--- a +++ b/Serialized/helper/bert_adam.py @@ -0,0 +1,333 @@ +import torch +import torch.nn as nn +import numpy as np +import torchvision +import torch.nn.functional as F +from torch.utils.data import Dataset, DataLoader +import math +from torch.optim import Optimizer +from torch.optim.optimizer import required +from torch.nn.utils import clip_grad_norm_ +import logging +import abc +import sys +from tqdm import tqdm_notebook +import torch.utils.data as D +import torch.nn.functional as F + +# coding=utf-8 +# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""PyTorch optimization for BERT model.""" + + + +logger = logging.getLogger(__name__) + + +if sys.version_info >= (3, 4): + ABC = abc.ABC +else: + ABC = abc.ABCMeta('ABC', (), {}) + + +class _LRSchedule(ABC): + """ Parent of all LRSchedules here. """ + warn_t_total = False # is set to True for schedules where progressing beyond t_total steps doesn't make sense + def __init__(self, warmup=0.002, t_total=-1, **kw): + """ + :param warmup: what fraction of t_total steps will be used for linear warmup + :param t_total: how many training steps (updates) are planned + :param kw: + """ + super(_LRSchedule, self).__init__(**kw) + if t_total < 0: + logger.warning("t_total value of {} results in schedule not being applied".format(t_total)) + if not 0.0 <= warmup < 1.0 and not warmup == -1: + raise ValueError("Invalid warmup: {} - should be in [0.0, 1.0[ or -1".format(warmup)) + warmup = max(warmup, 0.) + self.warmup, self.t_total = float(warmup), float(t_total) + self.warned_for_t_total_at_progress = -1 + + def get_lr(self, step, nowarn=False): + """ + :param step: which of t_total steps we're on + :param nowarn: set to True to suppress warning regarding training beyond specified 't_total' steps + :return: learning rate multiplier for current update + """ + if self.t_total < 0: + return 1. + progress = float(step) / self.t_total + ret = self.get_lr_(progress) + # warning for exceeding t_total (only active with warmup_linear + if not nowarn and self.warn_t_total and progress > 1. and progress > self.warned_for_t_total_at_progress: + logger.warning( + "Training beyond specified 't_total'. Learning rate multiplier set to {}. Please set 't_total' of {} correctly." + .format(ret, self.__class__.__name__)) + self.warned_for_t_total_at_progress = progress + # end warning + return ret + + @abc.abstractmethod + def get_lr_(self, progress): + """ + :param progress: value between 0 and 1 (unless going beyond t_total steps) specifying training progress + :return: learning rate multiplier for current update + """ + return 1. + + +class ConstantLR(_LRSchedule): + def get_lr_(self, progress): + return 1. + + +class WarmupCosineSchedule(_LRSchedule): + """ + Linearly increases learning rate from 0 to 1 over `warmup` fraction of training steps. + Decreases learning rate from 1. to 0. over remaining `1 - warmup` steps following a cosine curve. + If `cycles` (default=0.5) is different from default, learning rate follows cosine function after warmup. + """ + warn_t_total = True + def __init__(self, warmup=0.002, t_total=-1, cycles=.5, **kw): + """ + :param warmup: see LRSchedule + :param t_total: see LRSchedule + :param cycles: number of cycles. Default: 0.5, corresponding to cosine decay from 1. at progress==warmup and 0 at progress==1. + :param kw: + """ + super(WarmupCosineSchedule, self).__init__(warmup=warmup, t_total=t_total, **kw) + self.cycles = cycles + + def get_lr_(self, progress): + if progress < self.warmup: + return progress / self.warmup + else: + progress = (progress - self.warmup) / (1 - self.warmup) # progress after warmup + return 0.5 * (1. + math.cos(math.pi * self.cycles * 2 * progress)) + + +class WarmupCosineWithHardRestartsSchedule(WarmupCosineSchedule): + """ + Linearly increases learning rate from 0 to 1 over `warmup` fraction of training steps. + If `cycles` (default=1.) is different from default, learning rate follows `cycles` times a cosine decaying + learning rate (with hard restarts). + """ + def __init__(self, warmup=0.002, t_total=-1, cycles=1., **kw): + super(WarmupCosineWithHardRestartsSchedule, self).__init__(warmup=warmup, t_total=t_total, cycles=cycles, **kw) + assert(cycles >= 1.) + + def get_lr_(self, progress): + if progress < self.warmup: + return progress / self.warmup + else: + progress = (progress - self.warmup) / (1 - self.warmup) # progress after warmup + ret = 0.5 * (1. + math.cos(math.pi * ((self.cycles * progress) % 1))) + return ret + + +class WarmupCosineWithWarmupRestartsSchedule(WarmupCosineWithHardRestartsSchedule): + """ + All training progress is divided in `cycles` (default=1.) parts of equal length. + Every part follows a schedule with the first `warmup` fraction of the training steps linearly increasing from 0. to 1., + followed by a learning rate decreasing from 1. to 0. following a cosine curve. + """ + def __init__(self, warmup=0.002, t_total=-1, cycles=1., **kw): + assert(warmup * cycles < 1.) + warmup = warmup * cycles if warmup >= 0 else warmup + super(WarmupCosineWithWarmupRestartsSchedule, self).__init__(warmup=warmup, t_total=t_total, cycles=cycles, **kw) + + def get_lr_(self, progress): + progress = progress * self.cycles % 1. + if progress < self.warmup: + return progress / self.warmup + else: + progress = (progress - self.warmup) / (1 - self.warmup) # progress after warmup + ret = 0.5 * (1. + math.cos(math.pi * progress)) + return ret + +class WarmupExpCosineWithWarmupRestartsSchedule(WarmupCosineWithHardRestartsSchedule): + """ + All training progress is divided in `cycles` (default=1.) parts of equal length. + Every part follows a schedule with the first `warmup` fraction of the training steps linearly increasing from 0. to 1., + followed by a learning rate decreasing from 1. to 0. following a cosine curve. + """ + def __init__(self, warmup=0.002, t_total=-1, cycles=1.,tau=1, **kw): + assert(warmup * cycles < 1.) + warmup = warmup * cycles if warmup >= 0 else warmup + self.tau=tau + super(WarmupExpCosineWithWarmupRestartsSchedule, self).__init__(warmup=warmup, t_total=t_total, cycles=cycles, **kw) + + def get_lr_(self, progress): + p = progress + progress = progress * self.cycles % 1. + if progress < self.warmup: + return math.exp(-p*self.tau)*progress / self.warmup + else: + progress = (progress - self.warmup) / (1 - self.warmup) # progress after warmup + ret = 0.5 * (1. + math.cos(math.pi * progress))*math.exp(-p*self.tau) + return ret + + +class WarmupConstantSchedule(_LRSchedule): + """ + Linearly increases learning rate from 0 to 1 over `warmup` fraction of training steps. + Keeps learning rate equal to 1. after warmup. + """ + def get_lr_(self, progress): + if progress < self.warmup: + return progress / self.warmup + return 1. + + +class WarmupLinearSchedule(_LRSchedule): + """ + Linearly increases learning rate from 0 to 1 over `warmup` fraction of training steps. + Linearly decreases learning rate from 1. to 0. over remaining `1 - warmup` steps. + """ + warn_t_total = True + def get_lr_(self, progress): + if progress < self.warmup: + return progress / self.warmup + return max((progress - 1.) / (self.warmup - 1.), 0.) + + +SCHEDULES = { + None: ConstantLR, + "none": ConstantLR, + "warmup_cosine": WarmupCosineSchedule, + "warmup_constant": WarmupConstantSchedule, + "warmup_linear": WarmupLinearSchedule +} + + +class BertAdam(Optimizer): + """Implements BERT version of Adam algorithm with weight decay fix. + Params: + lr: learning rate + warmup: portion of t_total for the warmup, -1 means no warmup. Default: -1 + t_total: total number of training steps for the learning + rate schedule, -1 means constant learning rate of 1. (no warmup regardless of warmup setting). Default: -1 + schedule: schedule to use for the warmup (see above). + Can be `'warmup_linear'`, `'warmup_constant'`, `'warmup_cosine'`, `'none'`, `None` or a `_LRSchedule` object (see below). + If `None` or `'none'`, learning rate is always kept constant. + Default : `'warmup_linear'` + b1: Adams b1. Default: 0.9 + b2: Adams b2. Default: 0.999 + e: Adams epsilon. Default: 1e-6 + weight_decay: Weight decay. Default: 0.01 + max_grad_norm: Maximum norm for the gradients (-1 means no clipping). Default: 1.0 + """ + def __init__(self, params, lr=required, warmup=-1, t_total=-1, schedule='warmup_linear', + b1=0.9, b2=0.999, e=1e-6, weight_decay=0.01, max_grad_norm=1.0, **kwargs): + if lr is not required and lr < 0.0: + raise ValueError("Invalid learning rate: {} - should be >= 0.0".format(lr)) + if not isinstance(schedule, _LRSchedule) and schedule not in SCHEDULES: + raise ValueError("Invalid schedule parameter: {}".format(schedule)) + if not 0.0 <= b1 < 1.0: + raise ValueError("Invalid b1 parameter: {} - should be in [0.0, 1.0[".format(b1)) + if not 0.0 <= b2 < 1.0: + raise ValueError("Invalid b2 parameter: {} - should be in [0.0, 1.0[".format(b2)) + if not e >= 0.0: + raise ValueError("Invalid epsilon value: {} - should be >= 0.0".format(e)) + # initialize schedule object + if not isinstance(schedule, _LRSchedule): + schedule_type = SCHEDULES[schedule] + schedule = schedule_type(warmup=warmup, t_total=t_total) + else: + if warmup != -1 or t_total != -1: + logger.warning("warmup and t_total on the optimizer are ineffective when _LRSchedule object is provided as schedule. " + "Please specify custom warmup and t_total in _LRSchedule object.") + defaults = dict(lr=lr, schedule=schedule, + b1=b1, b2=b2, e=e, weight_decay=weight_decay, + max_grad_norm=max_grad_norm) + super(BertAdam, self).__init__(params, defaults) + + def get_lr(self): + lr = [] + for group in self.param_groups: + for p in group['params']: + state = self.state[p] + if len(state) == 0: + return [0] + lr_scheduled = group['lr'] + lr_scheduled *= group['schedule'].get_lr(state['step']) + lr.append(lr_scheduled) + return lr + + def step(self, closure=None): + """Performs a single optimization step. + Arguments: + closure (callable, optional): A closure that reevaluates the model + and returns the loss. + """ + loss = None + if closure is not None: + loss = closure() + + for group in self.param_groups: + for p in group['params']: + if p.grad is None: + continue + grad = p.grad.data + if grad.is_sparse: + raise RuntimeError('Adam does not support sparse gradients, please consider SparseAdam instead') + + state = self.state[p] + + # State initialization + if len(state) == 0: + state['step'] = 0 + # Exponential moving average of gradient values + state['next_m'] = torch.zeros_like(p.data) + # Exponential moving average of squared gradient values + state['next_v'] = torch.zeros_like(p.data) + + next_m, next_v = state['next_m'], state['next_v'] + beta1, beta2 = group['b1'], group['b2'] + + # Add grad clipping + if group['max_grad_norm'] > 0: + clip_grad_norm_(p, group['max_grad_norm']) + + # Decay the first and second moment running average coefficient + # In-place operations to update the averages at the same time + next_m.mul_(beta1).add_(1 - beta1, grad) + next_v.mul_(beta2).addcmul_(1 - beta2, grad, grad) + update = next_m / (next_v.sqrt() + group['e']) + + # Just adding the square of the weights to the loss function is *not* + # the correct way of using L2 regularization/weight decay with Adam, + # since that will interact with the m and v parameters in strange ways. + # + # Instead we want to decay the weights in a manner that doesn't interact + # with the m/v parameters. This is equivalent to adding the square + # of the weights to the loss with plain (non-momentum) SGD. + if group['weight_decay'] > 0.0: + update += group['weight_decay'] * p.data + + lr_scheduled = group['lr'] + lr_scheduled *= group['schedule'].get_lr(state['step']) + + update_with_lr = lr_scheduled * update + p.data.add_(-update_with_lr) + + state['step'] += 1 + + # step_size = lr_scheduled * math.sqrt(bias_correction2) / bias_correction1 + # No bias correction + # bias_correction1 = 1 - beta1 ** state['step'] + # bias_correction2 = 1 - beta2 ** state['step'] + + return loss \ No newline at end of file