW2tqh8BnwR+oX/HVbWuqlZX1eoVK1YMqTqSpKXMwKwkSZIkaaG4CjggyX5JdqF7SNf6vjzrgWPb9JHApVVVLX1tkl2T7AccAHyebgiDQ5I8vI1Feyhw7RjqIkla4pbPdQEkSZIkSZqJqtqW5ATgYmAZcFZVbUxyCrChqtYDZwLnJNlE11N2bVt3Y5ILgGuAbcBrq+o+4MokFwJXt/QvAuvGXTdJ0tJjYFaSJEmStGBU1UXARX1pJ/dM3w0cNcm6pwKnDkh/G/C24ZZUkqSpGZiVJEmSJEmaZw650Y7b0mLnGLOSJEmSJEmSNGb2mJUkSZIkSVpgduxR+645K4ekB84es5IkSZIkSZI0ZgZmJUmSJEmSJGnMDMxKkiRJkiRJ0pgZmJUkSZIkSZKkMTMwK0mSJEmSJEljNrLAbJJlSb6Y5FOj2ockSZIkSZIkLUSj7DH7+8C1I9y+JEnzVpLDk1yXZFOSEwcs3zXJ+W35lUn27Vl2Uku/LslhPel7JLkwydeSXJvkmeOpjSRJkiRp2JaPYqNJVgK/CpwKvHEU+5Akab5Ksgw4A3g+sAW4Ksn6qrqmJ9txwO1VtX+StcBpwMuTrALWAgcBewGfSXJgVd0H/AXwD1V1ZJJdgIePsVrSdqdfcj0Ah9x46xyXRJIkSVq4RtVj9r3Am4Efj2j7kiTNZwcDm6pqc1XdC5wHrOnLswY4u01fCByaJC39vKq6p6q+DmwCDk6yG/DLwJkAVXVvVX13DHWRJEmSJI3A0AOzSV4EfLuqvjBNvuOTbEiyYevWrcMuhiRJc2lv4Kae+S0tbWCeqtoG3AHsOcW6TwS2Ah9pY7h/OMkjRlN8SZIkSdKojaLH7LOAFye5ga6H0HOT/HV/pqpaV1Wrq2r1ihUrRlAMSZLmTAak1QzzTJa+HHgG8MGqejpwF7DT2LXgxU9JkiRJWgiGHpitqpOqamVV7Us3Rt6lVfXKYe9HkqR5bAuwT8/8SuDmyfIkWQ7sDtw2xbpbgC1VdWVLv5AuULsTL35KkiRJ0vw3qjFmJUlayq4CDkiyX3tI11pgfV+e9cCxbfpIuguZ1dLXJtk1yX7AAcDnq+qbwE1JntTWORS4BkmSJEnSgjTSwGxVfbaqXjTKfUiSNN+0MWNPAC4GrgUuqKqNSU5J8uKW7UxgzySbgDfShiWoqo3ABXRB138AXltV97V1Xgecm+TLwNOAPx1XnaQH4pAb18Fl7+xekjQkSQ5Pcl2STUl2GtanXdw8vy2/Msm+PctOaunXJTmsJ32PJBcm+VqSa5M8czy1kSQtZcvnugCSJC1GVXURcFFf2sk903cDR02y7qnAqQPSvwSsHm5JJUlaOJIsA84Ank83zM9VSdZXVe9dJMcBt1fV/knWAqcBL0+yiu4uloOAvYDPJDmwXQD9C+AfqurIdrfLw8dYLUnSEuVQBpIkSZKkheJgYFNVba6qe+keOL2mL88a4Ow2fSFwaJK09POq6p6q+jqwCTg4yW7AL9PdzUJV3VtV3x1DXSRJS5yBWUmSJEnSQrE3cFPP/JaWNjBPG17oDmDPKdZ9IrAV+EiSLyb5cJJHjKb4kiTdz8CsJEmSJGmhyIC0mmGeydKXA88APlhVTwfunltvhwAAIABJREFUoo39vsNGk+OTbEiyYevWrbMrtSRJAxiYlSRJkiQtFFuAfXrmVwI3T5YnyXJgd+C2KdbdAmypqitb+oV0gdodVNW6qlpdVatXrFgxhKpIkpY6A7OSJEmSpIXiKuCAJPu1h3StBdb35VkPHNumjwQurapq6WuT7JpkP+AA4PNV9U3gpiRPauscClyDJEkjtnyuCyBJkiRJ0kxU1bYkJwAXA8uAs6pqY5JTgA1VtZ7uIV7nJNlE11N2bVt3Y5IL6IKu24DXVtV9bdOvA85twd7NwGvGWjFJ0pJkYFaSJEmStGBU1UXARX1pJ/dM3w0cNcm6pwKnDkj/ErB6uCWVJGlqDmUgSZIkSZIkSWNmYFaSJEmSJEmSxszArCRJkiRJkiSNmYFZSZIkSZIkSRozA7OSJEmSJEmSNGYGZiVJkiRJkiRpzAzMSpIkSZIkSdKYGZiVJEmSJEmSpDEzMCtJkiRJkiRJY2ZgVpIkSZIkSZLGzMCsJEmSJEmSJI2ZgVlJkkYgyeFJrkuyKcmJA5bvmuT8tvzKJPv2LDuppV+X5LC+9ZYl+WKST42+FpIkSZKkUTEwK0nSkCVZBpwBHAGsAo5Osqov23HA7VW1P3A6cFpbdxWwFjgIOBz4QNvehN8Hrh1tDSRJkiRJo2ZgVpKk4TsY2FRVm6vqXuA8YE1fnjXA2W36QuDQJGnp51XVPVX1dWBT2x5JVgK/Cnx4DHWQJEmSJI2QgVlJkoZvb+CmnvktLW1gnqraBtwB7DnNuu8F3gz8ePhFliRJkiSNk4FZSZKGLwPSaoZ5BqYneRHw7ar6wrQ7T45PsiHJhq1bt05fWkmSFhDHcZckLRYGZiVJGr4twD498yuBmyfLk2Q5sDtw2xTrPgt4cZIb6IZGeG6Svx6086paV1Wrq2r1ihUrHnxtJEmaJxzHXZK0mBiYlSRp+K4CDkiyX5Jd6E4C1/flWQ8c26aPBC6tqmrpa1tvn/2AA4DPV9VJVbWyqvZt27u0ql45jspIkjSPOI67JGnRWD7XBZAkabGpqm1JTgAuBpYBZ1XVxiSnABuqaj1wJnBOkk10PWXXtnU3JrkAuAbYBry2qu6bk4pIkjT/DBqL/ecny9Pa5N5x3D/Xt27/OO6PGkGZJUkayMCsJEkjUFUXARf1pZ3cM303cNQk654KnDrFtj8LfHYY5ZQkaYEZ6TjuSZ496Y6T44HjAZ7whCfMrLSSJE3BoQwkSZI0MldsvpUrNt/K6ZdcP9dFkbQ4zNk47o7hLkkaNgOzkiRJkqSFwnHcJUmLhkMZSJIkSZIWBMdxlyQtJkMPzCbZB/go8Djgx8C6qvqLYe9HkiRJkrT0OI67JGmxGEWP2W3AH1TV1UkeBXwhySVVdc0I9iVJkiRJkiRJC87Qx5itqluq6uo2/X3gWmDvYe9HkiRJkiRJkhaqkY4xm2Rf4OnAlaPcjyRJksbksndyyI23znUpJEmSpAVv6D1mJyR5JPAJ4PVV9b0By49PsiHJhq1bt46qGJIkSZIkSZI074wkMJvkIXRB2XOr6pOD8lTVuqpaXVWrV6xYMYpiSJIkSZIkSdK8NPTAbJIAZwLXVtV7hr19SZIkSZIkSVroRtFj9lnAq4DnJvlSe71wBPuRJEmSJEmSpAVp6A//qqrLgQx7u5IkSZIkSZK0WIzs4V+SJEmSJEmSpMGG3mNWkiRJkiRJs3f6Jddvnz5kDsshaTzsMStJkiRJkiRJY2ZgVpIkSZIkSZLGzMCsJEmSJEmSJI2ZgVlJkkYgyeFJrkuyKcmJA5bvmuT8tvzKJPv2LDuppV+X5LCWtk+Sy5Jcm2Rjkt8fX20kSZIkScNmYFaSpCFLsgw4AzgCWAUcnWRVX7bjgNuran/gdOC0tu4qYC1wEHA48IG2vW3AH1TVU+ieBfHaAduUJEmSJC0QBmYlSRq+g4FNVbW5qu4FzgPW9OVZA5zdpi8EDk2Sln5eVd1TVV8HNgEHV9UtVXU1QFV9H7gW2HsMdZEkSZIkjYCBWUmShm9v4Kae+S3sHETdnqeqtgF3AHvOZN027MHTgSuHWGZJkhYEhwuSJC0Wy+e6AJIkLUIZkFYzzDPlukkeCXwCeH1VfW/gzpPjgeMBnvCEJ8ykvJIkLQg9wwU9n+7i5VVJ1lfVNT3Ztg8XlGQt3XBBL+8bLmgv4DNJDuT+4YKuTvIo4AtJLunbpjQWh9y4bq6LIGmM7DErSdLwbQH26ZlfCdw8WZ4ky4HdgdumWjfJQ+iCsudW1Scn23lVrauq1VW1esWKFQ+yKpIkzSsOFyRJWjQMzEqSNHxXAQck2S/JLnS9c9b35VkPHNumjwQurapq6WvbbZj7AQcAn28nlGcC11bVe8ZSC0mS5h+HC5IkLRoOZSBJ0pBV1bYkJwAXA8uAs6pqY5JTgA1VtZ4uyHpOkk10PWXXtnU3JrkAuIbu1srXVtV9SX4ReBXwlSRfart6S1VdNN7aSZI0p+ZsuCCHCpIkDZuBWUmSRqAFTC/qSzu5Z/pu4KhJ1j0VOLUv7XIGn1BKkrSUzGa4oC3DHC6oqtYB6wBWr17dHwyWJGnWHMpAkiRJkrRQOFyQJGnRsMesJEmSpnX6JdcDcMiNt85xSSQtZQ4XJElaTAzMSpIkSZIWDIcLkiQtFg5lIEmSJEmSJEljZmBWkiRJkiRJksbMwKwkSZIkSZIkjZljzEqSJGnkDrlxHVy2ZzfznJPmtjCSJEnSPGCPWUmSJEmSJEkaM3vMSpIkaWqXvZNDbrx1rkshSZImc9k775/2zhRpwbDHrCRJkiRJkiSNmT1mJUmSJEmS5kpvb1dJS4o9ZiVJkiRJkiRpzOwxK0mSJEmSNAdOv+T6oYzjfsXm+7fxuW3X84bnH/igtylp9OwxK0mSJEmSJEljZo9ZSZIkjcVEb57PbbsewN48kiRJWtLsMStJkiRJkiRJY2ZgVpIkSZIkSZLGzKEMJEmSNFaH3Lium7hsT3jOSXNbGEmSJGmOjKTHbJLDk1yXZFOSE0exD0mS5rPp2sIkuyY5vy2/Msm+PctOaunXJTlsptuUhun0S67f/up90rMkzTXbWEnSYjH0HrNJlgFnAM8HtgBXJVlfVdcMe1+zcfol1+8w78MmJEmjMsO28Djg9qraP8la4DTg5UlWAWuBg4C9gM8kmWi05l37qsVre69WSZpHbGOl6R1y4zquOLOb/twTjjf+Ic1joxjK4GBgU1VtBkhyHrAGsFGTJC0VM2kL1wBvb9MXAu9PkpZ+XlXdA3w9yaa2PWawTWlBuWLzrbD5Tdvnn3ncu+awNJIWCNtYLXinX3L99gugh4x4X4fcuM6hg6R5bBSB2b2Bm3rmtwA/P4L9SJI0X82kLdyep6q2JbkD2LOlf65v3b3btO2rOpe98/7pIZ1o9Z4kzpUrzuyCtDv07plBXXvvjOqvwzOf6MmotMjYxmp4RtCezmR/h9w43iGCproQOlkb+rknHL9TuhdQpeEbRWA2A9Jqp0zJ8cDEf/qdSa7rWfxY4DsjKNt2bxzlxmdm5HWcB5ZCHWFp1NM6Lg4LuY4/NdcFmKWZtIWT5ZksfdC48Du1rzBtG7tULOTP+yy9ZaYZF9Axefckv9VmXNeZrLeAjsdYeDx2tlSOiW3sDNvYEbWvS+VzNlNzeDweaBszcsM/Jr/57hlkGpBnRuuNnP8zO/OY7Gi+HI8Zta+jCMxuAfbpmV8J3NyfqarWAQO7ZSTZUFWrR1C2ecM6Lh5LoZ7WcXFYCnWcR2bSFk7k2ZJkObA7cNs0607bvsLUbexS4ed9Zx6THXk8duTx2JnHZN6aszZ2FO2rn7MdeTx25jHZkcdjZx6THS204zHoyuCDdRVwQJL9kuxCN7j6+hHsR5Kk+WombeF64Ng2fSRwaVVVS1/bnii9H3AA8PkZblOSpMXONlaStGgMvcdsG8PnBOBiYBlwVlVtHPZ+JEmaryZrC5OcAmyoqvXAmcA57cEjt9GdBNLyXUD3wJFtwGur6j4A21dJ0lJnGytJWkxGMZQBVXURcNGD2MRSuP3SOi4eS6Ge1nFxWAp1nDcGtYVVdXLP9N3AUZOseypw6ky2qUn5ed+Zx2RHHo8deTx25jGZpxZZG+vnbEcej515THbk8diZx2RHC+p4pLujQ5IkSZIkSZI0LqMYY1aSJEmSJEmSNIV5FZhNcniS65JsSnLiXJfnwUhyVpJvJ/lqT9pjklyS5F/b30e39CR5X6v3l5M8Y+5KPnNJ9klyWZJrk2xM8vstfdHUM8lDk3w+yb+0Ov5xS98vyZWtjue3hwTQHiRwfqvjlUn2ncvyz0aSZUm+mORTbX5R1THJDUm+kuRLSTa0tEXzWZ2QZI8kFyb5WvvffOZirKfUK8nbk3yj/X9/KckLe5ad1D7j1yU5rCd90fzmmM5SqmuvpfK9P5UM6fdokmNb/n9NcuygfS0EkxwPvz80MkmOSncO8eMkq/uWzerzNdlv84XM/7+pLaW69lvqbbjt984WdRteVfPiRTfI+r8BTwR2Af4FWDXX5XoQ9fll4BnAV3vS/hw4sU2fCJzWpl8IfBoIcAhw5VyXf4Z1fDzwjDb9KOB6YNViqmcr6yPb9EOAK1vZLwDWtvQPAb/Tpn8X+FCbXgucP9d1mEVd3wh8DPhUm19UdQRuAB7bl7ZoPqs9dTob+M02vQuwx2Kspy9fvS/g7cCbBqSvar8ndgX2a78zli223xzTHJslU9cBdV8S3/vTHIMH/XsUeAywuf19dJt+9FzXbYjHw+8PXyN7AU8BngR8Fljdkz7rzxeT/DZfyC///6Y8NkumrpPUf0m34bbfMz4mi+I7ZD71mD0Y2FRVm6vqXuA8YM0cl+kBq6p/pnsCaK81dEET2t+X9KR/tDqfA/ZI8vjxlPSBq6pbqurqNv194FpgbxZRPVtZ72yzD2mvAp4LXNjS++s4UfcLgUOTZEzFfcCSrAR+Ffhwmw+LrI6TWDSfVYAku9E1WGcCVNW9VfVdFlk9pVlYA5xXVfdU1deBTXS/NxbVb45pLKW6zsSS+j4c0u/Rw4BLquq2qroduAQ4fPSlH75Jjsdk/P7Qg1ZV11bVdQMWzerzNc1v88XI/7+lVdeZWjJtuO33zhZzGz6fArN7Azf1zG9paYvJT1bVLdAFNYGfaOkLvu7pbmd/Ol2P0kVVz3S3+H8J+Dbdl9m/Ad+tqm0tS289ttexLb8D2HO8JX5A3gu8Gfhxm9+TxVfHAv4xyReSHN/SFtVnle7K31bgI+mGpfhwkkew+OopDXJCu33rrIlbu5j8M76UPvtLqa79lsL3/gMx22OwFI6N3x8at9l+vqb6bb7Q+f832FKq6yC24Tuz/R5swX+HzKfA7KAedzX2UsyNBV33JI8EPgG8vqq+N1XWAWnzvp5VdV9VPQ1YSXeF5SmDsrW/C66OSV4EfLuqvtCbPCDrgq1j86yqegZwBPDaJL88Rd6FWsfldLd3fLCqng7cRXeby2QWaj21BCX5TJKvDnitAT4I/DTwNOAW4N0Tqw3YVE2Rvhgtpbr2Wwrf+8O0VP9f/P7QgzJN+zTpagPSpvp8LdjPne33A7aU6jqIbfjMLeX/l0XxHbJ8rgvQYwuwT8/8SuDmOSrLqHwryeOr6pbWtfzbLX3B1j3JQ+iCsudW1Sdb8qKrJ0BVfTfJZ+nGbdkjyfJ21bq3HhN13JJkObA7M+9uP1eeBby4DZT9UGA3uh60i6mOVNXN7e+3k/wNXZB9sX1WtwBbqurKNn8hXWB2sdVTS1BVPW8m+ZL8JfCpNjvVZ3ypfPaX7P/5EvnefyBmewy2AM/uS//sGMo5FlX1rYlpvz/0QMy0feoz28/Xd5j8t/m8Zvv9gC2ldmkntuED2X73WSxt+HzqMXsVcEC6p03uQvdQofVzXKZhWw9MPAnvWODvetKPSecQ4I6JLurzWRvr6Ezg2qp6T8+iRVPPJCuS7NGmHwY8j24s3cuAI1u2/jpO1P1I4NKqmvMrMFOpqpOqamVV7Uv3f3dpVb2CRVTHJI9I8qiJaeAFwFdZRJ9VgKr6JnBTkie1pEOBa1hk9ZT69Y0j9p/o/r+h+4yvTbJrkv2AA4DPszR+c0xYSnXdbql87z9Asz0GFwMvSPLodovgC1raouD3h+bIrD5f7bf2ZL/NFyz//6a0lOq6A9vwSdl+91k03yE1D56uNvGie5rc9XRjeP7RXJfnQdbl43RdqX9EF60/jm5soH8C/rX9fUzLG+CMVu+v0PPEzvn8An6Rrtv3l4EvtdcLF1M9gZ8Bvtjq+FXg5Jb+RLp/7E3A/wB2bekPbfOb2vInznUdZlnfZwOfWmx1bHX5l/baOPH9spg+qz11fRqwoX1m/5buCZyLrp6+fPW+gHPaZ/jLdD+uHt+z7I/aZ/w64Iie9EXzm2MGx2fJ1LWnzkvme3+a4zCU36PAb7R2fxPwmrmu15CPh98fvkb2ogsUbAHuAb4FXNyzbFafLyb5bb6QX/7/TXt8lkxd++q95Ntw2+8ZH5NF8R2SVjBJkiRJkiRJ0pjMp6EMJEmSJEmSJGlJMDArSZIkSZIkSWNmYFaSJEmSJEmSxszArCRJkiRJkiSNmYFZSZIkSZIkSRozA7NaEJL8UpLr5rocS1GSfZNUkuVzXRZJ0nAk+VCSt06xvJLsP84yLSVJXp3k8rkuhyRp+KZrYzVa/obRQmNgVgtCVf3vqnrSMLfZf1KU5IYk9yZ5bF++L7Uv933b/F+1fHcmuS3JJUme3JN/VZL1Se5I8v0klyX5hZ7lE4HOO9vrhiQn9iy/s+f14yQ/7Jl/RV/5K8nL+sr77JZ+Rl/65W2dt/Rs7+4k9/XMb3zwR3awJI9J8jdJ7kry70l+fYq8SXJaklvb68+TpGf505J8IckP2t+n9Sx7fZLNSb6X5OYkp/cGldu6/7u9P1uSnDyqOkvSfFVVv11VfzLs7bY28h1teqK9u7ovz2NbO3pDT9oNPe3dt5J8JMkje5a/KMnnWxtya5Jzk6zsWf7qnvbse0n+JcmL2rJf6mnn7uprg+9M8oS+8m9Lsldfmd/e1juqJ235xO+DJJ/u2d6Pen4n3JnkQ0M8xDuYqj0ckHfKdjjJr7f0u5L8bZLH9C1fm+TatvzfkvxSS1+VZEOS29vrM0lWjabGkjT/jaKNbed4W3rmP9vaoJ/ty/e3Lf3Zbf7trV26M8l3k/zfJM/syb+ytam3tu/3z0+0nz15qi27M8k3krwnybK2bGNPe3dfuvPLifm39JW/kry5b9sTvxX+Z1/6X7eyv6Jnez9Md368vQ0fwqEdKMmuSc5qvym+meSN0+R/Q8t3R1tv1746Xtba6q8leV7Psg/1/Sa5J8n3e5Z/tu+Y2lltETIwK+3o68DREzNJ/iPwsAH5/ryqHgmsBL4N/FXL/9PA/wG+AuwH7AX8DfCPvQ1gs0fbxpHAW5M8H6CqHjnxAm4Efq0n7dye9Y8Fbmt/+90FHJMWTO5VVX/as/3fBq7o2f5BUxybB+sM4F7gJ4FXAB9MMtn+jgdeAvws8DPAi4D/ApBkF+DvgL8GHg2cDfxdSwf4e+AZVbUb8NS2jd/r2fbHgH8GHgP8CvA7SV48pDpKknb2iCRP7Zn/dbr2tt+vtbbpGcD/A/xXgCRH0n13/wXwWOAg4B7g8iSP7ln/irb+HsAHgPOS7NEu7k60exPtzh49bd+NbT+PAF4K3EHXTvW7DThl4mS0V1Ud0bOPc2m/E9rrt2dwjGZtBu1hv0nb4fb3vwOvast/QHcMJ/b1fOA04DXAo4BfBja3xTfT/ZZ5DN37sx44b1j1lCRN6nrgmImZJHsChwBb+/Kd39qnFcDlwCfTeUybv5eufXwscDrwsdb29vrZto1fAV4O/AZAVR3U0/79b+CEnvbvT3vWn+rcFeCQJM/qT6yqc3u2fwRwc9/58qi8HTgA+CngOcCbkxw+KGOSw4ATgUOBfYEnAn/ck+XjwBeBPYE/Ai5MsgK2B/F76/Nx4H/07aL3mA61s5rmBwOzmla6XiwnJbmm9YT4SJKH9iz/rSSb0vUeXZ/Wy6R92Z+e5NvtytGX+07MBu3rhW0/329X497U0rdfIUzy8gFXlT7blu2a5F1JbkzX4+ZDSQYFVidzDj2NG13D8dHJMlfVD+hOFifq9Xa6E8M/qqrbqur7VfW+tt3TJtnGBmAjMGkvl35JfoquUTweOCzJT/Zl+S5dsPhtM93mLPb90vaZeGqSh7armbemuwJ71YCy9J7svrWq7qyqy+lO3F41yW6OBd5dVVuq6hvAu4FXt2XPBpYD762qe9rxDfBcgKr6t6r67sSugR8Dvbey7AucW1X3VdW/0f0YGWVAWpJmZMzt7faerW3+D5Pcku5Og9/oSd8l3Z0jr2vzy5L8n8zuboNz2PFE7Bimblu/AXwaeGqS0LUB72gnZz+sqm8CvwncCbxhwPo/bvt8BN1J1Uy9lK79PIXBJ47/QHfy+spZbHNGkvx/6e5s2T3J/kn+V3svv5Pk/ElWezZTtId925+uHX4F8PdV9c9VdSfwVuA/J3lUW/7HwClV9bmq+nFVfaO9T1TVd6vqhqqqtv/72LHdlaQ5N1dt7MR5bJI/aNu4JclrevI+LMm7092xcEdrC2Z6/nou8PLcf8HwaLpOQfcOylxVP6K7iPc4uiDhG+ja0uOq6putjf04cCrw7tYG929jE11HpNmcuz6c7gLea4EDkqwekO3PgXcMSH9QkvxikpuSPGeW7+UxwJ9U1e1VdS3wl9x/PtrvWODMqtpYVbcDfzKRN8mBdBec39aO7yfoOnG9dEBZJ9rqsx94jbUQGZjVTL0COAz4aeBA7u/F8lzgncDLgMcD/879vSReQNej4kC63isvB26dZj9nAv+lqh5FF+y8tD9DVZ3fc0VpL7oeGx9vi09r+3sa3UnB3sBsTh4/B+yW5CmtgXs5XU+UgdLdZvkKuitgAM9n5ytcABcAz2qNUv82DqGr66ZZlPMYYEP7Yr+WwT17TgVemmRoV9Xaj4jTgOdV1VfpGqHdgX3oGvffBn44YNUDgfuq6vqetH9h8oDoQW35oLwHAV9uJ4ATvty7rXS3Y34P+A5dj9n/3pP3vXS9iR/Sjs0zgc9MWmlJGq9xtbfbpesB8ia6NuwAYPstdlU1EYg8JclT6HqELKNrY2bqr4G1Laj7FLoel1dOUZ59gBfSta1PAp5AX9vagq+faGXuX38ZXc/OH9Edp5k6lu73xHnAk5M8o2950QUs35bkIbPY7qSS/Ickf0l3d8gLquoOuhO6f6TrBbsS+G+TrD5te9hjunZ4h3a3Xbi8FziwHc/VwIoWtNiS5P39gYMk3wXubuXt7SUlSfPF2NvY5nF050x7A8cBZ+T+Oz7eBfwc8At0dx68ma5jyUzcDFzTygjTXPhMd3v9q4EtVfUdujb0E61N7XUBXdt74IBtPBn4JWZ37vpSugDw/wAuZseOUBPOoGtznjdg2QOSrifrx4GXVtVlzPC9bO/NXkx+Ptpv0LnrT6brwXwQsLmqvt+3fNC2XkrX2/mf+9Lf2S7U/p+0ISq0uBiY1Uy9v6puqqrb6E7GJm73fwVwVlVdXVX3ACcBz0x3C/2P6E6+ngykqq6tqlum2c+PgFVJdmtXp66eLGOS/0DXW/WzVfXf2xW93wLeMNFble7EYO0s6zrRa/b5wNeAbwzI86Z2ArIJeCT3Xz17LDCojrfQ/b/13nL5nSQ/BK6gu13wb2dRxmPo6k77u1PPntaj6EN0PX+G4fXAHwLPbldKoXu/9gT2bz1Qv1BV3xuw7iPpbg3tdQfd52OQ/vx3AI9s7/G026qqj7WhDA6kOwbf6sn7Kbortj+ke3/PrKqrJimHJI3buNrbXi8DPlJVX62qu+ju/tiuXYh7B10vnDcBr6qq+2ax/S3AdXQB36nuRPnb1rZeDvwvujZ8Ytz3ydrW3nHhD+kJDr4LeGVVfXsmBUw3zuxzgI9V1beAf2Jw27qe7qTpN2ey3Wk8hO6E8TF0wzj8oKX/iO7Wyb2q6u7Wu3WQ2bSt0+WdavlPtrIeSXcy/jTg6bSAxoSq2oMu8HAC91+wlqT5ZC7aWNo2TqmqH1XVRXRByie189nfAH6/3YlwX1X931aGmfooXaeTJ9EN03PFgDwva+3jTXRB4Je09KnOXSeWT7g6yV10nYI+S89wNzNwLN1wCvfRnbsePeAC591078mwes0eBawDXlhVn29pM30vJ4ZI6D8fnc25Ky3/bNrqY4GP9l1w/X/phkbYu9Xn79MNn6hFxMCsZuqmnul/p7uCRPu7vTdKu/3tVmDvqroUeD/d1a9vJVmXZLdp9vNSul4y/95u4+sfl7XXqXRfaBPjh64AHg58Id1t9d+lu+1wxUwq2OMcuvHvXs3kJ4/vqqo9qupxVfXi1rMEuh6ajx+Q//F0Vz5v70l7LN0X9ZvobkecUe+bdGPv7Mf9V3E/BvzHDH7gx2l0Qx387IBls/WHwBlVtaUn7Ry6q57npbv99c8n6UV0J9D/3u8GfH9A3kH5dwPubI3UjLdVVf9KN0zEB6B78AndZ+IU4KF0PX0PS/K7k5RDksZtXO1tr70G7Lff2XRDwVzUvltn66N07erRTH4nykta2/pTVfW7VfVDunYVJm9bv9Mz/7kWHHw03W36vzSL8r0KuLaqvtTmzwV+fZI27b/SjRH30AHLZmN/YA3wx61n8oQ30w0J8Pl0D1X5jYFrz65tnS7vVMsn7oT5b1V1S+tl9R6632s7aIH9DwEfTfITk5RbkubKXLSxALdW1bae+R/QnQc+lq4t+beBa83MJ+mGsHkd3bnZIBe09vUnquq5VfWFlj7VuevE8gnPaGV+OfDzdMMFTavdBfMcunYVurHRHwr86oDsf0nX0/TXZrLtabyert5fmUiYxXs58VCx/vPR2Zy70vLPqK1nKhajAAAgAElEQVRux+lX6Is/VNWV1Q2PeE9VnU03jMRO7a8WNgOzmql9eqafQHfbBO3vT00saOOi7EnrZVpV76uqn6Prqn8gXXBvUlV1VVWtAX6CrgfpBYPyJVlLd3J3ZHVj5UDXcPwQOKg1PHtU1e41y0HBq+rf6R5K8kK6hm42PkN3da7fy+jGnv1Bb2K7KvpuuiuEMw0OHkt3wvalJN/k/ttBd7olpKpupbt1fxhPBX0B8F+TbB8Pp131/eOqWkV3+82LBpWDbmD65Ul6x/r7Wbqg6SAb2/JBeTcCP9M35tHPTLGt5XS3K0F3tfG+qvpoVW1rQebzsHGTNH+Mpb3tc8uA/fb7AN0dB4cl+cVZbHvCJ+hOwja3dnamrqPrcbtD29p6Gb2UrmfrDtoJ9e8Cr0ry9Bnu5xjgiemeqPxNusDjY+keNNK//Uvo7ph5sBf1rqUbcuHTvcMOVTfO329V1V50D778QJJBY7bOpj2crh3eod1N8kRgV+D66sbL20I3lMNM/Ae6C+V7zzC/JI3LXLSxU/kO3XngA+4B2c4vPw38DpMHZifzGbqh7/rjQi+jC2L3Dn9DdS6gu+NzpsMFvoquXfj71r5upgvMDjp3/RHdmOZ/Qne++2AcBbwkyev79jHte9navVuY/Hy036Bz12+1c/GNdL8vHtW3vH9bxwD/t6o2M7WJ8dy1iBiY1Uy9NsnK1uPwLcDEgyg+BrwmydPamDV/ClxZVTck+X+S/HzrbXIXXaMz6a2P6R4w8ooku7cv5e8Nyt9Osv4bXc+a7U+crG5snL8ETp/opZFk7za2zGwdBzy39fyYjT8GfiHJqUkek+RR6R6YcgzdbQiT+TO6Jz1O2fumLX8Z3UO/ntbzeh3wiiTLB6z2Hrqg6VNmWZd+G4HD6cZEenErz3OS/Mc2/tz36G4P2ek9a8fxk3RjFD6i9fpdw+Q/Hj4KvLG9f3sBf0D3MDPobp25D/i9dA97O6GlX9rK9Js97/8quluRJk7cr++S8+vpxvV7HN1V394xgSRpLo28vR3gAuDVSValGwt9hwdHJnkV3a2Pr6a7S+XsdGOsz1hrB57LLIcAaHdKvInuwuCvp3tIyuOAD9P1ODl9kvVubXmmPXFsd+f8NHAw97erT2WSoYKaP6Lr2fqgVPeQlbcAn5m4NTHJUUlWtiy3052EDXo/P8sU7WHffqZrh88Ffi3JL7WAxCnAJ+v+MfE+ArwuyU+kG3vv9XSBepI8P8nT040hvBvd747b6QLPkjSfzEUbO6l2/noW8J4ke7Xv0We2MszGW4BfqaobZrne6XRt6ZlJHpfuwc5H07Vxf9h3S32vPwOOb+3xdI6hO0fuPXd9KfCr6cZg7XcO3YXBw2dXlZ3cDBxK10b+LsAs38uP0v32eHS6cXV/i/vPRwflPa79jno03Z01fwVQ3djuX6Ibn/6hSf4T3UXUT/Rt45j+7SfZI8lhbb3lSV5BN0buxTM9CFoYDMxqpj5G9yCKze31DoCq+ie6B2F8gu6q0k9z/5iuu9EFSm+nuzXkVrox36byKuCGdA9u+m0GP/l4Df9/e/cfbVl91/f/+XJGiMaYKIzfWmYmg2awkjRN4g0hjU3zCx1Sy6SV1EH9hnyLzrINiSViA43FiHXFRNrRLqlmDDQRawBR462diBjwW5sFZCaGBAYEJxOEG2KZACFfTIFM8v7+sfcdz5y5984998c+P+7zsdZZc/ben3PO6+w5Z3/2ed+9P7s5TfF/JXmivX2kXfYOmqNYbmuf409oLhwykKr6TFXtW8Lj/hL4Xpq/gt1Ps05+EPj+qvrYAg/9HzTr6ceP8xJvoDkq+DfbI2r+upqxZK+iuRjLMR1YNWO+vpdmDLtlqapP0RwV+xtJzqYZyP4GmqLsPTRjAs53iuq/Br4BeJhmTL1/VVX7Adofgk/0tH0f8N9prlh5F836eV+b4Wma9fAmmqtn/0uaIv3saaCvAO5MMwbSnvb279rHfgn45zRXIH2MppO8i8EuYiNJq6mr/vaIqvoIzdkVN9P0oUcKe2nGXv1l4E1V9URV/Tawj3kKosd5nX09Q/8M8rjraPYPLqI5uuhumv7kFW0Bdj6/DLw+yQuP8xLnA39QVXf29a2/AvxA+wO+P9PHgI/3z1+K9tTEy4Gb04xn+FLg9rZfnKYZe/Czczxuwf4wyb/r2T+CBfrh9t+foCnQPkwzVFTvEcE/D+yl+QPnPTRjyM72nc9pn+9xmtNxnwdsq6onl7xSJGl1dN7HLsLFNL959gKP0gxFN1CdpqoeqvnHI1/ocY/Q/HZ9Bk3f+gjwdpqx5K9b4HF30vzuW/DI4TQXud5CMxzeX/fcpmn2N87rf0w149D+LCvz2/UBmuLsO5L8GIP9X/4sTZ/2VzTv9Zeq6o/a97W5rUFsbl/nj2h+b9/Stv8rjv4j9w6ai2g+RlPUPrf3ALP2D8QbOfYi4l9P8xk9RLP/81aafv7egVeGRlrm/yOI1EhyP/BjVeWV6yVJWiX2t5IkrQ77WEmjyiNmJUmSJEmSJKljFmbVuTRXGH5ijtuPDDubJEmTwv5WkqTVYR8raaU4lIEkSZIkSZIkdcwjZiVJ6lCSbUnuTXIgySVzLD8xyXXt8tvbiwGRZEuS/5Pkjvb2611nlyRJkiStnPXDDiBJ0lqRZB1wJXAWMAPsTTJdVXf3NLsAeKyqnpdkB83VeX+oXfaZqnpRp6ElSZIkSatiJAqzJ598cm3ZsmXYMSRJI+oTn/jEF6pqw7BzrIAzgANVdRAgybXAdqC3MLsdeFd7/wbgV5NkqS9oHytJWsgE9bGdsn+VJC1ksf3rSBRmt2zZwr59+4YdQ5I0opL81bAzrJBTgAd7pmeAl83XpqoOJ3kcOKlddmqSTwJfAn6mqv7seC9oHytJWsgE9bGdsn+VJC1ksf3rSBRmJUlaI+Y68rX/Kpzztfk8sLmqHknyPcCHkzy/qr50zIskO4GdAJs3b15mZEmSJEnSavDiX5IkdWcG2NQzvRF4aL42SdYDzwYeraqnquoRgKr6BPAZ4LS5XqSqdlfVVFVNbdjg2amSJEmSNIoszEqS1J29wNYkpyY5AdgBTPe1mQbOb++fC9xcVZVkQ3vxMJJ8B7AVONhRbkmSJEnSChu4MJtkW5J7kxxIcskcy3cluaO93ZfkiysTVZKk8VZVh4ELgRuBe4Drq2p/ksuTnNM2uwo4KckB4O3AbF/7SuDTST5Fc1Gwn6iqR7t9B5IkSZKklTLQGLPtkTpXAmfRnGq5N8l0VR25mnRVXdTT/q3Ai1coqyRJY6+q9gB7+uZd1nP/SeCNczzud4HfXfWAkiRJkqRODHrE7BnAgao6WFVPA9cC2xdofx7woaWGkyRJkiRJkqRJNGhh9hTgwZ7pmXbeMZI8FzgVuHlp0SRJkiRJkiRpMg00lAGQOebVPG13ADdU1VfnfKJkJ7ATYPPmzQPG0LjbddN9R01fdNacFxaXJI2I3u222+zhW+j/Y6E+dpD+d5DnWexzSpKWZ9dN97mdlaQJMmhhdgbY1DO9EXhonrY7gLfM90RVtRvYDTA1NTVfcVcT6swHdvfNuWIoOUbWLe8+evrVlw4nhyS1jtpu33LS0Qt7t1HH2371LL/14CNHLXr5BVfM2a7/eW696uIFs/Y+T3/bhZat1PN08RpnHjV1dB+6UB/bv+zWq+Z+vUGfZ752zWv8bfb+11jquut/HkmSJGkcDVqY3QtsTXIq8Dma4usP9zdK8l3AtwC3LjuhtAYdU6x49ZCCSNIcFtpGHW/71b98Ka8hSZIkSZNgoDFmq+owcCFwI3APcH1V7U9yeZJzepqeB1xbVR4JK0mSJEmSJEl9Bj1ilqraA+zpm3dZ3/S7lhdLkiRJkiRJkibXQEfMSpIkSZIkSZKWz8KsJEmSJEmSJHXMwqwkSZIkSZIkdczCrCRJkiRpYiW5OsnDSe6aZ3mS/OckB5J8OslLus4oSVqbLMxKkiRJkibZB4BtCyw/G9ja3nYCv9ZBJkmSLMxKkiRJkiZXVf1P4NEFmmwHfrMatwHPSfLt3aSTJK1lFmYlSZIkSWvZKcCDPdMz7TxJklaVhVlJkiRJ0lqWOebVMY2SnUn2Jdl36NChDmJJkiadhVlJkiRJ0lo2A2zqmd4IPNTfqKp2V9VUVU1t2LChs3CSpMllYVaSJEmStJZNA29K40zg8ar6/LBDSZIm3/phB5AkSZIkabUk+RDwKuDkJDPAzwJfD1BVvw7sAV4PHAC+DPw/w0kqSVprLMxKkiRJkiZWVZ13nOUFvKWjOJIkHeFQBpIkSZIkSZLUMQuzkiRJkiRJktQxC7OSJEmSJEmS1DELs5IkSZIkSZLUsYELs0m2Jbk3yYEkl8zT5l8kuTvJ/iS/vfyYkiRJkiRJkjQ51g/SOMk64ErgLGAG2Jtkuqru7mmzFbgUeEVVPZbk21YysCRJkiRJkiSNu0GPmD0DOFBVB6vqaeBaYHtfmx8HrqyqxwCq6uHlx5QkSZIkSZKkyTFoYfYU4MGe6Zl2Xq/TgNOSfCzJbUm2LSegJEmSJEmSJE2agYYyADLHvJrjObcCrwI2An+W5AVV9cWjnijZCewE2Lx584AxJEmSJEmSJGl8DXrE7AywqWd6I/DQHG3+oKq+UlWfBe6lKdQepap2V9VUVU1t2LBhwBiSJI2n411EM8mJSa5rl9+eZEvf8s1JnkhycVeZJUmSJEkrb9DC7F5ga5JTk5wA7ACm+9p8GHg1QJKTaYY2OLjcoJIkjbuei2ieDZwOnJfk9L5mFwCPVdXzgF3Ae/qW7wI+stpZJUmSJEmra6DCbFUdBi4EbgTuAa6vqv1JLk9yTtvsRuCRJHcDtwA/XVWPrGRoSZLG1GIuorkd+GB7/wbgtUkCkOQNNH/s3N9RXkmSJEnSKhl0jFmqag+wp2/eZT33C3h7e5MkSX9rrotovmy+NlV1OMnjwElJ/g/wDuAswGEMpB67brrvqOmLzjptUcskSZKkYRq4MCtJkpZsMRfRnK/NzwG7quqJ9gDa+V/EC2xqjTnzgd19c65Y1DJJkiRpmCzMSpLUncVeRHMTMJNkPfBs4FGaI2vPTfJe4DnA15I8WVW/2v8iVbUb2A0wNTXVX/iVJEmSJI0AC7OSJHXnyEU0gc/RXETzh/vaTAPnA7cC5wI3t8ME/aPZBkneBTwxV1FW0sJuvepvRwJ5+QVHHz3bO+yBQx5IkiRptVmYlSSpI+2YsbMX0VwHXD17EU1gX1VNA1cB1yQ5QHOk7I7hJZbWlqOHPXDIA0mSJK0uC7OSJHVoERfRfBJ443Ge412rEk6SJEmS1JmvG3YASZIkSZIkSVprLMxKkiRJkiRJUscszEqSJEmSJElSxyzMSpIkSZIkSVLHLMxKkiRJkiRJUscszEqSJEmSJElSxyzMSpIkSZImVpJtSe5NciDJJXMs35zkliSfTPLpJK8fRk5J0tpjYVaSJEmSNJGSrAOuBM4GTgfOS3J6X7OfAa6vqhcDO4D/0m1KSdJaZWFWkiRJkjSpzgAOVNXBqnoauBbY3temgG9u7z8beKjDfJKkNWz9sANIkiRJkrRKTgEe7JmeAV7W1+ZdwB8neSvwTOB13USTJK11HjErSZIkSZpUmWNe9U2fB3ygqjYCrweuSXLMb+UkO5PsS7Lv0KFDqxBVkrTWDFyYXcTA6W9OcijJHe3tx1YmqiRJkiRJA5kBNvVMb+TYoQouAK4HqKpbgWcAJ/c/UVXtrqqpqprasGHDKsWVJK0lAxVmFzlwOsB1VfWi9vb+FcgpSZIkSdKg9gJbk5ya5ASai3tN97V5AHgtQJLvpinMekisJGnVDXrE7GIGTpckSZIkaeiq6jBwIXAjcA9wfVXtT3J5knPaZj8F/HiSTwEfAt5cVf3DHUiStOIGvfjXYgZOB/jBJK8E7gMuqqoH52gjSZIkSdKqqqo9wJ6+eZf13L8beEXXuSRJGvSI2cUMnP7fgS1V9ULgT4APzvlEDpwuSZIkSZIkaY0atDB73IHTq+qRqnqqnfwN4HvmeiIHTpckSZIkSZK0Vg1amD3uwOlJvr1n8hyacXwkSZIkSZIkSa2BxpitqsNJZgdOXwdcPTtwOrCvqqaBt7WDqB8GHgXevMKZJUmSJEmSJGmsDXrxr8UMnH4pcOnyo0mSJEmSJEnSZBp0KANJkiRJkiRJ0jJZmJUkSZIkSZKkjlmYlSRJkiRJkqSOWZiVJEmSJEmSpI5ZmJUkSZIkSZKkjlmYlSRJkiRJkqSOWZiVJEmSJEmSpI5ZmJUkSZIkSZKkjlmYlSSpQ0m2Jbk3yYEkl8yx/MQk17XLb0+ypZ1/RpI72tunkvyzrrNLkiRJklaOhVlJkjqSZB1wJXA2cDpwXpLT+5pdADxWVc8DdgHvaeffBUxV1YuAbcD7kqzvJrkkSZIkaaVZmJUkqTtnAAeq6mBVPQ1cC2zva7Md+GB7/wbgtUlSVV+uqsPt/GcA1UliSZIkSdKqsDArSVJ3TgEe7JmeaefN2aYtxD4OnASQ5GVJ9gN3Aj/RU6iVJEmSJI0ZC7OSJHUnc8zrP/J13jZVdXtVPR94KXBpkmfM+SLJziT7kuw7dOjQsgJLkiRJklaHhVlJkrozA2zqmd4IPDRfm3YM2WcDj/Y2qKp7gL8BXjDXi1TV7qqaqqqpDRs2rFB0SZIkSdJKsjArSVJ39gJbk5ya5ARgBzDd12YaOL+9fy5wc1VV+5j1AEmeC3wXcH83sSVJkiRJK82rOUuS1JGqOpzkQuBGYB1wdVXtT3I5sK+qpoGrgGuSHKA5UnZH+/DvBS5J8hXga8C/rqovdP8uJEmSJEkrwcKsJEkdqqo9wJ6+eZf13H8SeOMcj7sGuGbVA0qSJEmSOjHwUAZJtiW5N8mBJJcs0O7cJJVkankRJUmSJEmSJGmyDFSYTbIOuBI4GzgdOC/J6XO0exbwNuD2lQgpSZIkSZIkSZNk0CNmzwAOVNXBqnoauBbYPke7nwfeCzy5zHySJEmSJC3ZYs76TPIvktydZH+S3+46oyRpbRq0MHsK8GDP9Ew774gkLwY2VdUfLjObJEmSJElLtpizPpNsBS4FXlFVzwf+TedBJUlr0qCF2cwxr44sTL4O2AX81HGfKNmZZF+SfYcOHRowhiRJkiRJx7WYsz5/HLiyqh4DqKqHO84oSVqjBi3MzgCbeqY3Ag/1TD8LeAHwp0nuB84Epue6AFhV7a6qqaqa2rBhw4AxJEmSJEk6ruOe9QmcBpyW5GNJbkuyrbN0kqQ1bf2A7fcCW5OcCnwO2AH88OzCqnocOHl2OsmfAhdX1b7lR5UkSZIkaSALnvXZWg9sBV5Fc/DRnyV5QVV98agnSnYCOwE2b9688kklSWvOQEfMVtVh4ELgRuAe4Pqq2p/k8iTnrEZASZIkSZKW6Hhnfc62+YOq+kpVfRa4l6ZQexTP+pQkrbRBj5ilqvYAe/rmXTZP21ctLZYkSZIkScu24FmfrQ8D5wEfSHIyzdAGBztNKUlakwYdY1aSJEmSpLGwyLM+bwQeSXI3cAvw01X1yHASS5LWkoGPmJUkSZIkaVwc76zPqirg7e1NkqTOeMSsJEmSJEmSJHXMwqwkSZIkSZIkdczCrCRJkiRJkiR1zMKsJEmSJEmSJHXMi39JkiRJx3HrVRcfNX3b5p1H7l901mldx5EkSdIEsDArSZIkDejMB3b3TF0xtBySJEkaXw5lIEmSJEmSJEkd84hZSZIkaQX1Dnvw8guOPpp21033HbnvEAiSJElrm4VZSZIkqSMOgSBJkqRZDmUgSZIkSZIkSR2zMCtJkiRJkiRJHbMwK0mSJEmSJEkdszArSZIkSZIkSR2zMCtJkiRJkiRJHVs/6AOSbAN+BVgHvL+qfrFv+U8AbwG+CjwB7Kyqu1cgq5Zp1033Hbl/0VmnDTGJJEmSJGkgt7ybMx94BG45qZl+9aXDzSNJWraBCrNJ1gFXAmcBM8DeJNN9hdffrqpfb9ufA/wnYNsK5dUynPnA7p6pK4aWQ5IkSZIkSVrrBh3K4AzgQFUdrKqngWuB7b0NqupLPZPPBGp5ESVJkiRJkiRpsgxamD0FeLBneqadd5Qkb0nyGeC9wNuWHk+SpMmSZFuSe5McSHLJHMtPTHJdu/z2JFva+Wcl+USSO9t/X9N1dkmSJEnSyhm0MJs55h1zRGxVXVlV3wm8A/iZOZ8o2ZlkX5J9hw4dGjCGJEnjp2dIoLOB04Hzkpze1+wC4LGqeh6wC3hPO/8LwD+tqr8PnA9c001qSZIkSdJqGLQwOwNs6pneCDy0QPtrgTfMtaCqdlfVVFVNbdiwYcAYkiSNpeMOCdROf7C9fwPw2iSpqk9W1Wyfux94RpITO0ktSZIkSVpxgxZm9wJbk5ya5ARgBzDd2yDJ1p7JfwL85fIiSpI0MRYzJNCRNlV1GHgcOKmvzQ8Cn6yqp1YppyRJkiRpla0fpHFVHU5yIXAjsA64uqr2J7kc2FdV08CFSV4HfAV4jOZ0S2mk3XrVxUdNv/yCK4aURNKEW8yQQAu2SfJ8muENvm/eF0l2AjsBNm/ePHhKSZIkSdKqG6gwC1BVe4A9ffMu67n/kyuQS5KkSbSYIYFm28wkWQ88G3gUIMlG4PeBN1XVZ+Z7karaDewGmJqaOmYseEmSJEnS8A06lIEkSVq64w4J1E7Pnm1yLnBzVVWS5wD/A7i0qj7WWWJJkiRJ0qqwMCtJUkfaMWNnhwS6B7h+dkigJOe0za4CTkpyAHg7cEk7/0LgecC/T3JHe/u2jt+CJEljJ8m2JPcmOZDkkgXanZukkkx1mU+StHYNPJSBJElaukUMCfQk8MY5HvcfgP+w6gElSZogSdYBVwJn0QwXtDfJdFXd3dfuWcDbgNu7TylJWqs8YlaSJEmSNKnOAA5U1cGqehq4Ftg+R7ufB94LPNllOEnS2mZhVpIkSZI0qU4BHuyZnmnnHZHkxcCmqvrDLoNJkuRQBpIkSdIIuPWqi4+afvkFVwwpiTRRMse8OrIw+TpgF/Dm4z5RshPYCbB58+YViidJWssszEqSJEkjqLdQa5FWWrIZYFPP9EbgoZ7pZwEvAP40CcDfAaaTnFNV+3qfqKp2A7sBpqamCkmSlsmhDCRJkiRJk2ovsDXJqUlOAHYA07MLq+rxqjq5qrZU1RbgNuCYoqwkSavBwqwkSZIkaSJV1WHgQuBG4B7g+qran+TyJOcMN50kaa1zKANJkiRpzCw0zIFj1UpHq6o9wJ6+eZfN0/ZVXWSSJAk8YlaSJEmSJEmSOmdhVpIkSZIkSZI6ZmFWkiRJkiRJkjpmYVaSJEmSJEmSOmZhVpIkSZIkSZI6ZmFWkiRJkiRJkjpmYVaSJEmSJEmSOjZwYTbJtiT3JjmQ5JI5lr89yd1JPp3ko0meuzJRJUmSJEmSJGkyDFSYTbIOuBI4GzgdOC/J6X3NPglMVdULgRuA965EUEmSJEmSJEmaFIMeMXsGcKCqDlbV08C1wPbeBlV1S1V9uZ28Ddi4/JiSJEmSJEmSNDkGLcyeAjzYMz3TzpvPBcBHBg0lSZIkSZIkSZNs/YDtM8e8mrNh8qPAFPCP51m+E9gJsHnz5gFjSJIkSZIkSdL4GvSI2RlgU8/0RuCh/kZJXge8Ezinqp6a64mqandVTVXV1IYNGwaMIUmSJEmSJEnja9DC7F5ga5JTk5wA7ACmexskeTHwPpqi7MMrE1OSJEmSJEmSJsdAhdmqOgxcCNwI3ANcX1X7k1ye5Jy22S8B3wT8TpI7kkzP83SSJEmSJEmStCYNOsYsVbUH2NM377Ke+69bgVySJEmSJEmSNLEGHcpAkiRJkiRJkrRMFmYlSZIkSZIkqWMWZiVJkiRJkiSpYxZmJUmSJEmSJKljFmYlSZIkSZIkqWMWZiVJ6lCSbUnuTXIgySVzLD8xyXXt8tuTbGnnn5TkliRPJPnVrnNLkiRJklaWhVlJkjqSZB1wJXA2cDpwXpLT+5pdADxWVc8DdgHvaec/Cfx74OKO4kqSpCHZddN9w44gSeqAhVlJkrpzBnCgqg5W1dPAtcD2vjbbgQ+2928AXpskVfU3VfW/aAq0kiRJkqQxt37YASSNgVve/bf3X33p8HJI4+8U4MGe6RngZfO1qarDSR4HTgK+0ElCSZIkSVInPGJW0nHdevCRIzdJy5I55tUS2iz8IsnOJPuS7Dt06NAgD5UkaeIsYnz3tye5O8mnk3w0yXOHkVOStPZYmJUkqTszwKae6Y3AQ/O1SbIeeDbw6CAvUlW7q2qqqqY2bNiwjLiSJI23RY7v/klgqqpeSDOM0Hu7TSlJWqsszEqS1J29wNYkpyY5AdgBTPe1mQbOb++fC9xcVQMdMStJko447vjuVXVLVX25nbyN5g+nkiStOseYlSSpI+2YsRcCNwLrgKuran+Sy4F9VTUNXAVck+QAzZGyO2Yfn+R+4JuBE5K8Afi+qrq76/chSdIYWcz47r0uAD6yqokkSWpZmJUkqUNVtQfY0zfvsp77TwJvnOexW1Y1nCRJk2fRY7cn+VFgCvjH8yzfCewE2Lx580rlkyStYQ5lIEmSJEmaVIsZ350krwPeCZxTVU/N9USO4S5JWmkWZiVJkiRJk+q447sneTHwPpqi7MNDyChJWqMGLswm2Zbk3iQHklwyx/JXJvnzJIeTnLsyMSVJkiRJGkxVHQZmx3e/B7h+dnz3JOe0zX4J+Cbgd5LckaT/wpySJK2KgcaYTbIOuBI4i+aUkL1JpvsuPPIA8Gbg4pUKKUmSJEnSUixifPfXdR5KkiQGv/jXGcCBqjoIkORaYDtwpDBbVfe3y762QhklSZIkSZIkaaIMOpTBKcCDPdMz7TxJkiRJkiRJ0iINWpjNHPNqKS+cZGeSfUn2HTp0aClPIUmSJEmSJEljadDC7AywqWd6I6ABeg8AAA3MSURBVPDQUl64qnZX1VRVTW3YsGEpTyFJkiRJkiRJY2nQwuxeYGuSU5OcAOwAvGKlJEmSJEmSJA1goMJsVR0GLgRuBO4Brq+q/UkuT3IOQJKXJpkB3gi8L8n+lQ4tSZIkSZIkSeNs/aAPqKo9wJ6+eZf13N9LM8SBJEmSJEmSJGkOAxdmJWnYbr3q4iP3X37BFUNMIkmSJK2gW94NwJkPPAK4nytJk27QMWYlSZIkSZIkScvkEbOSJEnSBFvoTBPPQpEkSRoej5iVJEmSJEmSpI55xKwkSZKkY/QeTdvPo2ullbHrpvu46KzThh1DkjQkHjErSZIkSZIkSR2zMCtJkiRJkiRJHbMwK0mSJEmSJEkdc4xZaQX1j8Xm+GuSJEmSJEmai0fMSpIkSZIkSVLHLMxKkiRJkiRJUscszEqSJEmSJElSxyzMSpIkSZIkSVLHvPiXBjJqF7faddN9R01fdNZpQ0oymkbt/2sSuY4lSTq6P+zvC/v7yl4LtbVPlSRJk87CrMbamQ/s7pvjDrzWNgvFkiRJkiSNB4cykCRJkiRJkqSOecSsJEmSJElDcOYDu+GWk4YdQ5I0JAMXZpNsA34FWAe8v6p+sW/5icBvAt8DPAL8UFXdv/yo0nB4ari0eH5fjm85/WiSS4ELgK8Cb6uqGzuMLklDtdhxbO171G/SfsPeevARXv4dFnMlaRIMVJhNsg64EjgLmAH2Jpmuqrt7ml0APFZVz0uyA3gP8EMrFVhaLAtEkkbNcvrRJKcDO4DnA38X+JMkp1XVV7t9F5I02o63D2gRd23xN6wkaZQNesTsGcCBqjoIkORaYDvQ26ltB97V3r8B+NUkqapaZlatIZO4w2yheDL/X6UBLbkfbedfW1VPAZ9NcqB9vls7yi5JE69/f61X776Lxd+xMvK/YW89+AiAR8FK0ho0aGH2FODBnukZ4GXztamqw0keB04CvrDUkONqpXbIutixG6esa92kFniH8dkZp+/WSpjUz86YWU4/egpwW99jT1m9qJKklbBQ/ztIgbef/fiijc1v2NkC7RG3vPvYeT1tbzt8HxeddVoHySRJqyWD/BEwyRuB76+qH2un/2/gjKp6a0+b/W2bmXb6M22bR/qeayews538LuDe5byR1smMXwF43DKPW14wc1fMvPrGLS+sXObnVtWGFXieoVpOPwpcDtxaVb/Vzr8K2FNVvzvH69jHLt9ae7/ge14L1tr7Bd/zYkxEHzsff8OumnHNDeOb3dzdMne3JjH3ovrXQY+YnQE29UxvBB6ap81MkvXAs4FH+5+oqnYDuwd8/QUl2VdVUyv5nKtt3DKPW14wc1fMvPrGLS+MZ+ZVtpx+dDGPBexjV8Jae7/ge14L1tr7Bd+zAH/DropxzQ3jm93c3TJ3t9Zy7q8bsP1eYGuSU5OcQHMRkum+NtPA+e39c4GbHV9WkiRgef3oNLAjyYlJTgW2Ah/vKLckSePK37CSpJE10BGz7Xg7FwI3AuuAq6tqf5LLgX1VNQ1cBVzTXpTkUZqOT5KkNW85/Wjb7nqai5UcBt5SVV8dyhuRJGlM+BtWkjTKBh3KgKraA+zpm3dZz/0ngTcuP9qSrOhpJR0Zt8zjlhfM3BUzr75xywvjmXlVLacfrapfAH5hVQPOb639X6619wu+57Vgrb1f8D0Lf8OuknHNDeOb3dzdMne31mzugS7+JUmSJEmSJElavkHHmJUkSZIkSZIkLdNYFmaTbEpyS5J7kuxP8pPt/G9NclOSv2z//ZZhZ521QOZ3Jflckjva2+uHnXVWkmck+XiST7WZf66df2qS29v1fF07iP5IWCDzB5J8tmc9v2jYWXslWZfkk0n+sJ0e2XU8a47Mo76O709yZ5ttXztvZLcZMG/mUd5mPCfJDUn+ot3WvXzU17GOL8m2JPcmOZDkkmHnWQ1Jrk7ycJK7euZN7Gd3HPejlmsc92lWyjjuYyzHOPb3y2HfO97GpY8d935jHLeD4/rdTnJR+xm5K8mH2v53JNf3IPt/afzn9rv66SQvGbHcv9R+Vj6d5PeTPKdn2aVt7nuTfP9wUs+du2fZxUkqycnt9Eiv73b+W9t1uj/Je3vmD7y+x7IwS3PRk5+qqu8GzgTekuR04BLgo1W1FfhoOz0q5ssMsKuqXtTe9sz/FJ17CnhNVf0D4EXAtiRnAu+hybwVeAy4YIgZ+82XGeCne9bzHcOLOKefBO7pmR7ldTyrPzOM9joGeHWbbaqdHuVtxqz+zDC624xfAf6oqv4e8A9oPh/jsI41jyTrgCuBs4HTgfN6+q5J8gFgW9+8Sf7sjuN+1HKN4z7NShnHfYzlGsf+fqnse8fUmPWx495vjON2cOy+20lOAd4GTFXVC2gutreD0V3fH2Dx+39nA1vb207g1zrKOJcPcGzum4AXVNULgfuASwHa7+kO4PntY/5Lu+0Zhg9wbG6SbALOAh7omT3S6zvJq4HtwAur6vnAFe38Ja3vsSzMVtXnq+rP2/v/H81G6hSaFfPBttkHgTcMJ+GxFsg8sqrxRDv59e2tgNcAN7TzR209z5d5ZCXZCPwT4P3tdBjhdQzHZh5jI7vNGDdJvhl4Jc1Vjamqp6vqi7iOx90ZwIGqOlhVTwPX0vyfTpSq+p80V+HuNbGf3XHcj1qucdynWQnjuI+xSibys23fO/bGpo8d535jHLeDY/7dXg98Q5L1wDcCn2dE1/eA+3/bgd9s9yduA56T5Nu7SXq0uXJX1R9X1eF28jZgY3t/O3BtVT1VVZ8FDtBsezo3z/oG2AX8W46u24z0+gb+FfCLVfVU2+bhdv6S1vdYFmZ7JdkCvBi4Hfi/qurz0HQewLcNL9n8+jIDXNgenn31qJ2O0J72cQfwMM1fYT4DfLHnSz/DiBWY+zNX1ex6/oV2Pe9KcuIQI/b7ZZoN0dfa6ZMY8XXMsZlnjeo6hmZD/8dJPpFkZztv1LcZc2WG0dxmfAdwCPivaU4Ve3+SZzL661gLOwV4sGd6FLdHq2VNfHbHcT9qqcZxn2YFjOM+xnKNY3+/VPa9420s+9gx7DfGcTs4lt/tqvoczZGDD9AUZB8HPsHor+9e863jcfq+/kvgI+39kc6d5Bzgc1X1qb5FI50bOA34R2mG6Ph/k7y0nb+k3GNdmE3yTcDvAv+mqr407DyLMUfmXwO+k+a0us8D/3GI8Y5RVV+tqhfR/MXlDOC752rWbaqF9WdO8gKaQ/n/HvBS4FuBdwwx4hFJfgB4uKo+0Tt7jqYjs47nyQwjuo57vKKqXkJzWsRbkrxy2IEWYa7Mo7rNWA+8BPi1qnox8DeM2OlVWpKR3h5pecZxP2o5xnGfZjnGcR9jhYxjf79U9r3jbey+j+PWb4zxdnAsv9vtASPbgVOBvws8k2Zb3G/U1vdijMPnhiTvpBl65L/Nzpqj2UjkTvKNwDuBy+ZaPMe8kcjdWg98C83QLj8NXN8ejb+k3GNbmE3y9TSdwn+rqt9rZ//v2cOb238fnu/xwzBX5qr63+0Pha8Bv8GQDis/nvbUiT+l+eA9pz01AZofNw8NK9dCejJva0+/qfZQ8//K6KznVwDnJLmf5vSl19D8VXeU1/ExmZP81givYwCq6qH234eB36fJN9LbjLkyj/A2YwaY6TlC/QaaHcqRXsc6rhlgU8/0qG2PVtNEf3bHcT9qpYzjPs0SjeM+xrKNY3+/DPa9422s+tgx7TfGdTs4rt/t1wGfrapDVfUV4PeAf8jor+9e863jkf++Jjkf+AHgR6pqthg4yrm/k6aI/6n2O7oR+PMkf4fRzg1Nvt9r6x8fpzki/2SWmHssC7NtJfoq4J6q+k89i6aB89v75wN/0HW2+cyXuW+cjH8GHHOFumFJsiHt1fySfAPNhvYe4Bbg3LbZqK3nuTL/Rc/GNTTjxIzEeq6qS6tqY1VtoRkk+uaq+hFGeB3Pk/lHR3UdAyR5ZpJnzd4Hvo8m3yhvM+bMPKrbjKr6a+DBJN/VznotcDcjvI61KHuBrWmupnsCzXd+esiZujKxn91x3I9arnHcp1mucdzHWK5x7O+Xw7537I1NHzuu/ca4bgfH+Lv9AHBmkm9sPzOzuUd6ffeZbx1PA29K40zg8dkhD0ZBkm00Z6yeU1Vf7lk0DexIcmKSU2kupvXxYWTsV1V3VtW3VdWW9js6A7yk/fyP9PoGPkzzhx6SnAacAHyBpa7vqhq7G/C9NIcDfxq4o729nma8mI8Cf9n++63DzrqIzNcAd7bzp4FvH3bWnswvBD7ZZrsLuKyd/x3th+sA8DvAicPOuojMN7fr+S7gt4BvGnbWObK/CvjDUV/HC2Qe2XXcrs9Ptbf9wDvb+aO8zZgv8yhvM14E7GuzfZjm9I6RXcfeFv3/+nqaq7t+ZvZzOGk34EM0Q4N8hWan8IJJ/uyO437UCrznsdunWeH3P3b7GEt8n2PX36/Ae7bvHePbuPSxk9BvjNt2cFy/28DPAX/R9rXXACeO6voeZP+P5hT1K9vv6p3A1IjlPkAztuns9/PXe9q/s819L3D2KOXuW34/cPKYrO8TaGoedwF/DrxmOes77QMlSZIkSZIkSR0Zy6EMJEmSJEmSJGmcWZiVJEmSJEmSpI5ZmJUkSZIkSZKkjlmYlSRJkiRJkqSOWZiVJEmSJEmSpI5ZmJUkSZIkSZKkjlmYlSRJkiRJkqSOWZiVJEmSJEmSpI79/4ZbZ9yTNo0lAAAAAElFTkSuQmCC\n",
4099
      "text/plain": [
4100
       "<Figure size 1728x1728 with 18 Axes>"
4101
      ]
4102
     },
4103
     "metadata": {
4104
      "needs_background": "light"
4105
     },
4106
     "output_type": "display_data"
4107
    }
4108
   ],
4109
   "source": [
4110
    "fig, axes = plt.subplots(6, 3, figsize=(24, 24))\n",
4111
    "\n",
4112
    "for i, ax in enumerate(axes.flatten()):\n",
4113
    "    if i == len(cols_float): continue\n",
4114
    "    col = cols_float[i]\n",
4115
    "    a = ax.hist(train_md[col], bins=100, density=True, alpha=0.5, weights = train_md.weight)\n",
4116
    "    a = ax.hist(test_md[col], bins=100, density=True, alpha=0.5, weights = test_md.weight)\n",
4117
    "    sampled = np.random.choice(train_md[col].values,10000,p=train_md.weight/train_md.weight.sum())\n",
4118
    "    ks = ks_2samp(sampled, test_md[col].values)\n",
4119
    "    ax.set_title(col + (' IMPORTANT' if col in significant_cols else '') + ' ks {:.4f}'.format(ks.statistic))"
4120
   ]
4121
  },
4122
  {
4123
   "cell_type": "code",
4124
   "execution_count": 197,
4125
   "metadata": {},
4126
   "outputs": [
4127
    {
4128
     "data": {
4129
      "text/plain": [
4130
       "0.33090745678953754"
4131
      ]
4132
     },
4133
     "execution_count": 197,
4134
     "metadata": {},
4135
     "output_type": "execute_result"
4136
    }
4137
   ],
4138
   "source": [
4139
    "(train_md.weight > 0.1).mean()"
4140
   ]
4141
  },
4142
  {
4143
   "cell_type": "code",
4144
   "execution_count": 198,
4145
   "metadata": {},
4146
   "outputs": [
4147
    {
4148
     "data": {
4149
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAD4CAYAAAAZ1BptAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAXlklEQVR4nO3df4xd5Z3f8fdnbUhQswkEJimy3TXdWGpI1DjEJa4iVSlswZAqZlWQjKrgRK68TUFNpFUbkz/KbhIk8seGljZhxS4uJkpjEMkWN2vqukAUrZQYTxIHMCxllqRh1ggP2BCiNEQm3/5xH5PLcM/MnbF9x2PeL+nonvM9z3POeXLJfHx+3HtTVUiSNMhvLfQBSJJOXoaEJKmTISFJ6mRISJI6GRKSpE5LF/oAjrdzzjmnVq5cudCHIUmLyve///3nqmpsev2UC4mVK1cyPj6+0IchSYtKkv87qO7lJklSJ0NCktRp6JBIsiTJD5N8qy2fl2RPkieT3JXk9FZ/U1ueaOtX9m3j+lZ/IsmlffV1rTaRZEtffeA+JEmjMZcziU8Bj/ctfxG4uapWAYeBTa2+CThcVe8Cbm7tSHI+sAF4D7AO+EoLniXAl4HLgPOBq1vbmfYhSRqBoUIiyXLgI8Cft+UAFwH3tCbbgCva/Pq2TFt/cWu/HtheVS9X1Y+BCeDCNk1U1VNV9StgO7B+ln1IkkZg2DOJ/wj8e+DXbfls4IWqOtKWJ4FlbX4Z8DRAW/9ia/9qfVqfrvpM+3iNJJuTjCcZn5qaGnJIkqTZzBoSSf45cLCqvt9fHtC0Zll3vOqvL1bdVlVrqmrN2NjrHvOVJM3TMJ+T+BDw0SSXA28G3krvzOLMJEvbv/SXAwda+0lgBTCZZCnwNuBQX/2o/j6D6s/NsA9J0gjMeiZRVddX1fKqWknvxvMDVfUvgQeBK1uzjcC9bX5HW6atf6B6P1qxA9jQnn46D1gFPATsBVa1J5lOb/vY0fp07UOSNALH8onrzwDbk3wB+CFwe6vfDnw1yQS9M4gNAFW1P8ndwGPAEeDaqnoFIMl1wC5gCbC1qvbPso8TYuWWv3x1/ic3feRE7kqSFoU5hURVfRv4dpt/it6TSdPb/BK4qqP/jcCNA+o7gZ0D6gP3IUkaDT9xLUnqZEhIkjoZEpKkToaEJKmTISFJ6mRISJI6GRKSpE6GhCSpkyEhSepkSEiSOhkSkqROhoQkqZMhIUnqZEhIkjoZEpKkToaEJKmTISFJ6jRrSCR5c5KHkvwoyf4kf9zqdyT5cZJ9bVrd6klyS5KJJA8nuaBvWxuTPNmmjX31DyR5pPW5JUla/e1Jdrf2u5Ocdfz/J5AkdRnmTOJl4KKqeh+wGliXZG1b9++qanWb9rXaZcCqNm0GboXeH3zgBuCD9H6S9Ia+P/q3trZH+61r9S3A/VW1Cri/LUuSRmTWkKien7fF09pUM3RZD9zZ+n0PODPJucClwO6qOlRVh4Hd9ALnXOCtVfXdqirgTuCKvm1ta/Pb+uqSpBEY6p5EkiVJ9gEH6f2h39NW3dguKd2c5E2ttgx4uq/7ZKvNVJ8cUAd4Z1U9A9Be39FxfJuTjCcZn5qaGmZIkqQhDBUSVfVKVa0GlgMXJnkvcD3wD4B/BLwd+ExrnkGbmEd9aFV1W1Wtqao1Y2Njc+kqSZrBnJ5uqqoXgG8D66rqmXZJ6WXgv9K7zwC9M4EVfd2WAwdmqS8fUAd4tl2Oor0enMvxSpKOzTBPN40lObPNnwH8HvDXfX+8Q+9ewaOtyw7gmvaU01rgxXapaBdwSZKz2g3rS4Bdbd1LSda2bV0D3Nu3raNPQW3sq0uSRmDpEG3OBbYlWUIvVO6uqm8leSDJGL3LRfuAf93a7wQuByaAXwCfAKiqQ0k+D+xt7T5XVYfa/CeBO4AzgPvaBHATcHeSTcBPgavmO1BJ0tzNGhJV9TDw/gH1izraF3Btx7qtwNYB9XHgvQPqzwMXz3aMkqQTw09cS5I6GRKSpE6GhCSpkyEhSepkSEiSOhkSkqROhoQkqZMhIUnqZEhIkjoZEpKkToaEJKmTISFJ6mRISJI6GRKSpE6GhCSpkyEhSepkSEiSOhkSkqROs4ZEkjcneSjJj5LsT/LHrX5ekj1JnkxyV5LTW/1NbXmirV/Zt63rW/2JJJf21de12kSSLX31gfuQJI3GMGcSLwMXVdX7gNXAuiRrgS8CN1fVKuAwsKm13wQcrqp3ATe3diQ5H9gAvAdYB3wlyZIkS4AvA5cB5wNXt7bMsA9J0gjMGhLV8/O2eFqbCrgIuKfVtwFXtPn1bZm2/uIkafXtVfVyVf0YmAAubNNEVT1VVb8CtgPrW5+ufUiSRmCoexLtX/z7gIPAbuBvgBeq6khrMgksa/PLgKcB2voXgbP769P6dNXPnmEf049vc5LxJONTU1PDDEmSNIShQqKqXqmq1cByev/yf/egZu01HeuOV33Q8d1WVWuqas3Y2NigJpKkeZjT001V9QLwbWAtcGaSpW3VcuBAm58EVgC09W8DDvXXp/Xpqj83wz4kSSMwzNNNY0nObPNnAL8HPA48CFzZmm0E7m3zO9oybf0DVVWtvqE9/XQesAp4CNgLrGpPMp1O7+b2jtanax+SpBFYOnsTzgW2taeQfgu4u6q+leQxYHuSLwA/BG5v7W8Hvppkgt4ZxAaAqtqf5G7gMeAIcG1VvQKQ5DpgF7AE2FpV+9u2PtOxD0nSCMwaElX1MPD+AfWn6N2fmF7/JXBVx7ZuBG4cUN8J7Bx2H5Kk0fAT15KkToaEJKmTISFJ6mRISJI6GRKSpE6GhCSpkyEhSepkSEiSOhkSkqROhoQkqZMhIUnqZEhIkjoZEpKkToaEJKmTISFJ6mRISJI6GRKSpE7D/Mb1iiQPJnk8yf4kn2r1P0ryt0n2tenyvj7XJ5lI8kSSS/vq61ptIsmWvvp5SfYkeTLJXe23rmm/h31Xa78nycrjOXhJ0syGOZM4AvxhVb0bWAtcm+T8tu7mqlrdpp0Abd0G4D3AOuArSZa038j+MnAZcD5wdd92vti2tQo4DGxq9U3A4ap6F3BzaydJGpFZQ6KqnqmqH7T5l4DHgWUzdFkPbK+ql6vqx8AEvd+pvhCYqKqnqupXwHZgfZIAFwH3tP7bgCv6trWtzd8DXNzaS5JGYE73JNrlnvcDe1rpuiQPJ9ma5KxWWwY83ddtstW66mcDL1TVkWn112yrrX+xtZ9+XJuTjCcZn5qamsuQJEkzGDokkrwF+Abw6ar6GXAr8LvAauAZ4E+ONh3QveZRn2lbry1U3VZVa6pqzdjY2IzjkCQNb6iQSHIavYD4WlV9E6Cqnq2qV6rq18Cf0bucBL0zgRV93ZcDB2aoPwecmWTptPprttXWvw04NJcBSpLmb5inmwLcDjxeVV/qq5/b1+z3gUfb/A5gQ3sy6TxgFfAQsBdY1Z5kOp3eze0dVVXAg8CVrf9G4N6+bW1s81cCD7T2kqQRWDp7Ez4EfAx4JMm+VvssvaeTVtO7/PMT4A8Aqmp/kruBx+g9GXVtVb0CkOQ6YBewBNhaVfvb9j4DbE/yBeCH9EKJ9vrVJBP0ziA2HMNYJUlzNGtIVNVfMfjewM4Z+twI3DigvnNQv6p6it9cruqv/xK4arZjlCSdGH7iWpLUyZCQJHUyJCRJnQwJSVInQ0KS1MmQkCR1MiQkSZ0MCUlSJ0NCktTJkJAkdTIkJEmdDAlJUidDQpLUyZCQJHUyJCRJnQwJSVInQ0KS1GmY37hekeTBJI8n2Z/kU63+9iS7kzzZXs9q9SS5JclEkoeTXNC3rY2t/ZNJNvbVP5Dkkdbnlva72p37kCSNxjBnEkeAP6yqdwNrgWuTnA9sAe6vqlXA/W0Z4DJgVZs2A7dC7w8+cAPwQXo/VXpD3x/9W1vbo/3WtXrXPiRJIzBrSFTVM1X1gzb/EvA4sAxYD2xrzbYBV7T59cCd1fM94Mwk5wKXArur6lBVHQZ2A+vaurdW1XerqoA7p21r0D4kSSMwp3sSSVYC7wf2AO+sqmegFyTAO1qzZcDTfd0mW22m+uSAOjPsY/pxbU4ynmR8ampqLkOSJM1g6JBI8hbgG8Cnq+pnMzUdUKt51IdWVbdV1ZqqWjM2NjaXrpKkGQwVEklOoxcQX6uqb7bys+1SEe31YKtPAiv6ui8HDsxSXz6gPtM+JEkjMMzTTQFuBx6vqi/1rdoBHH1CaSNwb1/9mvaU01rgxXapaBdwSZKz2g3rS4Bdbd1LSda2fV0zbVuD9iFJGoGlQ7T5EPAx4JEk+1rts8BNwN1JNgE/Ba5q63YClwMTwC+ATwBU1aEknwf2tnafq6pDbf6TwB3AGcB9bWKGfUiSRmDWkKiqv2LwfQOAiwe0L+Dajm1tBbYOqI8D7x1Qf37QPiRJo+EnriVJnQwJSVInQ0KS1MmQkCR1MiQkSZ0MCUlSJ0NCktTJkJAkdTIkJEmdDAlJUidDQpLUyZCQJHUyJCRJnQwJSVInQ0KS1MmQkCR1MiQkSZ0MCUlSp1lDIsnWJAeTPNpX+6Mkf5tkX5su71t3fZKJJE8kubSvvq7VJpJs6aufl2RPkieT3JXk9FZ/U1ueaOtXHq9BS5KGM8yZxB3AugH1m6tqdZt2AiQ5H9gAvKf1+UqSJUmWAF8GLgPOB65ubQG+2La1CjgMbGr1TcDhqnoXcHNrJ0kaoVlDoqq+Axwacnvrge1V9XJV/RiYAC5s00RVPVVVvwK2A+uTBLgIuKf13wZc0betbW3+HuDi1l6SNCLHck/iuiQPt8tRZ7XaMuDpvjaTrdZVPxt4oaqOTKu/Zltt/Yut/esk2ZxkPMn41NTUMQxJktRvviFxK/C7wGrgGeBPWn3Qv/RrHvWZtvX6YtVtVbWmqtaMjY3NdNySpDmYV0hU1bNV9UpV/Rr4M3qXk6B3JrCir+ly4MAM9eeAM5MsnVZ/zbba+rcx/GUvSdJxMK+QSHJu3+LvA0effNoBbGhPJp0HrAIeAvYCq9qTTKfTu7m9o6oKeBC4svXfCNzbt62Nbf5K4IHWXpI0Iktna5Dk68CHgXOSTAI3AB9Ospre5Z+fAH8AUFX7k9wNPAYcAa6tqlfadq4DdgFLgK1Vtb/t4jPA9iRfAH4I3N7qtwNfTTJB7wxiwzGPVpI0J7OGRFVdPaB8+4Da0fY3AjcOqO8Edg6oP8VvLlf1138JXDXb8UmSThw/cS1J6mRISJI6GRKSpE6GhCSpkyEhSepkSEiSOhkSkqROhoQkqZMhIUnqZEhIkjoZEpKkToaEJKmTISFJ6mRISJI6GRKSpE6GhCSpkyEhSeo0a0gk2ZrkYJJH+2pvT7I7yZPt9axWT5JbkkwkeTjJBX19Nrb2TybZ2Ff/QJJHWp9bkmSmfUiSRmeYM4k7gHXTaluA+6tqFXB/Wwa4DFjVps3ArdD7g0/vt7E/SO+nSm/o+6N/a2t7tN+6WfYhSRqRWUOiqr4DHJpWXg9sa/PbgCv66ndWz/eAM5OcC1wK7K6qQ1V1GNgNrGvr3lpV362qAu6ctq1B+5Akjch870m8s6qeAWiv72j1ZcDTfe0mW22m+uSA+kz7eJ0km5OMJxmfmpqa55AkSdMd7xvXGVCredTnpKpuq6o1VbVmbGxsrt0lSR3mGxLPtktFtNeDrT4JrOhrtxw4MEt9+YD6TPuQJI3IfENiB3D0CaWNwL199WvaU05rgRfbpaJdwCVJzmo3rC8BdrV1LyVZ255qumbatgbtQ5I0Iktna5Dk68CHgXOSTNJ7Sukm4O4km4CfAle15juBy4EJ4BfAJwCq6lCSzwN7W7vPVdXRm+GfpPcE1RnAfW1ihn1IkkZk1pCoqqs7Vl08oG0B13ZsZyuwdUB9HHjvgPrzg/YhSRodP3EtSepkSEiSOhkSkqROhoQkqZMhIUnqZEhIkjoZEpKkToaEJKmTISFJ6mRISJI6GRKSpE6GhCSpkyEhSepkSEiSOhkSkqROhoQkqZMhIUnqdEwhkeQnSR5Jsi/JeKu9PcnuJE+217NaPUluSTKR5OEkF/RtZ2Nr/2SSjX31D7TtT7S+OZbjlSTNzfE4k/inVbW6qta05S3A/VW1Cri/LQNcBqxq02bgVuiFCr3fzf4gcCFww9FgaW029/VbdxyOV5I0pBNxuWk9sK3NbwOu6KvfWT3fA85Mci5wKbC7qg5V1WFgN7CurXtrVX23/Xb2nX3bkiSNwLGGRAH/K8n3k2xutXdW1TMA7fUdrb4MeLqv72SrzVSfHFB/nSSbk4wnGZ+amjrGIUmSjlp6jP0/VFUHkrwD2J3kr2doO+h+Qs2j/vpi1W3AbQBr1qwZ2EaSNHfHdCZRVQfa60HgL+jdU3i2XSqivR5szSeBFX3dlwMHZqkvH1CXJI3IvEMiyd9J8ttH54FLgEeBHcDRJ5Q2Ave2+R3ANe0pp7XAi+1y1C7gkiRntRvWlwC72rqXkqxtTzVd07ctSdIIHMvlpncCf9GeSl0K/Leq+p9J9gJ3J9kE/BS4qrXfCVwOTAC/AD4BUFWHknwe2Nvafa6qDrX5TwJ3AGcA97VpJFZu+ctX539y00dGtVtJOqnMOySq6ingfQPqzwMXD6gXcG3HtrYCWwfUx4H3zvcYJUnHxk9cS5I6GRKSpE6GhCSpkyEhSepkSEiSOhkSkqROhoQkqZMhIUnqZEhIkjoZEpKkToaEJKnTsf6ehGbR/0WBM/FLBCWdjAyJE2DYYBimj+EhaSEZEsfJfIJhrts1MCSNmiGxiBgYkkbNkDgGJ+rsYa77NjAknSiGxBBO9j/I3s+QdKIYEnO0kGcPkjRqJ31IJFkH/CdgCfDnVXXTAh/SojFMoHm2IWkmJ3VIJFkCfBn4Z8AksDfJjqp6bGGP7NThpSpJMzmpQwK4EJioqqcAkmwH1gOGxAl2oi+rGULS4nCyh8Qy4Om+5Ungg9MbJdkMbG6LP0/yxDz3dw7w3Dz7LgYnzfjyxeO+yZNmbCfAqTw2OLXHt5jG9juDiid7SGRArV5XqLoNuO2Yd5aMV9WaY93OyepUHp9jW7xO5fGdCmM72b/gbxJY0be8HDiwQMciSW84J3tI7AVWJTkvyenABmDHAh+TJL1hnNSXm6rqSJLrgF30HoHdWlX7T+Auj/mS1UnuVB6fY1u8TuXxLfqxpep1l/glSQJO/stNkqQFZEhIkjq9IUMiybokTySZSLJlwPo3Jbmrrd+TZOXoj3J+hhjbx5NMJdnXpn+1EMc5H0m2JjmY5NGO9UlySxv7w0kuGPUxztcQY/twkhf73rf/MOpjnK8kK5I8mOTxJPuTfGpAm8X83g0zvkX7/lFVb6iJ3g3wvwH+PnA68CPg/Glt/g3wp21+A3DXQh/3cRzbx4H/stDHOs/x/RPgAuDRjvWXA/fR+3zNWmDPQh/zcRzbh4FvLfRxznNs5wIXtPnfBv7PgP8uF/N7N8z4Fu3790Y8k3j1qz6q6lfA0a/66Lce2Nbm7wEuTjLog30nm2HGtmhV1XeAQzM0WQ/cWT3fA85Mcu5oju7YDDG2RauqnqmqH7T5l4DH6X2bQr/F/N4NM75F640YEoO+6mP6G/pqm6o6ArwInD2Sozs2w4wN4F+0U/p7kqwYsH6xGnb8i9U/TvKjJPclec9CH8x8tEu37wf2TFt1Srx3M4wPFun790YMiWG+6mOorwM5CQ1z3P8DWFlV/xD43/zmjOlUsFjft2H8APidqnof8J+B/77AxzNnSd4CfAP4dFX9bPrqAV0W1Xs3y/gW7fv3RgyJYb7q49U2SZYCb2NxXAqYdWxV9XxVvdwW/wz4wIiObRRO2a9xqaqfVdXP2/xO4LQk5yzwYQ0tyWn0/oB+raq+OaDJon7vZhvfYn7/3oghMcxXfewANrb5K4EHqt19OsnNOrZp13k/Su/66aliB3BNe1JmLfBiVT2z0Ad1PCT5u0fviyW5kN7/d59f2KMaTjvu24HHq+pLHc0W7Xs3zPgW8/t3Un8tx4lQHV/1keRzwHhV7aD3hn81yQS9M4gNC3fEwxtybP82yUeBI/TG9vEFO+A5SvJ1ek+JnJNkErgBOA2gqv4U2EnvKZkJ4BfAJxbmSOduiLFdCXwyyRHg/wEbFsk/XAA+BHwMeCTJvlb7LPD3YPG/dww3vkX7/vm1HJKkTm/Ey02SpCEZEpKkToaEJKmTISFJ6mRISJI6GRKSpE6GhCSp0/8HcTJbkOZA54AAAAAASUVORK5CYII=\n",
4150
      "text/plain": [
4151
       "<Figure size 432x288 with 1 Axes>"
4152
      ]
4153
     },
4154
     "metadata": {
4155
      "needs_background": "light"
4156
     },
4157
     "output_type": "display_data"
4158
    }
4159
   ],
4160
   "source": [
4161
    "a = plt.hist(train_md.weight, bins=100)"
4162
   ]
4163
  },
4164
  {
4165
   "cell_type": "markdown",
4166
   "metadata": {},
4167
   "source": [
4168
    "# LightGBM"
4169
   ]
4170
  },
4171
  {
4172
   "cell_type": "raw",
4173
   "metadata": {},
4174
   "source": [
4175
    "https://dicom.innolitics.com/ciods/ct-image/image-plane/00200037\n",
4176
    "\n",
4177
    "Bits Allocated Attribute\n",
4178
    "Tag\t(0028,0100)\n",
4179
    "Type\tRequired (1)\n",
4180
    "Keyword\tBitsAllocated\n",
4181
    "Value Multiplicity\t1\n",
4182
    "Value Representation\tUnsigned Short (US)\n",
4183
    "Number of bits allocated for each pixel sample. Each sample shall have the same number of bits allocated. Bits Allocated (0028,0100) shall be either 1, or a multiple of 8. See PS3.5 for further explanation.\n",
4184
    "\n",
4185
    "Bits Stored Attribute\n",
4186
    "Tag\t(0028,0101)\n",
4187
    "Type\tRequired (1)\n",
4188
    "Keyword\tBitsStored\n",
4189
    "Value Multiplicity\t1\n",
4190
    "Value Representation\tUnsigned Short (US)\n",
4191
    "Number of bits stored for each pixel sample. Each sample shall have the same number of bits stored. See PS3.5 for further explanation.\n",
4192
    "\n",
4193
    "High Bit Attribute\n",
4194
    "Tag\t(0028,0102)\n",
4195
    "Type\tRequired (1)\n",
4196
    "Keyword\tHighBit\n",
4197
    "Value Multiplicity\t1\n",
4198
    "Value Representation\tUnsigned Short (US)\n",
4199
    "Most significant bit for pixel sample data. Each sample shall have the same high bit. High Bit (0028,0102) shall be one less than Bits Stored (0028,0101). See PS3.5 for further explanation.\n",
4200
    "\n",
4201
    "--- STRONG (4) ---\n",
4202
    "Image Orientation (Patient) Attribute\n",
4203
    "Tag\t(0020,0037)\n",
4204
    "Type\tRequired (1)\n",
4205
    "Keyword\tImageOrientationPatient\n",
4206
    "Value Multiplicity\t6\n",
4207
    "Value Representation\tDecimal String (DS)\n",
4208
    "The direction cosines of the first row and the first column with respect to the patient. See Section C.7.6.2.1.1 for further explanation.\n",
4209
    "\n",
4210
    "--- STRONG (0,1,2) ---\n",
4211
    "Image Position (Patient) Attribute\n",
4212
    "Tag\t(0020,0032)\n",
4213
    "Type\tRequired (1)\n",
4214
    "Keyword\tImagePositionPatient\n",
4215
    "Value Multiplicity\t3\n",
4216
    "Value Representation\tDecimal String (DS)\n",
4217
    "The x, y, and z coordinates of the upper left hand corner (center of the first voxel transmitted) of the image, in mm. See Section C.7.6.2.1.1 for further explanation.\n",
4218
    "\n",
4219
    "--- STRONG ---\n",
4220
    "Pixel Representation Attribute\n",
4221
    "Tag\t(0028,0103)\n",
4222
    "Type\tRequired (1)\n",
4223
    "Keyword\tPixelRepresentation\n",
4224
    "Value Multiplicity\t1\n",
4225
    "Value Representation\tUnsigned Short (US)\n",
4226
    "Data representation of the pixel samples. Each sample shall have the same pixel representation.\n",
4227
    "\n",
4228
    "--- STRONG (0,1) ---\n",
4229
    "Pixel Spacing Attribute\n",
4230
    "Tag\t(0028,0030)\n",
4231
    "Type\tRequired (1)\n",
4232
    "Keyword\tPixelSpacing\n",
4233
    "Value Multiplicity\t2\n",
4234
    "Value Representation\tDecimal String (DS)\n",
4235
    "Physical distance in the patient between the center of each pixel, specified by a numeric pair - adjacent row spacing (delimiter) adjacent column spacing in mm. See Section 10.7.1.3 for further explanation.\n",
4236
    "\n",
4237
    "Rescale Intercept Attribute\n",
4238
    "Tag\t(0028,1052)\n",
4239
    "Type\tRequired (1)\n",
4240
    "Keyword\tRescaleIntercept\n",
4241
    "Value Multiplicity\t1\n",
4242
    "Value Representation\tDecimal String (DS)\n",
4243
    "The value b in relationship between stored values (SV) and the output units.\n",
4244
    "Output units = m*SV+b\n",
4245
    "If Image Type (0008,0008) Value 1 is ORIGINAL and Value 3 is not LOCALIZER, output units shall be Hounsfield Units (HU).\n",
4246
    "\n",
4247
    "--- STRONG (0) ---\n",
4248
    "Window Center Attribute\n",
4249
    "Tag\t(0028,1050)\n",
4250
    "Type\tConditionally Required (1C)\n",
4251
    "Keyword\tWindowCenter\n",
4252
    "Value Multiplicity\t1-n\n",
4253
    "Value Representation\tDecimal String (DS)\n",
4254
    "Window Center for display.\n",
4255
    "See Section C.11.2.1.2 for further explanation.\n",
4256
    "Required if VOI LUT Sequence (0028,3010) is not present. May be present otherwise.\n",
4257
    "\n",
4258
    "Window Width Attribute\n",
4259
    "Tag\t(0028,1051)\n",
4260
    "Type\tConditionally Required (1C)\n",
4261
    "Keyword\tWindowWidth\n",
4262
    "Value Multiplicity\t1-n\n",
4263
    "Value Representation\tDecimal String (DS)\n",
4264
    "Window Width for display. See Section C.11.2.1.2 for further explanation.\n",
4265
    "Required if Window Center (0028,1050) is present."
4266
   ]
4267
  },
4268
  {
4269
   "cell_type": "code",
4270
   "execution_count": null,
4271
   "metadata": {},
4272
   "outputs": [],
4273
   "source": []
4274
  },
4275
  {
4276
   "cell_type": "code",
4277
   "execution_count": 7,
4278
   "metadata": {},
4279
   "outputs": [],
4280
   "source": [
4281
    "def stratified_group_k_fold(X, y, groups, k, seed=42):\n",
4282
    "    labels_num = np.max(y) + 1\n",
4283
    "    y_counts_per_group = defaultdict(lambda: np.zeros(labels_num))\n",
4284
    "    y_distr = Counter()\n",
4285
    "    for label, g in zip(y, groups):\n",
4286
    "        y_counts_per_group[g][label] += 1\n",
4287
    "        y_distr[label] += 1\n",
4288
    "\n",
4289
    "    y_counts_per_fold = defaultdict(lambda: np.zeros(labels_num))\n",
4290
    "    groups_per_fold = defaultdict(set)\n",
4291
    "\n",
4292
    "    def eval_y_counts_per_fold(y_counts, fold):\n",
4293
    "        y_counts_per_fold[fold] += y_counts\n",
4294
    "        std_per_label = []\n",
4295
    "        for label in range(labels_num):\n",
4296
    "            label_std = np.std([y_counts_per_fold[i][label] / y_distr[label] for i in range(k)])\n",
4297
    "            std_per_label.append(label_std)\n",
4298
    "        y_counts_per_fold[fold] -= y_counts\n",
4299
    "        return np.mean(std_per_label)\n",
4300
    "    \n",
4301
    "    groups_and_y_counts = list(y_counts_per_group.items())\n",
4302
    "    random.Random(seed).shuffle(groups_and_y_counts)\n",
4303
    "\n",
4304
    "    for g, y_counts in sorted(groups_and_y_counts, key=lambda x: -np.std(x[1])):\n",
4305
    "        best_fold = None\n",
4306
    "        min_eval = None\n",
4307
    "        for i in range(k):\n",
4308
    "            fold_eval = eval_y_counts_per_fold(y_counts, i)\n",
4309
    "            if min_eval is None or fold_eval < min_eval:\n",
4310
    "                min_eval = fold_eval\n",
4311
    "                best_fold = i\n",
4312
    "        y_counts_per_fold[best_fold] += y_counts\n",
4313
    "        groups_per_fold[best_fold].add(g)\n",
4314
    "\n",
4315
    "    all_groups = set(groups)\n",
4316
    "    for i in range(k):\n",
4317
    "        train_groups = all_groups - groups_per_fold[i]\n",
4318
    "        test_groups = groups_per_fold[i]\n",
4319
    "\n",
4320
    "        train_indices = [i for i, g in enumerate(groups) if g in train_groups]\n",
4321
    "        test_indices = [i for i, g in enumerate(groups) if g in test_groups]\n",
4322
    "\n",
4323
    "        yield train_indices, test_indices"
4324
   ]
4325
  },
4326
  {
4327
   "cell_type": "code",
4328
   "execution_count": 8,
4329
   "metadata": {},
4330
   "outputs": [],
4331
   "source": [
4332
    "params_lgb = {\n",
4333
    "    'boosting_type': 'gbdt',\n",
4334
    "    'objective': 'binary',\n",
4335
    "    'metric': {'binary_logloss'},\n",
4336
    "    'num_leaves': 96,\n",
4337
    "    'max_depth': 7,\n",
4338
    "    'feature_fraction': 0.9,\n",
4339
    "    'bagging_fraction': 0.6,\n",
4340
    "    'bagging_freq': 1,\n",
4341
    "    'learning_rate': 0.05\n",
4342
    "}"
4343
   ]
4344
  },
4345
  {
4346
   "cell_type": "code",
4347
   "execution_count": 29,
4348
   "metadata": {},
4349
   "outputs": [],
4350
   "source": [
4351
    "class _Loss(Module):\n",
4352
    "    def __init__(self, size_average=None, reduce=None, reduction='mean'):\n",
4353
    "        super(_Loss, self).__init__()\n",
4354
    "        if size_average is not None or reduce is not None:\n",
4355
    "            self.reduction = _Reduction.legacy_get_string(size_average, reduce)\n",
4356
    "        else:\n",
4357
    "            self.reduction = reduction\n",
4358
    "\n",
4359
    "class BCEWithLogitsLoss(_Loss):\n",
4360
    "    __constants__ = ['weight', 'pos_weight', 'reduction']\n",
4361
    "\n",
4362
    "    def __init__(self, weight=None, size_average=None, reduce=None, reduction='mean', pos_weight=None):\n",
4363
    "        super(BCEWithLogitsLoss, self).__init__(size_average, reduce, reduction)\n",
4364
    "        self.register_buffer('weight', weight)\n",
4365
    "        self.register_buffer('pos_weight', pos_weight)\n",
4366
    "\n",
4367
    "    def forward(self, input, target):\n",
4368
    "        return F.binary_cross_entropy_with_logits(input.squeeze(), target,\n",
4369
    "                                                  self.weight,\n",
4370
    "                                                  pos_weight=self.pos_weight,\n",
4371
    "                                                  reduction=self.reduction)"
4372
   ]
4373
  },
4374
  {
4375
   "cell_type": "code",
4376
   "execution_count": 50,
4377
   "metadata": {},
4378
   "outputs": [],
4379
   "source": [
4380
    "FOLDS = 3\n",
4381
    "\n",
4382
    "def train_one(data = None, run_perm = False, target = 'qt', weight = None, group_col = None, method='lgb'):\n",
4383
    "    \n",
4384
    "    fi = pd.DataFrame()\n",
4385
    "    models = []\n",
4386
    "    \n",
4387
    "    my_seed = 1235\n",
4388
    "    random.seed(my_seed)\n",
4389
    "    np.random.seed(my_seed)\n",
4390
    "    \n",
4391
    "    for i, (dev_index, val_index) in enumerate(stratified_group_k_fold(\n",
4392
    "                data,data[target],groups=group_col,k=FOLDS,seed=my_seed)):\n",
4393
    "        data.loc[val_index,'fold'] = i\n",
4394
    "    \n",
4395
    "    data_filt = data.copy()\n",
4396
    "    del data_filt[target]\n",
4397
    "    \n",
4398
    "    predictions = np.zeros(len(data_filt))\n",
4399
    "    \n",
4400
    "    for i in range(FOLDS):\n",
4401
    "        \n",
4402
    "        Xt, Xv = data_filt.loc[data_filt['fold'] != i, :], data_filt.loc[data_filt['fold'] == i, :]\n",
4403
    "        yt, yv = data.loc[data_filt['fold'] != i, target], data.loc[data_filt['fold'] == i, target]\n",
4404
    "        Xt = Xt.drop('fold', axis=1)\n",
4405
    "        Xv = Xv.drop('fold', axis=1)\n",
4406
    "        \n",
4407
    "        wt = None\n",
4408
    "        wv = None\n",
4409
    "        if weight is not None:\n",
4410
    "            wt = weight[data_filt['fold'] != i]\n",
4411
    "            wv = weight[data_filt['fold'] == i]\n",
4412
    "        \n",
4413
    "        print('Fold', i, 'weight', np.sum(wt))\n",
4414
    "        \n",
4415
    "        if method == 'lgb':\n",
4416
    "            d_train = lgb.Dataset(Xt, yt, weight = wt)\n",
4417
    "            d_valid = lgb.Dataset(Xv, yv, weight = wv)\n",
4418
    "\n",
4419
    "            watchlist = [d_train, d_valid]\n",
4420
    "            model = lgb.train(params_lgb,\n",
4421
    "                              train_set=d_train,\n",
4422
    "                              num_boost_round=200,\n",
4423
    "                              valid_sets=watchlist,\n",
4424
    "                              verbose_eval=10,\n",
4425
    "                              early_stopping_rounds=20)\n",
4426
    "\n",
4427
    "            predictions[data_filt['fold'] == i] = model.predict(Xv, num_iteration=model.best_iteration)\n",
4428
    "\n",
4429
    "            if run_perm:\n",
4430
    "                def eli_score(X, y):\n",
4431
    "                    y_pred = model.predict(X, num_iteration=model.best_iteration)\n",
4432
    "                    return np.abs(np.clip(y_pred,0,14) - y).mean()\n",
4433
    "\n",
4434
    "                base_score, score_decreases = get_score_importances(eli_score, np.array(Xv), yv.values, \n",
4435
    "                                                                    random_state=1000+10*i)\n",
4436
    "                fi = pd.concat([fi, pd.DataFrame(np.array(score_decreases), columns = Xt.columns)], axis=0)\n",
4437
    "            else:\n",
4438
    "                fold_importance = pd.DataFrame()\n",
4439
    "                fold_importance[\"feature\"] = Xt.columns\n",
4440
    "                fold_importance[\"importance\"] = model.feature_importance()\n",
4441
    "                fold_importance[\"fold\"] = i\n",
4442
    "                fi = pd.concat([fi, fold_importance], axis=0)\n",
4443
    "\n",
4444
    "        if method == 'fastai':\n",
4445
    "            #torch.cuda.empty_cache()\n",
4446
    "            \n",
4447
    "            sampler = None\n",
4448
    "            if wt is not None:\n",
4449
    "                ww = torch.DoubleTensor(wt)\n",
4450
    "                sampler = torch.utils.data.sampler.WeightedRandomSampler(ww, len(ww), replacement=True)\n",
4451
    "            \n",
4452
    "            # .split_by_idx(np.where(data['fold'] == i)) \\\n",
4453
    "            df = TabularList.from_df(data.loc[data_filt['fold'] != i, :], path=PATH_WORK, \\\n",
4454
    "                                     procs = [FillMissing, Categorify, Normalize], \\\n",
4455
    "                                     cont_names = cols_float, cat_names = cols_cat) \\\n",
4456
    "                .split_none() \\\n",
4457
    "                .label_from_df(cols=['any_float']) \\\n",
4458
    "                .databunch(num_workers=0, bs=1000, sampler=sampler)\n",
4459
    "            \n",
4460
    "            emb_dict = dict(zip(cols_cat,[2,2,4,2]))\n",
4461
    "            emb_szs = df.get_emb_szs(emb_dict)\n",
4462
    "            \n",
4463
    "            tab_model = TabularModel(n_cont = len(cols_float), out_sz=1, \\\n",
4464
    "                                     layers=[100,100], ps=[0.5,0.5], bn_final=True, \\\n",
4465
    "                                     emb_szs = emb_szs)\n",
4466
    "            model = Learner(df, tab_model, path=PATH_WORK, loss_func=BCEWithLogitsLoss())#.mixup()\n",
4467
    "            model.fit(2, 1e-1, wd=5e-3)\n",
4468
    "            \n",
4469
    "            #predictions[data_filt['fold'] == i] = np.array(model.get_preds(ds_type=DatasetType.Valid)[0])\n",
4470
    "            df_test = TabularList.from_df(data.loc[data_filt['fold'] == i, :], cont_names = cols_float, \n",
4471
    "                                          cat_names = cols_cat,\n",
4472
    "                                          processor=model.data.label_list.train.x.processor)\n",
4473
    "            model.data.add_test(df_test)\n",
4474
    "            predictions[data_filt['fold'] == i] = model.get_preds(ds_type=DatasetType.Test)[0].reshape(-1)\n",
4475
    "            \n",
4476
    "        models.append(model)\n",
4477
    "    \n",
4478
    "    print('Log-loss', log_loss(data[target],predictions))\n",
4479
    "    print('correlation', np.corrcoef(data[target],predictions)[0,1])\n",
4480
    "    \n",
4481
    "    return predictions, models, fi"
4482
   ]
4483
  },
4484
  {
4485
   "cell_type": "code",
4486
   "execution_count": 53,
4487
   "metadata": {},
4488
   "outputs": [],
4489
   "source": [
4490
    "#['any','epidural','intraparenchymal','intraventricular','subarachnoid','subdural']\n",
4491
    "target = 'any'\n",
4492
    "train_md_filt = train_md.loc[:,cols_cat + cols_float + [target]]#,'any_float'\n",
4493
    "#train_md_filt = train_md.loc[:,significant_cols + [target]]"
4494
   ]
4495
  },
4496
  {
4497
   "cell_type": "code",
4498
   "execution_count": 13,
4499
   "metadata": {},
4500
   "outputs": [],
4501
   "source": [
4502
    "weights = None"
4503
   ]
4504
  },
4505
  {
4506
   "cell_type": "code",
4507
   "execution_count": 383,
4508
   "metadata": {},
4509
   "outputs": [],
4510
   "source": [
4511
    "weights = np.zeros(len(train_md))\n",
4512
    "weights[train_md[target] == 1] = 1/train_md[target].mean()\n",
4513
    "weights[train_md[target] == 0] = 1/(1-train_md[target].mean())"
4514
   ]
4515
  },
4516
  {
4517
   "cell_type": "code",
4518
   "execution_count": 200,
4519
   "metadata": {},
4520
   "outputs": [],
4521
   "source": [
4522
    "weights = train_md.weight"
4523
   ]
4524
  },
4525
  {
4526
   "cell_type": "code",
4527
   "execution_count": 51,
4528
   "metadata": {},
4529
   "outputs": [
4530
    {
4531
     "name": "stdout",
4532
     "output_type": "stream",
4533
     "text": [
4534
      "Log-loss 0.29989245854160523\n",
4535
      "correlation 0.5251683159483055\n"
4536
     ]
4537
    }
4538
   ],
4539
   "source": [
4540
    "predictions, models, fi = train_one(data = train_md_filt, target = target, weight = weights,\n",
4541
    "                                    group_col = train_md['PatientID'].values, run_perm = False, method='fastai')"
4542
   ]
4543
  },
4544
  {
4545
   "cell_type": "code",
4546
   "execution_count": 54,
4547
   "metadata": {},
4548
   "outputs": [
4549
    {
4550
     "name": "stdout",
4551
     "output_type": "stream",
4552
     "text": [
4553
      "Fold 0 weight None\n",
4554
      "Training until validation scores don't improve for 20 rounds.\n",
4555
      "[10]\ttraining's binary_logloss: 0.33222\tvalid_1's binary_logloss: 0.335346\n",
4556
      "[20]\ttraining's binary_logloss: 0.30197\tvalid_1's binary_logloss: 0.307155\n",
4557
      "[30]\ttraining's binary_logloss: 0.288001\tvalid_1's binary_logloss: 0.294817\n",
4558
      "[40]\ttraining's binary_logloss: 0.280605\tvalid_1's binary_logloss: 0.289165\n",
4559
      "[50]\ttraining's binary_logloss: 0.275867\tvalid_1's binary_logloss: 0.286256\n",
4560
      "[60]\ttraining's binary_logloss: 0.272542\tvalid_1's binary_logloss: 0.284556\n",
4561
      "[70]\ttraining's binary_logloss: 0.269655\tvalid_1's binary_logloss: 0.28343\n",
4562
      "[80]\ttraining's binary_logloss: 0.267384\tvalid_1's binary_logloss: 0.282836\n",
4563
      "[90]\ttraining's binary_logloss: 0.265162\tvalid_1's binary_logloss: 0.282621\n",
4564
      "[100]\ttraining's binary_logloss: 0.263334\tvalid_1's binary_logloss: 0.282625\n",
4565
      "[110]\ttraining's binary_logloss: 0.260627\tvalid_1's binary_logloss: 0.282456\n",
4566
      "[120]\ttraining's binary_logloss: 0.258336\tvalid_1's binary_logloss: 0.282409\n",
4567
      "[130]\ttraining's binary_logloss: 0.256807\tvalid_1's binary_logloss: 0.282465\n",
4568
      "Early stopping, best iteration is:\n",
4569
      "[112]\ttraining's binary_logloss: 0.260082\tvalid_1's binary_logloss: 0.282408\n",
4570
      "Fold 1 weight None\n",
4571
      "Training until validation scores don't improve for 20 rounds.\n",
4572
      "[10]\ttraining's binary_logloss: 0.332889\tvalid_1's binary_logloss: 0.334223\n",
4573
      "[20]\ttraining's binary_logloss: 0.302844\tvalid_1's binary_logloss: 0.305439\n",
4574
      "[30]\ttraining's binary_logloss: 0.288866\tvalid_1's binary_logloss: 0.292726\n",
4575
      "[40]\ttraining's binary_logloss: 0.281478\tvalid_1's binary_logloss: 0.286848\n",
4576
      "[50]\ttraining's binary_logloss: 0.276848\tvalid_1's binary_logloss: 0.283918\n",
4577
      "[60]\ttraining's binary_logloss: 0.273663\tvalid_1's binary_logloss: 0.282303\n",
4578
      "[70]\ttraining's binary_logloss: 0.27065\tvalid_1's binary_logloss: 0.281181\n",
4579
      "[80]\ttraining's binary_logloss: 0.268183\tvalid_1's binary_logloss: 0.2806\n",
4580
      "[90]\ttraining's binary_logloss: 0.26631\tvalid_1's binary_logloss: 0.280349\n",
4581
      "[100]\ttraining's binary_logloss: 0.264072\tvalid_1's binary_logloss: 0.280052\n",
4582
      "[110]\ttraining's binary_logloss: 0.262117\tvalid_1's binary_logloss: 0.279994\n",
4583
      "[120]\ttraining's binary_logloss: 0.259073\tvalid_1's binary_logloss: 0.280071\n",
4584
      "Early stopping, best iteration is:\n",
4585
      "[109]\ttraining's binary_logloss: 0.262366\tvalid_1's binary_logloss: 0.279951\n",
4586
      "Fold 2 weight None\n",
4587
      "Training until validation scores don't improve for 20 rounds.\n",
4588
      "[10]\ttraining's binary_logloss: 0.333013\tvalid_1's binary_logloss: 0.334721\n",
4589
      "[20]\ttraining's binary_logloss: 0.302782\tvalid_1's binary_logloss: 0.30573\n",
4590
      "[30]\ttraining's binary_logloss: 0.288729\tvalid_1's binary_logloss: 0.292937\n",
4591
      "[40]\ttraining's binary_logloss: 0.281235\tvalid_1's binary_logloss: 0.286798\n",
4592
      "[50]\ttraining's binary_logloss: 0.2768\tvalid_1's binary_logloss: 0.283768\n",
4593
      "[60]\ttraining's binary_logloss: 0.273794\tvalid_1's binary_logloss: 0.28218\n",
4594
      "[70]\ttraining's binary_logloss: 0.270847\tvalid_1's binary_logloss: 0.281183\n",
4595
      "[80]\ttraining's binary_logloss: 0.268797\tvalid_1's binary_logloss: 0.280617\n",
4596
      "[90]\ttraining's binary_logloss: 0.266215\tvalid_1's binary_logloss: 0.280295\n",
4597
      "[100]\ttraining's binary_logloss: 0.264615\tvalid_1's binary_logloss: 0.280349\n",
4598
      "[110]\ttraining's binary_logloss: 0.262101\tvalid_1's binary_logloss: 0.280267\n",
4599
      "[120]\ttraining's binary_logloss: 0.259911\tvalid_1's binary_logloss: 0.280298\n",
4600
      "Early stopping, best iteration is:\n",
4601
      "[106]\ttraining's binary_logloss: 0.263156\tvalid_1's binary_logloss: 0.280216\n",
4602
      "Log-loss 0.28085801059172844\n",
4603
      "correlation 0.5561698735898959\n"
4604
     ]
4605
    }
4606
   ],
4607
   "source": [
4608
    "predictions, models, fi = train_one(data = train_md_filt, target = target, weight = weights,\n",
4609
    "                                    group_col = train_md['PatientID'].values, run_perm = False)"
4610
   ]
4611
  },
4612
  {
4613
   "cell_type": "code",
4614
   "execution_count": null,
4615
   "metadata": {},
4616
   "outputs": [],
4617
   "source": [
4618
    "# Log-loss 0.29989245854160523 fastai\n",
4619
    "# Log-loss 0.28085801059172844\n",
4620
    "# Log-loss 0.28094796423469764\n",
4621
    "# Log-loss 0.28327769694097565\n",
4622
    "# Log-loss 0.3199663177316350\n",
4623
    "# Log-loss 0.3199656382395672 - seed 1235\n",
4624
    "# Log-loss 0.3199215860958348 - seed 1235 / only significant\n",
4625
    "# Log-loss 0.3193615167492591 - only significant\n",
4626
    "# Log-loss 0.3195333145247021\n",
4627
    "# Log-loss 0.3197181080279387\n",
4628
    "# Log-loss 0.319863484530601\n",
4629
    "# Log-loss 0.3200582941680835"
4630
   ]
4631
  },
4632
  {
4633
   "cell_type": "code",
4634
   "execution_count": 59,
4635
   "metadata": {
4636
    "scrolled": true
4637
   },
4638
   "outputs": [
4639
    {
4640
     "data": {
4641
      "text/plain": [
4642
       "0.7978670348307371"
4643
      ]
4644
     },
4645
     "execution_count": 59,
4646
     "metadata": {},
4647
     "output_type": "execute_result"
4648
    }
4649
   ],
4650
   "source": [
4651
    "predictions.max()"
4652
   ]
4653
  },
4654
  {
4655
   "cell_type": "code",
4656
   "execution_count": 60,
4657
   "metadata": {},
4658
   "outputs": [
4659
    {
4660
     "data": {
4661
      "text/plain": [
4662
       "0.007832802543123706"
4663
      ]
4664
     },
4665
     "execution_count": 60,
4666
     "metadata": {},
4667
     "output_type": "execute_result"
4668
    }
4669
   ],
4670
   "source": [
4671
    "predictions.min()"
4672
   ]
4673
  },
4674
  {
4675
   "cell_type": "code",
4676
   "execution_count": 264,
4677
   "metadata": {},
4678
   "outputs": [
4679
    {
4680
     "data": {
4681
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAD4CAYAAADmWv3KAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAOA0lEQVR4nO3dbYxcZRnG8evCokZBre5CKlJXDRiJicVssMZEIVhD+sFKogYStRriGhWjSEwQP0j0g0TFRhOjFmmoRvFdaQy+bGpN1VDiVBELDQVrrZWGLqKIMb4Ubz/MaR22O52zZ86Zl3v+v2QzZ87LnPvZmbnm2eecOeuIEAAgn1OGXQAAoBkEPAAkRcADQFIEPAAkRcADQFIrBrmzqampmJmZGeQuAWDs7d69+6GImF7udgMN+JmZGbVarUHuEgDGnu0/VNmOIRoASIqAB4CkCHgASIqAB4Ckega87bNt77C91/bdtt9bzL/O9p9s31n8rG++XABAWWXOojkq6eqI+JXt0yXttj1fLNsUEZ9srjwAQFU9Az4iDks6XEw/anuvpLOaLgwA0J9ljcHbnpF0vqQ7illX2r7L9hbbK7tsM2e7Zbu1sLDQV7EAgPJKB7zt0yR9W9L7IuJvkj4n6QWS1qjdw79hqe0iYnNEzEbE7PT0sr+IBQCoqNQ3WW2fqna4fyUiviNJEfFgx/IbJX2/kQoLm+b3HZ++at25Te4KAFIocxaNJd0kaW9EfKpj/qqO1S6VtKf+8gAAVZXpwb9C0psl/db2ncW8ayVdbnuNpJB0QNI7GqkQAFBJmbNofi7JSyy6rf5yAAB14ZusAJAUAQ8ASRHwAJAUAQ8ASRHwAJAUAQ8ASRHwAJAUAQ8ASRHwAJAUAQ8ASRHwAJAUAQ8ASRHwAJAUAQ8ASRHwAJAUAQ8ASRHwAJAUAQ8ASRHwAJAUAQ8ASRHwAJAUAQ8ASRHwAJAUAQ8ASRHwAJAUAQ8ASRHwAJAUAQ8ASRHwAJAUAQ8ASRHwAJAUAQ8ASfUMeNtn295he6/tu22/t5j/TNvztu8rblc2Xy4AoKwyPfijkq6OiBdJWivp3bbPk3SNpO0RcY6k7cV9AMCI6BnwEXE4In5VTD8qaa+ksyRtkLS1WG2rpNc1VSQAYPmWNQZve0bS+ZLukHRmRByW2h8Cks6ouzgAQHWlA972aZK+Lel9EfG3ZWw3Z7tlu7WwsFClRgBABaUC3vapaof7VyLiO8XsB22vKpavknRkqW0jYnNEzEbE7PT0dB01AwBKKHMWjSXdJGlvRHyqY9E2SRuL6Y2Sbq2/PABAVStKrPMKSW+W9FvbdxbzrpV0vaRv2L5C0kFJb2imRABAFT0DPiJ+LsldFl9cbzkAgLrwTVYASIqAB4CkCHgASIqAB4CkCHgASIqAB4CkCHgASIqAB4CkCHgASIqAB4CkCHgASIqAB4CkCHgASIqAB4CkCHgASIqAB4CkCHgASIqAB4CkCHgASIqAB4CkCHgASIqAB4CkCHgASIqAB4CkCHgASIqAB4CkCHgASIqAB4CkCHgASIqAB4CkCHgASIqAB4CkCHgASKpnwNveYvuI7T0d866z/SfbdxY/65stEwCwXGV68DdLumSJ+ZsiYk3xc1u9ZQEA+tUz4CNip6SHB1ALAKBG/YzBX2n7rmIIZ2W3lWzP2W7Zbi0sLPSxOwDAclQN+M9JeoGkNZIOS7qh24oRsTkiZiNidnp6uuLuAADLVSngI+LBiHgsIv4r6UZJF9RbFgCgX5UC3vaqjruXStrTbV0AwHCs6LWC7VskXShpyvYhSR+WdKHtNZJC0gFJ72iwRgBABT0DPiIuX2L2TQ3UAgCoEd9kBYCkCHgASIqAB4CkCHgASIqAB4CkCHgASIqAB4CkCHgASIqAB4CkCHgASIqAB4CkCHgASIqAB4CkCHgASIqAB4CkCHgASIqAB4CkCHgASIqAB4CkCHgASIqAB4CkCHgASIqAB4CkCHgASIqAB4CkCHgASIqAB4CkCHgASIqAB4CkCHgASIqAB4CkCHgASIqAB4Ckega87S22j9je0zHvmbbnbd9X3K5stkwAwHKV6cHfLOmSRfOukbQ9Is6RtL24DwAYIT0DPiJ2Snp40ewNkrYW01slva7mugAAfao6Bn9mRByWpOL2jG4r2p6z3bLdWlhYqLi7x9s0v0+b5vfV8lgAkFXjB1kjYnNEzEbE7PT0dNO7AwAUqgb8g7ZXSVJxe6S+kgAAdaga8NskbSymN0q6tZ5yAAB1KXOa5C2Sbpf0QtuHbF8h6XpJ62zfJ2ldcR8AMEJW9FohIi7vsujimmsBANSIb7ICQFIEPAAkRcADQFIEPAAkRcADQFIEPAAkRcADQFIEPAAkRcADQFIEPAAkRcADQFIEPAAkRcADQFIEPAAkRcADQFIEPAAkRcADQFIEPAAkRcADQFI9/yfrKNs0v+/49FXrzh1iJQAweujBA0BSBDwAJEXAA0BSBDwAJEXAA0BSBDwAJEXAA0BSBDwAJEXAA0BSBDwAJEXAA0BSY30tmk5clwYAHi9NwC+F0AcwyfoKeNsHJD0q6TFJRyNito6iAAD9q6MHf1FEPFTD49Sms+cOAJNqYg6ybprfR/ADmCj99uBD0o9th6QvRMTmxSvYnpM0J0mrV6/uc3fNYKweQEaOiOob28+OiAdsnyFpXtJ7ImJnt/VnZ2ej1WpV2tcwet+EPYBRYHt3lWOcfQ3RRMQDxe0RSd+VdEE/jwcAqE/lgLf9VNunH5uW9BpJe+oqDADQn37G4M+U9F3bxx7nqxHxw1qqAgD0rXLAR8R+SS+psZaRc2zcn7F4AOMo9TdZ68JZNgDG0cScBw8Ak4aAB4CkCHgASIqAXyYueQBgXBDwAJAUAQ8ASRHwAJAUAQ8ASRHwAJAUAQ8ASRHwAJAU16KpiOvTABh1BHwXaw+e8N8HT7Br9dwAKgGAagh4YJLs+NjS8y/64GDrwEAwBg8ASdGD71BmWGbJ9Xc8ix4QRle3XjvSm/iAX26oL+X2/X/WrqP89yeMsc4PAToraUx8wAMp0WuHJjTg6+i1A0PTrbdNqGORiQz4JjAej0Z1C+8mQp3hmjQmIuAH2WM/Nh7PWDwqoReOGk1EwAOoiN78WCPgG7D24Ob2UI3EmwK90WtHQwj4hty+/8+SxHDNpCCkMYLSBjxnyqARkxzkDNeMnbQBPyoYrhkxZQKa56k/fBCMjFQBP6q99mPDNS8XL/yB6SdkJrmXXtbi3xGv55E09gE/qqG+lGNBLy0K+06T/kZp+rxuNKPM75grWQ7c2Af8uHpc2D//Wf9fME5vguX2kgnaycNzPlRjGfDj1Gsv4/gQTmfQ92vQbyzeyMDIGcuAz6prr14iQAEs29gEfLZeey+dYb9YrT19YNg466YxfQW87UskfVrSEyR9MSKur6UqnNTJwr8OfIAAOVQOeNtPkPRZSeskHZL0S9vbIuKeuorDcDT9AYLRNfQPd3rzteqnB3+BpPsjYr8k2f6apA2SCHhgTA36w/2kHyiEfd/6CfizJP2x4/4hSS9bvJLtOUlzxd2/27634v6mJD1UcdsMaP/ktn+S2y5JU9K1E95+PbfKhv0EvJeYFyfMiNgsqe8jpLZbETHb7+OMK9o/ue2f5LZLtL9o/0yVbU/pY7+HJJ3dcf85kh7o4/EAADXqJ+B/Kekc28+z/URJl0naVk9ZAIB+VR6iiYijtq+U9CO1T5PcEhF311bZiSbrRPgT0f7JNcltl2h/5fY74oRhcwBAAv0M0QAARhgBDwBJjVzA277E9r2277d9zRLLn2T768XyO2zPDL7KZpRo+/tt32P7LtvbbVc6N3ZU9Wp/x3qvtx22U506V6b9tt9YvAbutv3VQdfYpBKv/9W2d9j+dfEeWD+MOptge4vtI7b3dFlu258pfjd32X5pqQeOiJH5Uftg7e8kPV/SEyX9RtJ5i9Z5l6TPF9OXSfr6sOseYNsvkvSUYvqdWdpetv3FeqdL2ilpl6TZYdc94Of/HEm/lrSyuH/GsOsecPs3S3pnMX2epAPDrrvG9r9S0ksl7emyfL2kH6j9/aO1ku4o87ij1oM/fvmDiPi3pGOXP+i0QdLWYvpbki62vdSXrsZNz7ZHxI6I+Edxd5fa3z3IosxzL0kflfRxSf8cZHEDUKb9b5f02Yj4iyRFxJEB19ikMu0PSU8rpp+uRN+7iYidkh4+ySobJH0p2nZJeobtVb0ed9QCfqnLH5zVbZ2IOCrpEUkZLn9Ypu2drlD7Ez2Lnu23fb6ksyPi+4MsbEDKPP/nSjrX9i9s7yqu5ppFmfZfJ+lNtg9Juk3SewZT2khYbj5IGr3rwZe5/EGpSySModLtsv0mSbOSXtVoRYN10vbbPkXSJklvHVRBA1bm+V+h9jDNhWr/9fYz2y+OiL82XNsglGn/5ZJujogbbL9c0peL9v+3+fKGrlLujVoPvszlD46vY3uF2n+qnexPm3FR6tIPtl8t6UOSXhsR/xpQbYPQq/2nS3qxpJ/aPqD2OOS2RAday772b42I/0TE7yXdq3bgZ1Cm/VdI+oYkRcTtkp6s9oW4JkGlS8OMWsCXufzBNkkbi+nXS/pJFEchxlzPthdDFF9QO9wzjb9KPdofEY9ExFREzET7wku71P49tIZTbu3KvPa/p/aBdtmeUnvIZv9Aq2xOmfYflHSxJNl+kdoBvzDQKodnm6S3FGfTrJX0SEQc7rXRSA3RRJfLH9j+iKRWRGyTdJPaf5rdr3bP/bLhVVyfkm3/hKTTJH2zOK58MCJeO7Sia1Sy/WmVbP+PJL3G9j2SHpP0gYhI8d9ZSrb/akk32r5K7eGJtybp3Mn2LWoPvU0Vxxg+LOlUSYqIz6t9zGG9pPsl/UPS20o9bpLfDwBgkVEbogEA1ISAB4CkCHgASIqAB4CkCHgASIqAB4CkCHgASOp/Kx2azuOKDdQAAAAASUVORK5CYII=\n",
4682
      "text/plain": [
4683
       "<Figure size 432x288 with 1 Axes>"
4684
      ]
4685
     },
4686
     "metadata": {
4687
      "needs_background": "light"
4688
     },
4689
     "output_type": "display_data"
4690
    }
4691
   ],
4692
   "source": [
4693
    "a = plt.hist(predictions[train_md['any'].values == 0], bins=100, density=True, alpha=0.5)\n",
4694
    "a = plt.hist(predictions[train_md['any'].values == 1], bins=100, density=True, alpha=0.5)"
4695
   ]
4696
  },
4697
  {
4698
   "cell_type": "code",
4699
   "execution_count": 191,
4700
   "metadata": {},
4701
   "outputs": [
4702
    {
4703
     "data": {
4704
      "text/plain": [
4705
       "array(['BitsStored', 'PixelRepresentation', 'WindowCenter_1_NAN',\n",
4706
       "       'ImageOrientationPatient_4', 'ImagePositionPatient_0',\n",
4707
       "       'ImagePositionPatient_1', 'PixelSpacing_0', 'PixelSpacing_1',\n",
4708
       "       'WindowCenter_0', 'WindowCenter_1', 'pos_max', 'pos_min',\n",
4709
       "       'pos_size', 'pos_idx', 'pos_inc'], dtype=object)"
4710
      ]
4711
     },
4712
     "execution_count": 191,
4713
     "metadata": {},
4714
     "output_type": "execute_result"
4715
    }
4716
   ],
4717
   "source": [
4718
    "scores = fi.max(0)\n",
4719
    "significant_cols = scores[scores < 0].index.values\n",
4720
    "significant_cols"
4721
   ]
4722
  },
4723
  {
4724
   "cell_type": "code",
4725
   "execution_count": 46,
4726
   "metadata": {},
4727
   "outputs": [],
4728
   "source": [
4729
    "significant_cols = ['PixelRepresentation', 'ImageOrientationPatient_4',\n",
4730
    "       'ImagePositionPatient_0', 'ImagePositionPatient_1',\n",
4731
    "       'ImagePositionPatient_2', 'PixelSpacing_0', 'PixelSpacing_1',\n",
4732
    "       'WindowCenter_0']\n",
4733
    "significant_cols = ['BitsStored', 'PixelRepresentation', 'WindowCenter_1_NAN',\n",
4734
    "       'ImageOrientationPatient_4', 'ImagePositionPatient_0',\n",
4735
    "       'ImagePositionPatient_1', 'PixelSpacing_0', 'PixelSpacing_1',\n",
4736
    "       'WindowCenter_0', 'WindowCenter_1', 'pos_max', 'pos_min',\n",
4737
    "       'pos_size', 'pos_idx', 'pos_inc']"
4738
   ]
4739
  },
4740
  {
4741
   "cell_type": "code",
4742
   "execution_count": 265,
4743
   "metadata": {},
4744
   "outputs": [
4745
    {
4746
     "data": {
4747
      "image/png": "iVBORw0KGgoAAAANSUhEUgAABCYAAALJCAYAAABoaSJSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdf7znc53//9udkR9hxq86aJmKlFWNkk3ZSqzKlsaWSsqPlEhFth/bD5HSj9m+/eJTyAqrdsuvTUgjIVQSDVMqFLuSlcmvIdSMx/eP1+vwdvacOefMnJnX+XG7Xi7nct7v14/n8/F6ndnW+/5+Pp+vVBWSJEmSJEldWKnrAiRJkiRJ0tRlMCFJkiRJkjpjMCFJkiRJkjpjMCFJkiRJkjpjMCFJkiRJkjpjMCFJkiRJkjpjMCFJkrQCJFk1yXVJ+rquZUVJskWSnydZmOTdwxy7T5LLlrD/4iRvHaaNVZP8OskTlrZmSdKKZzAhSZL+jyQ3J9lpiH1rJflce8z9Sf4nyelJtu05ptp99yVZkOQ/kswYpr8H2uP7fzZaxmt4SZLfL0sbY2x/4IdV9b9dF7ICvR+4uKrWqqovLe/Oquoh4ETgA8u7L0nS2DGYkCRJI5ZkVeAHwDOBVwJrA88A/hPYZcDhz66qNYGnAOsARwzT/Kuqas2enz+MafGjlGTaGDf5duDfx7jNcSGNwf67clPglyu4nG8Ae7f/ViVJE4DBhCRJGo03A08CZlfVL6pqcVXdX1WnV9URg51QVfcCZwNbLk2HSZ6f5EdJ7k5yTZKX9OzbN8mv2qkCv0vy9nb744HvAhv1jsBIclKST/Sc/5hRFe3IjQ8kuRa4P8m09rwzktyR5KbeKQlJtk3ysyT3Jrk9yeeGuIZNgKcCV/Rs+8d2msO9SW5JckTPvvOTvHNAG9ck+af29c5JfpPkniRfTnLJUNMc2ukNX0jyh/bnC/0f2tt798qeY6e1I1yeM4J7f3GSo5JcDvyZJoDq7fcHwA7AMe39f1qS6UlOae/lfyf5yBCBBkn+oZ2WcU+SY4D07NusveZ72nq/2b+vqn4P3AU8f7B2JUnjj8GEJEkajZ2A71XV/SM9Ick6wGzgJ6PtLMnGwLnAJ4B1gfcCZyTZoD3kjzw6cmNf4PNJntPW9wrgD0sxAmMP4B+BGcDDwHeAa4CNgR2BQ5K8rD32i8AXq2ptmuDhW0O0+Uzgd1W1qGfb/cBebT//CByYZHa77xttHf33YUua0QfnJlkfOB34ILAe8BvgBUu4ng/TfEifBTwb2Bb4SLvvP3r7AV4GLKiqq0dw76EJqvYH1gL+u7fTqnopcCnwzvb+Xw8cDUynCTFe3F7/vgMLbq/xjLbO9YHfAi/sOeTjwFyakThPatvt9av2WiVJE4DBhCRJGo31gUfWSEgyq/02/d4kvxlw7NVJ7gYWAJsAxw3T9n+1bd2d5L/abW8Czquq86rq4aq6APgZ7bSRqjq3qn5bjUtoPqz+/TJe45eq6paqegB4HrBBVR1ZVX+pqt8BXwXe0B77V2CzJOtX1X1VNVT4MgNY2Luhqi6uqvntdV1LExK8uN19FjAryabt+z2BM9s1FHYBfllVZ7ZBx5fo+ZsMYk/gyKr6Y1XdAXyMJlCAJgDZNcka7fs3tttgmHvfOqmqfllVi6rqr0uogSQrA68HPlhVC6vqZuD/66ml1y7Ade1InL8CXxhwjX+lCWo2qqoHq2rgopkLae65JGkCMJiQJEmj8Sdgw/43VTWvqmYA/wQMnNP/nHbfasBXgEuTrLaEtmdX1Yz2p3/kwKbA7j2Bxd3A9v01JHlFkp8kubPdtwtNeLIsbul5vSnNdJDe/j8EPLHdvx/wNODXSa7snRYxwF00owoekeTvklzUTmu4Bzigv/aqWkgzWqE/AHkD8PX29Ua9NVZVAUta5HMjHjua4b/bbVTVjTSjC17VhhO78mgwscR73+q9V8NZH3jcILVsPETNA6+xt6/300zt+GmSXyZ5y4Dz1wLuHkVtkqQOGUxIkqTRuBDYuV3DYUTab7xPAJ4MbDXK/m4B/r0nsJhRVY+vqk+36yScAXwWeGIbgpzHo2sR1CDt3Q+s0fN+sEd39p53C3DTgP7Xqqr+ERs3VNUewBOAzwCnD3FvrgWekscuqPkNmrU3/qaqpgPH9tQO7TSLJNsBqwMXtdtvo5m+ADQLT/a+H8QfaEKGfpu02x7TD/BqmlEKN/Zc+6D3vufcwe7xUBbw6EiH3lpuHeTY24C/6X/TXuMj76vqf6vqbVW1Ec2iol9OslnP+c+gmX4jSZoADCYkSdJQVkmyWs/PNOAUmg+NZyXZKsnK7SiIbYZqpB3Cvy/wAPC7UdZwKs23+S/r7yvNgpVPovn2fVXgDmBRklcAO/ecezuwXpLpPdvmAbskWTdJH3DIMP3/FLg3zYKYq7c1bJXkee21vSnJBlX1MI9+Q794YCPtgow30Kzv0G8t4M6qejDNo1bfOOC082g+xB8JfLPtA5qRFM9MMrv9mxzE4AFLv/8APpJkg3btho/S3Nd+/0lz3w7k0dESsOR7P2pVtZhmDY6j0jxydlPg0AG19DsX+Nsk/9Re47t7rzHJ7j113EUTkCxu921MsybGqNc0kSR1w2BCkiQN5TyaMKH/54iqepDmSQvX0Xx4vJdm8cXnAa8bcP41Se6j+eC4N7BbVd05mgKq6haab/I/RBNA3AK8D1ipne7wbpoPu3fRfLA/u+fcX9N8KP9dOxVhI5rHdV4D3EyzHsUjT3MYov/FwKtoFo68ieZb/xNoFnAEeDnwy/Y6vwi8ob1HgzmOx66n8A7gyCQLacKCxyyc2a4ncSbNgqPf6Nm+ANgdmEMztWZLmrUfHhqi30+0+68F5gNXt9v627sN+DHNApq9T7cY8t4P0c9IvItm1MrvgMva6zpx4EE91/hpmmvcHLi855DnAVe09/1s4OCquqnd90bg5Pb+SZImgDRT9iRJkrQ8tVNPfg7s2IYBY9XuSjRrTOxZVRcNd/xk1t7ja4AXVdUfu65HkjQyBhOSJEkTTPu40itoRrK8j2Y6x1PaJ4lIkjShOJVDkiRp4tkO+C3N1JJX0TzRxFBCkjQhOWJCkiRJkiR1xhETkiRJkiSpM9OGP0Ra/tZff/2aOXNm12VIkiRJkpaDq666akFVbTDYPoMJjQszZ87kZz/7WddlSJIkSZKWgyT/PdQ+p3JIkiRJkqTOOGJC48KiO+7kjq+c2nUZkiRJksaZDQ58U9claDlzxIQkSZIkSeqMwYQkSZIkSeqMwYQkSZIkSeqMwYQkSZIkSeqMwYQkSZIkSeqMwYQkSZIkSeqMwYQkSZIkSerMuA4mktzXYd83J5mf5Jokc5P0LUUbRybZqX19SJI1evadl2TGUtZ2UpKbksxLcnWS7YY5fnaSLQerayn6npVkl2GOeXqSHyd5KMl7l6YfSZIkSdLUMK3rAsa5HapqQZJPAh8C3j2ak6vqoz1vDwFOBf7c7lvih/sReF9VnZ5kZ+A44FlLOHY2cA5w3SB1jdYsYBvgvCUccyfNvZq9DP1IkiRJ49JRP/wed/y5s+9Qp5yVfzy36xLGvb6+PubMmdN1GUttQgQTSV4CfAy4neaD8ZnAfOBgYHVgdlX9NsmrgI8AjwP+BOxZVbcn2QD4BrAecCXwcuC5bejwJpoP0Y8DrgDeUVWLB5Tww/YYkuxBE1IEOLeqPpBkZeDfaD6wF3BiVX0+yUk0gcBG7c9FSRZU1Q5Jbga2aWs4FHhL29cJVfWFJDOB7wKXAS8AbgVeXVUPDFLbZm1tbwP2b6/lRuDN7f3aFXhxko8ArwEOA85pg43nAp8D1gQWAPtU1W1JLm7vxw7ADGC/9v2RwOpJtgc+VVXfHPj3qqo/An9M8o8D9/VKsn9bL09ad70lHSpJkiSNG3f8+T7+9757uy5j6vBeT3oTIphoPRt4Bs238b+j+QC/bZKDgXfRjEi4DHh+VVWStwLvB/4ZOBz4QVV9KsnLaT8MJ3kG8HrghVX11yRfBvYEThnQ9yuB+Uk2Aj4DPBe4C5ibZDZwC7BxVW3VtvuYKRpV9aU2fNihqhb07muDgX2Bv6MJO65Icknb/ubAHlX1tiTfogkVTh1Q26toQhqAM6vqq227nwD2q6qjk5xNG0S0+/r7XgU4mibwuCPJ64GjeDQkmdbe412Aw6tqpyQfpQlU3jnYH2k0qup44HiAWZs+pZa1PUmSJGlF2GCNNbsuYUpZefpaXZcw7vX1jXrlgXFlIgUTV1bVbQBJfgv0j+eZT/OtPsCTgG8m2ZBm1MBN7fbtgd0Aqur8JHe123ekCRmubD+srw78safPi5IsBq6lGYnxYuDiqrqjrePrwIuAjwNPSXI0cG5PbSOxPXBWVd3ftnkm8PfA2cBNVTWvPe4qYGbPef/ajoC4g2Y0A8BWbSAxg2YExPeG6XsLYCvggvb6VwZu69l/5hB9S5IkSVPWh1/0sq5LmFI2OPBNXZeg5WwiBRMP9bx+uOf9wzx6HUcDn6uqs9vpH0e02zNEmwFOrqoPDrH/MSMc0j/UYICquivJs4GXAQcBr+PRUQfDGao2eOw1L6YJTvq9r38ERI+TaKa1XJNkH+AlI+j7l1U11OKZ/f0vZmL9W5EkSZIkTRDj+qkcS2E6zVoMAHv3bL+MJiygXSxynXb7hcBrkzyh3bdukk2X0P4VNGs1rN+uK7EHcEmS9YGVquoMmvUbnjPIuQuBwcYg/RCYnWSNJI+nGdlx6fCXOqi1gNvaKRp7jqDv3wAb9D/VI8kqSf52mD6GakuSJEmSpFGbbMHEEcBpSS6lWcix38eAnZNcDbyCZrrCwqq6jmaKxtwk1wIXABsO1Xg7leSDwEXANcDVVfVtYGPg4iTzaEYtDDYC43jgu0kuGtDm1e05P6UJPk6oqp+P7rIfcVjbxgXAr3u2/yfwviQ/T/LUnr7/ArwW+EySa4B5NAttLslFwJbto0pfP9gBSfqS/B44FPhIkt8nWXspr0mSJEmSNImlavKvOZhkVWBxVS1qRwd8papmdV2XHjVr06fUBf9yZNdlSJIkSRpnXGNickhyVVVtM9i+qbJuwCbAt5KsBPwFeFvH9UiSJEmSJKZIMFFVNwBbd13HZJNkX+DgAZsvr6qDuqhHkiRJkjTxTIlgQstHVX0N+FrXdUiSJEmSJi6DCY0L0zZY17ljkiRJkjQFTbanckiSJEmSpAnEYEKSJEmSJHXGYEKSJEmSJHXGYEKSJEmSJHXGxS81Liy643b+eOznui5DkiRJWqInHHBo1yVIk44jJiRJkiRJUmcMJiRJkiRJUmcMJiRJkiRJUmcMJiRJkiRJUmcMJiRJkiRJUmcMJiRJkiRJUmcMJiRJkiRJUmcMJrTcJXlJknO6rkOSJEmSNP5M67oATQ5JplXVoq7rkCRJkvp98odXcMf9D4xpmyv/aN6Ytrc0+vr6mDNnTtdlSGPGYGIKSDITOB+4AtgauB7YC9gO+CzNv4MrgQOr6qEknwZ2BRYBc6vqvUO0exJwZ9vm1Uk+ChwNPLNt84iq+vYS6tof2B/gSeuus6yXKUmSJD3GHfc/wP/ed//YNjrW7UkymJhCtgD2q6rLk5wIHAq8Hdixqq5PcgpwYPt7N+DpVVVJZgzT7tOAnapqcZJPAj+oqre05/00yfeHOrGqjgeOB5i16d/Usl+iJEmS9KgNHr/6mLe58vTh/vN4+evr6+u6BGlMGUxMHbdU1eXt61OBw4Cbqur6dtvJwEHAMcCDwAlJzgWGWxvitKpa3L7eGdg1Sf8Ii9WATcbqAiRJkqTR+NCL/m7M23zCAYeOeZvSVGcwMXWMaERCVS1Ksi2wI/AG4J3AS5dwSu9YtgCvqarf9B6Q5ImjrFWSJEmSNEX4VI6pY5Mk27Wv9wC+D8xMslm77c3AJUnWBKZX1XnAIcCsUfTxPeBdSQKQZOuxKV2SJEmSNFk5YmLq+BWwd5LjgBuAg4GfAKcl6V/88lhgXeDbSVajGQHxnlH08XHgC8C1bThxM/DKMbsCSZIkSdKkYzAxdTxcVQcM2HYhzRM1et0GbDuSBqtqnwHvH6BZUHPgcRcDF4+wTkmSJEnSFOJUDkmSJEmS1BlHTEwBVXUzsNXSnp/kw8DuAzafVlVHLUtdkiRJkiQZTGhYbQBhCCFJkiRJGnMGExoXpm3wRJ8JLUmSJElTkGtMSJIkSZKkzhhMSJIkSZKkzhhMSJIkSZKkzhhMSJIkSZKkzrj4pcaFv/zxZn5/zFu6LkOSJGlEnvTOE7suQZImDUdMSJIkSZKkzhhMSJIkSZKkzhhMSJIkSZKkzhhMSJIkSZKkzhhMSJIkSZKkzhhMSJIkSZKkzhhMCIAkPjpWkiRJkrTCGUxMAElmJvl1kpOTXJvk9CRrJNkxyc+TzE9yYpJV2+M/neS69tjPLqHdk5J8LslFwGeSbJvkR22bP0qyRXvcPknOTHJ+khuSzOlpY78k1ye5OMlXkxzTbt8gyRlJrmx/Xricb5MkSZIkaQLyW/KJYwtgv6q6PMmJwKHA24Edq+r6JKcAB7a/dwOeXlWVZMYw7T4N2KmqFidZG3hRVS1KshPwSeA17XGzgK2Bh4DfJDkaWAwcBjwHWAj8ALimPf6LwOer6rIkmwDfA54xFjdCkqSpbM7lt7Pg/kVdlzHlTfvpXl2X0Jm+vj7mzJkz/IGSNEIGExPHLVV1efv6VJpA4Kaqur7ddjJwEHAM8CBwQpJzgXOGafe0qlrcvp4OnJxkc6CAVXqOu7Cq7gFIch2wKbA+cElV3dluP40m6ADYCdgySf/5aydZq6oW9m9Isj+wP8DG6zx+ZHdBkqQpbsH9i7jdYKJ799/adQWSNGkYTEwcNaKDmtEO2wI7Am8A3gm8dAmn3N/z+uPARVW1W5KZwMU9+x7qeb2Y5t9OGNpKwHZV9cASaj0eOB7gWZusP6LrkyRpqlv/8f7n23gwbcYTuy6hM319fV2XIGmS8f+zTRybJNmuqn4M7AF8H3h7ks2q6kbgzcAlSdYE1qiq85L8BLhxFH1MB/rj/31GcPxPgc8nWYdmKsdrgPntvrk0oci/AiSZVVXzRlGLJEkaxPtfOHU/EI8nT3rniV2XIEmThotfThy/AvZOci2wLvB5YF/gtCTzgYeBY4G1gHPa4y4B3jOKPuYAn0pyObDycAdX1a0061BcQROUXAfc0+5+N7BNuwDndcABo6hDkiRJkjRFpMoR9ONdO63inKraquNS/o8ka1bVfe3jRs8CTqyqs0bbzrM2Wb/Oe/+uY1+gJEnScuCICUkanSRXVdU2g+1zxISW1RFJ5gG/AG4C/qvjeiRJkiRJE4hrTEwAVXUzsNSjJZJ8GNh9wObTquqoZakLoKreu6xtSJIkSZKmLoOJKaANIJY5hJAkSZIkaaw5lUOSJEmSJHXGYEKSJEmSJHXGqRwaFx73hJmubi1JkiRJU5AjJiRJkiRJUmcMJiRJkiRJUmcMJiRJkiRJUmcMJiRJkiRJUmdc/FLjwp/vuJF5X3lV12VIkjSmZh34na5LkCRp3HPEhCRJkiRJ6ozBhCRJkiRJ6ozBhCRJkiRJ6ozBhCRJkiRJ6ozBhCRJkiRJ6ozBhCRJkiRJ6ozBhCRJkiRJ6ozBxCSW5IAke3VdhyRJkiRJQ5nWdQFafqrq2OXVdpKVq2rx8mpfkqSROO6HD3Lnn6vrMoa06o+7/36gr6+POXPmdF2GJElDMpgYB5LMBM4HrgC2Bq4H9gK2Az5L83e6Ejiwqh5K8mlgV2ARMLeq3jtEu0cA91XVZ5Nc3La/AzAD2K+qLk2yMvAZ4GVAAV+tqqOHaO9m4ERgZ+CYJAcM0eYawEnA04FfATOBg6rqZwPa2x/YH2DDdVcf6e2SJOkRd/65WHDf+A0muO/WriuQJGncM5gYP7ag+WB/eZITgUOBtwM7VtX1SU4BDmx/7wY8vaoqyYxR9DGtqrZNsgtwOLATTTDwZGDrqlqUZN1h2niwqraHZqrIEG2+A7irqp6VZCtg3mANVdXxwPEAW246Yxz/V6Ukabxad410XcISrTp9o65LoK+vr+sSJElaIoOJ8eOWqrq8fX0qcBhwU1Vd3247GTgIOAZ4EDghybnAOaPo48z291U0oxigCRKOrapFAFV15zBtfHMEbW4PfLFt7xdJrh1FjZIkjdjbX7Ra1yUs0awDT+m6BEmSxj0Xvxw/RjRioA0QtgXOAGbTTAEZqYfa34t5NJTKSPtu3T/CNiVJkiRJGpbBxPixSZLt2td7AN8HZibZrN32ZuCSJGsC06vqPOAQYNYy9jsXOCDJNIARTOUYicuA17XtbQk8cwzalCRJkiRNQgYT48evgL3baQ/rAp8H9gVOSzIfeBg4FlgLOKc97hLgPcvY7wnA/wDXJrkGeOMytgfwZWCDtsYPANcC94xBu5IkSZKkSSZVrjnYtfapHOdU1VYdlzIm2id9rFJVDyZ5KnAh8LSq+stQ52y56Yz6xr/8/QqrUZKkFWHWgd/pugRJksaFJFdV1TaD7XPxSy0PawAXJVmFZr2JA5cUSkiSJEmSpi6DiXGgqm4Glnq0RJIPA7sP2HxaVR21lO2dRfMI0V4fqKrvjeT8qloIDJqESZIkSZLUy2BiEmgDiKUKIYZob7exakuSJEmSpCUxmNC4sMYGmzkPV5IkSZKmIJ/KIUmSJEmSOmMwIUmSJEmSOmMwIUmSJEmSOmMwIUmSJEmSOuPilxoXFi64gYtO+Meuy5Akaczs8NZzuy5BkqQJwRETkiRJkiSpMwYTkiRJkiSpMwYTkiRJkiSpMwYTkiRJkiSpMwYTkiRJkiSpMwYTkiRJkiSpMwYTkiRJkiSpMwYTkiRJkiSpM9O6LkCSJE1dX7/oL9xzf3VdxnLxtR/u1XUJ9PX1MWfOnK7LkCRpiQwmJrgkM4HzgSuArYHrgb2A7YDP0vyNrwQOrKqHknwa2BVYBMytqvcO0e5JwAPA04FNgX2Bvdt2r6iqfdrjvgI8D1gdOL2qDk8yHfgpsGtV/SbJfwA/qKqvDuhjf2B/gCeuu9oY3A1J0kRzz/3FnQsnZzDBwlu7rkCSpAnBYGJy2ALYr6ouT3IicCjwdmDHqro+ySnAge3v3YCnV1UlmTFMu+sAL6UJMr4DvBB4K3BlkllVNQ/4cFXdmWRl4MIkz6qqa5O8EzgpyReBdQaGEgBVdTxwPMAWM6dP0v8qlSQtyfTHp+sSlpvV196o6xLo6+vrugRJkoZlMDE53FJVl7evTwUOA26qquvbbScDBwHHAA8CJyQ5FzhnmHa/0wYY84Hbq2o+QJJfAjOBecDr2pEP04ANgS2Ba6vqgiS7A/8PePYYXackaZLZc4fHdV3CcrPDW0/pugRJkiYEF7+cHEY02qCqFgHbAmcAs2mmgCzJQ+3vh3te97+fluTJwHtpRmY8CzgXWA0gyUrAM2img6w7ssuQJEmSJE01BhOTwyZJtmtf7wF8H5iZZLN225uBS5KsCUyvqvOAQ4BZy9jv2sD9wD1Jngi8omffe4BftfWcmGSVZexLkiRJkjQJOZVjcvgVsHeS44AbgIOBnwCnJelf/PJYmpEL306yGhCa8GCpVdU1SX4O/BL4HXA5QJKn0axFsW1VLUzyQ+AjwOHL0p8kSZIkafIxmJgcHq6qAwZsu5DmKR29bqOZyjGs/qdutK9vBrYaYt8+DO4ZPcccOpI+JUmSJElTj1M5JEmSJElSZxwxMcENHM0wWkk+DOw+YPNpVXXUstQlSZIkSdJIGExMcW0AYQghSZIkSeqEwYTGhbXW35wd3npu12VIkiRJklYw15iQJEmSJEmdMZiQJEmSJEmdMZiQJEmSJEmdMZiQJEmSJEmdcfFLjQt3L7iBs058RddlSJLGyG5v+W7XJUiSpAnCEROSJEmSJKkzBhOSJEmSJKkzBhOSJEmSJKkzBhOSJEmSJKkzBhOSJEmSJKkzBhOSJEmSJKkzBhOSJEmSJKkzBhMaM0nOSzKj6zokSZIkSRPHtK4L0ORRVbt0XYMkjWffvvCv3Ht/dV3GCnHWxXt1XcIy6+vrY86cOV2XIUnSpGcwMYkkmQmcD1wBbA1cD+wFbAd8lubvfSVwYFU9lOTTwK7AImBuVb13iHZPAh4Ang5sCuwL7N22e0VV7dMedzOwDbAm8F3gMuAFwK3Aq6vqgQHt7g/sD7DBeqst8/VL0nh37/3FPQu7rmLFuGfhrV2XIEmSJgiDiclnC2C/qro8yYnAocDbgR2r6vokpwAHtr93A55eVTWCKRjrAC+lCTK+A7wQeCtwZZJZVTVvwPGbA3tU1duSfAt4DXBq7wFVdTxwPMBmM6dPja8QJU1paz8+wNT4n7s119646xKWWV9fX9clSJI0JRhMTD63VNXl7etTgcOAm6rq+nbbycBBwDHAg8AJSc4Fzhmm3e+0AcZ84Paqmg+Q5JfATGBgMHFTT1hxVXuMJE1pr95xla5LWGF2e8spXZcgSZImCBe/nHxG9FVcVS0CtgXOAGbTTAFZkofa3w/3vO5/P1jA1XvM4iGOkSRJkiRNcQYTk88mSbZrX+8BfB+YmWSzdtubgUuSrAlMr6rzgEOAWSu+VEmSJEnSVOe32JPPr4C9kxwH3AAcDPwEOC1J/+KXxwLrAt9OshoQ4D0d1StJkiRJmsIMJiafh6vqgAHbLqR5Skev22imcgyr/6kb7eubga2G2DezfblgwDGfHUk/kiRJkqSpx6kckiRJkiSpM46YmEQGjmYYrSQfBnYfsPm0qjpqWeqSJEmSJGkoBhN6RBtAGEJIkiRJklYYp3JIkiRJkqTOOGJC48KM9Tdnt7d8t+syJEmSJEkrmCMmJEmSJElSZwwmJEmSJElSZwwmJEmSJElSZwwmJEmSJElSZ1z8UuPCn/50PSedvHPXZUjSEu2z99yuS5AkSZp0HDEhSZIkSZI6YzAhSZIkSZI6YzAhSZIkSZI6YzAhSZIkSZI6YzAhSZIkSZI6YzAhSZIkSZI6YzAxRpIsTjIvyS+SnJZkjXb7j5ayvZlJftG+XiPJ15PMb9u/LMmaY1j7RklOH6v22jZXTfLNJDcmuSLJzIVRAicAACAASURBVLFsX5IkSZI0ORhMjJ0HqmpWVW0F/AU4AKCqXjAGbR8M3F5Vz2zb3w/46xi0C0BV/aGqXjtW7bX2A+6qqs2AzwOfGeP2JUmSJEmTwLSuC5ikLgWeBZDkvqpaM8luwEHAPwB9wCXAi4A7gE8DLwFWBf5fVR03oL0Ngf/uf1NVv2nbngmcD1wBbA1cD+xVVX9O8lHgVcDqwI+At1dVJdkMOBbYAFgM7N7+PqeqtkqyD7ArsAbwVOCsqnp/299+wAeAPwA3AA9V1TuHuAevBo5oX58OHJMkVVUjuoOSNAa+f8Fi7rtv7Nr7wYV7jV1jy6Cvr485c+Z0XYYkSdKYMJgYY0mmAa+gCQweUVVnJXkNTTjxcuDwqvrfJPsD91TV85KsClyeZC7Q+wH+RGBuktcCFwInV9UN7b4tgP2q6vIkJwLvAD4LHFNVR7Y1/TvwSuA7wNeBT7f1rEYzauYJAy5jFk3Q8RDwmyRH04QXhwHPARYCPwCuWcKt2Bi4pb32RUnuAdYDFvTcq/2B/QHWW2+1JTQlSUvnvvtg4cKxa2/hwlvHrjFJkiQBBhNjafUk89rXlwL/Nsgx7wJ+Afykqv6j3bYz8Kw2dACYDmxOM/oBgKqal+Qp7bE7AVcm2Q54ALilqi5vDz0VeDdNMLFDkvfTjHxYF/hlkouBjavqrLbdBwGSDKzzwqq6p913HbApsD5wSVXd2W4/DXjaEu7H/2mUx4YtVNXxwPEAT37y2o6kkDTm1hyz1Xgaa6+98dg2uJT6+vq6LkGSJGnMGEyMnQeqatYwx2wMPAw8MclKVfUwzQf4d1XV93oPHLhYZFXdB5wJnJnkYWAX4AwGfNgHqh0J8WVgm6q6JckRwGoMHhYM5qGe14tp/p2M9Nx+vwf+Bvh9O4pkOnDnKNuQpGWy0z+sPKbt7bP3KWPaniRJklz8coVpP5x/DXgj8Cvg0HbX94ADk6zSHve0JI8fcO4Lk6zTvn4csCWPrjmxSTt6AmAP4DKaEAJgQfv0jtcCVNW9NEHB7LatVfufHjICPwVenGSd9lpeM8zxZwN7t69fC/zA9SUkSZIkSQM5YmLF+RBwaVVd2k75uDLJucAJwEzg6jRzKu4AZg8496nAV9r9KwHn0oyW2JQm5Ng7yXE0C1J+pV388qvAfOBm4Mqett4MHJfkSJone+xOM4pjiarq1iSfpFlo8w/AdcA9Szjl34B/T3IjzUiJNwzXhyRJkiRp6olfYk9c7XSPc9pHiK6I/tasqvvaERNnASf2r1exrJ785LXr8COePxZNSdJys8/ec7suQZIkaUJKclVVbTPYPqdyaDSOaEd7/AK4CfivjuuRJEmSJE1wTuWYwKrqZmCFjJZo+3vvwG1JPkwzHaTXaVV11IqpSpIkSZI0kRlMaJm0AYQhhCRJkiRpqTiVQ5IkSZIkdcYRExoX1lvvaS4qJ0mSJElTkCMmJEmSJElSZwwmJEmSJElSZwwmJEmSJElSZwwmJEmSJElSZ1z8UuPCH++8gS9+42VdlyFpgjn4jd/rugRJkiQtI0dMSJIkSZKkzhhMSJIkSZKkzhhMSJIkSZKkzhhMSJIkSZKkzhhMSJIkSZKkzhhMSJIkSZKkzozrYCLJfR32fXOS+UmuSTI3Sd9StHFkkp3a14ckWaNn33lJZixlbScluSnJvCRXJ9lumONnJ9lysLqWou9ZSXYZ5pgk+VKSG5Ncm+Q5S9OXJEmSJGnyG9fBxDiwQ1U9G/gZ8KHRnlxVH62q77dvDwHW6Nm3S1XdvQy1va+qZgH/Ahw3zLGzgUeCiQF1jdYsYInBBPAKYPP2Z3/gK0vZlyRJkiRpkpvWdQEjkeQlwMeA22k+GJ8JzAcOBlYHZlfVb5O8CvgI8DjgT8CeVXV7kg2AbwDrAVcCLweeW1ULkrwJeHd7zhXAO6pq8YASftgeQ5I9aEKKAOdW1QeSrAz8G7ANUMCJVfX5JCcB5wAbtT8XJVlQVTskuRnYpq3hUOAtbV8nVNUXkswEvgtcBrwAuBV4dVU9MEhtm7W1vY0mCHgccCPw5vZ+7Qq8OMlHgNcAhwHnVNXpSZ4LfA5YE1gA7FNVtyW5uL0fOwAzgP3a90cCqyfZHvhUVX1zkD/Zq4FTqqqAnySZkWTDqrptkGMlTUI//u5i/nxfLfd+rjp/r+Xex0j19fUxZ86crsuQJEmacCZEMNF6NvAM4E7gdzQf4LdNcjDwLpoRCZcBz6+qSvJW4P3APwOHAz+oqk8leTnNh3eSPAN4PfDCqvprki8DewKnDOj7lcD8JBsBnwGeC9wFzE0yG7gF2LiqtmrbfcwUjar6Uhs+7FBVC3r3tcHAvsDf0YQdVyS5pG1/c2CPqnpbkm/RhAqnDqjtVTQhDcCZVfXVtt1PAPtV1dFJzqYNItp9/X2vAhxNE3jckeT1wFE8GpJMa+/xLsDhVbVTko/SBCrvHOyP1Nq4vSf9ft9ue0wwkWR/2r/FOuuvtoTmJE00f76vuP/e5d/P/ffeuvw7kSRJ0nI1kYKJK/u/cU/yW2Buu30+zbf6AE8CvplkQ5pRAze127cHdgOoqvOT3NVu35EmZLiy/bC+OvDHnj4vSrIYuJZmJMaLgYur6o62jq8DLwI+DjwlydHAuT21jcT2wFlVdX/b5pnA3wNnAzdV1bz2uKuAmT3n/Ws7AuIOmtEMAFu1gcQMmhEQ3xum7y2ArYAL2utfmceGB2cO0fdwMsi2//PVaVUdDxwPsMlTpi//r1YlrTBrrBkG+T/7MTdjrY2Xex8j1dc36qWIJEmSxMQKJh7qef1wz/uHefQ6jgY+V1Vnt9M/jmi3D/ZBuX/7yVX1wSH2P2aEQ/qHGgxQVXcleTbwMuAg4HU8OupgOEPVBo+95sU0wUm/9/WPgOhxEs20lmuS7AO8ZAR9/7Kqhlo8s7//xYzu38rvgb/pef8k4A+jOF/SBLfdK1ZeIf0c/MaBA9wkSZI00Uy2xS+n06zFALB3z/bLaMICkuwMrNNuvxB4bZIntPvWTbLpEtq/gmathvXbdSX2AC5Jsj6wUlWdQbN+w2BPoVgIrDXI9h8Cs5OskeTxNCM7Lh3+Uge1FnBbO0VjzxH0/Rtgg/6neiRZJcnfDtPHUG31OhvYq306x/OBe1xfQpIkSZI0mMkWTBwBnJbkUpqFHPt9DNg5ydU0T4y4DVhYVdfRTNGYm+Ra4AJgw6Eabz9cfxC4CLgGuLqqvk2zfsLFSebRjFoYbATG8cB3k1w0oM2r23N+ShN8nFBVPx/dZT/isLaNC4Bf92z/T+B9SX6e5Kk9ff8FeC3wmSTXAPNoFtpckouALdtHlb5+iGPOo1kH5Ebgq8A7luZiJEmSJEmTX5oHJ0xuSVYFFlfVonZ0wFfaR21qnNjkKdPrnz/x/K7LkDTBHPzG4ZbSkSRJ0niQ5Kqq2mawfRNpjYllsQnwrSQrAX8B3tZxPZIkSZIkiSkSTFTVDcDWXdcx2STZFzh4wObLq+qgLuqRJEmSJE08UyKY0PJRVV8DvtZ1HZIkSZKkiWuyLX4pSZIkSZImEEdMaFx4wrqbu4idJEmSJE1BjpiQJEmSJEmdMZiQJEmSJEmdMZiQJEmSJEmdMZiQJEmSJEmdcfFLjQu33nUDHz7t5V2XIWmUjtr9/K5LkCRJ0gTniAlJkiRJktQZgwlJkiRJktQZgwlJkiRJktQZgwlJkiRJktQZgwlJkiRJktQZgwlJkiRJktSZcR1MJLmvw75vTjI/yTVJ5ibpW4o2jkyyU/v6kCRr9Ow7L8mMpaztpCQ3JZmX5Ook2w1z/OwkWw5W11L0PSvJLsMcs2eSa9ufHyV59tL0JUmSJEma/MZ1MDEO7FBVzwZ+BnxotCdX1Uer6vvt20OANXr27VJVdy9Dbe+rqlnAvwDHDXPsbOCRYGJAXaM1C1hiMAHcBLy4qp4FfBw4fin7kiRJkiRNctO6LmAkkrwE+BhwO80H4zOB+cDBwOrA7Kr6bZJXAR8BHgf8Cdizqm5PsgHwDWA94Erg5cBzq2pBkjcB727PuQJ4R1UtHlDCD9tjSLIHTUgR4Nyq+kCSlYF/A7YBCjixqj6f5CTgHGCj9ueiJAuqaockNwPbtDUcCryl7euEqvpCkpnAd4HLgBcAtwKvrqoHBqlts7a2twH7t9dyI/Dm9n7tCrw4yUeA1wCHAedU1elJngt8DlgTWADsU1W3Jbm4vR87ADOA/dr3RwKrJ9ke+FRVfXPg36uqftTz9ifAkwYeI2np/OqcRTy0sLou4xF7fWevrkvoTF9fH3PmzOm6DEmSpAlvQgQTrWcDzwDuBH5H8wF+2yQHA++iGZFwGfD8qqokbwXeD/wzcDjwg6r6VJKX03x4J8kzgNcDL6yqvyb5MrAncMqAvl8JzE+yEfAZ4LnAXcDcJLOBW4CNq2qrtt3HTNGoqi+14cMOVbWgd18bDOwL/B1N2HFFkkva9jcH9qiqtyX5Fk2ocOqA2l5FE9IAnFlVX23b/QSwX1UdneRs2iCi3dff9yrA0TSBxx1JXg8cxaMhybT2Hu8CHF5VOyX5KE2g8s7B/kiD2I8mYPk/kuxP+7dYe/3VRticNLU9tLB48J6uq3jUrffc2nUJkiRJmuAmUjBxZVXdBpDkt8Dcdvt8mm/1oflm/ptJNqQZNXBTu317YDeAqjo/yV3t9h1pQoYr2w/rqwN/7OnzoiSLgWtpRmK8GLi4qu5o6/g68CKa6QpPSXI0cG5PbSOxPXBWVd3ftnkm8PfA2cBNVTWvPe4qYGbPef/ajoC4g+bDP8BWbSAxg2YExPeG6XsLYCvggvb6VwZu69l/5hB9j0iSHdrath9sf1UdTzvNY8OnTh8/XwFL49iqa4VmYNb4sN6aG3ddQmf6+ka99JAkSZIGMZGCiYd6Xj/c8/5hHr2Oo4HPVdXZ7fSPI9rtGaLNACdX1QeH2P+YEQ7pH2owQFXd1S7w+DLgIOB1PDrqYDhD1QaPvebFNMFJv/f1j4DocRLNtJZrkuwDvGQEff+yqoZaPLO//8WM8t9KkmcBJwCvqKo/jeZcSUN7xivH1/9sH7X7wAFmkiRJ0uhMtsUvp9OsxQCwd8/2y2jCApLsDKzTbr8QeG2SJ7T71k2y6RLav4JmrYb123Ul9gAuSbI+sFJVnUGzfsNzBjl3IbDWINt/CMxOskaSx9OM7Lh0+Esd1FrAbe0UjT1H0PdvgA36n+qRZJUkfztMH0O19Ygkm9CMtnhzVV0/0uIlSZIkSVPPZAsmjgBOS3IpzUKO/T4G7JzkauAVNNMVFlbVdTRTNOYmuRa4ANhwqMbbqSQfBC4CrgGurqpvAxsDFyeZRzNqYbARGMcD301y0YA2r27P+SlN8HFCVf18dJf9iMPaNi4Aft2z/T+B9yX5eZKn9vT9F+C1wGeSXAPMo1loc0kuArZsH1X6+iGO+SjNQqNfbo/72dJdjiRJkiRpskvV+JmrvLwkWRVYXFWL2tEBX2kftalxYsOnTq+3fHqoGSWSxqujdj+/6xIkSZI0ASS5qqq2GWzf+JqsvPxsAnwryUrAX4C3dVyPJEmSJEliigQTVXUDsHXXdUw2SfYFDh6w+fKqOqiLeiRJkiRJE8+UCCa0fFTV14CvdV2HJEmSJGnimmyLX0qSJEmSpAnEERMaFzZeZ3MX0ZMkSZKkKcgRE5IkSZIkqTMGE5IkSZIkqTMGE5IkSZIkqTMGE5IkSZIkqTMufqlx4Ya7b+DlZ+/SdRmSBjh/1/O6LkGSJEmTnCMmJEmSJElSZwwmJEmSJElSZwwmJEmSJElSZwwmJEmSJElSZwwmJEmSJElSZwwmJEmSJElSZwwmNGpJDkiyV9d1SJIkSZImvmldF6CJp6qO7boGSZIkSdLkYDAxiSWZCZwPXAFsDVwP7AVsB3yW5u9/JXBgVT2U5NPArsAiYG5VvXeIdo8A7quqzya5uG1/B2AGsF9VXZpkZeAzwMuAAr5aVUcvnyuVpp5FZ/2Funf597PX6ct/cFRfXx9z5sxZ7v1IkiRpfDKYmPy2oAkLLk9yInAo8HZgx6q6PskpwIHt792Ap1dVJZkxij6mVdW2SXYBDgd2AvYHngxsXVWLkqw78KQk+7fHsdoGqy3LNUpTTt0L3F3LvZ9b7751ufchSZKkqc1gYvK7paoub1+fChwG3FRV17fbTgYOAo4BHgROSHIucM4o+jiz/X0VMLN9vRNwbFUtAqiqOweeVFXHA8cDTN9s+vL/hCVNIlkbiiz3fjZ+/EbLvY++vr7l3ockSZLGL4OJyW9EH/jbUQ3bAjsCbwDeCbx0hH081P5ezKP/pjLSviWN3rTdHrdC+jll11NWSD+SJEmaunwqx+S3SZLt2td7AN8HZibZrN32ZuCSJGsC06vqPOAQYNYy9jsXOCDJNIDBpnJIkiRJkmQwMfn9Ctg7ybXAusDngX2B05LMBx4GjgXWAs5pj7sEeM8y9nsC8D/AtUmuAd64jO1JkiRJkiahVDnafrJqn8pxTlVt1XEpw5q+2fTa7nMv7LoMSQOcv+t5XZcgSZKkSSDJVVW1zWD7HDEhSZIkSZI64+KXk1hV3Qws9WiJJB8Gdh+w+bSqOmpZ6pIkSZIkqZ/BhIbUBhCGEJIkSZKk5capHJIkSZIkqTOOmNC4sPmMzV1kT5IkSZKmIEdMSJIkSZKkzhhMSJIkSZKkzhhMSJIkSZKkzhhMSJIkSZKkzrj4pcaFG+6+lV3+60NdlyFNeefN/mTXJUiSJGmKccSEJEmSpP+fvXuP13ys9z/+eiPHwdCohdJoUKQam4hdmlKqHSIkKSkllSKh3WEX7V/RUDpISMp02kU5V5RdDuOQMJgihyTJluOYcRhm5vP74/tddVvWmrVmzZq55/B6Ph7rMfd9fa/vdX3ue/HH/V7Xdd2S1DUGE5IkSZIkqWsMJiRJkiRJUtcYTEiSJEmSpK4xmJAkSZIkSV1jMCFJkiRJkrrGYEKSJEmSJHWNwYTmWZItknyt23VIkiRJkhZ/y3W7AC1+qur3wO+7XYe0uHjizBth+hPdLmNI9v7Z3t0uYYHo6elh4sSJ3S5DkiRJ/TCYWEIkGQv8ErgS2Ay4Gdgb2Bo4huZ3fRXwgaqameQoYCdgFnBBVR0ywLi7A58FZgPTqmrbJBOAQ6pqhyQ/B9Zpu68PfAT4PnAUMAFYAfhGVZ3Yz9j7AfsBrLjWavP3BkiLsulPUA893u0qhuSuh+7qdgmSJElayhhMLFleAOxbVZOTnAIcDLwf2K6qbk4yCfhA++8uwAurqpKMnsuYnwFeX1V39devqv4DIMnmwHeAM4F9aUKMlyVZAZic5IKqur3PvScBJwGsvsHaNZ+vXVp0rbo86XYNQ7TOKs/sdgkLRE9PT7dLkCRJ0gAMJpYsd1bV5Pbx94H/Am6vqpvbtlOBDwHHAY8DJyc5Dzh3LmNOBr6b5CfAz/rrkGQM8D3grVU1Lcn2wEuS7NZ2WR3YELi9v/ulJd3yO2/c7RKGbNLOX+h2CZIkSVrKGEwsWYa06qCqZiXZEtgOeBtwAPCaAfrun2Qr4E3AlCTjO68nWRb4H+BzVTW1txn4cFWdP7yXIUmSJElaWvitHEuW9ZJs3T7eE/g1MDbJBm3bO4GLkowCVq+qnwMHAeOfPlQjybiqurKqPgPcBzy3T5ejgOur6n862s6n2TLyjHaMjZKsMr8vTpIkSZK05HHFxJLlRuBdSU4EbgEOBK4ATkvSe/jlCcCawFlJVqRZ3fDRuYx5dJIN234XAtcBr+q4fgjwhyRT2uefAU4GxgLXJAlwL7DziLxCSZIkSdISxWBiyTKnqvbv03Yhzbd0dLob2HIoA1bVW/pp/m37Q1UNdKbfJ9sfSZIkSZIG5FYOSZIkSZLUNa6YWEJU1V+ATYd7f5JPAbv3aT6tqj4/P3VJkiRJkjQ3BhMCoA0gDCEkSZIkSQuVwYQWCRuOXpef7/yFbpchSZIkSVrIPGNCkiRJkiR1jcGEJEmSJEnqGoMJSZIkSZLUNQYTkiRJkiSpazz8UouEWx66hzf97MvdLkMaUee95eBulyBJkiQt8lwxIUmSJEmSusZgQpIkSZIkdY3BhCRJkiRJ6hqDCUmSJEmS1DUGE5IkSZIkqWsMJiRJkiRJUtcYTEiSJEmSpK4xmNA8S7J/kr37aR+bZGo3apIkSZIkLZ6W63YBWvxU1QndrkGaF0+cfSX18GMLfd69z5yywOfo6elh4sSJC3weSZIkaUExmFiCJRkL/BK4EtgMuBnYG9gaOIbm938V8IGqmpnkKGAnYBZwQVUdMsC4hwMzquqYJJsDpwCPApd29DkY2LSq3pPkxcCPgC2r6tGOPvsB+wGsOGaNkXvhUh/18GPUtEcW+rx3dWFOSZIkaXFjMLHkewGwb1VNTnIKcDDwfmC7qro5ySTgA+2/uwAvrKpKMnqI438H+HBVXZTk6I72rwC/TbIL8Cng/Z2hBEBVnQScBLD6Bs+t+XmR0txktZW6Mu86o4b6v9Hw9fT0LPA5JEmSpAXJYGLJd2dVTW4ffx/4L+D2qrq5bTsV+BBwHPA4cHKS84BzBxs4yerA6Kq6qG36HvBGgKqak2Qf4HrgxI4apIVu+Z226sq8k95ycFfmlSRJkhYnHn655BvSSoSqmgVsCfwU2JlmC8hgMsj4GwIzgHWGUoMkSZIkaeljMLHkWy/J1u3jPYFfA2OTbNC2vRO4KMkoYPWq+jlwEDB+sIGr6iFgWpJXtE179V5rV1N8FdgWeGaS3Ubk1UiSJEmSlihu5Vjy3Qi8K8mJwC3AgcAVwGlJeg+/PAFYEzgryYo0KyE+OsTx3w2ckuRR4PyO9mOB49tzLPYFfpPk4qr6x4i8KkmSJEnSEsFgYsk3p6r279N2Ic23dHS6m2Yrx6Cq6vCOx1cDL+24fHjb/p6OPncCGyBJkiRJUh9u5ZAkSZIkSV3jioklWFX9Bdh0uPcn+RSwe5/m06rq8/NTlyRJkiRJvQwmNKA2gDCEkCRJkiQtMAYTWiRsOPrZnPeWg7tdhiRJkiRpIfOMCUmSJEmS1DUGE5IkSZIkqWsMJiRJkiRJUtcYTEiSJEmSpK7x8EstEm558D7e9NNvdbsMaVDn7fq+bpcgSZIkLVFcMSFJkiRJkrrGYEKSJEmSJHWNwYQkSZIkSeoagwlJkiRJktQ1BhOSJEmSJKlrDCYkSZIkSVLXGExIkiRJkqSuGTSYSPLsJN9O8ov2+SZJ9l3wpXVfkmOTHNTx/PwkJ3c8/1KSTyY5fR7H3SfJcSNQ3xuT/D7JjUluSnLMMMcZneSD81tPx3ibJ7khya1JvpYkIzW2JEmSJGnJstwQ+nwX+A7wqfb5zcCPgW8voJoWJZcBuwNfSbIMMAZYreP6NsBBVfWFhV1Ykk2B44A3VdVNSZYD9hvmcKOBDwLHz8P8AVJVc/q5/M22liuAnwNvAH4xzNqkEffE2b+hpj86rHv3PuuSQfv09PQwceLEYY0vSZIkLW2GEkyMqaqfJPkEQFXNSjJ7Ade1qJgMHNs+fhEwFVg7yRrAo8DGwINJplbVpkn2AXYCVgbGAWdU1WEASd4NfAK4mybcmdm2Pw84BVgLuBd4N3AXcEs7xurAA8CEqro4ySVtn8OAz1fVTdD8XmiDhSRrAScA67W1H1RVk5Mc3rY9v/33K1X1NeAoYFySKcCvqurQJIcCbwVWaF/HZ5OMpQkYfgNsDewM3NH5hiVZG1itqi5vn09q+z0tmEiyH22YsuKYNQf5VUgjp6Y/Sk2bPqx77xrmfZIkSZL6N5Rg4pEkzwQKIMnLgWkLtKpFRFX9PcmsJOvRrI64HFiX5kP5NOB64Ik+t40HNqMJHv6U5OvALOAIYPP2vt8A17b9jwMmVdWpSd4DfK2qdk5yM7AJsD5wNfDKJFcCz6mqW9sVE18aoPSvAsdW1aVt7efThCgALwReDaza1vdN4D+BTatqPECS7YENgS2BAGcn2Rb4K/AC4N1VNdDWj3WBv3U8/1vb9jRVdRJwEsDq48bWAONJIy6rrjzse9cZtdqgfXp6eoY9viRJkrS0GUowcTBwNs1f1CfT/GV/twVa1aJlMk0osQ3wZZoP2dvQBAyX9dP/wqqaBpDkj8DzaLaA/Laq7m3bfwxs1PbfGnhL+/h7QO/670uAbWmCiSOB9wEXAVcNoebXApt0HO2wWpJV28fnVdVMYGaSfwDP7uf+7duf3vBkFE1Q8Vfgjqq6Yi5z93eehKGDFinL7/TqYd87adf3jWAlkiRJkuYaTLTnKqwIvIrmL+UB/lRVTy6E2hYVl9EEES+m2cpxJ/Ax4GGaLRh9zex4PJt/vcdD/XDe2+8SYH9gHeAzwKHABODi9vofaFZgXNfPGMsAW1fVY52NbVAxUH1P6QocWVUn9rl/LPDIIPX/DXhOx/PnAH8f5B5JkiRJ0lJqrt/K0R5s+KWqmlVVf6iqqUtZKAHNiokdgAeqanZVPUBzWOTWNFs7huJKYEKSZyZ5Bs2Bmr0uA97WPt4LuLTjnm2AOVX1ODAFeD9NYAFwNPDJJBtBEyIlObi9dgFwQO8EScYPUt90mq0dvc4H3pNkVHv/ukmeNZQXWlV3A9OTvLw9IHNv4Kyh3CtJkiRJWvoM+nWhwAVJdl2Kv/LxBpqtGFf0aZtWVfcNZYD2w/rhNEHGr4FrOi5/BHh3kuuBdwIHtvfMpFmd0TvvJTThwQ3t9euBg4AfJbmR9mDOjjG3SHJ9u51k/0Hqux+YnGRqkqOr6gLgh8DlSW4ATuepwcVgPgCcDNwK3IbfyCFJkiRJGkCq5r7DIMl0YBWaAxwfp1nmX1U1+Alw0hCtPm5svWLipwbvKHXZeZ4xIUmSJM2zJFdX1Rb9XRv08Muqmpe/lEuSJEmSJA3ZoMFE+zWRT1NVF/fXrqVH+/WlK/RpfmdV3dCNeiRJkiRJi5+hfF3oC1gAMgAAIABJREFUoR2PVwS2BK4GXrNAKtJio6q26nYNkiRJkqTF21C2cuzY+TzJc4GJC6wiLZU2XGOMe/clSZIkaSk0lG/l6OtvwKYjXYgkSZIkSVr6DOWMia8DvV/dsQwwHrhuQRYlSZIkSZKWDkM5Y+L3HY9nAT+qqskLqB5JkiRJkrQUGUowMbqqvtrZkOTAvm2SJEmSJEnzKlU19w7JNVX1b33arq2qzRZoZVqqjB73/HrFF/+722VInLvbXt0uQZIkSVriJLm6qrbo79qAKyaS7Am8HVg/ydkdl1YF7h/ZEiVJkiRJ0tJobls5LgPuBsYAX+ponw5cvyCLkiRJkiRJS4cBg4mqugO4A9h64ZUjSZIkSZKWJssM1iHJy5NclWRGkieSzE7y8MIoTpIkSZIkLdkGDSaA44A9gVuAlYD3Al9fkEVJkiRJkqSlw1C+LpSqujXJslU1G/hOkssWcF2SJEmSJGkpMJRg4tEkywNTkkykORBzlQVbliRJkiRJWhoMZSvHO9t+BwCPAM8Fdh3spiQz5q+04UuyepJJSW5rfyYlWX0u/Ye9AiTJPknWmdd+SU5Osskw5zw8yV1JpiSZmmSnQfpPSLJNx/P9k+w9zLnHJnn7EPuu155Ncshw5pIkSZIkLfkGXTFRVXckWQlYu6qOWAg1jYRvA1Oram+AJEcAJwO7d3bq3Z5SVdv0M8ZQ7QNMBf4+L/2q6r3zMSfAsVV1TJKNgUuSPKuq5gzQdwIwg+YrYKmqE+Zj3rHA24EfDqVG4BfzMZc0qJnn/JKaPnI56N5nnz9iYwH09PQwceLEER1TkiRJWpIMGkwk2RE4BlgeWD/JeOBzVTXXv9J33D8BOAK4BxgP/Ay4ATiQ5jDNnavqtnaeT7fz3A/sVVX3JFmL5kPwM4GrgDcAm1fVfUneAXykvedK4IPA+sDmwB4dZXwOuDXJOJoVH5+l2ZIyHtgkyYyqGtXWeyjwVmAF4Iyq+mySsTQfsC8FtgHuAt4MvAnYAvhBksdovlr1UGDH9rVdBryfZoVJ336/AA6pqt8n2RP4JBDgvKr6eFvLDOCrwA7AY8Cbq+qezve3qm5MMgsYk2Srvu9hW8f+wOz2/fowsB0wow02xgHfANYCHgXeV1U3Jfku8HBbdw9wWFWdDhwFbJxkCnBqVR07wO99Z+DPNKts+pVkP2A/gJXGPHOgbtJc1fQZ1LSR+6Kgu0ZwLEmSJEmDG8oZE4cDWwK/BaiqKe0H9XnxUmBj4AGaD6snV9WWSQ6k+aB8EM2H/pdXVSV5L3AY8DGaEOF/q+rIJG+g/SDbrhTYA/j3qnoyyfE0H8QfAqa0B3XS1jy7/SD9IpoP21sCm1bV7Z1FJtke2LC9HuDsJNsCf23b96yq9yX5CbBrVX0/yQG0AUM7xnFV9bn28feAHarq9H769c65DvBFmjDlQeCCJDtX1Zk0Z3lcUVWfas/3eB/w//rUvBUwB7i3v/ewqj6W5ATaIKK9Z7uOIU4C9q+qW9qxjgde015bG3gF8ELgbOB04D/b17FDv7/pZvxVgI8DrwMG3MZRVSe18zN63PNroH7S3GTVUSM63jqjVh3R8Xp6ekZ0PEmSJGlJM5RgYlZVTev9ID1MV1XV3QBJbgMuaNtvAF7dPn4O8OMka9P8xb83NHgFsAtAVf0yyYNt+3Y0H+avamtbCfgHcC3Q34fcdLT/rm8o0dq+/bm2fT6KJpD4K3B7VU1p26+m2dLQn1cnOQxYGVgT+ANwzgB9AV4G/Laq7gVI8gNgW+BM4Ang3I45X9dx30fbFRDTgT3aMGKg97BfSUbRrAA5reP3u0JHlzPb7SF/TPLsuY3VxxE0W01mzOd/N9KgVtjxDSM63qTd9hrR8SRJkiTN3VCCiantYYfLJtmQZuvEvB4WObPj8ZyO53M6avg68OWqOrvd/nF42z7QJ9vQbCX4xFMakw2AzZIs03vmQpJlaFZt3EgTgAy0vSDAkVV1Yp8xx/Z5DbNpghD69FuRZsXBFlV1Z5LDgRUHmKtzzoE8WVW9Ycpsnvr7OrZ3BUSHgd7DgSwDPFRV4we43vma5yVh2ArYrV3lMRqYk+TxqjpuHsaQJEmSJC0FBvxWjnYbAsBtNFsgZgI/otkKcdACqGV1mrMbAN7V0X4pzZkPvVst1mjbL6T58Pus9tqaSZ5XVbfSrHj4dMcYnwauaa/NzfnAe9qVBCRZt3f8uZgO9K797g0h7mvH2G2Afp2uBF6VZEySZYE9gYsGmXMgA72H/c5dVQ8DtyfZHSCNlw4yx0Cvo3PcV1bV2KoaC3wF+IKhhCRJkiSpP3P7utDNkzyP5hyHLwGvp9nm8CWabQoj7XCaLQWXAPd1tB8BbJ/kGuCNNIdWTq+qP9IEDhckuR74Fc2ZCAD7AhslubXdOrJR2zZXVXUBzUGblye5geZMhcE2nH8XOKE9w2Im8C2aLSpn0hzW+bR+7bec9M55N/AJ4DfAdTQBylmD1TqAw+n/PTwH2KWd+5V97tkL2DfJdTTbTt48yBzXA7OSXJfko8OsU5IkSZIkAPKvnQJ9LiQfAT4APJ9//RUe2rMaqur5C748SLICMLuqZiXZGvjmXLYeaDE1etzz6xVf/O9ulyFxrmdMSJIkSSMuydVVtUV/1wY8Y6KqvgZ8Lck3q+oDC6y6wa0H/KQ9J+IJmm+mkCRJkiRJS4BBD7/scihBVd0CbNbNGtS/JK+n+arTTrdX1S7dqEeSJEmStPgZyrdySP2qqvNpDgyVJEmSJGlYDCa0SNhgjTXd2y9JkiRJS6G5fSuHJEmSJEnSAmUwIUmSJEmSusZgQpIkSZIkdY3BhCRJkiRJ6hoPv9Qi4dYHH2LH08/odhlazJyzm99MK0mSJC3uXDEhSZIkSZK6xmBCkiRJkiR1jcGEJEmSJEnqGoMJSZIkSZLUNQYTkiRJkiSpawwmJEmSJElS1xhMSJIkSZKkrllgwUSSGQtq7CHMvXqSSUlua38mJVl9Lv0vm4+59kmyzrz2S3Jykk2GOefhSe5KMiXJ1CQ7DdJ/QpJtOp7vn2TvYc49Nsnbh9Dnsba+KUlOGM5ckiRJkqQl33LdLmAB+TYwtar2BkhyBHAysHtnpyTLVtXsqtqmnzGGah9gKvD3eelXVe+djzkBjq2qY5JsDFyS5FlVNWeAvhOAGcBl7dzzExSMBd4O/HCQfrdV1fj5mEdLicfPOYua/vCw7t377DNGrI6enh4mTpw4YuNJkiRJGpoFHkwkmQAcAdwDjAd+BtwAHAisBOxcVbcl2RH4NLA8cD+wV1Xdk2Qtmg/BzwSuAt4AbF5V9yV5B/CR9p4rgQ8C6wObA3t0lPE54NYk44DnAp8F7m7r2STJjKoa1dZ7KPBWYAXgjKr6bJKxwC+AS4FtgLuANwNvArYAfpDkMWBr4FBgx/a1XQa8H9i1n36/AA6pqt8n2RP4JBDgvKr6eFvLDOCrwA7AY8Cbq+qezve3qm5MMgsYk2Srvu9hW8f+wOz2/fowsB0wow02xgHfANYCHgXeV1U3Jfku8HBbdw9wWFWdDhwFbJxkCnBqVR3b7y9+CJLsB+wHsNKYtYY7jBZzNf1hatq0Yd171zDvkyRJkrToWFgrJl4KbAw8APwZOLmqtkxyIM0H5YNoPvS/vKoqyXuBw4CP0YQI/1tVRyZ5A+0H2XalwB7Av1fVk0mOp/kg/hAwpapm905eVbPbD9IvovmwvSWwaVXd3llkku2BDdvrAc5Osi3w17Z9z6p6X5KfALtW1feTHEAbMLRjHFdVn2sffw/YoapO76df75zrAF+kCVMeBC5IsnNVnQmsAlxRVZ9KMhF4H/D/+tS8FTAHuLe/97CqPtZupZhRVce092zXMcRJwP5VdUs71vHAa9prawOvAF4InA2cDvxn+zp26Pc3/S/rJ7m2fb8/XVWX9O1QVSe18zN63AY1yHhaQmXV1YZ97zqjRo1YHT09PSM2liRJkqShW1jBxFVVdTdAktuAC9r2G4BXt4+fA/w4ydo0f/HvDQ1eAewCUFW/TPJg274dzYf5q9oP+SsB/wCuBfr7kJuO9t/1DSVa27c/17bPR9EEEn8Fbq+qKW371TRbGvrz6iSHASsDawJ/AM4ZoC/Ay4DfVtW9AEl+AGwLnAk8AZzbMefrOu77aLsCYjqwRxtGDPQe9ivJKJoVIKf1BiU0K0V6ndluD/ljkmfPbaw+7gbWq6r7k2wOnJnkRVU1vPX6WqKtuOObh33vpN12GcFKJEmSJHXDwgomZnY8ntPxfE5HDV8HvlxVZ7fbPw5v20P/QrOV4BNPaUw2ADZLskzvmQtJlqFZtXEjTQDyyFzGPLKqTuwz5tg+r2E2TRBCn34r0qw42KKq7kxyOLDiAHN1zjmQJ6uqN0yZzVN/X8f2roDoMNB7OJBlgIfmchZE52ueW51PUVUze++tqqvbMGoj4PdDHUOSJEmStHRYlL4udHWasxsA3tXRfinNmQ+9Wy3WaNsvBHZL8qz22ppJnldVt9KsePh0xxifBq5pr83N+cB72pUEJFm3d/y5mA6s2j7uDSHua8fYbYB+na4EXpVkTJJlgT2BiwaZcyADvYf9zt2uYLg9ye4Aabx0kDkGeh3/lGSt9rWQ5Pk0q07+PKRXIEmSJElaqixKwcThNFsKLgHu62g/Atg+yTXAG2m2CUyvqj/SBA4XJLke+BXNmQgA+wIbJbm146/1+w5WQFVdQHPQ5uVJbqA5U2GuH8KB7wIntGdYzAS+RbNF5Uyawzqf1i/JP1dbtFtcPgH8BriOJkA5a7BaB3A4/b+H5wC7tHO/ss89ewH7JrmOZtvJYOvqrwdmJbkuyUcH6LMtcH075uk0Z1g8MI+vRZIkSZK0FMi/dgosmpKsAMyuqllJtga+6ddQLnlGj9ugXvnFo7tdhhYz53jGhCRJkrRYSHJ1VW3R37WFdcbE/FgP+El7TsQTNN9MIUmSJEmSlgCLfDBRVbcAm3W7Dj1dktfTfNVpp9uryj9jS5IkSZKGZJEPJrToqqrzaQ4MlSRJkiRpWAwmtEjYYI3RnhcgSZIkSUuhRelbOSRJkiRJ0lLGYEKSJEmSJHWNwYQkSZIkSeoagwlJkiRJktQ1Hn6pRcKtDz7Mzqf/qttlLHbO3O113S5BkiRJkuaLKyYkSZIkSVLXGExIkiRJkqSuMZiQJEmSJEldYzAhSZIkSZK6xmBCkiRJkiR1jcGEJEmSJEnqGoMJSZIkSZLUNQYTc5Hk2CQHdTw/P8nJHc+/lOSTSU6fx3H3SXLcCNT3xiS/T3JjkpuSHDPMcUYn+eD81tMx3ueT3JlkxkiNKUmSJElaMi3X7QIWcZcBuwNfSbIMMAZYreP6NsBBVfWFhV1Ykk2B44A3VdVNSZYD9hvmcKOBDwLHz8P8AVJVc/q5fE5b2y3DrGep9Og5/8Oc6dPm6Z69z/7eiMzd09PDxIkTR2QsSZIkSZoXBhNzNxk4tn38ImAqsHaSNYBHgY2BB5NMrapNk+wD7ASsDIwDzqiqwwCSvBv4BHA3cDMws21/HnAKsBZwL/Bu4C6aD/XjgNWBB4AJVXVxkkvaPocBn6+qmwCqahZtsJBkLeAEYL229oOqanKSw9u257f/fqWqvgYcBYxLMgX4VVUdmuRQ4K3ACu3r+GySscAvgN8AWwM7A3f0fdOq6oq2jrm+uUn2ow1TVhrzrLn2XRrMmT6NmvbgPN1z1zz2lyRJkqRFjcHEXFTV35PMSrIezeqIy4F1aT6UTwOuB57oc9t4YDOa4OFPSb4OzAKOADZv7/sNcG3b/zhgUlWdmuQ9wNeqauckNwObAOsDVwOvTHIl8JyqurVdMfGlAUr/KnBsVV3a1n4+TYgC8ELg1cCqbX3fBP4T2LSqxgMk2R7YENgSCHB2km2BvwIvAN5dVfO99aOqTgJOAhg9bqOa3/EWd8usujr9LT+Zm3VGrTwic/f09IzIOJIkSZI0rwwmBjeZJpTYBvgyTTCxDU3AcFk//S+sqmkASf4IPI9mC8hvq+retv3HwEZt/62Bt7SPvwf0rqe/BNiWJpg4EngfcBFw1RBqfi2wSceKhdWSrNo+Pq+qZgIzk/wDeHY/92/f/vSGJ6Nogoq/Anf0rojQyFp5x7fN8z2TdnvdAqhEkiRJkhYeD78c3GU0QcSLabZyXEETJmxDE1r0NbPj8Wz+Ff4MdUVAb79LgFfSrFr4Oc05EBOAi9vrf6BZgdGfZYCtq2p8+7NuVU0fpL5OAY7suH+Dqvp2e+2RIb4OSZIkSZIGZTAxuMnADsADVTW7qh6gCQm2ptnaMRRXAhOSPDPJM2gO1Ox1GdD7p/K9gEs77tkGmFNVjwNTgPfTBBYARwOfTLIRQJJlkhzcXrsAOKB3giTjB6lvOs3Wjl7nA+9JMqq9f90kHgIhSZIkSRpxBhODu4FmK8YVfdqmVdV9Qxmgqu4GDqcJMn4NXNNx+SPAu5NcD7wTOLC9ZyZwZ8e8l9CEBze0168HDgJ+lORG2oM5O8bcIsn17XaS/Qep735gcpKpSY6uqguAHwKXJ7kBOJ2nBhdzlWRikr8BKyf5W3vopiRJkiRJT5Oqpf7MQS0CRo/bqCZ88RvdLmOxc6ZnTEiSJElaDCS5uqq26O+aKyYkSZIkSVLX+K0cGrb260tX6NP8zqq6oRv1SJIkSZIWPwYTGraq2qrbNUiSJEmSFm8GE1okbLDGap6XIEmSJElLIc+YkCRJkiRJXWMwIUmSJEmSusZgQpIkSZIkdY3BhCRJkiRJ6hoPv9Qi4bYHH2HXn/6u22Xw01237HYJkiRJkrRUccWEJEmSJEnqGoMJSZIkSZLUNQYTkiRJkiSpawwmJEmSJElS1xhMSJIkSZKkrjGYkCRJkiRJXWMwMYgks5NMSTI1yTlJRi+EOccmmTq/fdp+nxy5yuZdt+eXJEmSJC3aDCYG91hVja+qTYEHgA91u6B5NM/BQJJluzm/JEmSJGnpsVy3C1jMXA68pPdJkkOBtwIrAGdU1WeTrAL8BHgOsCzw31X14yQvA74KrALMBLYDngl8r20DOKCqLuucsA0JjgImtPN8o6pO7NNnH2AnYGVgXFvLYUmOAlZKMgX4Q1XtleQdwEeA5YErgQ9W1ewkM4AvA68HPpZkZj/1PtpfLUkmAJ8D7gdeAFwMfBD4Qt/55+3tXnBmnP1t5kx/8Gnte5+14lOe9/T0MHHixIVVliRJkiQtdQwmhqgNCLYDvt0+3x7YENgSCHB2km2BtYC/V9Wb2n6rJ1ke+DGwR1VdlWQ14DHgH8DrqurxJBsCPwK26DP1vsC0qnpZkhWAyUkuAKpPv/HAZjQhwp+SfL2q/jPJAVU1vq1lY2AP4N+r6skkxwN7AZNoAoipVfWZtt6b+ql3oFpo34dNgDuAXwJv6Tt/P+/pfsB+ACuN6RnCb2HkzJn+IHOm3f+09rumLdQyJEmSJGmpZzAxuN6/+I8FrgZ+1bZv3/5c2z4fRRNUXAIck+SLwLlVdUmSFwN3V9VVAFX1MEC7uuK4JOOB2cBG/cy/PfCSJLu1z1dv57m5T78Lq2paO+4fgecBd/bpsx2wOXBVEoCVaMIR2vl/2j5+wQD1DlTLE8DvqurPbb8fAa8ATu/n9fxTVZ0EnASwxriN+wYtC9Qyq67Rb/vao56+YkKSJEmStOAYTAzusaoan2R14FyaMya+RrNK4si+2yoAkmwO/AdwZLui4EyevsIB4KPAPcBLac77eLyfPgE+XFXn95ljbJ9+Mzsez6b/322AU6vqE/1ce7yqZnf066/egWqZ0E//hRo0zKtRO+3bb/ukXbdcyJVIkiRJ0tLNwy+HqF2N8BHgkCTPAM4H3pNkFECSdZM8K8k6wKNV9X3gGODfaLZFrNOeM0GSVZMsR7Pi4O6qmgO8k+ZMir7OBz7QzkmSjdqVFkP1ZO+9wIXAbkme1Y61ZpLn9XPPQPXOrZYtk6yfZBma7SKX9jO/JEmSJElP4YqJeVBV1ya5DnhbVX2vPbPh8nZbxAzgHcAGwNFJ5gBPAh+oqieS7AF8PclKNOc1vBY4Hvhpkt2B3wCP9DPtyTTbSK5JM9G9wM7zUPZJwPVJrmkPv/w0cEEbIDxJswLkjj6vc6B651bL5TQHY76Y5vDLM/qbfx7qliRJkiQtBVK1SK+412Kg3cpxSFXtMNwx1hi3cb1m4qkjV9Qw/dStHJIkSZI04pJcXVV9v+wBcCuHJEmSJEnqIrdyaL5V1W+B33a5DEmSJEnSYsgVE5IkSZIkqWsMJiRJkiRJUte4lUOLhHFrrOLBk5IkSZK0FHLFhCRJkiRJ6hqDCUmSJEmS1DUGE5IkSZIkqWsMJiRJkiRJUtcYTEiSJEmSpK7xWzm0SPjzQzN5289uX6hz/s9b1l+o80mSJEmSns4VE5IkSZIkqWsMJiRJkiRJUtcYTEiSJEmSpK4xmJAkSZIkSV1jMCFJkiRJkrrGYEKSJEmSJHWNwcQISDI7yZQkU5OclmTltv2yYY43NsnU9vHKSX6Q5IZ2/EuTjBrB2tdJcvpIjdeOuW2Sa5LMSrLbSI4tSZIkSVqyGEyMjMeqanxVbQo8AewPUFXbjMDYBwL3VNWL2/H3BZ4cgXEBqKq/V9VIhwd/BfYBfjjC40qSJEmSljDLdbuAJdAlwEsAksyoqlFJdgE+BLwO6AEuArYF7gWOAiYAKwDfqKoT+4y3NnBH75Oq+lM79ljgl8CVwGbAzcDeVfVoks8AOwIrAZcB76+qSrIBcAKwFjAb2L3999yq2jTJPsBOwMrAOOCMqjqsnW9f4OPA34FbgJlVdUB/b0BV/aW9Z848vXMLyENnf5k5D9//tPa9z3zqf/49PT1MnDhxYZUlSZIkScJgYkQlWQ54I01g8E9VdUaSXWnCiTcAn62q/0uyHzCtql6WZAVgcpILgOq4/RTggnZLxIXAqVV1S3vtBcC+VTU5ySnAB4FjgOOq6nNtTd8DdgDOAX4AHNXWsyLNipln9XkZ42mCjpnAn5J8nSa8+C/g34DpwP8C183Xm9XUth+wH8DKY9aZ3+EGNOfh+5k97Z6ntd81bYFNKUmSJEkaIoOJkbFSkint40uAb/fT58PAVOCKqvpR27Y98JKOcxhWBzakWf0AQFVNSfL8tu9rgauSbA08BtxZVZPbrt8HPkITTLw6yWE0Kx/WBP6Q5LfAulV1Rjvu4wBJ+tZ5YVVNa6/9EXgeMAa4qKoeaNtPAzYa+tvTv6o6CTgJYM0NXlyDdB+2ZVZ7Zr/tPaOevmJCkiRJkrRwGUyMjMeqavwgfdYF5gDPTrJMVc0BAny4qs7v7Nhu0/inqpoB/Az4Wbs94j+An/LUlRUA1a6EOB7YoqruTHI4sGI711DM7Hg8m+a/kaHeu0gavdPB/bZPesv6C7kSSZIkSVJfHn65ELRbPL4DvB24Eej9pHw+8IEkz2j7bZRklT73/nuSNdrHywOb8K8zJ9ZrV08A7AlcShNCANzXfnvHbgBV9TDwtyQ7t2Ot0PvtIUPwO+BVSdZoX8uuQ3/1kiRJkiQNzGBi4fgkcElVXUITSrw3ycbAycAfgWvarwc9kaevYhkHXJTkBuBa4Pc0qyWgCTneleR6mi0b36yqh4BvATcAZwJXdYz1TuAjbf/LaA7iHFRV3QV8geagzV+3NQ94QkOSlyX5G83hmicm+cNQ5pEkSZIkLX1StcC29msBard7nNt+hejCmG9UVc1oV0ycAZzSe17FSFhzgxfX9hPPHqnhhuR/3MohSZIkSQtFkquraov+rrliQkN1eHvA51TgdprVGJIkSZIkzRcPv1xMVdVfgIWyWqKd75C+bUk+RbNdo9NpVfX5hVOVJEmSJGlxZzChYWsDCEMISZIkSdKwuZVDkiRJkiR1jSsmtEh4/ugVPIxSkiRJkpZCrpiQJEmSJEldYzAhSZIkSZK6xmBCkiRJkiR1jcGEJEmSJEnqGg+/1CLhnoee5Mtn/N+Ij3vwLj0jPqYkSZIkaeS4YkKSJEmSJHWNwYQkSZIkSeoagwlJkiRJktQ1BhOSJEmSJKlrDCYkSZIkSVLXGExIkiRJkqSuMZjQsCXx62YlSZIkSfPFYGIxkmRskpuSnJrk+iSnJ1k5yXZJrk1yQ5JTkqzQ9j8qyR/bvsfMZdwpHT+PJXlVklXasa5qx35z23efJKclOQe4II2jk0xt59+j7bd2kovbMacmeeVCeZMkSZIkSYsV/+K9+HkBsG9VTU5yCnAw8H5gu6q6Ockk4APtv7sAL6yqSjJ6oAGrajxAkh2Bw4DLgCOA/62q97T3/i7Jr9tbtgZeUlUPJNkVGA+8FBgDXJXkYuDtwPlV9fkkywIrj/g70Y8rzzqSxx6+75/Pp5yx7FOu9/T0MHHixIVRiiRJkiRpCAwmFj93VtXk9vH3gf8Cbq+qm9u2U4EPAccBjwMnJzkPOHdugybZEDgaeE1VPZlke2CnJIe0XVYE1msf/6qqHmgfvwL4UVXNBu5JchHwMuAq4JQkzwDOrKop/cy5H7AfwBprrTtPb8JAHnv4Ph6Z9n//fP7ItBEZVpIkSZK0gBhMLH5qSJ2qZiXZEtgOeBtwAPCa/vomWQX4CfC+qvp7bzOwa1X9qU/frYBHOpsGmP/iJNsCbwK+l+ToqprUp89JwEkAz93gpUN6XYNZabUxT3k+etTTV0xIkiRJkhYdBhOLn/WSbF1VlwN7Ar8G3p9kg6q6FXgncFGSUcDKVfXzJFcAt85lzO8A36mqSzrazgc+nOTD7VaQzarq2n7uvbid/1RgTWBb4NAkzwPuqqpvtcHHvwGT+rl/RG315k885fnBuxhESJIkSdKizGBi8XMj8K4kJwK3AAcCVwCntd+ScRVwAk1IcFaSFWlWNXy0v8HaAGE3YKMk72mb3wv8N/AV4PokAf4C7NDPEGfQnDlxHc1qjsOq6v+SvIsmoHjchMbxAAAgAElEQVQSmAHsPb8vXJIkSZK05EnViKyg10KQZCxwblVt2uVSRtxzN3hpffTo80d8XFdMSJIkSVL3Jbm6qrbo75pfFypJkiRJkrrGrRyLkar6CzDs1RJJPgXs3qf5tKr6/PzUJUmSJEnScBlMLEXaAMIQQpIkSZK0yHArhyRJkiRJ6hqDCUmSJEmS1DVu5dAi4dmjn+E3aEiSJEnSUsgVE5IkSZIkqWsMJiRJkiRJUtcYTEiSJEmSpK4xmJAkSZIkSV3j4ZdaJDz44Cx++tP7hn3/rruOGcFqJEmSJEkLiysmJEmSJElS1xhMSJIkSZKkrjGYkCRJkiRJXWMwIUmSJEmSusZgQpIkSZIkdY3BxGIgyewkU5Jcl+SaJNu07eskOb19PD7JfwwyzjJJvpZkapIbklyVZP322icXYP0Tkpy7oMaXJEmSJC2+DCYWD49V1fiqeinwCeBIgKr6e1Xt1vYZD8w1mAD2ANYBXlJVLwZ2AR5qr81TMJGG//1IkiRJkuaLHywXP6sBDwIkGduuflge+BywR7uyYo8kr2ofT0lybZJVgbWBu6tqDkBV/a2qHkxyFLBS2/cH7dgHt2NPTXJQx3w3JjkeuAZ4bpLtk1zeruQ4Lcmotu8bktyU5FLgLQv5PZIkSZIkLSaW63YBGpKVkkwBVqQJF17TebGqnkjyGWCLqjoAIMk5wIeqanIbFjwO/AS4NMkrgQuB71fVtVX1n0kOqKrx7b2bA+8GtgICXJnkIppA5AXAu6vqg0nGAJ8GXltVjyT5OHBwkonAt9o6bwV+PJJvxtlnf57p0+99SttZZz09Y+vp6WHixIkjObUkSZIkaYQZTCweHusIDbYGJiXZdJB7JgNfbldA/Kyq/gb8LckLaAKD1wAXJtm9qi7sc+8rgDOq6pF2zp8BrwTOBu6oqivafi8HNgEmJwFYHrgceCFwe1Xd0t7/fWC/vgUm2a+3fcyY5wz5zZg+/V6mTbv7KW3Tpg35dkmSJEnSIsRgYjFTVZe3KxXWGqTfUUnOozl34ookr62qm6pqJvAL4BdJ7gF2plk90SlzGfqRPv1+VVV7PuXmZDxQQ3gtJwEnAYwbN37Q/r1WXfXpL33UqP5XTEiSJEmSFm0GE4uZJC8ElgXuB1buuDQdWLWj37iqugG4oV1l8cIkKwP/V1V/bw+ufAlwfXvLk0meUVVPAhcD323PngjNIZnv7KecK4BvJNmgqm5tx38OcBOwflvDbcCe/dw7bDvt9Kmnte2665iRnEKSJEmStJB4+OXiofdgyik05zW8q6pm9+nzG2CT3sMvgYPagyuvAx6jWSXxLOCcJFNpAolZwHHt/ScB1yf5QVVdA3wX+B1wJXByVV3bt6iquhfYB/hRkutpgooXVtXjNFs0zmsPv7xjxN4JSZIkSdISJVVDXkEvLTDjxo2viRN/Pez7XTEhSZIkSYuuJFdX1Rb9XXPFhCRJkiRJ6hqDCUmSJEmS1DUGE5IkSZIkqWsMJiRJkiRJUtcYTEiSJEmSpK5ZrtsFSABrrLGc36whSZIkSUshV0xIkiRJkqSuMZiQJEmSJEldYzAhSZIkSZK6xmBCkiRJkiR1jYdfapEw/YFZ/Pb79w7ab8I71loI1UiSJEmSFhZXTEiSJEmSpK4xmJAkSZIkSV1jMCFJkiRJkrrGYEKSJEmSJHWNwYQkSZIkSeoagwlJkiRJktQ1CyyYSDJjQY09hLlXTzIpyW3tz6Qkq8+l/2XzMdc+SdaZ135JTk6yyTDnPDzJXUmmJJmaZKdB+k9Isk3H8/2T7D3MuccmefsQ+n0iya1J/pTk9cOZS5IkSZK05FtSV0x8G/hzVY2rqnHA7cDJfTslWRagqrbpe20e7AMMGkz07VdV762qP87HvMdW1Xhgd+CUJHP7XU4A/vkaq+qEqpo0zHnHAnMNJtrA5W3Ai4A3AMf3vteSJEmSJHVabkFPkGQCcARwDzAe+BlwA3AgsBKwc1XdlmRH4NPA8sD9wF5VdU+StYAfAs8ErqL5oLt5Vd2X5B3AR9p7rgQ+CKwPbA7s0VHG54Bbk4wDngt8Fri7rWeTJDOqalRb76HAW4EVgDOq6rNJxgK/AC6l+YB/F/Bm4E3AFsAPkjwGbA0cCuzYvrbLgPcDu/bT7xfAIVX1+yR7Ap8EApxXVR9va5kBfBXYAXgMeHPV/2/vzuPtKup873++gDI3iAzBIMZGkEkTJKCiIjigPpdWecRWRJGWlku3oqKYlpbbRm1bRFtuOyAg2kg/OCAqDn0vBBEwiEAYAmFwAOJAJA00MgQVSPJ7/lh1cOdkn5MBkn1O8nm/XueVtapqVdVa5cKzf6eqdv1X7/OtqpuTLAS2TPLc4c+w9eMoYFF7XkcDLwUWVNWn2jP5PLAV8Afg7VX1syRnAPe3fk8AplXVOcAJwC5JZgNfqaqT+gz7a4CvV9VDwNwktwB7Az/tU7avs87/GPcuuGup9C/PWHZ8Y8KECZx44onL25QkSZIkaYBWeWCimQzsAtwD3AacXlV7J3k33Qfl99B96H9eVVWSvwWmAe+jCyL8qKo+nuSVwJEASXahCz68oKoeSXIy3Qfxe4HZVbVoqPGqWtQ+SO9G92F7b2D3qprb28kkBwA7tvwA30uyL/Cbln5IVb09ydnA66rq/0vyTlqAodXxuar6SDv+D+DAqjqnT7mhNp8CfIIumPJ7YEaS11bVucDGwOVV9cEkJwJvB/55WJ+fCywG7ur3DKvqfUlOoQUi2jUv7aniNOCoqvplq+tk4CUtb1vghcDOwPeAc4APtPs4sO9IdyYCl/ec397SlpDkSNp4bvPk7ZbIu3fBXdxz//yla75/lFYlSZIkSePO6gpMzKqqOwCS3ArMaOlzgP3b8XbAN5JsS/cX/6GgwQuBgwCq6rwkv2/pL6X7MD+rfcjfELgTuBaoPn1IT/qVw4MSzQHt59p2vgldQOI3wNyqmt3Sr6Zb0tDP/kmmARsBWwA3At8foSzAXsDFVXUXQJKzgH2Bc4GHgR/0tPnynuuOaTMgHgDe0IIRIz3DvpJsQjcD5JtDgRK6mSJDzq2qxcBNSbYZra7hVfdJW2pMquo0usAIz/zLKUvkb77JVn0r3nDT5ZsxIUmSJEkaH1ZXYOKhnuPFPeeLe/rwWeDTVfW9tvxjekvv9yF3KP0rVXXcEonJM4A9kqzTPlTT9l+YDNxMFwB5cJQ6P15Vpw6rc9Kwe1hEFwhhWLkN6GYcTK2q3yaZDmwwQlu9bY7kkaoa+sC+iCXH66ShGRA9RnqGI1kHuLftVdFP7z2P1s/hbqdbMjNkO+B3K3A9h77ig33T93tz/4CFJEmSJGl8GkubX25Gt3cDwFt70i+l2/NhaKnFk1r6hcDBSbZueVskeVpV3UI34+H4njqOB65peaM5H3hbm0lAkolD9Y/iAWDTdjwUhLi71XHwCOV6XQG8OMmWbYPIQ4BLltHmSEZ6hn3brqr76faAeD1AOpOX0cZI99Hre8Abk6yf5Ol0s06uXI7+S5IkSZLWMmMpMDGdbknBTODunvQPAwckuQZ4Fd2mlQ+0b7Q4nm5PhuuBC+j2RAA4AtipfV3lrcBOLW1UVTWDbqPNnyaZQ7enwrI+hJ8BnNL2sHgI+CLdEpVz6TbrXKpckkdnW7QlLscBFwHX0QVQvrusvo5gOv2f4feBg1rbLxp2zaHAEUmuo1t28ppltHE9sDDJdUmO6Vegqm4EzgZuAs4D3tG754ckSZIkSUPy55UCY1OS9YFFVbUwyfOBL4yy9EDj1DP/ckqd+pELllnOpRySJEmSNP4kubqqpvbLW117TDwW2wNnt30iHqb7ZgpJkiRJkrQGGPOBiar6JbDHoPuhpSV5Bd1XnfaaW1UHDaI/kiRJkqTxZ8wHJjR2VdX5dBuGSpIkSZK0UsbS5peSJEmSJGkt44wJjQmbbrGeG1tKkiRJ0lrIGROSJEmSJGlgDExIkiRJkqSBMTAhSZIkSZIGxsCEJEmSJEkaGDe/1Jjwx7sWMue0O/vmPevIrVdzbyRJkiRJq4szJiRJkiRJ0sAYmJAkSZIkSQNjYEKSJEmSJA2MgQlJkiRJkjQwBiYkSZIkSdLAGJiQJEmSJEkDY2BCkiRJkiQNzCoLTCRZsKrqXo62N0tyZpJb28+ZSTYbpfxlj6Gtw5M8ZUXLJTk9ya4r2eb0JPOSzE5yQ5JXL6P8fkn26Tk/KslhK9n2pCRvWkaZlye5Osmc9u9LVqYtSZIkSdKab71Bd2AV+RJwQ1UdBpDkw8DpwOt7CyVZt6oWVdU+fepYXocDNwC/W5FyVfW3j6FNgJOq6lNJdgFmJtm6qhaPUHY/YAFwWWv7lMfQ7iTgTcBXRylzN/BXVfW7JLsD5wMTl6fyL1z8L9zz4F1LpD3x0nUfPZ4wYQInnnjiCnZZkiRJkjRWrfKlHO2v9ZckOTvJL5KckOTQJFe2v6jv0Mr9VZIrklyb5IdJtmnpWyW5IMk1SU5N8uskW7a8N7d6Zre8dZM8A9gT+GhPNz4CTE2yQ+vPRUm+Csxp9Szo6e/7k8xKcn0LaAzNErg5yReT3JhkRpINkxwMTAXOan3YMMk/tetvSHJaOv3KXZxkaqv/kPYsbkjyiZ6+LEjysSTXJbl86Jn0qqqbgYXAlv2eYZJJwFHAMa3tF7UZF8e2NnZIcl6b2TAzyc4t/Ywkn0lyWZLb2j0AnAC8qNV1TL8xr6prq2ooUHMjsEGS9fv8b+PIJFcluer3C/4bgHsevIu7Fsxf4mfevHmP/syfP79fk5IkSZKkcWp17TExGXg38CzgLcBOVbU33SyGo1uZS4HnVdUewNeBaS39Q8CPquo5wHeA7QHaTIE3AC+oqinAIuBQYFdgdlUtGmq8Hc8GdmtJewMfrKolllIkOQDYseVPAfZMsm/L3hH4fFXtBtwLvK6qzgGuAg6tqilV9Ufgc1W1V1XtDmwIHDhCuaE2nwJ8AnhJa3OvJK9t2RsDl1fVZODHwNuHP9gkzwUWA3f1e4ZV9SvgFLoZFlOqauawKk4Djq6qPYFjgZN78rYFXggcSBeQAPgAMLPVddLw/vTxOuDaqnpoeEZVnVZVU6tq6pM2eTIAW2y8FVttMmGJn4kTJz76M2HChOVoUpIkSZI0XqyupRyzquoOgCS3AjNa+hxg/3a8HfCNJNsCTwTmtvQXAgcBVNV5SX7f0l9KNzNiVhLoggB3AtcC1acP6Um/sqrm9ilzQPu5tp1vQheQ+A0wt6pmt/Sr6ZY09LN/kmnARsAWdDMGvj9CWYC9gIur6i6AJGcB+wLnAg8DP+hp8+U91x2T5M3AA8AbqqqSjPQM+0qyCbAP8M32DAF6Zzac25aH3NRvtsayJNmNLuhywPJe83f7/eNSac86cusVbVqSJEmSNE6srsBE71/LF/ecL+7pw2eBT1fV95LsB0xv6aG/AF+pquOWSOyWcuyRZJ2hPReSrEM3a+NmugDIg6PU+fGqOnVYnZOG3cMiukAIw8ptQDfjYGpV/TbJdGCDEdrqbXMkj1TVUDBlEUuO10lV9alh5Ud6hiNZB7i3zTjpp/eeR+vnUlqQ5DvAYVV164pcK0mSJElae4ylrwvdDJjXjt/ak34p8Nfw6FKLJ7X0C4GDk2zd8rZI8rSquoVuxsPxPXUcD1zT8kZzPvC2NpOAJBOH6h/FA8Cm7XgoCHF3q+PgEcr1ugJ4cZItk6wLHAJcsow2RzLSM+zbdlXdD8xN8nqAth/G5GW0MdJ9PCrJ5sB/AsdV1U+Ws++SJEmSpLXQWApMTKdbUjCT7lsdhnwYOCDJNcCrgDuAB6rqJrqAw4wk1wMX0O2JAHAEsFOSW9rSkZ1a2qiqagbdt038NMkc4ByW8SEcOAM4JclsuhkGX6RbonIuMKtfuSSPzrZoS1yOAy4CrqMLoHx3WX0dwXT6P8PvAwcNbX457JpDgSOSXEe37OQ1y2jjemBh25Cz7+aXwDuBZwD/q7U5ezkCPJIkSZKktVD+vFJgbGrf5rCoqhYmeT7whVGWHmic2u1pU+rrH5zRN889JiRJkiRpfEtydVVN7Ze3uvaYeCy2B85u+0Q8TJ9vppAkSZIkSePTmA9MVNUvgT0G3Q8tLckr6L51o9fcqjpoEP2RJEmSJI0/Yz4wobGrqs6n2zBUkiRJkqSVYmBCY8KGW63nXhKSJEmStBYaS9/KIUmSJEmS1jIGJiRJkiRJ0sAYmJAkSZIkSQNjYEKSJEmSJA2Mm19qTHhk/iPcceIdS6VvO23bAfRGkiRJkrS6OGNCkiRJkiQNjIEJSZIkSZI0MAYmJEmSJEnSwBiYkCRJkiRJA2NgQpIkSZIkDYyBCUmSJEmSNDBrfGAiyaIks5PckOSbSTZq6ZetZH2TktzQjvdLcl+Sa5P8LMmnHs++r0pJNk/y9ytaLslTkpyzansnSZIkSVpbrPGBCeCPVTWlqnYHHgaOAqiqfR6n+mdW1R7AHsCBSV7wWCtMZ1WPzebAMgMTw8tV1e+q6uBV1itJkiRJ0lplbQhM9JoJPAMgyYL270FJftiCAdsm+UWSCUnWTfLJJLOSXJ/kf45WcVX9EZgNTGz1bpzky+36a5O8pqUfnuS7Sc5L8vMkH2rpk5LcnORk4BrgqUkOSPLTJNe02R6btLInJLmp9etTLW2rJN9q7c0aCpAkmd76cXGS25K8q3X5BGCHNpvkk0k2SXJha2vOUH/7lOudMbJBkn9v5a9Nsn/PPX673eMvk5y4ogN1wlUncOzMYznssMOYNm3ail4uSZIkSRon1ht0B1aXJOsBrwLO602vqu8keR3wDuCVwIeqan6SI4H7qmqvJOsDP0kyA6gR6n8SsCPw45b0QeBHVfW2JJsDVyb5YcvbG9gd+AMwK8l/AncDzwT+pqr+PsmWwPHAy6rqwST/ALw3yeeAg4Cdq6pa3QD/BpxUVZcm2R44H9il5e0M7A9sCvw8yReADwC7V9WUnudzUFXd39q+PMn3+pSb1HPb72jP8FlJdgZmJNmp5U2hm0XyUGvzs1X122HP7EjgSICJm09c4nne/ce7mf+H+d0TkiRJkiStsdaGwMSGSWa345nAl/qUORq4Abi8qr7W0g4Anp1kaNnCZnSBh18Mu/ZFSa6nCyqcUFXze65/dZJj2/kGwPbt+IKq+m+AJN8GXgicC/y6qi5vZZ4H7EoXEAF4IvBT4H7gT8DpLaDxg1b+ZcCurSzAXyTZtB3/Z1U9BDyU5E5gmz7PIMC/JNkXWEw386NfuV4vBD4LUFU/S/JrYCgwcWFV3dfu8SbgacASgYmqOg04DWDydpOXCPhsueGWAKz7pHWZMGHCMrohSZIkSRqv1obAxB+H/to/iol0H8a3SbJOVS2m+6B+dFWd31tw2IwB6PaYOLDNFLg0yXeqana7/nVV9fNh1z+XpWddDJ0/2FuULoBxyPDOJtkbeCnwRuCdwEvoluU8vy0p6S0L3ayFIYvoP+6HAlsBe1bVI0l+RRdMGU1GyVueNkf0gakfAGDbaduuyGWSJEmSpHFmbdtjYiltCcO/A28Cbgbe27LOB/4uyRNauZ2SbDxSPVX1C+DjwD/0XH90WmQgyR49xV+eZIskGwKvBX7Sp8rLgRckGdoTY6PWh02Azarq/wDvoVsyATCDLkgxdF/LCsY8QLe0Y8hmwJ0tKLE/3QyHfuV6/ZguoEELzGwP/HyEspIkSZIkLWWtD0wA/0g362EmXVDib5PsApwO3ARc0zZ7PJVl/9X/FGDfJE8HPgo8Abi+Xf/RnnKXAv9Bt1nmt6rqquEVVdVdwOHA19pSkcvp9orYFPhBS7sEOKZd8i5gatsQ8ybat4+MpC0l+Um6r1H9JHBWu/4qumDDz0Yo1+tkYN0kc4BvAIe3JSOSJEmSJC2XVPXdy1GrSJLDgalV9c5llV2bTN5ucp33rvOWSncphyRJkiSNf0murqqp/fKcMSFJkiRJkgZmbdj8ckypqjOAMwbcDUmSJEmSxgRnTEiSJEmSpIExMCFJkiRJkgbGpRwaE54w4QludClJkiRJayFnTEiSJEmSpIExMCFJkiRJkgbGwIQkSZIkSRoYAxOSJEmSJGlgDExoTHjkv/7I/E/fMOhuSJIkSZJWMwMTkiRJkiRpYAxMSJIkSZKkgTEwIUmSJEmSBsbAhCRJkiRJGhgDE5IkSZIkaWAMTEiSJEmSpIExMCFJkiRJkgZm3AUmkpyU5D095+cnOb3n/F+T/GOSc1aw3sOTfO5x6N+rklyV5OYkP0vyqZWsZ/Mkf/9Y+9NT38eS/DbJguUoOz3JH5Js3ZO2YFiZg5JUkp170ia1tKN70j6X5PDH6TYkSZIkSWuYcReYAC4D9gFIsg6wJbBbT/4+wIVVdfDq7liS3YHPAW+uql2A3YHbVrK6zYEVCkykM9KYfh/YewWquxt43yj5hwCXAm8cln4n8O4kT1yBtpj/4F287+J/5rDDDuOwww5j2rRpK3K5JEmSJGmcGo+BiZ/QAhN0AYkbgAeSPCnJ+sAuwO+T3ACPzoT4dpLzkvwyyYlDFSX5myS/SHIJ8IKe9KcluTDJ9e3f7ZOsm+S29uF/8ySLk+zbys9M8gxgGvCxqvoZQFUtrKqTW5mtknwryaz284KWPj3Jl5Nc3Op/V+vGCcAOSWYn+WQr+/527fVJPtzSJrXZGScD1wBP7ffQquryqrpjBZ7zl4E3JNlieEaSTdrzOoKlAxN3ARcCb11WA0mObLNLrnpo4UPMf/Au5s2bx7x585g/f/4KdFWSJEmSNF6Nu8BEVf0OWJhke7oAxU+BK4DnA1OB64GHh102BXgD8Cy6D9tPTbIt8GG6D9gvB3btKf854MyqejZwFvCZqloE/KKVeyFwNfCiFgzZrqpuoZshcfUIXf834KSq2gt4HXB6T97OwCvoZjR8KMkTgA8At1bVlKp6f5IDgB1bmSnAnkOBEeCZrb97VNWvl/0Ul8sCuuDEu/vkvRY4r6p+AdyT5DnD8k8A3pdk3dEaqKrTqmpqVU1df731mbDxVkycOJGJEycyYcKEx+UmJEmSJElj23qD7sBKGpo1sQ/waWBiO76PbqnHcBdW1X0ASW4Cnka3BOTiqrqrpX8D2KmVfz7w/7bj/wCGZlnMBPYFng58HHg7cAkwazn6/DJg1yRD53+RZNN2/J9V9RDwUJI7gW36XH9A+7m2nW9CF6j4DfDrqrp8Ofqwoj4DzE7yr8PSDwH+dzv+eju/ZiizquYmuRJ40/I2NGHjrfjX/Y5nwnt3f4xdliRJkiSNJ+M1MDG0z8Sz6JZy/JZuP4T76f7KP9xDPceL+PN913K2N1RuJnAU8BTgn4D3A/sBP275NwJ7Atf1qWMd4PlV9cfexBaoGKl/SxQFPl5Vpw67fhLw4HLexwqpqnuTfJWevS6SPBl4CbB7kgLWBSrJ8E0h/gU4hz8/G0mSJEmSljLulnI0PwEOBO6pqkVVdQ/dZpHPp1vasTyuAPZL8uS2dOL1PXmX8ee9Ew6l2+Rx6Jp9gMVV9SdgNvA/6QIWAJ8E/jHJTtBtzpnkvS1vBvDOoQaSTFlG/x4ANu05Px94W9vfgSQTe781YxX6NN09DgVLDqZbNvK0qppUVU8F5tItb3lU22fjJrpxkiRJkiSpr/EamJhDtxTj8mFp91XV3ctTQdsIcjpdIOOH9CxFAN4F/E2S64G30PZZaMstftvT7ky64MGcln898B7ga0luppvNsW1PnVPbxpU30c28GK1//w38JMkNST5ZVTOArwI/TTKHbjbCpqPV0SvJiUluBzZKcnuS6ctzXXue3wHWb0mHtPNe36L/so2PAdstbx8lSZIkSWufVC3vagZp1Zn81N3q/GO+4R4TkiRJkrQGSnJ1VU3tlzdeZ0xIkiRJkqQ1wHjd/FIjSHIFf152MeQtVTWnT9kPsuTeGgDfrKqPrar+SZIkSZLUy8DEGqaqnrsCZT9Gtw+EJEmSJEkD4VIOjQlP2GZD95eQJEmSpLWQgQlJkiRJkjQwBiYkSZIkSdLAGJiQJEmSJEkDY2BCkiRJkiQNjIEJjQmP3LmA//rMpYPuhiRJkiRpNTMwIUmSJEmSBsbAhCRJkiRJGhgDE5IkSZIkaWAMTEiSJEmSpIExMCFJkiRJkgbGwIQkSZIkSRoYAxOSJEmSJGlgVllgIsmCVVX3crS9WZIzk9zafs5Mstko5S97DG0dnuQpK1ouyelJdl3JNqcnmZdkdpIbkrx6GeX3S7JPz/lRSQ5bybYnJXnTMso8OclFSRYk+dzKtCNJkiRJWjusqTMmvgTcVlU7VNUOwFzg9OGFkqwLUFX7DM9bAYcDywxMDC9XVX9bVTc9hnZPqqopwOuBLycZbSz3Ax69x6o6parOXMl2JwGjBiaAPwH/Czh2eSudv+C/ee8PP8Nhhx3GtGnTVrJrkiRJkqTxZpUHJtpf6y9JcnaSXyQ5IcmhSa5MMifJDq3cXyW5Ism1SX6YZJuWvlWSC5Jck+TUJL9OsmXLe3OrZ3bLWzfJM4A9gY/2dOMjwNQkO7T+XJTkq8CcVs+Cnv6+P8msJNcn+XBLm5Tk5iRfTHJjkhlJNkxyMDAVOKv1YcMk/9SuvyHJaen0K3dxkqmt/kPas7ghySd6+rIgyceSXJfk8qFn0quqbgYWAlv2e4ZJJgFHAce0tl/UZlwc29rYIcl5Sa5OMjPJzi39jCSfSXJZktvaPQCcALyo1XVMvzGvqger6lK6AMVo/9s4MslVSa56aOHDzH/wv5k3bx7z588f7TJJkiRJ0hpkdc2YmAy8G3gW8BZgp6ram24Ww9GtzKXA86pqD+DrwNCfzT8E/KiqngN8B9geIMkuwBuAF7SZA4uAQ4FdgdlVtWio8XY8G9itJe0NfLCqllhKkeQAYMeWPwXYM8m+LXtH4PNVtRtwL/C6qjoHuAo4tKqmVNUfgc9V1bnl3jUAABNlSURBVF5VtTuwIXDgCOWG2nwK8AngJa3NvZK8tmVvDFxeVZOBHwNvH/5gkzwXWAzc1e8ZVtWvgFNoMyyqauawKk4Djq6qPelmOJzck7ct8ELgQLqABMAHgJmtrpOG92dFVNVpVTW1qqauv94TmbDxk5k4cSITJkx4LNVKkiRJksaR9VZTO7Oq6g6AJLcCM1r6HGD/drwd8I0k2wJPpFt+Ad0H44MAquq8JL9v6S+lmxkxKwl0QYA7gWuB6tOH9KRfWVVz+5Q5oP1c2843oQtI/AaYW1WzW/rVdEsa+tk/yTRgI2AL4Ebg+yOUBdgLuLiq7gJIchawL3Au8DDwg542X95z3TFJ3gw8ALyhqirJSM+wrySb0C3x+GZ7hgDr9xQ5t6oWAzf1m63xeJqwyZP59MvexTbveuGqbEaSJEmSNMasrsDEQz3Hi3vOF/f04bPAp6vqe0n2A6a39NBfgK9U1XFLJHZLOfZIsk77UE3bf2EycDNdAOTBUer8eFWdOqzOScPuYRFdIIRh5Tagm3Ewtap+m2Q6sMEIbfW2OZJHqmoomLKIJcfrpKr61LDyIz3DkawD3NtmnPTTe8+j9VOSJEmSpJUylja/3AyY147f2pN+KfDX8OhSiye19AuBg5Ns3fK2SPK0qrqFbsbD8T11HA9c0/JGcz7wtjaTgCQTh+ofxQPApu14KAhxd6vj4BHK9boCeHGSLdNtxnkIcMky2hzJSM+wb9tVdT8wN8nrAdp+GJOX0cZI9yFJkiRJ0gobS4GJ6XRLCmYCd/ekfxg4IMk1wKuAO4AH2jdaHA/MSHI9cAHdnggARwA7JbmlLR3ZqaWNqqpmAF8FfppkDnAOy/4QfgZwSpLZdDMMvki3ROVcYFa/ckkenW3RlrgcB1wEXEcXQPnusvo6gun0f4bfBw4a2vxy2DWHAkckuY5u2clrltHG9cDCtiFn380vAZL8Cvg0cHiS27OSX40qSZIkSVqz5c8rBcamJOsDi6pqYZLnA18YZemBxqnJ2+9cM4493T0mJEmSJGkNlOTqqpraL2917THxWGwPnN32iXiYPt9MIUmSJEmSxqcxH5ioql8Cewy6H1paklfQfdVpr7lVddAg+iNJkiRJGn/GfGBCY1dVnU+3YagkSZIkSStlLG1+qbXYE7bexP0lJEmSJGktZGBCkiRJkiQNjIEJSZIkSZI0MAYmJEmSJEnSwBiYkCRJkiRJA2NgQmPCwjvvG3QXJEmSJEkDYGBCkiRJkiQNjIEJSZIkSZI0MAYmJEmSJEnSwBiYkCRJkiRJA2NgQpIkSZIkDYyBCUmSJEmSNDAGJiRJkiRJ0sCsssBEkgWrqu7laHuzJGcmubX9nJlks1HKX/YY2jo8yVNWtFyS05PsupJtTk8yL8nsJDckefUyyu+XZJ+e86OSHLaSbU9K8qZllNm79W12kuuSHLQybUmSJEmS1nxr6oyJLwG3VdUOVbUDMBc4fXihJOsCVNU+w/NWwOHAMgMTw8tV1d9W1U2Pod2TqmoK8Hrgy0lGG8v9gEfvsapOqaozV7LdScCogQngBmBq698rgVOTrDfaBb+9/24OO+wwpk2btpLdkiRJkiSNR6s8MNH+Wn9JkrOT/CLJCUkOTXJlkjlJdmjl/irJFUmuTfLDJNu09K2SXJDkmiSnJvl1ki1b3ptbPbNb3rpJngHsCXy0pxsfAaYm2aH156IkXwXmtHoW9PT3/UlmJbk+yYdb2qQkNyf5YpIbk8xIsmGSg4GpwFmtDxsm+ad2/Q1JTkunX7mLk0xt9R/SnsUNST7R05cFST7WZh1cPvRMelXVzcBCYMt+zzDJJOAo4JjW9ovajItjWxs7JDkvydVJZibZuaWfkeQzSS5Lclu7B4ATgBe1uo7pN+ZV9YeqWthONwBqhP9tHJnkqiRXPbJ4EfPmzWP+/Pn9ikqSJEmS1lCra8bEZODdwLOAtwA7VdXedLMYjm5lLgWeV1V7AF8Hhv50/iHgR1X1HOA7wPYASXYB3gC8oP1lfhFwKLArMLuqFg013o5nA7u1pL2BD1bVEkspkhwA7NjypwB7Jtm3Ze8IfL6qdgPuBV5XVecAVwGHVtWUqvoj8Lmq2quqdgc2BA4codxQm08BPgG8pLW5V5LXtuyNgcurajLwY+Dtwx9skucCi4G7+j3DqvoVcApthkVVzRxWxWnA0VW1J3AscHJP3rbAC4ED6QISAB8AZra6Thren95+JbmRLvhzVE+g4lFVdVpVTa2qqU9YZ10mTpzIhAkTRqpSkiRJkrQGGnV6/eNoVlXdAZDkVmBGS58D7N+OtwO+kWRb4Il0yy+g+2B8EEBVnZfk9y39pXQzI2YlgS4IcCdwLf3/Qp+e9Curam6fMge0n2vb+SZ0AYnfAHOranZLv5puSUM/+yeZBmwEbAHcCHx/hLIAewEXV9VdAEnOAvYFzgUeBn7Q0+bLe647JsmbgQeAN1RVJRnpGfaVZBO6JR7fbM8QYP2eIudW1WLgpn6zNUZTVVcAu7UA0leS/N+q+tNI5Z/6F1ty5pkru7pEkiRJkjRera7AxEM9x4t7zhf39OGzwKer6ntJ9gOmt/TQX4CvVNVxSyR2Szn2SLJO+1BN239hMnAzXQDkwVHq/HhVnTqszknD7mERXSCEYeU2oJtxMLWqfptkOt1ShtGMdH8Aj1TVUDBlEUuO10lV9alh5Ud6hiNZB7i3zTjpp/eeR+vniKrq5iQPArvTzRqRJEmSJOlRY2nzy82Aee34rT3plwJ/DY8utXhSS78QODjJ1i1viyRPq6pb6GY8HN9Tx/HANS1vNOcDb2szCUgycaj+UTwAbNqOh4IQd7c6Dh6hXK8rgBcn2TLdZpyHAJcso82RjPQM+7ZdVfcDc5O8HqDthzF5GW2MdB+PSvL0tM0ukzwNeCbwq+W5AUmSJEnS2mUsBSam0y0pmAnc3ZP+YeCAJNcArwLuAB5o32hxPDAjyfXABXR7IgAcAeyU5Ja2dGSnljaqqpoBfBX4aZI5wDks40M4cAZwSpLZdDMMvki3ROVcYFa/ckkenW3RlrgcB1wEXEcXQPnusvo6gun0f4bfBw4a2vxy2DWHAkckuY5u2clrltHG9cDCtiFn380v6ZbfXNeeyXeAv6+qu0coK0mSJElai+XPKwXGpiTrA4uqamGS5wNfGGXpgcapKdvvWLN/88tBd0OSJEmStAokubqqpvbLW117TDwW2wNnt30iHqbPN1NIkiRJkqTxacwHJqrql8Aeg+6HlpbkFXRfddprblUdNIj+SJIkSZLGnzEfmNDYVVXn020YKkmSJEnSShlLm19qLbbe1psNuguSJEmSpAEwMCFJkiRJkgbGwIQkSZIkSRqYMf91oVo7JHkA+Pmg+6Fl2hK4e9Cd0Kgco/HBcRr7HKOxzzEaHxynsc8xGh/WhHF6WlVt1S/DzS81Vvx8pO+01diR5CrHaWxzjMYHx2nsc4zGPsdofHCcxj7HaHxY08fJpRySJEmSJGlgDExIkiRJkqSBMTChseK0QXdAy8VxGvsco/HBcRr7HKOxzzEaHxynsc8xGh/W6HFy80tJkiRJkjQwzpiQJEmSJEkDY2BCkiRJkiQNjIEJDVySVyb5eZJbknxg0P1ZWyV5apKLktyc5MYk727pWyS5IMkv279PaulJ8pk2btcnec5g72DtkWTdJNcm+UE7f3qSK9oYfSPJE1v6+u38lpY/aZD9Xpsk2TzJOUl+1t6p5/sujS1Jjmn/rbshydeSbOC7NHhJvpzkziQ39KSt8LuT5K2t/C+TvHUQ97KmGmGMPtn+e3d9ku8k2bwn77g2Rj9P8oqedH//W4X6jVNP3rFJKsmW7dx3aQBGGqMkR7d348YkJ/akr9HvkoEJDVSSdYHPA68CdgUOSbLrYHu11loIvK+qdgGeB7yjjcUHgAurakfgwnYO3Zjt2H6OBL6w+ru81no3cHPP+SeAk9oY/R44oqUfAfy+qp4BnNTKafX4N+C8qtoZmEw3Xr5LY0SSicC7gKlVtTuwLvBGfJfGgjOAVw5LW6F3J8kWwIeA5wJ7Ax8aCmbocXEGS4/RBcDuVfVs4BfAcQDt94g3Aru1a05uwXV//1v1zmDpcSLJU4GXA7/pSfZdGowzGDZGSfYHXgM8u6p2Az7V0tf4d8nAhAZtb+CWqrqtqh4Gvk73Mmo1q6o7quqadvwA3QepiXTj8ZVW7CvAa9vxa4Azq3M5sHmSbVdzt9c6SbYD/gdwejsP8BLgnFZk+BgNjd05wEtbea1CSf4C2Bf4EkBVPVxV9+K7NNasB2yYZD1gI+AOfJcGrqp+DNwzLHlF351XABdU1T1V9Xu6D81LfUDTyuk3RlU1o6oWttPLge3a8WuAr1fVQ1U1F7iF7nc/f/9bxUZ4l6ALrk4Der8BwXdpAEYYo78DTqiqh1qZO1v6Gv8uGZjQoE0EfttzfntL0wC1acp7AFcA21TVHdAFL4CtWzHHbjD+N90vFIvb+ZOBe3t+Iewdh0fHqOXf18pr1fpL4C7g39MtuTk9ycb4Lo0ZVTWP7q9Qv6ELSNwHXI3v0li1ou+O79RgvQ34v+3YMRpDkrwamFdV1w3LcpzGjp2AF7Vlg5ck2aulr/FjZGBCg9bvL05+h+0AJdkE+Bbwnqq6f7SifdIcu1UoyYHAnVV1dW9yn6K1HHladdYDngN8oar2AB7kz1PP+3GcVrM2Ffk1wNOBpwAb002DHc53aWwbaVwcrwFJ8kG6paFnDSX1KeYYDUCSjYAPAv/UL7tPmuM0GOsBT6JbVv1+4Ow2Q2+NHyMDExq024Gn9pxvB/xuQH1Z6yV5Al1Q4qyq+nZL/q+haeXt36EpZY7d6vcC4NVJfkU3Ve8ldDMoNm/T0WHJcXh0jFr+ZvSf1qnH1+3A7VV1RTs/hy5Q4bs0drwMmFtVd1XVI8C3gX3wXRqrVvTd8Z0agLYx4oHAoVU19MHIMRo7dqALxl7Xfo/YDrgmyQQcp7HkduDbbVnNlXQzZLdkLRgjAxMatFnAjul2Qn8i3aYu3xtwn9ZKLRr7JeDmqvp0T9b3gKFdmN8KfLcn/bC2k/PzgPuGptpq1aiq46pqu6qaRPeu/KiqDgUuAg5uxYaP0dDYHdzKj8so+nhSVfOB3yZ5Zkt6KXATvktjyW+A5yXZqP23b2iMfJfGphV9d84HDkjypDY75oCWplUkySuBfwBeXVV/6Mn6HvDGdN9s83S6zRWvxN//VruqmlNVW1fVpPZ7xO3Ac9r/Z/kujR3n0v3hiSQ7AU8E7mYteJfWW3YRadWpqoVJ3kn3H7l1gS9X1Y0D7tba6gXAW4A5SWa3tH8ETqCbRnYE3S/zr295/wf4f+g23/kD8Dert7vq8Q/A15P8M3AtbdPF9u9/JLmF7q+7bxxQ/9ZGRwNntV8SbqN7P9bBd2lMqKorkpwDXEM37fxa4DTgP/FdGqgkXwP2A7ZMcjvdNwKs0P8PVdU9ST5K9ws7wEeqyhkuj5MRxug4YH3ggrYv7OVVdVRV3ZjkbLrA30LgHVW1qNXj73+rUL9xqqovjVDcd2kARniXvgx8Od1XiD4MvLUFwtf4dykG/CVJkiRJ0qC4lEOSJEmSJA2MgQlJkiRJkjQwBiYkSZIkSdLAGJiQJEmSJEkDY2BCkiRJkiQNjIEJSZIkIMllq7m9SUnetDrblCRpLDIwIUmSBFTVPqurrSTrAZMAAxOSpLVeqmrQfZAkSRq4JAuqapMk+wEfBv4LmAJ8G5gDvBvYEHhtVd2a5AzgT8BuwDbAe6vqB0k2AL4ATAUWtvSLkhwO/A9gA2BjYCNgF2Au8BXgO8B/tDyAd1bVZa0/04G7gd2Bq4E3V1Ul2Qv4t3bNQ8BLgT8AJwD7AesDn6+qUx/nxyVJ0uNmvUF3QJIkaQyaTBc0uAe4DTi9qvZO8m7gaOA9rdwk4MXADsBFSZ4BvAOgqp6VZGdgRpKdWvnnA8+uqntawOHYqjoQIMlGwMur6k9JdgS+RhfcANiDLgDyO+AnwAuSXAl8A3hDVc1K8hfAH4EjgPuqaq8k6wM/STKjquauguckSdJjZmBCkiRpabOq6g6AJLcCM1r6HGD/nnJnV9Vi4JdJbgN2Bl4IfBagqn6W5NfAUGDigqq6Z4Q2nwB8LskUYFHPNQBXVtXtrT+z6QIi9wF3VNWs1tb9Lf8A4NlJDm7XbgbsSDczQ5KkMcfAhCRJ0tIe6jle3HO+mCV/fxq+JraAjFLvg6PkHUO3fGQy3T5gfxqhP4taH9KnfVr60VV1/ihtSZI0Zrj5pSRJ0sp7fZJ1kuwA/CXwc+DHwKEAbQnH9i19uAeATXvON6ObAbEYeAuw7jLa/hnwlLbPBEk2bZtqng/8XZInDPUhycaj1CNJ0kA5Y0KSJGnl/Ry4hG7zy6Pa/hAnA6ckmUO3+eXhVfVQstREiuuBhUmuA84ATga+leT1wEWMPruCqno4yRuAzybZkG5/iZcBp9Mt9bgmXaN3Aa99PG5WkqRVwW/lkCRJWgntWzl+UFXnDLovkiSNZy7lkCRJkiRJA+OMCUmSJEmSNDDOmJAkSZIkSQNjYEKSJEmSJA2MgQlJkiRJkjQwBiYkSZIkSdLAGJiQJEmSJEkD8/8D8xe0Dp5Yl+kAAAAASUVORK5CYII=\n",
4748
      "text/plain": [
4749
       "<Figure size 1152x864 with 1 Axes>"
4750
      ]
4751
     },
4752
     "metadata": {
4753
      "needs_background": "light"
4754
     },
4755
     "output_type": "display_data"
4756
    }
4757
   ],
4758
   "source": [
4759
    "fi['score'] = fi[[\"feature\", \"importance\"]].groupby('feature').transform('mean')\n",
4760
    "\n",
4761
    "cols = fi[[\"feature\", \"importance\"]].groupby(\"feature\").mean().sort_values(\n",
4762
    "    by=\"importance\", ascending=False)[:50].index\n",
4763
    "best_features = fi.loc[fi.feature.isin(cols)]\n",
4764
    "\n",
4765
    "plt.figure(figsize=(16, 12));\n",
4766
    "sn.barplot(x=\"importance\", y=\"feature\", data=best_features.sort_values(by=\"score\", ascending=False));\n",
4767
    "plt.title('LGB Features (avg over folds)');"
4768
   ]
4769
  },
4770
  {
4771
   "cell_type": "markdown",
4772
   "metadata": {},
4773
   "source": [
4774
    "# Prediction"
4775
   ]
4776
  },
4777
  {
4778
   "cell_type": "code",
4779
   "execution_count": 266,
4780
   "metadata": {},
4781
   "outputs": [],
4782
   "source": [
4783
    "test_md_filt = test_md.loc[:,cols_cat + cols_float]\n",
4784
    "preds = np.zeros((FOLDS,len(test_md)))\n",
4785
    "for i in range(FOLDS):\n",
4786
    "    preds[i,:] = models[i].predict(test_md_filt, num_iteration=models[i].best_iteration)"
4787
   ]
4788
  },
4789
  {
4790
   "cell_type": "code",
4791
   "execution_count": 267,
4792
   "metadata": {},
4793
   "outputs": [],
4794
   "source": [
4795
    "preds = preds.mean(0)"
4796
   ]
4797
  },
4798
  {
4799
   "cell_type": "code",
4800
   "execution_count": 64,
4801
   "metadata": {},
4802
   "outputs": [],
4803
   "source": [
4804
    "#preds = preds.mean(0)\n",
4805
    "preds = np.exp(np.log(preds).mean(0))"
4806
   ]
4807
  },
4808
  {
4809
   "cell_type": "code",
4810
   "execution_count": 205,
4811
   "metadata": {},
4812
   "outputs": [
4813
    {
4814
     "data": {
4815
      "text/plain": [
4816
       "0.07402770495814699"
4817
      ]
4818
     },
4819
     "execution_count": 205,
4820
     "metadata": {},
4821
     "output_type": "execute_result"
4822
    }
4823
   ],
4824
   "source": [
4825
    "preds.mean()"
4826
   ]
4827
  },
4828
  {
4829
   "cell_type": "code",
4830
   "execution_count": 268,
4831
   "metadata": {},
4832
   "outputs": [
4833
    {
4834
     "data": {
4835
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAD4CAYAAAAO9oqkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAS70lEQVR4nO3dfYxd913n8feHeNPSblPnwa26tnfHBVNIq6KWIQkgoW4NiZNCHUSCHB7qFoNFCU8L0tahK6VqiTZdVoRWtEGmMXWq0sQEUAxJG0yaqgI1aSZNSOuE1EOSTWaTbabYCQ9RCy7f/eP+nNxO7nju3Ou5cz1+v6SrOed7fufM917b85nfOedep6qQJJ3cvmW5G5AkLT/DQJJkGEiSDANJEoaBJAlYtdwNDOqss86qiYmJ5W5Dkk4o99xzz1eras3c+gkbBhMTE0xNTS13G5J0Qknyf3rVPU0kSTIMJEmGgSQJw0CShGEgScIwkCRhGEiS6CMMkuxO8lSSL3XVfjvJ3yW5P8mfJVndte2KJNNJHkpyQVd9c6tNJ9nZVd+Q5K4kB5PcmOTU4/kEJUkL62dm8FFg85zafuB1VfV64MvAFQBJzga2Aq9t+3w4ySlJTgE+BFwInA1c1sYCvB+4pqo2AoeB7UM9I0nSoi34DuSq+mySiTm1v+xavRO4pC1vAW6oqq8DjySZBs5p26ar6mGAJDcAW5I8CLwZ+Mk2Zg/wHuDaQZ5MvyZ23vLc8qNXv2Upv5UknRCOxzWDnwU+2ZbXAo93bZtptfnqZwJPV9WROfWekuxIMpVkanZ29ji0LkmCIcMgybuBI8DHj5Z6DKsB6j1V1a6qmqyqyTVrXvA5S5KkAQ38QXVJtgE/Amyq5/8j5RlgfdewdcATbblX/avA6iSr2uyge7wkaUQGmhkk2Qy8C3hrVT3btWkfsDXJi5JsADYCnwfuBja2O4dOpXOReV8LkTt4/prDNuDmwZ6KJGlQ/dxa+gngc8Brkswk2Q78HvAyYH+S+5L8PkBVHQD2Ag8AnwIur6pvtN/6fwm4DXgQ2NvGQidUfr1dbD4TuO64PkNJ0oL6uZvosh7leX9gV9VVwFU96rcCt/aoP8zzdxxJkpaB70CWJBkGkiTDQJKEYSBJwjCQJGEYSJIwDCRJGAaSJAwDSRKGgSQJw0CShGEgScIwkCRhGEiSMAwkSRgGkiQMA0kShoEkCcNAkoRhIEnCMJAkYRhIkjAMJEkYBpIkDANJEn2EQZLdSZ5K8qWu2hlJ9ic52L6e3upJ8sEk00nuT/LGrn22tfEHk2zrqn9Pki+2fT6YJMf7SUqSjq2fmcFHgc1zajuB26tqI3B7Wwe4ENjYHjuAa6ETHsCVwLnAOcCVRwOkjdnRtd/c7yVJWmILhkFVfRY4NKe8BdjTlvcAF3fVr6+OO4HVSV4FXADsr6pDVXUY2A9sbttOq6rPVVUB13cdS5I0IoNeM3hlVT0J0L6+otXXAo93jZtptWPVZ3rUe0qyI8lUkqnZ2dkBW5ckzXW8LyD3Ot9fA9R7qqpdVTVZVZNr1qwZsEVJ0lyDhsFX2ike2tenWn0GWN81bh3wxAL1dT3qkqQRGjQM9gFH7wjaBtzcVX9bu6voPOCZdhrpNuD8JKe3C8fnA7e1bf+U5Lx2F9Hbuo4lSRqRVQsNSPIJ4E3AWUlm6NwVdDWwN8l24DHg0jb8VuAiYBp4FngHQFUdSvI+4O427r1VdfSi9Dvp3LH0rcAn20OSNEILhkFVXTbPpk09xhZw+TzH2Q3s7lGfAl63UB+SpKXjO5AlSYaBJMkwkCRhGEiSMAwkSRgGkiQMA0kShoEkCcNAkoRhIEnCMJAkYRhIkjAMJEkYBpIkDANJEoaBJAnDQJKEYSBJwjCQJGEYSJIwDCRJGAaSJAwDSRKGgSQJw0CShGEgSWLIMEjy35IcSPKlJJ9I8uIkG5LcleRgkhuTnNrGvqitT7ftE13HuaLVH0pywXBPSZK0WAOHQZK1wK8Ak1X1OuAUYCvwfuCaqtoIHAa2t122A4er6tuBa9o4kpzd9nstsBn4cJJTBu1LkrR4w54mWgV8a5JVwEuAJ4E3Aze17XuAi9vylrZO274pSVr9hqr6elU9AkwD5wzZlyRpEQYOg6r6v8D/Bh6jEwLPAPcAT1fVkTZsBljbltcCj7d9j7TxZ3bXe+zzTZLsSDKVZGp2dnbQ1iVJcwxzmuh0Or/VbwD+E/BS4MIeQ+voLvNsm6/+wmLVrqqarKrJNWvWLL5pSVJPw5wm+iHgkaqarap/A/4U+H5gdTttBLAOeKItzwDrAdr2lwOHuus99pEkjcAwYfAYcF6Sl7Rz/5uAB4A7gEvamG3AzW15X1unbf90VVWrb213G20ANgKfH6IvSdIirVp4SG9VdVeSm4AvAEeAe4FdwC3ADUl+q9Wua7tcB3wsyTSdGcHWdpwDSfbSCZIjwOVV9Y1B+5IkLd7AYQBQVVcCV84pP0yPu4Gq6mvApfMc5yrgqmF6kSQNzncgS5IMA0mSYSBJwjCQJGEYSJIwDCRJGAaSJAwDSRKGgSQJw0CSxJAfR7ESTOy85bnlR69+yzJ2IknLx5mBJMkwkCQZBpIkDANJEoaBJAnDQJKEYSBJwjCQJGEYSJIwDCRJGAaSJAwDSRKGgSQJw0CSxJBhkGR1kpuS/F2SB5N8X5IzkuxPcrB9Pb2NTZIPJplOcn+SN3YdZ1sbfzDJtmGflCRpcYadGXwA+FRVfSfw3cCDwE7g9qraCNze1gEuBDa2xw7gWoAkZwBXAucC5wBXHg0QSdJoDBwGSU4DfhC4DqCq/rWqnga2AHvasD3AxW15C3B9ddwJrE7yKuACYH9VHaqqw8B+YPOgfUmSFm+YmcGrgVngD5Pcm+QjSV4KvLKqngRoX1/Rxq8FHu/af6bV5qu/QJIdSaaSTM3Ozg7RuiSp2zBhsAp4I3BtVb0B+BeePyXUS3rU6hj1FxardlXVZFVNrlmzZrH9SpLmMUwYzAAzVXVXW7+JTjh8pZ3+oX19qmv8+q791wFPHKMuSRqRgcOgqv4f8HiS17TSJuABYB9w9I6gbcDNbXkf8LZ2V9F5wDPtNNJtwPlJTm8Xjs9vNUnSiKwacv9fBj6e5FTgYeAddAJmb5LtwGPApW3srcBFwDTwbBtLVR1K8j7g7jbuvVV1aMi+JEmLMFQYVNV9wGSPTZt6jC3g8nmOsxvYPUwvkqTB+Q5kSZJhIEkyDCRJGAaSJAwDSRKGgSQJw0CShGEgScIwkCRhGEiSMAwkSRgGkiQMA0kShoEkCcNAkoRhIEnCMJAkYRhIkjAMJEkYBpIkYNVyNzBOJnbe8tzyo1e/ZRk7kaTRcmYgSTIMJEmGgSQJw0CSxHEIgySnJLk3yV+09Q1J7kpyMMmNSU5t9Re19em2faLrGFe0+kNJLhi2J0nS4hyPmcGvAg92rb8fuKaqNgKHge2tvh04XFXfDlzTxpHkbGAr8FpgM/DhJKcch74kSX0aKgySrAPeAnykrQd4M3BTG7IHuLgtb2nrtO2b2vgtwA1V9fWqegSYBs4Zpi9J0uIMOzP4XeC/A//e1s8Enq6qI219BljbltcCjwO07c+08c/Ve+zzTZLsSDKVZGp2dnbI1iVJRw38prMkPwI8VVX3JHnT0XKPobXAtmPt883Fql3ALoDJycmeY0bJN6lJWimGeQfyDwBvTXIR8GLgNDozhdVJVrXf/tcBT7TxM8B6YCbJKuDlwKGu+lHd+4yd7gCQpJVi4NNEVXVFVa2rqgk6F4A/XVU/BdwBXNKGbQNubsv72jpt+6erqlp9a7vbaAOwEfj8oH0dLxM7b3nuIUkr3VJ8NtG7gBuS/BZwL3Bdq18HfCzJNJ0ZwVaAqjqQZC/wAHAEuLyqvrEEfQ3MQJC00h2XMKiqzwCfacsP0+NuoKr6GnDpPPtfBVx1PHqRJC2e70CWJBkGkiTDQJKE/7nNceN7DiSdyJwZSJKcGSwFZwmSTjTODCRJhoEkyTCQJOE1gyXn9QNJJwJnBpIkw0CS5GmikfKUkaRxZRiMAUNC0nIzDJaJ/0eCpHHiNQNJkjODcecpJEmjYBiMGU8fSVoOniaSJBkGkiRPE51QvH4gaak4M5AkGQaSJMNAkoRhIEliiDBIsj7JHUkeTHIgya+2+hlJ9ic52L6e3upJ8sEk00nuT/LGrmNta+MPJtk2/NOSJC3GMHcTHQF+o6q+kORlwD1J9gNvB26vqquT7AR2Au8CLgQ2tse5wLXAuUnOAK4EJoFqx9lXVYeH6G3F884iScfTwDODqnqyqr7Qlv8JeBBYC2wB9rRhe4CL2/IW4PrquBNYneRVwAXA/qo61AJgP7B50L4kSYt3XK4ZJJkA3gDcBbyyqp6ETmAAr2jD1gKPd+0202rz1SVJIzJ0GCT5j8CfAL9WVf94rKE9anWMeq/vtSPJVJKp2dnZxTcrSeppqDBI8h/oBMHHq+pPW/kr7fQP7etTrT4DrO/afR3wxDHqL1BVu6pqsqom16xZM0zrkqQuw9xNFOA64MGq+p2uTfuAo3cEbQNu7qq/rd1VdB7wTDuNdBtwfpLT251H57eaJGlEhrmb6AeAnwG+mOS+VvtN4Gpgb5LtwGPApW3brcBFwDTwLPAOgKo6lOR9wN1t3Hur6tAQfUmSFmngMKiqv6b3+X6ATT3GF3D5PMfaDewetBdJ0nD81NIVwPccSBqWH0chSTIMJEmGgSQJw0CShGEgScK7iVYc7yySNAhnBpIkw0CSZBhIkvCawYrm9QNJ/XJmIEkyDCRJniY6aXjKSNKxODOQJBkGkiTDQJKE1wxOSl4/kDSXMwNJkjODk52zBElgGKiLwSCdvDxNJElyZqDenCVIJxdnBpIkZwZamLMEaeUzDLQoBoO0Mo1NGCTZDHwAOAX4SFVdvcwtaQHdwTAfA0M6MYxFGCQ5BfgQ8MPADHB3kn1V9cDydqZh9RMY3QwPaXmMRRgA5wDTVfUwQJIbgC2AYXCSWWx4SOOg+5eYfk6ljuMvSeMSBmuBx7vWZ4Bz5w5KsgPY0Vb/OclDA36/s4CvDrjvUhrXvsDeBmVvgzmhesv7ew+cr75YizhOP6/bf+lVHJcwSI9avaBQtQvYNfQ3S6aqanLY4xxv49oX2Nug7G0w9jaYYXobl/cZzADru9bXAU8sUy+SdNIZlzC4G9iYZEOSU4GtwL5l7kmSThpjcZqoqo4k+SXgNjq3lu6uqgNL+C2HPtW0RMa1L7C3QdnbYOxtMAP3lqoXnJqXJJ1kxuU0kSRpGRkGkqSVGwZJNid5KMl0kp09tr8oyY1t+11JJsaotx9M8oUkR5JcMqq++uzt15M8kOT+JLcn6XnP8jL19gtJvpjkviR/neTscemta9wlSSrJyG5N7ON1e3uS2fa63Zfk58altzbmJ9rfuQNJ/mhcektyTddr9uUkT49Rb/85yR1J7m3/Vi9a8KBVteIedC5C/z3wauBU4G+Bs+eM+UXg99vyVuDGMeptAng9cD1wyZi9bv8VeElbfueYvW6ndS2/FfjUuPTWxr0M+CxwJzA5Lr0Bbwd+b1R/zxbZ20bgXuD0tv6KceltzvhfpnPjy1j0RudC8jvb8tnAowsdd6XODJ77eIuq+lfg6MdbdNsC7GnLNwGbkvR689vIe6uqR6vqfuDfR9DPYnu7o6qebat30nlPyLj09o9dqy+lxxsXl6u35n3A/wK+NqK+FtPbcuint58HPlRVhwGq6qkx6q3bZcAnRtJZf70VcFpbfjl9vG9rpYZBr4+3WDvfmKo6AjwDnDkmvS2Xxfa2Hfjkknb0vL56S3J5kr+n80P3V8altyRvANZX1V+MqKej+v0z/fF2OuGmJOt7bF8K/fT2HcB3JPmbJHe2Tzcel94AaKdKNwCfHkFf0F9v7wF+OskMcCudmcsxrdQw6OfjLfr6CIwlsFzftx9995bkp4FJ4LeXtKOub9mj1usjSz5UVd8GvAv4H0veVccxe0vyLcA1wG+MqJ9u/bxufw5MVNXrgb/i+RnzUuunt1V0ThW9ic5v3x9JsnqJ+4LF/TvdCtxUVd9Ywn669dPbZcBHq2odcBHwsfb3cF4rNQz6+XiL58YkWUVnKnVoTHpbLn31luSHgHcDb62qr49Tb11uAC5e0o6et1BvLwNeB3wmyaPAecC+EV1EXvB1q6p/6Ppz/APge0bQV1+9tTE3V9W/VdUjwEN0wmEcejtqK6M7RQT99bYd2AtQVZ8DXkznQ+zmN4oLHqN+0Plt4mE6U7ejF1heO2fM5XzzBeS949Jb19iPMtoLyP28bm+gc/Fq4xj+mW7sWv5RYGpcepsz/jOM7gJyP6/bq7qWfwy4c4x62wzsactn0Tk9cuY49NbGvQZ4lPYG3jF63T4JvL0tfxedsDhmjyNpfjkedKZGX24/uN7dau+l89ssdJLyj4Fp4PPAq8eot++lk/7/AvwDcGCMevsr4CvAfe2xb4x6+wBwoPV1x7F+II+6tzljRxYGfb5u/7O9bn/bXrfvHKPeAvwOnf/b5IvA1nHpra2/B7h6VD0t4nU7G/ib9md6H3D+Qsf04ygkSSv2moEkaREMA0mSYSBJMgwkSRgGkiQMA0kShoEkCfj/Iu+AfvzUL9IAAAAASUVORK5CYII=\n",
4836
      "text/plain": [
4837
       "<Figure size 432x288 with 1 Axes>"
4838
      ]
4839
     },
4840
     "metadata": {
4841
      "needs_background": "light"
4842
     },
4843
     "output_type": "display_data"
4844
    }
4845
   ],
4846
   "source": [
4847
    "a = plt.hist(preds,bins=100)"
4848
   ]
4849
  },
4850
  {
4851
   "cell_type": "code",
4852
   "execution_count": 269,
4853
   "metadata": {},
4854
   "outputs": [
4855
    {
4856
     "data": {
4857
      "text/plain": [
4858
       "0.14380767240032438"
4859
      ]
4860
     },
4861
     "execution_count": 269,
4862
     "metadata": {},
4863
     "output_type": "execute_result"
4864
    }
4865
   ],
4866
   "source": [
4867
    "predictions.mean()"
4868
   ]
4869
  },
4870
  {
4871
   "cell_type": "code",
4872
   "execution_count": 209,
4873
   "metadata": {},
4874
   "outputs": [
4875
    {
4876
     "data": {
4877
      "text/plain": [
4878
       "0.07663068233421942"
4879
      ]
4880
     },
4881
     "execution_count": 209,
4882
     "metadata": {},
4883
     "output_type": "execute_result"
4884
    }
4885
   ],
4886
   "source": [
4887
    "(predictions*weights).mean()/weights.mean()"
4888
   ]
4889
  },
4890
  {
4891
   "cell_type": "code",
4892
   "execution_count": 270,
4893
   "metadata": {},
4894
   "outputs": [
4895
    {
4896
     "data": {
4897
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAD4CAYAAAAtrdtxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAUW0lEQVR4nO3df5Bd5X3f8fcnUiB2EhtsZI8r0YqMlTaYacdYg0kzk7pWCgJnLP6AjpimKK6mmlKcpmmmtWj+UMc2M7hpS8MMJlEtFeFxLShNiyYWVTWAx23HYJaQYgShbIHCFmrWEVC3jE3kfPvHfURvxUq7eu7+uNp9v2bu7Dnf85xznkda7UfPOefeTVUhSVKPH1nqDkiSzlyGiCSpmyEiSepmiEiSuhkikqRuq5e6A/PtvPPOq/Xr1y91NyTpjPLoo49+t6rWnO5+yy5E1q9fz8TExFJ3Q5LOKEn+e89+Xs6SJHUzRCRJ3QwRSVI3Q0SS1M0QkSR1M0QkSd0MEUlSN0NEktTNEJEkdVt271gfxfqdX3tr+fmbP7GEPZGkM4MzEUlSN0NEktTNEJEkdTNEJEndDBFJUjdDRJLUzRCRJHWbNUSS7E3ySpInhmq/meQPkzye5N8mOWdo241JJpM8neTyofrmVptMsnOofkGSh5M8k+SuJGe1+tltfbJtXz9fg5YkzY+5zETuADafUDsMXFRVfx74r8CNAEkuBLYCH2r7fDHJqiSrgNuAK4ALgWtbW4AvALdU1QbgVWB7q28HXq2qDwK3tHaSpDEya4hU1TeAoyfU/kNVHWurDwHr2vIWYH9V/aCqngMmgUvaa7Kqnq2qN4H9wJYkAT4O3NP23wdcNXSsfW35HmBTay9JGhPzcU/kbwD3teW1wItD26Za7WT19wKvDQXS8fr/d6y2/fXW/m2S7EgykWRienp65AFJkuZmpBBJ8hvAMeArx0szNKuO+qmO9fZi1e6q2lhVG9esWXPqTkuS5k33BzAm2Qb8IrCpqo7/cJ8Czh9qtg54qS3PVP8ucE6S1W22Mdz++LGmkqwG3s0Jl9UkSUurayaSZDPwGeCTVfXG0KYDwNb2ZNUFwAbgW8AjwIb2JNZZDG6+H2jh8yBwddt/G3Dv0LG2teWrgQeGwkqSNAZmnYkk+SrwMeC8JFPALgZPY50NHG73uh+qqr9VVUeS3A08yeAy1w1V9cN2nE8Dh4BVwN6qOtJO8Rlgf5LPA48Be1p9D/DlJJMMZiBb52G8kqR5NGuIVNW1M5T3zFA73v4m4KYZ6geBgzPUn2Xw9NaJ9e8D18zWP0nS0vEd65KkboaIJKmbISJJ6maISJK6GSKSpG6GiCSpmyEiSepmiEiSuhkikqRuhogkqZshIknqZohIkroZIpKkboaIJKmbISJJ6maISJK6GSKSpG6GiCSpmyEiSepmiEiSuhkikqRuhogkqZshIknqNmuIJNmb5JUkTwzV3pPkcJJn2tdzWz1Jbk0ymeTxJBcP7bOttX8mybah+keSfLvtc2uSnOockqTxMZeZyB3A5hNqO4H7q2oDcH9bB7gC2NBeO4DbYRAIwC7go8AlwK6hULi9tT2+3+ZZziFJGhOzhkhVfQM4ekJ5C7CvLe8Drhqq31kDDwHnJPkAcDlwuKqOVtWrwGFgc9v2rqr6ZlUVcOcJx5rpHJKkMdF7T+T9VfUyQPv6vlZfC7w41G6q1U5Vn5qhfqpzSJLGxHzfWM8Mteqon95Jkx1JJpJMTE9Pn+7ukqROvSHynXYpivb1lVafAs4farcOeGmW+roZ6qc6x9tU1e6q2lhVG9esWdM5JEnS6eoNkQPA8SestgH3DtWva09pXQq83i5FHQIuS3Juu6F+GXCobftekkvbU1nXnXCsmc4hSRoTq2drkOSrwMeA85JMMXjK6mbg7iTbgReAa1rzg8CVwCTwBvApgKo6muRzwCOt3Wer6vjN+usZPAH2DuC+9uIU55AkjYlZQ6Sqrj3Jpk0ztC3ghpMcZy+wd4b6BHDRDPU/mukckqTx4TvWJUndDBFJUjdDRJLUzRCRJHUzRCRJ3QwRSVI3Q0SS1M0QkSR1M0QkSd0MEUlSN0NEktTNEJEkdTNEJEndDBFJUjdDRJLUzRCRJHUzRCRJ3QwRSVI3Q0SS1M0QkSR1M0QkSd0MEUlSN0NEktTNEJEkdRspRJL8WpIjSZ5I8tUkP5bkgiQPJ3kmyV1Jzmptz27rk237+qHj3NjqTye5fKi+udUmk+wcpa+SpPnXHSJJ1gJ/B9hYVRcBq4CtwBeAW6pqA/AqsL3tsh14tao+CNzS2pHkwrbfh4DNwBeTrEqyCrgNuAK4ELi2tZUkjYlRL2etBt6RZDXwTuBl4OPAPW37PuCqtrylrdO2b0qSVt9fVT+oqueASeCS9pqsqmer6k1gf2srSRoT3SFSVf8D+CfACwzC43XgUeC1qjrWmk0Ba9vyWuDFtu+x1v69w/UT9jlZ/W2S7EgykWRienq6d0iSpNM0yuWscxnMDC4A/hTw4wwuPZ2oju9ykm2nW397sWp3VW2sqo1r1qyZreuSpHkyyuWsXwCeq6rpqvpj4HeBvwic0y5vAawDXmrLU8D5AG37u4Gjw/UT9jlZXZI0JkYJkReAS5O8s93b2AQ8CTwIXN3abAPubcsH2jpt+wNVVa2+tT29dQGwAfgW8AiwoT3tdRaDm+8HRuivJGmerZ69ycyq6uEk9wC/DxwDHgN2A18D9if5fKvtabvsAb6cZJLBDGRrO86RJHczCKBjwA1V9UOAJJ8GDjF48mtvVR3p7a8kaf51hwhAVe0Cdp1QfpbBk1Untv0+cM1JjnMTcNMM9YPAwVH6KElaOL5jXZLUzRCRJHUzRCRJ3QwRSVI3Q0SS1M0QkSR1M0QkSd0MEUlSN0NEktTNEJEkdTNEJEndDBFJUjdDRJLUzRCRJHUzRCRJ3QwRSVI3Q0SS1M0QkSR1M0QkSd0MEUlSN0NEktTNEJEkdTNEJEndDBFJUreRQiTJOUnuSfKHSZ5K8rNJ3pPkcJJn2tdzW9skuTXJZJLHk1w8dJxtrf0zSbYN1T+S5Nttn1uTZJT+SpLm16gzkd8C/n1V/TngLwBPATuB+6tqA3B/Wwe4AtjQXjuA2wGSvAfYBXwUuATYdTx4WpsdQ/ttHrG/kqR51B0iSd4F/DywB6Cq3qyq14AtwL7WbB9wVVveAtxZAw8B5yT5AHA5cLiqjlbVq8BhYHPb9q6q+mZVFXDn0LEkSWNglJnITwHTwL9M8liSLyX5ceD9VfUyQPv6vtZ+LfDi0P5TrXaq+tQM9bdJsiPJRJKJ6enpEYYkSTodo4TIauBi4Paq+jDwf/h/l65mMtP9jOqov71YtbuqNlbVxjVr1py615KkeTNKiEwBU1X1cFu/h0GofKddiqJ9fWWo/flD+68DXpqlvm6GuiRpTHSHSFX9T+DFJH+2lTYBTwIHgONPWG0D7m3LB4Dr2lNalwKvt8tdh4DLkpzbbqhfBhxq276X5NL2VNZ1Q8eSJI2B1SPu/yvAV5KcBTwLfIpBMN2dZDvwAnBNa3sQuBKYBN5obamqo0k+BzzS2n22qo625euBO4B3APe1lyRpTIwUIlX1B8DGGTZtmqFtATec5Dh7gb0z1CeAi0bpoyRp4fiOdUlSN0NEktTNEJEkdTNEJEndDBFJUjdDRJLUzRCRJHUzRCRJ3QwRSVI3Q0SS1M0QkSR1G/UDGJet9Tu/9tby8zd/Ygl7Iknjy5mIJKmbISJJ6maISJK6GSKSpG6GiCSpmyEiSepmiEiSuhkikqRuhogkqZshIknqZohIkrqNHCJJViV5LMnvtfULkjyc5JkkdyU5q9XPbuuTbfv6oWPc2OpPJ7l8qL651SaT7By1r5Kk+TUfM5FfBZ4aWv8CcEtVbQBeBba3+nbg1ar6IHBLa0eSC4GtwIeAzcAXWzCtAm4DrgAuBK5tbSVJY2KkEEmyDvgE8KW2HuDjwD2tyT7gqra8pa3Ttm9q7bcA+6vqB1X1HDAJXNJek1X1bFW9CexvbSVJY2LUmcg/B/4B8Cdt/b3Aa1V1rK1PAWvb8lrgRYC2/fXW/q36CfucrC5JGhPdIZLkF4FXqurR4fIMTWuWbadbn6kvO5JMJJmYnp4+Ra8lSfNplJnIzwGfTPI8g0tNH2cwMzknyfFfdrUOeKktTwHnA7Tt7waODtdP2Odk9bepqt1VtbGqNq5Zs2aEIUmSTkd3iFTVjVW1rqrWM7gx/kBV/TXgQeDq1mwbcG9bPtDWadsfqKpq9a3t6a0LgA3At4BHgA3taa+z2jkO9PZXkjT/FuLX434G2J/k88BjwJ5W3wN8OckkgxnIVoCqOpLkbuBJ4BhwQ1X9ECDJp4FDwCpgb1UdWYD+SpI6zUuIVNXXga+35WcZPFl1YpvvA9ecZP+bgJtmqB8EDs5HHyVJ8893rEuSuhkikqRuC3FPZNlZv/Nrby0/f/MnlrAnkjRenIlIkroZIpKkboaIJKmbISJJ6maISJK6GSKSpG4+4jsCH/2VtNIZIqdpODgkaaUzRObJXGclzl4kLSfeE5EkdXMmsgC85CVppXAmIknqZohIkrp5OWsJeZNd0pnOmYgkqZszkTHhrETSmciZiCSpmyEiSepmiEiSunlPZAx5f0TSmcKZiCSpW3eIJDk/yYNJnkpyJMmvtvp7khxO8kz7em6rJ8mtSSaTPJ7k4qFjbWvtn0mybaj+kSTfbvvcmiSjDFaSNL9GmYkcA369qn4GuBS4IcmFwE7g/qraANzf1gGuADa01w7gdhiEDrAL+ChwCbDrePC0NjuG9ts8Qn8lSfOsO0Sq6uWq+v22/D3gKWAtsAXY15rtA65qy1uAO2vgIeCcJB8ALgcOV9XRqnoVOAxsbtveVVXfrKoC7hw6liRpDMzLPZEk64EPAw8D76+ql2EQNMD7WrO1wItDu0212qnqUzPUZzr/jiQTSSamp6dHHY4kaY5GDpEkPwH8G+DvVtX/OlXTGWrVUX97sWp3VW2sqo1r1qyZrcuSpHkyUogk+VEGAfKVqvrdVv5OuxRF+/pKq08B5w/tvg54aZb6uhnqkqQxMcrTWQH2AE9V1T8b2nQAOP6E1Tbg3qH6de0prUuB19vlrkPAZUnObTfULwMOtW3fS3JpO9d1Q8eSJI2BUd5s+HPAXwe+neQPWu0fAjcDdyfZDrwAXNO2HQSuBCaBN4BPAVTV0SSfAx5p7T5bVUfb8vXAHcA7gPvaa0XxjYeSxll3iFTVf2Lm+xYAm2ZoX8ANJznWXmDvDPUJ4KLePkqSFpbvWJckdTNEJEndDBFJUjdDRJLUzRCRJHUzRCRJ3fylVGcQ3zMiadw4E5EkdTNEJEndDBFJUjdDRJLUzRvrZyhvsksaB85EJEndDBFJUjdDRJLUzXsiy4D3RyQtFWcikqRuzkSWGWclkhaTIbKMGSiSFpohskIYKJIWgvdEJEndnImsQMOzkmHOUDQf/P5aWQwRvcVLXivDyX7IL+Z5/f5aPgwRzWipftCcylx+8JzsB9U4jmclc7ayfKSqlroPp5RkM/BbwCrgS1V186nab9y4sSYmJrrO5Q8aaTwZLgsvyaNVtfF09xvrmUiSVcBtwF8BpoBHkhyoqieXtmeSFtOo/8EzhBbOWIcIcAkwWVXPAiTZD2wBDBFJc+bls4Uz7iGyFnhxaH0K+OiJjZLsAHa01f+d5OnO850HfLdz3+XA8a/c8a/IsecLby2uyPEPOQ/4Mz07jnuIZIba227iVNVuYPfIJ0smeq4JLheOf+WOfyWPHRx/G//6nn3H/c2GU8D5Q+vrgJeWqC+SpBOMe4g8AmxIckGSs4CtwIEl7pMkqRnry1lVdSzJp4FDDB7x3VtVRxbwlCNfEjvDOf6VayWPHRx/9/jH/n0ikqTxNe6XsyRJY8wQkSR1W5EhkmRzkqeTTCbZOcP2s5Pc1bY/nGT94vdyYcxh7H8vyZNJHk9yf5KuZ8fH1WzjH2p3dZJKsqwe+5zL+JP81fY9cCTJv1rsPi6kOXz//+kkDyZ5rP0buHIp+rkQkuxN8kqSJ06yPUlubX82jye5eE4HrqoV9WJwg/6/AT8FnAX8F+DCE9r8beC32/JW4K6l7vcijv0vA+9sy9cvl7HPdfyt3U8C3wAeAjYudb8X+e9/A/AYcG5bf99S93uRx78buL4tXwg8v9T9nsfx/zxwMfDESbZfCdzH4P15lwIPz+W4K3Em8tZHqVTVm8Dxj1IZtgXY15bvATYlmemNj2eaWcdeVQ9W1Rtt9SEG781ZLubydw/wOeAfA99fzM4tgrmM/28Ct1XVqwBV9coi93EhzWX8BbyrLb+bZfS+tKr6BnD0FE22AHfWwEPAOUk+MNtxV2KIzPRRKmtP1qaqjgGvA+9dlN4trLmMfdh2Bv8zWS5mHX+SDwPnV9XvLWbHFslc/v5/GvjpJP85yUPtU7SXi7mM/x8Bv5RkCjgI/MridG0snO7PB2DM3yeyQObyUSpz+riVM9Ccx5Xkl4CNwF9a0B4trlOOP8mPALcAv7xYHVpkc/n7X83gktbHGMxC/2OSi6rqtQXu22KYy/ivBe6oqn+a5GeBL7fx/8nCd2/Jdf3cW4kzkbl8lMpbbZKsZjCtPdU08Ewxp4+RSfILwG8An6yqHyxS3xbDbOP/SeAi4OtJnmdwXfjAMrq5Ptfv/Xur6o+r6jngaQahshzMZfzbgbsBquqbwI8x+HDClaDrY6ZWYojM5aNUDgDb2vLVwAPV7jyd4WYde7uc8zsMAmQ5XQ+HWcZfVa9X1XlVtb4GH0b3EIM/h77fcjZ+5vK9/+8YPFxBkvMYXN56dlF7uXDmMv4XgE0ASX6GQYhML2ovl84B4Lr2lNalwOtV9fJsO624y1l1ko9SSfJZYKKqDgB7GExjJxnMQLYuXY/nzxzH/pvATwD/uj1L8EJVfXLJOj2P5jj+ZWuO4z8EXJbkSeCHwN+vqj9aul7PnzmO/9eBf5Hk1xhcyvnlZfIfSJJ8lcFlyvPaPZ9dwI8CVNVvM7gHdCUwCbwBfGpOx10mfz6SpCWwEi9nSZLmiSEiSepmiEiSuhkikqRuhogkqZshIknqZohIkrr9X7jbii+c7fVXAAAAAElFTkSuQmCC\n",
4898
      "text/plain": [
4899
       "<Figure size 432x288 with 1 Axes>"
4900
      ]
4901
     },
4902
     "metadata": {
4903
      "needs_background": "light"
4904
     },
4905
     "output_type": "display_data"
4906
    }
4907
   ],
4908
   "source": [
4909
    "a = plt.hist(predictions,bins=100)"
4910
   ]
4911
  },
4912
  {
4913
   "cell_type": "code",
4914
   "execution_count": 211,
4915
   "metadata": {},
4916
   "outputs": [
4917
    {
4918
     "data": {
4919
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAD4CAYAAAAO9oqkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAQTUlEQVR4nO3dbYylZX3H8e+vbPFZWWAwdnfbwbi2IkkjnQDWpLWuhQUalhfQrKllNRs3sdTaatqu7YttQBLsE5VEaTeydTFWoNSUjWDJBjC2jSCDKAqU7BQoTKEyugu1JT6s/vviXLs9LmdmzszZmTM78/0kJ3Pf133dZ/5z7ez+9rrOfe6TqkKStLL9xLALkCQNn2EgSTIMJEmGgSQJw0CSBKwadgHzdfLJJ9fo6Oiwy5CkY8Z99933raoa6XXsmA2D0dFRxsfHh12GJB0zkvzHdMdcJpIkGQaSJMNAkoRhIEnCMJAkYRhIkjAMJEkYBpIkDANJEn2EQZJdSZ5J8o2uthOT7E2yr31d3dqT5JokE0keSHJG1zlbWv99SbZ0tf9Ckq+3c65JkqP9Qx5pdPuthx+SpP5mBp8ENh7Rth24o6rWA3e0fYDzgPXtsQ24FjrhAewAzgLOBHYcCpDWZ1vXeUd+L0nSAps1DKrqi8D+I5o3Abvb9m7goq7266vjbuCEJK8BzgX2VtX+qjoA7AU2tmOvrKovVefzN6/vei5J0iKZ72sGr66qpwHa11Na+xrgya5+k61tpvbJHu09JdmWZDzJ+NTU1DxLlyQd6Wi/gNxrvb/m0d5TVe2sqrGqGhsZ6XkXVknSPMw3DL7ZlnhoX59p7ZPAuq5+a4GnZmlf26NdkrSI5hsGe4BDVwRtAW7par+0XVV0NvBcW0a6HTgnyer2wvE5wO3t2HeSnN2uIrq067kkSYtk1g+3SfIZ4K3AyUkm6VwVdBVwU5KtwBPAJa37bcD5wATwPPBugKran+QK4N7W7/KqOvSi9HvpXLH0EuDz7SFJWkSzhkFVvWOaQxt69C3gsmmeZxewq0f7OHD6bHVIkhaO70CWJBkGkiTDQJKEYSBJwjCQJGEYSJIwDCRJGAaSJAwDSRKGgSQJw0CShGEgScIwkCRhGEiSMAwkSRgGkiQMA0kShoEkCcNAkoRhIEnCMJAkAauGXcCwjW6/9fD241ddMMRKJGl4nBlIkgwDSZJhIEnCMJAkYRhIkjAMJEkYBpIkDANJEoaBJIkBwyDJ7yV5MMk3knwmyYuTnJrkniT7ktyY5PjW90Vtf6IdH+16ng+19keSnDvYjyRJmqt5h0GSNcDvAGNVdTpwHLAZ+AhwdVWtBw4AW9spW4EDVfU64OrWjySntfPeCGwEPp7kuPnWJUmau0GXiVYBL0myCngp8DTwNuDmdnw3cFHb3tT2acc3JElrv6GqvldVjwETwJkD1iVJmoN5h0FV/Sfw58ATdELgOeA+4NmqOti6TQJr2vYa4Ml27sHW/6Tu9h7nSJIWwSDLRKvp/K/+VOCngJcB5/XoWodOmebYdO29vue2JONJxqempuZetCSpp0GWid4OPFZVU1X1A+CzwC8CJ7RlI4C1wFNtexJYB9COvwrY393e45wfU1U7q2qsqsZGRkYGKF2S1G2QMHgCODvJS9va/wbgIeAu4OLWZwtwS9ve0/Zpx++sqmrtm9vVRqcC64EvD1CXJGmO5v3hNlV1T5Kbga8AB4H7gZ3ArcANST7c2q5rp1wHfCrJBJ0Zweb2PA8muYlOkBwELquqH863LknS3A30SWdVtQPYcUTzo/S4GqiqvgtcMs3zXAlcOUgtkqT58x3IkiTDQJJkGEiSMAwkSRgGkiQMA0kShoEkCcNAkoRhIEnCMJAkYRhIkjAMJEkYBpIkDANJEoaBJAnDQJKEYSBJwjCQJGEYSJIwDCRJGAaSJAwDSRKGgSQJw0CShGEgScIwkCRhGEiSMAwkSRgGkiQMA0kShoEkCcNAksSAYZDkhCQ3J/m3JA8neXOSE5PsTbKvfV3d+ibJNUkmkjyQ5Iyu59nS+u9LsmXQH0qSNDeDzgw+CvxTVf0c8PPAw8B24I6qWg/c0fYBzgPWt8c24FqAJCcCO4CzgDOBHYcCRJK0OOYdBkleCfwScB1AVX2/qp4FNgG7W7fdwEVtexNwfXXcDZyQ5DXAucDeqtpfVQeAvcDG+dYlSZq7QWYGrwWmgL9Ncn+STyR5GfDqqnoaoH09pfVfAzzZdf5ka5uu/QWSbEsynmR8ampqgNIlSd0GCYNVwBnAtVX1JuB/+f8loV7So61maH9hY9XOqhqrqrGRkZG51itJmsYgYTAJTFbVPW3/Zjrh8M22/EP7+kxX/3Vd568FnpqhXZK0SOYdBlX1X8CTSX62NW0AHgL2AIeuCNoC3NK29wCXtquKzgaea8tItwPnJFndXjg+p7VJkhbJqgHPfx/w6STHA48C76YTMDcl2Qo8AVzS+t4GnA9MAM+3vlTV/iRXAPe2fpdX1f4B65IkzcFAYVBVXwXGehza0KNvAZdN8zy7gF2D1CJJmj/fgSxJMgwkSYaBJAnDQJKEYSBJwjCQJGEYSJIwDCRJDP4O5GVldPuth7cfv+qCIVYiSYvLmYEkyTCQJLlM1BeXjyQtd4bBNLoDQJKWO5eJJEmGgSTJMJAkYRhIkjAMJEkYBpIkvLR0znzPgaTlyJmBJMkwkCQZBpIkDANJEoaBJAnDQJKEYSBJwjCQJGEYSJIwDCRJGAaSJAwDSRJHIQySHJfk/iSfa/unJrknyb4kNyY5vrW/qO1PtOOjXc/xodb+SJJzB61JkjQ3R2Nm8H7g4a79jwBXV9V64ACwtbVvBQ5U1euAq1s/kpwGbAbeCGwEPp7kuKNQ14Ib3X7r4YckHcsGCoMka4ELgE+0/QBvA25uXXYDF7XtTW2fdnxD678JuKGqvldVjwETwJmD1CVJmptBZwZ/BfwB8KO2fxLwbFUdbPuTwJq2vQZ4EqAdf671P9ze45wfk2RbkvEk41NTUwOWLkk6ZN5hkOTXgGeq6r7u5h5da5ZjM53z441VO6tqrKrGRkZG5lSvJGl6g3zS2VuAC5OcD7wYeCWdmcIJSVa1//2vBZ5q/SeBdcBkklXAq4D9Xe2HdJ8jSVoE854ZVNWHqmptVY3SeQH4zqr6DeAu4OLWbQtwS9ve0/Zpx++sqmrtm9vVRqcC64Evz7cuSdLcLcRnIP8hcEOSDwP3A9e19uuATyWZoDMj2AxQVQ8muQl4CDgIXFZVP1yAuiRJ0zgqYVBVXwC+0LYfpcfVQFX1XeCSac6/ErjyaNQiSZq7hZgZrEjd7zV4/KoLhliJJM2dt6OQJDkzWAjOEiQda5wZSJIMA0mSYSBJwjCQJGEYSJIwDCRJeGnpgvMyU0nHAmcGkiRnBovJWYKkpcqZgSTJmcGwOEuQtJQ4M5AkGQaSJJeJlgSXjCQNmzMDSZJhIEkyDCRJGAaSJAwDSRKGgSQJw0CShGEgScI3nS05vgFN0jA4M5AkGQaSJMNAkoRhIEnCMJAkYRhIkhggDJKsS3JXkoeTPJjk/a39xCR7k+xrX1e39iS5JslEkgeSnNH1XFta/31Jtgz+Yy0Po9tvPfyQpIU0yMzgIPDBqnoDcDZwWZLTgO3AHVW1Hrij7QOcB6xvj23AtdAJD2AHcBZwJrDjUIBIkhbHvMOgqp6uqq+07e8ADwNrgE3A7tZtN3BR294EXF8ddwMnJHkNcC6wt6r2V9UBYC+wcb51SZLm7qi8ZpBkFHgTcA/w6qp6GjqBAZzSuq0Bnuw6bbK1Tdfe6/tsSzKeZHxqaupolC5J4iiEQZKXA/8A/G5V/fdMXXu01QztL2ys2llVY1U1NjIyMvdiJUk9DRQGSX6SThB8uqo+25q/2ZZ/aF+fae2TwLqu09cCT83QLklaJINcTRTgOuDhqvrLrkN7gENXBG0Bbulqv7RdVXQ28FxbRrodOCfJ6vbC8TmtTZK0SAa5a+lbgN8Evp7kq63tj4CrgJuSbAWeAC5px24DzgcmgOeBdwNU1f4kVwD3tn6XV9X+AeqSJM3RvMOgqv6F3uv9ABt69C/gsmmeaxewa761SJIG4zuQJUl+uM2xwg+9kbSQnBlIkgwDSZJhIEnCMJAkYRhIkjAMJEkYBpIkfJ/BMenITz7zfQeSBuXMQJJkGEiSDANJEoaBJAlfQF4WvImdpEE5M5AkGQaSJMNAkoRhIEnCF5CXHV9MljQfzgwkSYaBJMllomXNJSNJ/TIMVgiDQdJMXCaSJBkGkiSXiVYkl4wkHckwWOEMBkngMpEkCWcG6uIsQVq5DAP11B0M3QwJaXkyDDQnzh6k5WnJhEGSjcBHgeOAT1TVVUMuSbMwGKTlY0mEQZLjgI8BvwpMAvcm2VNVDw23MvVrumWlueoOFZeqFt7R+nPr5p/PsWlJhAFwJjBRVY8CJLkB2AQYBitMP/84LcQ/YDp6DJhj01IJgzXAk137k8BZR3ZKsg3Y1nb/J8kj8/heJwPfmsd5K4XjMzPHZ3ZHfYzykaP5bEM3zN+hn5nuwFIJg/Roqxc0VO0Edg70jZLxqhob5DmWM8dnZo7P7ByjmS3V8VkqbzqbBNZ17a8FnhpSLZK04iyVMLgXWJ/k1CTHA5uBPUOuSZJWjCWxTFRVB5P8NnA7nUtLd1XVgwv07QZaZloBHJ+ZOT6zc4xmtiTHJ1UvWJqXJK0wS2WZSJI0RIaBJGl5hkGSjUkeSTKRZHuP4y9KcmM7fk+S0cWvcrj6GKMPJHkoyQNJ7kgy7fXJy9Fs49PV7+IklWTJXSq4kPoZnyS/3n6HHkzyd4td47D18Xfsp5PcleT+9vfs/GHUeVhVLasHnReg/x14LXA88DXgtCP6/Bbw1217M3DjsOtegmP0K8BL2/Z7V9IY9TM+rd8rgC8CdwNjw657KY0PsB64H1jd9k8Zdt1LcIx2Au9t26cBjw+z5uU4Mzh8a4uq+j5w6NYW3TYBu9v2zcCGJL3e+LZczTpGVXVXVT3fdu+m896PlaKf3yGAK4A/Bb67mMUtAf2Mz3uAj1XVAYCqemaRaxy2fsaogFe27Vcx5PdWLccw6HVrizXT9amqg8BzwEmLUt3S0M8YddsKfH5BK1paZh2fJG8C1lXV5xazsCWin9+f1wOvT/KvSe5udyVeSfoZoz8B3plkErgNeN/ilNbbknifwVHWz60t+rr9xTLW98+f5J3AGPDLC1rR0jLj+CT5CeBq4F2LVdAS08/vzyo6S0VvpTOr/Ockp1fVswtc21LRzxi9A/hkVf1FkjcDn2pj9KOFL++FluPMoJ9bWxzuk2QVnSna/kWpbmno6/YfSd4O/DFwYVV9b5FqWwpmG59XAKcDX0jyOHA2sGcFvYjc79+xW6rqB1X1GPAInXBYKfoZo63ATQBV9SXgxXRuYjcUyzEM+rm1xR5gS9u+GLiz2qs4K8SsY9SWQf6GThCstPXeGcenqp6rqpOrarSqRum8pnJhVY0Pp9xF18/fsX+kcxECSU6ms2z06KJWOVz9jNETwAaAJG+gEwZTi1pll2UXBu01gEO3tngYuKmqHkxyeZILW7frgJOSTAAfAKa9dHA56nOM/gx4OfD3Sb6aZMXcK6rP8Vmx+hyf24FvJ3kIuAv4/ar69nAqXnx9jtEHgfck+RrwGeBdw/xPqbejkCQtv5mBJGnuDANJkmEgSTIMJEkYBpIkDANJEoaBJAn4P/mf2nMBEkwnAAAAAElFTkSuQmCC\n",
4920
      "text/plain": [
4921
       "<Figure size 432x288 with 1 Axes>"
4922
      ]
4923
     },
4924
     "metadata": {
4925
      "needs_background": "light"
4926
     },
4927
     "output_type": "display_data"
4928
    }
4929
   ],
4930
   "source": [
4931
    "a = plt.hist(predictions,bins=100,weights=weights)"
4932
   ]
4933
  },
4934
  {
4935
   "cell_type": "code",
4936
   "execution_count": 271,
4937
   "metadata": {},
4938
   "outputs": [],
4939
   "source": [
4940
    "sub = pd.read_csv(PATH/'submission20.csv')"
4941
   ]
4942
  },
4943
  {
4944
   "cell_type": "code",
4945
   "execution_count": 185,
4946
   "metadata": {},
4947
   "outputs": [
4948
    {
4949
     "data": {
4950
      "text/plain": [
4951
       "0.1255341744607709"
4952
      ]
4953
     },
4954
     "execution_count": 185,
4955
     "metadata": {},
4956
     "output_type": "execute_result"
4957
    }
4958
   ],
4959
   "source": [
4960
    "sub.loc[range(0,len(sub),6), 'Label'].mean()"
4961
   ]
4962
  },
4963
  {
4964
   "cell_type": "code",
4965
   "execution_count": 272,
4966
   "metadata": {},
4967
   "outputs": [],
4968
   "source": [
4969
    "assert np.all(test_md.SOPInstanceUID.apply(lambda x: x + '_any').values == sub.loc[range(0,len(sub),6)].ID.values)"
4970
   ]
4971
  },
4972
  {
4973
   "cell_type": "code",
4974
   "execution_count": 273,
4975
   "metadata": {
4976
    "scrolled": true
4977
   },
4978
   "outputs": [
4979
    {
4980
     "data": {
4981
      "text/plain": [
4982
       "0.3965943809212345"
4983
      ]
4984
     },
4985
     "execution_count": 273,
4986
     "metadata": {},
4987
     "output_type": "execute_result"
4988
    }
4989
   ],
4990
   "source": [
4991
    "np.corrcoef(sub.loc[range(0,len(sub),6), 'Label'], preds)[0,1]"
4992
   ]
4993
  },
4994
  {
4995
   "cell_type": "code",
4996
   "execution_count": 83,
4997
   "metadata": {},
4998
   "outputs": [],
4999
   "source": [
5000
    "sub.loc[range(0,len(sub),6), 'Label'] = np.exp(0.95*np.log(sub.loc[range(0,len(sub),6), 'Label']) + 0.05*np.log(preds))"
5001
   ]
5002
  },
5003
  {
5004
   "cell_type": "code",
5005
   "execution_count": 274,
5006
   "metadata": {},
5007
   "outputs": [],
5008
   "source": [
5009
    "sub.loc[range(0,len(sub),6), 'Label'] = 0.96*sub.loc[range(0,len(sub),6), 'Label'] + 0.04*preds"
5010
   ]
5011
  },
5012
  {
5013
   "cell_type": "code",
5014
   "execution_count": 363,
5015
   "metadata": {},
5016
   "outputs": [],
5017
   "source": [
5018
    "sub.Label *= 0.98"
5019
   ]
5020
  },
5021
  {
5022
   "cell_type": "code",
5023
   "execution_count": 275,
5024
   "metadata": {},
5025
   "outputs": [],
5026
   "source": [
5027
    "sub.to_csv(PATH/'submission.csv', index=False)"
5028
   ]
5029
  },
5030
  {
5031
   "cell_type": "markdown",
5032
   "metadata": {},
5033
   "source": [
5034
    "# Confusion matrix"
5035
   ]
5036
  },
5037
  {
5038
   "cell_type": "code",
5039
   "execution_count": 5,
5040
   "metadata": {},
5041
   "outputs": [
5042
    {
5043
     "data": {
5044
      "text/plain": [
5045
       "array([[97103.,  2761., 32564., 23766., 32122., 42496.],\n",
5046
       "       [ 2761.,  2761.,   556.,   216.,   484.,   645.],\n",
5047
       "       [32564.,   556., 32564.,  9616.,  8321.,  6541.],\n",
5048
       "       [23766.,   216.,  9616., 23766.,  6735.,  3404.],\n",
5049
       "       [32122.,   484.,  8321.,  6735., 32122.,  8505.],\n",
5050
       "       [42496.,   645.,  6541.,  3404.,  8505., 42496.]])"
5051
      ]
5052
     },
5053
     "execution_count": 5,
5054
     "metadata": {},
5055
     "output_type": "execute_result"
5056
    }
5057
   ],
5058
   "source": [
5059
    "mat = np.array(train_df.loc[:,train_df.columns[:6]].values, dtype=float)\n",
5060
    "np.matmul(mat.transpose(),mat)"
5061
   ]
5062
  },
5063
  {
5064
   "cell_type": "code",
5065
   "execution_count": 6,
5066
   "metadata": {},
5067
   "outputs": [
5068
    {
5069
     "data": {
5070
      "text/plain": [
5071
       "array([0.144 , 0.0041, 0.0483, 0.0352, 0.0476, 0.063 ])"
5072
      ]
5073
     },
5074
     "execution_count": 6,
5075
     "metadata": {},
5076
     "output_type": "execute_result"
5077
    }
5078
   ],
5079
   "source": [
5080
    "mat.mean(0)"
5081
   ]
5082
  },
5083
  {
5084
   "cell_type": "code",
5085
   "execution_count": 348,
5086
   "metadata": {},
5087
   "outputs": [
5088
    {
5089
     "name": "stdout",
5090
     "output_type": "stream",
5091
     "text": [
5092
      "0.12304686302872321\n",
5093
      "0.003958621945498708\n",
5094
      "0.04364857134731329\n",
5095
      "0.0272813377865004\n",
5096
      "0.04397713774839064\n",
5097
      "0.0517257743941261\n"
5098
     ]
5099
    }
5100
   ],
5101
   "source": [
5102
    "for i in range(6):\n",
5103
    "    print(sub.loc[range(i,len(sub),6), 'Label'].mean())"
5104
   ]
5105
  },
5106
  {
5107
   "cell_type": "code",
5108
   "execution_count": 7,
5109
   "metadata": {},
5110
   "outputs": [
5111
    {
5112
     "data": {
5113
      "text/plain": [
5114
       "array([[1.    , 0.1686, 0.5791, 0.4947, 0.5752, 0.6615],\n",
5115
       "       [0.1686, 1.    , 0.0586, 0.0267, 0.0514, 0.0595],\n",
5116
       "       [0.5791, 0.0586, 1.    , 0.3457, 0.2573, 0.1758],\n",
5117
       "       [0.4947, 0.0267, 0.3457, 1.    , 0.2438, 0.1071],\n",
5118
       "       [0.5752, 0.0514, 0.2573, 0.2438, 1.    , 0.2302],\n",
5119
       "       [0.6615, 0.0595, 0.1758, 0.1071, 0.2302, 1.    ]])"
5120
      ]
5121
     },
5122
     "execution_count": 7,
5123
     "metadata": {},
5124
     "output_type": "execute_result"
5125
    }
5126
   ],
5127
   "source": [
5128
    "np.set_printoptions(precision=4)\n",
5129
    "mat /= np.sqrt(mat.sum(0))\n",
5130
    "np.matmul(mat.transpose(),mat)"
5131
   ]
5132
  },
5133
  {
5134
   "cell_type": "code",
5135
   "execution_count": null,
5136
   "metadata": {},
5137
   "outputs": [],
5138
   "source": []
5139
  },
5140
  {
5141
   "cell_type": "code",
5142
   "execution_count": null,
5143
   "metadata": {},
5144
   "outputs": [],
5145
   "source": []
5146
  }
5147
 ],
5148
 "metadata": {
5149
  "kernelspec": {
5150
   "display_name": "Python 3",
5151
   "language": "python",
5152
   "name": "python3"
5153
  },
5154
  "language_info": {
5155
   "codemirror_mode": {
5156
    "name": "ipython",
5157
    "version": 3
5158
   },
5159
   "file_extension": ".py",
5160
   "mimetype": "text/x-python",
5161
   "name": "python",
5162
   "nbconvert_exporter": "python",
5163
   "pygments_lexer": "ipython3",
5164
   "version": "3.7.4"
5165
  }
5166
 },
5167
 "nbformat": 4,
5168
 "nbformat_minor": 2
5169
}