[53d15f]: / Production / se_resnext101_32x4d-Copy1.ipynb

Download this file

2096 lines (2095 with data), 157.2 kB

{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/home/reina/anaconda3/envs/RSNA/lib/python3.6/importlib/_bootstrap.py:219: ImportWarning: can't resolve package from __spec__ or __package__, falling back on __name__ and __path__\n",
      "  return f(*args, **kwds)\n",
      "/home/reina/anaconda3/envs/RSNA/lib/python3.6/importlib/_bootstrap.py:219: ImportWarning: can't resolve package from __spec__ or __package__, falling back on __name__ and __path__\n",
      "  return f(*args, **kwds)\n"
     ]
    }
   ],
   "source": [
    "from __future__ import absolute_import\n",
    "from __future__ import division\n",
    "from __future__ import print_function\n",
    "\n",
    "\n",
    "import numpy as np # linear algebra\n",
    "import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)\n",
    "import os\n",
    "import datetime\n",
    "import seaborn as sns\n",
    "import pydicom\n",
    "import time\n",
    "import gc\n",
    "import operator \n",
    "from apex import amp \n",
    "import matplotlib.pyplot as plt\n",
    "import torch\n",
    "import torch.nn as nn\n",
    "import torch.utils.data as D\n",
    "import torch.nn.functional as F\n",
    "from sklearn.model_selection import KFold\n",
    "from tqdm import tqdm, tqdm_notebook\n",
    "from IPython.core.interactiveshell import InteractiveShell\n",
    "InteractiveShell.ast_node_interactivity = \"all\"\n",
    "import warnings\n",
    "warnings.filterwarnings(action='once')\n",
    "import pickle\n",
    "%load_ext autoreload\n",
    "%autoreload 2\n",
    "%matplotlib inline\n",
    "from skimage.io import imread,imshow\n",
    "from helper import *\n",
    "from apex import amp\n",
    "import helper\n",
    "import torchvision.models as models\n",
    "import pretrainedmodels\n",
    "from torch.optim import Adam\n",
    "from defenitions import *"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "SEED = 8153\n",
    "device=device_by_name(\"Tesla\")\n",
    "#device=device_by_name(\"RTX\")\n",
    "#device = \"cpu\"\n",
    "torch.cuda.set_device(device)\n",
    "sendmeemail=Email_Progress(my_gmail,my_pass,to_email,'se_resnext101_32x4d-folds results')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [],
   "source": [
    "def get_submission(test_df,pred,do_sigmoid=True):\n",
    "    if do_sigmoid:\n",
    "        func = lambda x:torch.sigmoid(x)\n",
    "    else:\n",
    "        func = lambda x:x\n",
    "    epidural_df=pd.DataFrame(data={'ID':'ID_'+test_df.PatientID.values+'_epidural','Label':func(pred[:,0])})\n",
    "    intraparenchymal_df=pd.DataFrame(data={'ID':'ID_'+test_df.PatientID.values+'_intraparenchymal','Label':func(pred[:,1])})\n",
    "    intraventricular_df=pd.DataFrame(data={'ID':'ID_'+test_df.PatientID.values+'_intraventricular','Label':func(pred[:,2])})\n",
    "    subarachnoid_df=pd.DataFrame(data={'ID':'ID_'+test_df.PatientID.values+'_subarachnoid','Label':func(pred[:,3])})\n",
    "    subdural_df=pd.DataFrame(data={'ID':'ID_'+test_df.PatientID.values+'_subdural','Label':func(pred[:,4])})\n",
    "    any_df=pd.DataFrame(data={'ID':'ID_'+test_df.PatientID.values+'_any','Label':func(pred[:,5])}) \n",
    "    return pd.concat([epidural_df,\n",
    "                        intraparenchymal_df,\n",
    "                        intraventricular_df,\n",
    "                        subarachnoid_df,\n",
    "                        subdural_df,\n",
    "                        any_df]).sort_values('ID').reset_index(drop=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(674510, 15)"
      ]
     },
     "execution_count": 5,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "text/plain": [
       "(674252, 15)"
      ]
     },
     "execution_count": 5,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>PatientID</th>\n",
       "      <th>epidural</th>\n",
       "      <th>intraparenchymal</th>\n",
       "      <th>intraventricular</th>\n",
       "      <th>subarachnoid</th>\n",
       "      <th>subdural</th>\n",
       "      <th>any</th>\n",
       "      <th>PID</th>\n",
       "      <th>StudyI</th>\n",
       "      <th>SeriesI</th>\n",
       "      <th>WindowCenter</th>\n",
       "      <th>WindowWidth</th>\n",
       "      <th>ImagePositionZ</th>\n",
       "      <th>ImagePositionX</th>\n",
       "      <th>ImagePositionY</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>63eb1e259</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>a449357f</td>\n",
       "      <td>62d125e5b2</td>\n",
       "      <td>0be5c0d1b3</td>\n",
       "      <td>['00036', '00036']</td>\n",
       "      <td>['00080', '00080']</td>\n",
       "      <td>180.199951</td>\n",
       "      <td>-125.0</td>\n",
       "      <td>-8.000000</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>2669954a7</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>363d5865</td>\n",
       "      <td>a20b80c7bf</td>\n",
       "      <td>3564d584db</td>\n",
       "      <td>['00047', '00047']</td>\n",
       "      <td>['00080', '00080']</td>\n",
       "      <td>922.530821</td>\n",
       "      <td>-156.0</td>\n",
       "      <td>45.572849</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>52c9913b1</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>9c2b4bd7</td>\n",
       "      <td>3e3634f8cf</td>\n",
       "      <td>973274ffc9</td>\n",
       "      <td>40</td>\n",
       "      <td>150</td>\n",
       "      <td>4.455000</td>\n",
       "      <td>-125.0</td>\n",
       "      <td>-115.063000</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>4e6ff6126</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>3ae81c2d</td>\n",
       "      <td>a1390c15c2</td>\n",
       "      <td>e5ccad8244</td>\n",
       "      <td>['00036', '00036']</td>\n",
       "      <td>['00080', '00080']</td>\n",
       "      <td>100.000000</td>\n",
       "      <td>-99.5</td>\n",
       "      <td>28.500000</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>7858edd88</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>c1867feb</td>\n",
       "      <td>c73e81ed3a</td>\n",
       "      <td>28e0531b3a</td>\n",
       "      <td>40</td>\n",
       "      <td>100</td>\n",
       "      <td>145.793000</td>\n",
       "      <td>-125.0</td>\n",
       "      <td>-132.190000</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "   PatientID  epidural  intraparenchymal  intraventricular  subarachnoid  \\\n",
       "0  63eb1e259         0                 0                 0             0   \n",
       "1  2669954a7         0                 0                 0             0   \n",
       "2  52c9913b1         0                 0                 0             0   \n",
       "3  4e6ff6126         0                 0                 0             0   \n",
       "4  7858edd88         0                 0                 0             0   \n",
       "\n",
       "   subdural  any       PID      StudyI     SeriesI        WindowCenter  \\\n",
       "0         0    0  a449357f  62d125e5b2  0be5c0d1b3  ['00036', '00036']   \n",
       "1         0    0  363d5865  a20b80c7bf  3564d584db  ['00047', '00047']   \n",
       "2         0    0  9c2b4bd7  3e3634f8cf  973274ffc9                  40   \n",
       "3         0    0  3ae81c2d  a1390c15c2  e5ccad8244  ['00036', '00036']   \n",
       "4         0    0  c1867feb  c73e81ed3a  28e0531b3a                  40   \n",
       "\n",
       "          WindowWidth  ImagePositionZ  ImagePositionX  ImagePositionY  \n",
       "0  ['00080', '00080']      180.199951          -125.0       -8.000000  \n",
       "1  ['00080', '00080']      922.530821          -156.0       45.572849  \n",
       "2                 150        4.455000          -125.0     -115.063000  \n",
       "3  ['00080', '00080']      100.000000           -99.5       28.500000  \n",
       "4                 100      145.793000          -125.0     -132.190000  "
      ]
     },
     "execution_count": 5,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "train_df = pd.read_csv(data_dir+'train.csv')\n",
    "train_df.shape\n",
    "train_df=train_df[~train_df.PatientID.isin(bad_images)].reset_index(drop=True)\n",
    "train_df=train_df.drop_duplicates().reset_index(drop=True)\n",
    "train_df.shape\n",
    "train_df.head()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>PatientID</th>\n",
       "      <th>epidural</th>\n",
       "      <th>intraparenchymal</th>\n",
       "      <th>intraventricular</th>\n",
       "      <th>subarachnoid</th>\n",
       "      <th>subdural</th>\n",
       "      <th>any</th>\n",
       "      <th>SeriesI</th>\n",
       "      <th>PID</th>\n",
       "      <th>StudyI</th>\n",
       "      <th>WindowCenter</th>\n",
       "      <th>WindowWidth</th>\n",
       "      <th>ImagePositionZ</th>\n",
       "      <th>ImagePositionX</th>\n",
       "      <th>ImagePositionY</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>28fbab7eb</td>\n",
       "      <td>0.5</td>\n",
       "      <td>0.5</td>\n",
       "      <td>0.5</td>\n",
       "      <td>0.5</td>\n",
       "      <td>0.5</td>\n",
       "      <td>0.5</td>\n",
       "      <td>ebfd7e4506</td>\n",
       "      <td>cf1b6b11</td>\n",
       "      <td>93407cadbb</td>\n",
       "      <td>30</td>\n",
       "      <td>80</td>\n",
       "      <td>158.458000</td>\n",
       "      <td>-125.0</td>\n",
       "      <td>-135.598000</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>877923b8b</td>\n",
       "      <td>0.5</td>\n",
       "      <td>0.5</td>\n",
       "      <td>0.5</td>\n",
       "      <td>0.5</td>\n",
       "      <td>0.5</td>\n",
       "      <td>0.5</td>\n",
       "      <td>6d95084e15</td>\n",
       "      <td>ad8ea58f</td>\n",
       "      <td>a337baa067</td>\n",
       "      <td>30</td>\n",
       "      <td>80</td>\n",
       "      <td>138.729050</td>\n",
       "      <td>-125.0</td>\n",
       "      <td>-101.797981</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>a591477cb</td>\n",
       "      <td>0.5</td>\n",
       "      <td>0.5</td>\n",
       "      <td>0.5</td>\n",
       "      <td>0.5</td>\n",
       "      <td>0.5</td>\n",
       "      <td>0.5</td>\n",
       "      <td>8e06b2c9e0</td>\n",
       "      <td>ecfb278b</td>\n",
       "      <td>0cfe838d54</td>\n",
       "      <td>30</td>\n",
       "      <td>80</td>\n",
       "      <td>60.830002</td>\n",
       "      <td>-125.0</td>\n",
       "      <td>-133.300003</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>42217c898</td>\n",
       "      <td>0.5</td>\n",
       "      <td>0.5</td>\n",
       "      <td>0.5</td>\n",
       "      <td>0.5</td>\n",
       "      <td>0.5</td>\n",
       "      <td>0.5</td>\n",
       "      <td>e800f419cf</td>\n",
       "      <td>e96e31f4</td>\n",
       "      <td>c497ac5bad</td>\n",
       "      <td>30</td>\n",
       "      <td>80</td>\n",
       "      <td>55.388000</td>\n",
       "      <td>-125.0</td>\n",
       "      <td>-146.081000</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>a130c4d2f</td>\n",
       "      <td>0.5</td>\n",
       "      <td>0.5</td>\n",
       "      <td>0.5</td>\n",
       "      <td>0.5</td>\n",
       "      <td>0.5</td>\n",
       "      <td>0.5</td>\n",
       "      <td>faeb7454f3</td>\n",
       "      <td>69affa42</td>\n",
       "      <td>854e4fbc01</td>\n",
       "      <td>30</td>\n",
       "      <td>80</td>\n",
       "      <td>33.516888</td>\n",
       "      <td>-125.0</td>\n",
       "      <td>-118.689819</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "   PatientID  epidural  intraparenchymal  intraventricular  subarachnoid  \\\n",
       "0  28fbab7eb       0.5               0.5               0.5           0.5   \n",
       "1  877923b8b       0.5               0.5               0.5           0.5   \n",
       "2  a591477cb       0.5               0.5               0.5           0.5   \n",
       "3  42217c898       0.5               0.5               0.5           0.5   \n",
       "4  a130c4d2f       0.5               0.5               0.5           0.5   \n",
       "\n",
       "   subdural  any     SeriesI       PID      StudyI WindowCenter WindowWidth  \\\n",
       "0       0.5  0.5  ebfd7e4506  cf1b6b11  93407cadbb           30          80   \n",
       "1       0.5  0.5  6d95084e15  ad8ea58f  a337baa067           30          80   \n",
       "2       0.5  0.5  8e06b2c9e0  ecfb278b  0cfe838d54           30          80   \n",
       "3       0.5  0.5  e800f419cf  e96e31f4  c497ac5bad           30          80   \n",
       "4       0.5  0.5  faeb7454f3  69affa42  854e4fbc01           30          80   \n",
       "\n",
       "   ImagePositionZ  ImagePositionX  ImagePositionY  \n",
       "0      158.458000          -125.0     -135.598000  \n",
       "1      138.729050          -125.0     -101.797981  \n",
       "2       60.830002          -125.0     -133.300003  \n",
       "3       55.388000          -125.0     -146.081000  \n",
       "4       33.516888          -125.0     -118.689819  "
      ]
     },
     "execution_count": 6,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "test_df = pd.read_csv(data_dir+'test.csv')\n",
    "test_df.head()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [],
   "source": [
    "split_sid = train_df.PID.unique()\n",
    "splits=list(KFold(n_splits=3,shuffle=True, random_state=SEED).split(split_sid))\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [],
   "source": [
    "pickle_file=open(outputs_dir+\"PID_splits.pkl\",'wb')\n",
    "pickle.dump((split_sid,splits),pickle_file,protocol=4)\n",
    "pickle_file.close()\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [],
   "source": [
    "def my_loss(y_pred,y_true,weights):\n",
    "    if len(y_pred.shape)==len(y_true.shape):\n",
    "        loss = F.binary_cross_entropy_with_logits(y_pred,y_true,weights.expand_as(y_pred))\n",
    "    else:\n",
    "        loss0 = F.binary_cross_entropy_with_logits(y_pred,y_true[...,0],weights.repeat(y_pred.shape[0],1),reduction='none')\n",
    "        loss1 = F.binary_cross_entropy_with_logits(y_pred,y_true[...,1],weights.repeat(y_pred.shape[0],1),reduction='none')\n",
    "        loss = (y_true[...,2]*loss0+(1.0-y_true[...,2])*loss1).mean() \n",
    "    return loss"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [],
   "source": [
    "class parameter_scheduler():\n",
    "    def __init__(self,model,do_first=['classifier'],num_epoch=1):\n",
    "        self.model=model\n",
    "        self.do_first = do_first\n",
    "        self.num_epoch=num_epoch\n",
    "    def __call__(self,epoch):\n",
    "        if epoch>=self.num_epoch:\n",
    "            for n,p in self.model.named_parameters():\n",
    "                p.requires_grad=True\n",
    "        else:\n",
    "            for n,p in self.model.named_parameters():\n",
    "                p.requires_grad= any(nd in n for nd in self.do_first)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [],
   "source": [
    "def get_optimizer_parameters(model,klr):\n",
    "    param_optimizer = list(model.named_parameters())\n",
    "    num_blocks=5\n",
    "    no_decay=['bias']\n",
    "    optimizer_grouped_parameters=[\n",
    "        {'params': [p for n, p in param_optimizer if (not any(nd in n for nd in no_decay) and ('classifier' in n))], 'lr':klr*2e-4,'weight_decay': 0.01},\n",
    "        {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)  and ('classifier' in n)], 'lr':klr*2e-4, 'weight_decay': 0.0}\n",
    "        ]\n",
    "    optimizer_grouped_parameters.extend([\n",
    "        {'params': [p for n, p in param_optimizer if (not any(nd in n for nd in no_decay) and ('wso' in n))], 'lr':klr*5e-6,'weight_decay': 0.01},\n",
    "        {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)  and ('wso' in n)], 'lr':klr*5e-6, 'weight_decay': 0.0}\n",
    "        ])\n",
    "    for i in range(num_blocks):\n",
    "        optimizer_grouped_parameters.extend([\n",
    "        {'params': [p for n, p in param_optimizer if (not any(nd in n for nd in no_decay) and ('layer{}'.format(i) in n))], 'lr':klr*(2.0**i)*1e-5,'weight_decay': 0.01},\n",
    "        {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)  and ('layer{}'.format(i) in n)], 'lr':klr*(2.0**i)*1e-5, 'weight_decay': 0.0}\n",
    "        ])\n",
    "    return(optimizer_grouped_parameters)\n",
    "\n",
    "     "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {
    "scrolled": false
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "<torch._C.Generator at 0x7f6d9705c610>"
      ]
     },
     "execution_count": 13,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "text/plain": [
       "(449019,)"
      ]
     },
     "execution_count": 13,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "text/plain": [
       "(225233,)"
      ]
     },
     "execution_count": 13,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "application/javascript": [
       "/* Put everything inside the global mpl namespace */\n",
       "window.mpl = {};\n",
       "\n",
       "\n",
       "mpl.get_websocket_type = function() {\n",
       "    if (typeof(WebSocket) !== 'undefined') {\n",
       "        return WebSocket;\n",
       "    } else if (typeof(MozWebSocket) !== 'undefined') {\n",
       "        return MozWebSocket;\n",
       "    } else {\n",
       "        alert('Your browser does not have WebSocket support.' +\n",
       "              'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
       "              'Firefox 4 and 5 are also supported but you ' +\n",
       "              'have to enable WebSockets in about:config.');\n",
       "    };\n",
       "}\n",
       "\n",
       "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
       "    this.id = figure_id;\n",
       "\n",
       "    this.ws = websocket;\n",
       "\n",
       "    this.supports_binary = (this.ws.binaryType != undefined);\n",
       "\n",
       "    if (!this.supports_binary) {\n",
       "        var warnings = document.getElementById(\"mpl-warnings\");\n",
       "        if (warnings) {\n",
       "            warnings.style.display = 'block';\n",
       "            warnings.textContent = (\n",
       "                \"This browser does not support binary websocket messages. \" +\n",
       "                    \"Performance may be slow.\");\n",
       "        }\n",
       "    }\n",
       "\n",
       "    this.imageObj = new Image();\n",
       "\n",
       "    this.context = undefined;\n",
       "    this.message = undefined;\n",
       "    this.canvas = undefined;\n",
       "    this.rubberband_canvas = undefined;\n",
       "    this.rubberband_context = undefined;\n",
       "    this.format_dropdown = undefined;\n",
       "\n",
       "    this.image_mode = 'full';\n",
       "\n",
       "    this.root = $('<div/>');\n",
       "    this._root_extra_style(this.root)\n",
       "    this.root.attr('style', 'display: inline-block');\n",
       "\n",
       "    $(parent_element).append(this.root);\n",
       "\n",
       "    this._init_header(this);\n",
       "    this._init_canvas(this);\n",
       "    this._init_toolbar(this);\n",
       "\n",
       "    var fig = this;\n",
       "\n",
       "    this.waiting = false;\n",
       "\n",
       "    this.ws.onopen =  function () {\n",
       "            fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
       "            fig.send_message(\"send_image_mode\", {});\n",
       "            if (mpl.ratio != 1) {\n",
       "                fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
       "            }\n",
       "            fig.send_message(\"refresh\", {});\n",
       "        }\n",
       "\n",
       "    this.imageObj.onload = function() {\n",
       "            if (fig.image_mode == 'full') {\n",
       "                // Full images could contain transparency (where diff images\n",
       "                // almost always do), so we need to clear the canvas so that\n",
       "                // there is no ghosting.\n",
       "                fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
       "            }\n",
       "            fig.context.drawImage(fig.imageObj, 0, 0);\n",
       "        };\n",
       "\n",
       "    this.imageObj.onunload = function() {\n",
       "        fig.ws.close();\n",
       "    }\n",
       "\n",
       "    this.ws.onmessage = this._make_on_message_function(this);\n",
       "\n",
       "    this.ondownload = ondownload;\n",
       "}\n",
       "\n",
       "mpl.figure.prototype._init_header = function() {\n",
       "    var titlebar = $(\n",
       "        '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
       "        'ui-helper-clearfix\"/>');\n",
       "    var titletext = $(\n",
       "        '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
       "        'text-align: center; padding: 3px;\"/>');\n",
       "    titlebar.append(titletext)\n",
       "    this.root.append(titlebar);\n",
       "    this.header = titletext[0];\n",
       "}\n",
       "\n",
       "\n",
       "\n",
       "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
       "\n",
       "}\n",
       "\n",
       "\n",
       "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
       "\n",
       "}\n",
       "\n",
       "mpl.figure.prototype._init_canvas = function() {\n",
       "    var fig = this;\n",
       "\n",
       "    var canvas_div = $('<div/>');\n",
       "\n",
       "    canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
       "\n",
       "    function canvas_keyboard_event(event) {\n",
       "        return fig.key_event(event, event['data']);\n",
       "    }\n",
       "\n",
       "    canvas_div.keydown('key_press', canvas_keyboard_event);\n",
       "    canvas_div.keyup('key_release', canvas_keyboard_event);\n",
       "    this.canvas_div = canvas_div\n",
       "    this._canvas_extra_style(canvas_div)\n",
       "    this.root.append(canvas_div);\n",
       "\n",
       "    var canvas = $('<canvas/>');\n",
       "    canvas.addClass('mpl-canvas');\n",
       "    canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
       "\n",
       "    this.canvas = canvas[0];\n",
       "    this.context = canvas[0].getContext(\"2d\");\n",
       "\n",
       "    var backingStore = this.context.backingStorePixelRatio ||\n",
       "\tthis.context.webkitBackingStorePixelRatio ||\n",
       "\tthis.context.mozBackingStorePixelRatio ||\n",
       "\tthis.context.msBackingStorePixelRatio ||\n",
       "\tthis.context.oBackingStorePixelRatio ||\n",
       "\tthis.context.backingStorePixelRatio || 1;\n",
       "\n",
       "    mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
       "\n",
       "    var rubberband = $('<canvas/>');\n",
       "    rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
       "\n",
       "    var pass_mouse_events = true;\n",
       "\n",
       "    canvas_div.resizable({\n",
       "        start: function(event, ui) {\n",
       "            pass_mouse_events = false;\n",
       "        },\n",
       "        resize: function(event, ui) {\n",
       "            fig.request_resize(ui.size.width, ui.size.height);\n",
       "        },\n",
       "        stop: function(event, ui) {\n",
       "            pass_mouse_events = true;\n",
       "            fig.request_resize(ui.size.width, ui.size.height);\n",
       "        },\n",
       "    });\n",
       "\n",
       "    function mouse_event_fn(event) {\n",
       "        if (pass_mouse_events)\n",
       "            return fig.mouse_event(event, event['data']);\n",
       "    }\n",
       "\n",
       "    rubberband.mousedown('button_press', mouse_event_fn);\n",
       "    rubberband.mouseup('button_release', mouse_event_fn);\n",
       "    // Throttle sequential mouse events to 1 every 20ms.\n",
       "    rubberband.mousemove('motion_notify', mouse_event_fn);\n",
       "\n",
       "    rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
       "    rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
       "\n",
       "    canvas_div.on(\"wheel\", function (event) {\n",
       "        event = event.originalEvent;\n",
       "        event['data'] = 'scroll'\n",
       "        if (event.deltaY < 0) {\n",
       "            event.step = 1;\n",
       "        } else {\n",
       "            event.step = -1;\n",
       "        }\n",
       "        mouse_event_fn(event);\n",
       "    });\n",
       "\n",
       "    canvas_div.append(canvas);\n",
       "    canvas_div.append(rubberband);\n",
       "\n",
       "    this.rubberband = rubberband;\n",
       "    this.rubberband_canvas = rubberband[0];\n",
       "    this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
       "    this.rubberband_context.strokeStyle = \"#000000\";\n",
       "\n",
       "    this._resize_canvas = function(width, height) {\n",
       "        // Keep the size of the canvas, canvas container, and rubber band\n",
       "        // canvas in synch.\n",
       "        canvas_div.css('width', width)\n",
       "        canvas_div.css('height', height)\n",
       "\n",
       "        canvas.attr('width', width * mpl.ratio);\n",
       "        canvas.attr('height', height * mpl.ratio);\n",
       "        canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
       "\n",
       "        rubberband.attr('width', width);\n",
       "        rubberband.attr('height', height);\n",
       "    }\n",
       "\n",
       "    // Set the figure to an initial 600x600px, this will subsequently be updated\n",
       "    // upon first draw.\n",
       "    this._resize_canvas(600, 600);\n",
       "\n",
       "    // Disable right mouse context menu.\n",
       "    $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
       "        return false;\n",
       "    });\n",
       "\n",
       "    function set_focus () {\n",
       "        canvas.focus();\n",
       "        canvas_div.focus();\n",
       "    }\n",
       "\n",
       "    window.setTimeout(set_focus, 100);\n",
       "}\n",
       "\n",
       "mpl.figure.prototype._init_toolbar = function() {\n",
       "    var fig = this;\n",
       "\n",
       "    var nav_element = $('<div/>')\n",
       "    nav_element.attr('style', 'width: 100%');\n",
       "    this.root.append(nav_element);\n",
       "\n",
       "    // Define a callback function for later on.\n",
       "    function toolbar_event(event) {\n",
       "        return fig.toolbar_button_onclick(event['data']);\n",
       "    }\n",
       "    function toolbar_mouse_event(event) {\n",
       "        return fig.toolbar_button_onmouseover(event['data']);\n",
       "    }\n",
       "\n",
       "    for(var toolbar_ind in mpl.toolbar_items) {\n",
       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
       "\n",
       "        if (!name) {\n",
       "            // put a spacer in here.\n",
       "            continue;\n",
       "        }\n",
       "        var button = $('<button/>');\n",
       "        button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
       "                        'ui-button-icon-only');\n",
       "        button.attr('role', 'button');\n",
       "        button.attr('aria-disabled', 'false');\n",
       "        button.click(method_name, toolbar_event);\n",
       "        button.mouseover(tooltip, toolbar_mouse_event);\n",
       "\n",
       "        var icon_img = $('<span/>');\n",
       "        icon_img.addClass('ui-button-icon-primary ui-icon');\n",
       "        icon_img.addClass(image);\n",
       "        icon_img.addClass('ui-corner-all');\n",
       "\n",
       "        var tooltip_span = $('<span/>');\n",
       "        tooltip_span.addClass('ui-button-text');\n",
       "        tooltip_span.html(tooltip);\n",
       "\n",
       "        button.append(icon_img);\n",
       "        button.append(tooltip_span);\n",
       "\n",
       "        nav_element.append(button);\n",
       "    }\n",
       "\n",
       "    var fmt_picker_span = $('<span/>');\n",
       "\n",
       "    var fmt_picker = $('<select/>');\n",
       "    fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
       "    fmt_picker_span.append(fmt_picker);\n",
       "    nav_element.append(fmt_picker_span);\n",
       "    this.format_dropdown = fmt_picker[0];\n",
       "\n",
       "    for (var ind in mpl.extensions) {\n",
       "        var fmt = mpl.extensions[ind];\n",
       "        var option = $(\n",
       "            '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
       "        fmt_picker.append(option)\n",
       "    }\n",
       "\n",
       "    // Add hover states to the ui-buttons\n",
       "    $( \".ui-button\" ).hover(\n",
       "        function() { $(this).addClass(\"ui-state-hover\");},\n",
       "        function() { $(this).removeClass(\"ui-state-hover\");}\n",
       "    );\n",
       "\n",
       "    var status_bar = $('<span class=\"mpl-message\"/>');\n",
       "    nav_element.append(status_bar);\n",
       "    this.message = status_bar[0];\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
       "    // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
       "    // which will in turn request a refresh of the image.\n",
       "    this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.send_message = function(type, properties) {\n",
       "    properties['type'] = type;\n",
       "    properties['figure_id'] = this.id;\n",
       "    this.ws.send(JSON.stringify(properties));\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.send_draw_message = function() {\n",
       "    if (!this.waiting) {\n",
       "        this.waiting = true;\n",
       "        this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
       "    }\n",
       "}\n",
       "\n",
       "\n",
       "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
       "    var format_dropdown = fig.format_dropdown;\n",
       "    var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
       "    fig.ondownload(fig, format);\n",
       "}\n",
       "\n",
       "\n",
       "mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
       "    var size = msg['size'];\n",
       "    if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
       "        fig._resize_canvas(size[0], size[1]);\n",
       "        fig.send_message(\"refresh\", {});\n",
       "    };\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
       "    var x0 = msg['x0'] / mpl.ratio;\n",
       "    var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
       "    var x1 = msg['x1'] / mpl.ratio;\n",
       "    var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
       "    x0 = Math.floor(x0) + 0.5;\n",
       "    y0 = Math.floor(y0) + 0.5;\n",
       "    x1 = Math.floor(x1) + 0.5;\n",
       "    y1 = Math.floor(y1) + 0.5;\n",
       "    var min_x = Math.min(x0, x1);\n",
       "    var min_y = Math.min(y0, y1);\n",
       "    var width = Math.abs(x1 - x0);\n",
       "    var height = Math.abs(y1 - y0);\n",
       "\n",
       "    fig.rubberband_context.clearRect(\n",
       "        0, 0, fig.canvas.width, fig.canvas.height);\n",
       "\n",
       "    fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
       "    // Updates the figure title.\n",
       "    fig.header.textContent = msg['label'];\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
       "    var cursor = msg['cursor'];\n",
       "    switch(cursor)\n",
       "    {\n",
       "    case 0:\n",
       "        cursor = 'pointer';\n",
       "        break;\n",
       "    case 1:\n",
       "        cursor = 'default';\n",
       "        break;\n",
       "    case 2:\n",
       "        cursor = 'crosshair';\n",
       "        break;\n",
       "    case 3:\n",
       "        cursor = 'move';\n",
       "        break;\n",
       "    }\n",
       "    fig.rubberband_canvas.style.cursor = cursor;\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.handle_message = function(fig, msg) {\n",
       "    fig.message.textContent = msg['message'];\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
       "    // Request the server to send over a new figure.\n",
       "    fig.send_draw_message();\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
       "    fig.image_mode = msg['mode'];\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.updated_canvas_event = function() {\n",
       "    // Called whenever the canvas gets updated.\n",
       "    this.send_message(\"ack\", {});\n",
       "}\n",
       "\n",
       "// A function to construct a web socket function for onmessage handling.\n",
       "// Called in the figure constructor.\n",
       "mpl.figure.prototype._make_on_message_function = function(fig) {\n",
       "    return function socket_on_message(evt) {\n",
       "        if (evt.data instanceof Blob) {\n",
       "            /* FIXME: We get \"Resource interpreted as Image but\n",
       "             * transferred with MIME type text/plain:\" errors on\n",
       "             * Chrome.  But how to set the MIME type?  It doesn't seem\n",
       "             * to be part of the websocket stream */\n",
       "            evt.data.type = \"image/png\";\n",
       "\n",
       "            /* Free the memory for the previous frames */\n",
       "            if (fig.imageObj.src) {\n",
       "                (window.URL || window.webkitURL).revokeObjectURL(\n",
       "                    fig.imageObj.src);\n",
       "            }\n",
       "\n",
       "            fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
       "                evt.data);\n",
       "            fig.updated_canvas_event();\n",
       "            fig.waiting = false;\n",
       "            return;\n",
       "        }\n",
       "        else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
       "            fig.imageObj.src = evt.data;\n",
       "            fig.updated_canvas_event();\n",
       "            fig.waiting = false;\n",
       "            return;\n",
       "        }\n",
       "\n",
       "        var msg = JSON.parse(evt.data);\n",
       "        var msg_type = msg['type'];\n",
       "\n",
       "        // Call the  \"handle_{type}\" callback, which takes\n",
       "        // the figure and JSON message as its only arguments.\n",
       "        try {\n",
       "            var callback = fig[\"handle_\" + msg_type];\n",
       "        } catch (e) {\n",
       "            console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
       "            return;\n",
       "        }\n",
       "\n",
       "        if (callback) {\n",
       "            try {\n",
       "                // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
       "                callback(fig, msg);\n",
       "            } catch (e) {\n",
       "                console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
       "            }\n",
       "        }\n",
       "    };\n",
       "}\n",
       "\n",
       "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
       "mpl.findpos = function(e) {\n",
       "    //this section is from http://www.quirksmode.org/js/events_properties.html\n",
       "    var targ;\n",
       "    if (!e)\n",
       "        e = window.event;\n",
       "    if (e.target)\n",
       "        targ = e.target;\n",
       "    else if (e.srcElement)\n",
       "        targ = e.srcElement;\n",
       "    if (targ.nodeType == 3) // defeat Safari bug\n",
       "        targ = targ.parentNode;\n",
       "\n",
       "    // jQuery normalizes the pageX and pageY\n",
       "    // pageX,Y are the mouse positions relative to the document\n",
       "    // offset() returns the position of the element relative to the document\n",
       "    var x = e.pageX - $(targ).offset().left;\n",
       "    var y = e.pageY - $(targ).offset().top;\n",
       "\n",
       "    return {\"x\": x, \"y\": y};\n",
       "};\n",
       "\n",
       "/*\n",
       " * return a copy of an object with only non-object keys\n",
       " * we need this to avoid circular references\n",
       " * http://stackoverflow.com/a/24161582/3208463\n",
       " */\n",
       "function simpleKeys (original) {\n",
       "  return Object.keys(original).reduce(function (obj, key) {\n",
       "    if (typeof original[key] !== 'object')\n",
       "        obj[key] = original[key]\n",
       "    return obj;\n",
       "  }, {});\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.mouse_event = function(event, name) {\n",
       "    var canvas_pos = mpl.findpos(event)\n",
       "\n",
       "    if (name === 'button_press')\n",
       "    {\n",
       "        this.canvas.focus();\n",
       "        this.canvas_div.focus();\n",
       "    }\n",
       "\n",
       "    var x = canvas_pos.x * mpl.ratio;\n",
       "    var y = canvas_pos.y * mpl.ratio;\n",
       "\n",
       "    this.send_message(name, {x: x, y: y, button: event.button,\n",
       "                             step: event.step,\n",
       "                             guiEvent: simpleKeys(event)});\n",
       "\n",
       "    /* This prevents the web browser from automatically changing to\n",
       "     * the text insertion cursor when the button is pressed.  We want\n",
       "     * to control all of the cursor setting manually through the\n",
       "     * 'cursor' event from matplotlib */\n",
       "    event.preventDefault();\n",
       "    return false;\n",
       "}\n",
       "\n",
       "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
       "    // Handle any extra behaviour associated with a key event\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.key_event = function(event, name) {\n",
       "\n",
       "    // Prevent repeat events\n",
       "    if (name == 'key_press')\n",
       "    {\n",
       "        if (event.which === this._key)\n",
       "            return;\n",
       "        else\n",
       "            this._key = event.which;\n",
       "    }\n",
       "    if (name == 'key_release')\n",
       "        this._key = null;\n",
       "\n",
       "    var value = '';\n",
       "    if (event.ctrlKey && event.which != 17)\n",
       "        value += \"ctrl+\";\n",
       "    if (event.altKey && event.which != 18)\n",
       "        value += \"alt+\";\n",
       "    if (event.shiftKey && event.which != 16)\n",
       "        value += \"shift+\";\n",
       "\n",
       "    value += 'k';\n",
       "    value += event.which.toString();\n",
       "\n",
       "    this._key_event_extra(event, name);\n",
       "\n",
       "    this.send_message(name, {key: value,\n",
       "                             guiEvent: simpleKeys(event)});\n",
       "    return false;\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
       "    if (name == 'download') {\n",
       "        this.handle_save(this, null);\n",
       "    } else {\n",
       "        this.send_message(\"toolbar_button\", {name: name});\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
       "    this.message.textContent = tooltip;\n",
       "};\n",
       "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to  previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
       "\n",
       "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
       "\n",
       "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
       "    // Create a \"websocket\"-like object which calls the given IPython comm\n",
       "    // object with the appropriate methods. Currently this is a non binary\n",
       "    // socket, so there is still some room for performance tuning.\n",
       "    var ws = {};\n",
       "\n",
       "    ws.close = function() {\n",
       "        comm.close()\n",
       "    };\n",
       "    ws.send = function(m) {\n",
       "        //console.log('sending', m);\n",
       "        comm.send(m);\n",
       "    };\n",
       "    // Register the callback with on_msg.\n",
       "    comm.on_msg(function(msg) {\n",
       "        //console.log('receiving', msg['content']['data'], msg);\n",
       "        // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
       "        ws.onmessage(msg['content']['data'])\n",
       "    });\n",
       "    return ws;\n",
       "}\n",
       "\n",
       "mpl.mpl_figure_comm = function(comm, msg) {\n",
       "    // This is the function which gets called when the mpl process\n",
       "    // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
       "\n",
       "    var id = msg.content.data.id;\n",
       "    // Get hold of the div created by the display call when the Comm\n",
       "    // socket was opened in Python.\n",
       "    var element = $(\"#\" + id);\n",
       "    var ws_proxy = comm_websocket_adapter(comm)\n",
       "\n",
       "    function ondownload(figure, format) {\n",
       "        window.open(figure.imageObj.src);\n",
       "    }\n",
       "\n",
       "    var fig = new mpl.figure(id, ws_proxy,\n",
       "                           ondownload,\n",
       "                           element.get(0));\n",
       "\n",
       "    // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
       "    // web socket which is closed, not our websocket->open comm proxy.\n",
       "    ws_proxy.onopen();\n",
       "\n",
       "    fig.parent_element = element.get(0);\n",
       "    fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
       "    if (!fig.cell_info) {\n",
       "        console.error(\"Failed to find cell for figure\", id, fig);\n",
       "        return;\n",
       "    }\n",
       "\n",
       "    var output_index = fig.cell_info[2]\n",
       "    var cell = fig.cell_info[0];\n",
       "\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_close = function(fig, msg) {\n",
       "    var width = fig.canvas.width/mpl.ratio\n",
       "    fig.root.unbind('remove')\n",
       "\n",
       "    // Update the output cell to use the data from the current canvas.\n",
       "    fig.push_to_output();\n",
       "    var dataURL = fig.canvas.toDataURL();\n",
       "    // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
       "    // the notebook keyboard shortcuts fail.\n",
       "    IPython.keyboard_manager.enable()\n",
       "    $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
       "    fig.close_ws(fig, msg);\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.close_ws = function(fig, msg){\n",
       "    fig.send_message('closing', msg);\n",
       "    // fig.ws.close()\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
       "    // Turn the data on the canvas into data in the output cell.\n",
       "    var width = this.canvas.width/mpl.ratio\n",
       "    var dataURL = this.canvas.toDataURL();\n",
       "    this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.updated_canvas_event = function() {\n",
       "    // Tell IPython that the notebook contents must change.\n",
       "    IPython.notebook.set_dirty(true);\n",
       "    this.send_message(\"ack\", {});\n",
       "    var fig = this;\n",
       "    // Wait a second, then push the new image to the DOM so\n",
       "    // that it is saved nicely (might be nice to debounce this).\n",
       "    setTimeout(function () { fig.push_to_output() }, 1000);\n",
       "}\n",
       "\n",
       "mpl.figure.prototype._init_toolbar = function() {\n",
       "    var fig = this;\n",
       "\n",
       "    var nav_element = $('<div/>')\n",
       "    nav_element.attr('style', 'width: 100%');\n",
       "    this.root.append(nav_element);\n",
       "\n",
       "    // Define a callback function for later on.\n",
       "    function toolbar_event(event) {\n",
       "        return fig.toolbar_button_onclick(event['data']);\n",
       "    }\n",
       "    function toolbar_mouse_event(event) {\n",
       "        return fig.toolbar_button_onmouseover(event['data']);\n",
       "    }\n",
       "\n",
       "    for(var toolbar_ind in mpl.toolbar_items){\n",
       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
       "\n",
       "        if (!name) { continue; };\n",
       "\n",
       "        var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
       "        button.click(method_name, toolbar_event);\n",
       "        button.mouseover(tooltip, toolbar_mouse_event);\n",
       "        nav_element.append(button);\n",
       "    }\n",
       "\n",
       "    // Add the status bar.\n",
       "    var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
       "    nav_element.append(status_bar);\n",
       "    this.message = status_bar[0];\n",
       "\n",
       "    // Add the close button to the window.\n",
       "    var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
       "    var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
       "    button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
       "    button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
       "    buttongrp.append(button);\n",
       "    var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
       "    titlebar.prepend(buttongrp);\n",
       "}\n",
       "\n",
       "mpl.figure.prototype._root_extra_style = function(el){\n",
       "    var fig = this\n",
       "    el.on(\"remove\", function(){\n",
       "\tfig.close_ws(fig, {});\n",
       "    });\n",
       "}\n",
       "\n",
       "mpl.figure.prototype._canvas_extra_style = function(el){\n",
       "    // this is important to make the div 'focusable\n",
       "    el.attr('tabindex', 0)\n",
       "    // reach out to IPython and tell the keyboard manager to turn it's self\n",
       "    // off when our div gets focus\n",
       "\n",
       "    // location in version 3\n",
       "    if (IPython.notebook.keyboard_manager) {\n",
       "        IPython.notebook.keyboard_manager.register_events(el);\n",
       "    }\n",
       "    else {\n",
       "        // location in version 2\n",
       "        IPython.keyboard_manager.register_events(el);\n",
       "    }\n",
       "\n",
       "}\n",
       "\n",
       "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
       "    var manager = IPython.notebook.keyboard_manager;\n",
       "    if (!manager)\n",
       "        manager = IPython.keyboard_manager;\n",
       "\n",
       "    // Check for shift+enter\n",
       "    if (event.shiftKey && event.which == 13) {\n",
       "        this.canvas_div.blur();\n",
       "        event.shiftKey = false;\n",
       "        // Send a \"J\" for go to next cell\n",
       "        event.which = 74;\n",
       "        event.keyCode = 74;\n",
       "        manager.command_mode();\n",
       "        manager.handle_keydown(event);\n",
       "    }\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
       "    fig.ondownload(fig, null);\n",
       "}\n",
       "\n",
       "\n",
       "mpl.find_output_cell = function(html_output) {\n",
       "    // Return the cell and output element which can be found *uniquely* in the notebook.\n",
       "    // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
       "    // IPython event is triggered only after the cells have been serialised, which for\n",
       "    // our purposes (turning an active figure into a static one), is too late.\n",
       "    var cells = IPython.notebook.get_cells();\n",
       "    var ncells = cells.length;\n",
       "    for (var i=0; i<ncells; i++) {\n",
       "        var cell = cells[i];\n",
       "        if (cell.cell_type === 'code'){\n",
       "            for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
       "                var data = cell.output_area.outputs[j];\n",
       "                if (data.data) {\n",
       "                    // IPython >= 3 moved mimebundle to data attribute of output\n",
       "                    data = data.data;\n",
       "                }\n",
       "                if (data['text/html'] == html_output) {\n",
       "                    return [cell, data, j];\n",
       "                }\n",
       "            }\n",
       "        }\n",
       "    }\n",
       "}\n",
       "\n",
       "// Register the function which deals with the matplotlib target/channel.\n",
       "// The kernel may be null if the page has been refreshed.\n",
       "if (IPython.notebook.kernel != null) {\n",
       "    IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
       "}\n"
      ],
      "text/plain": [
       "<IPython.core.display.Javascript object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "<img src=\"\" width=\"720\">"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "d45f34edcf9046ecbd8a533da31a8df5",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=5), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "e042012c7ff94183b5a655b88f38c51b",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=14032), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "f4da88c1f9394b9ca1a6e4512dc5b6c4",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=7039), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "{'loss': 0.08772529098453985, 'val_loss': 0.08948538429140176}\n"
     ]
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "0cc5e83c19b042d985983e2375d22c2d",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=14032), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "76fd8e9f70794760920f79d71a0a2412",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=7039), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "{'loss': 0.0739340802691105, 'val_loss': 0.0831382854234583}\n"
     ]
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "8ff1c04b4c97457d8f2541d888fa2f80",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=14032), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "b4ae45ce45594ac89ba196e2b8923f09",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=7039), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "{'loss': 0.06913197829724893, 'val_loss': 0.08308981416888478}\n"
     ]
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "d219862452854b8bb5aa5d80eaa7769a",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=14032), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "e9af2c6032044e8ca93744e7b78086e6",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=7039), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "{'loss': 0.06284379411734307, 'val_loss': 0.08409869243106527}\n",
      "[0.08308981 0.08409869]\n"
     ]
    }
   ],
   "source": [
    "%matplotlib nbagg\n",
    "\n",
    "num_split=1\n",
    "np.random.seed(SEED+num_split)\n",
    "torch.manual_seed(SEED+num_split)\n",
    "torch.cuda.manual_seed(SEED+num_split)\n",
    "#torch.backends.cudnn.deterministic = True\n",
    "idx_train = train_df[train_df.PID.isin(set(split_sid[splits[num_split][0]]))].index.values\n",
    "idx_validate =  train_df[train_df.PID.isin(set(split_sid[splits[num_split][1]]))].index.values\n",
    "idx_train.shape\n",
    "idx_validate.shape\n",
    "\n",
    "klr=1\n",
    "batch_size=32\n",
    "num_workers=12\n",
    "num_epochs=5\n",
    "model_name,version = 'se_resnext101_32x4d' , 'classifier_splits'\n",
    "model = MySENet(pretrainedmodels.__dict__['se_resnext101_32x4d'](num_classes=1000, pretrained='imagenet'),\n",
    "                   len(hemorrhage_types),\n",
    "                   num_channels=3,\n",
    "                   dropout=0.2,\n",
    "                   wso=((40,80),(80,200),(40,400)),\n",
    "                   dont_do_grad=[],\n",
    "                   extra_pool=8,\n",
    "                   )\n",
    "\n",
    "_=model.to(device)\n",
    "weights = torch.tensor([1.,1.,1.,1.,1.,2.],device=device)\n",
    "loss_func=my_loss\n",
    "targets_dataset=D.TensorDataset(torch.tensor(train_df[hemorrhage_types].values,dtype=torch.float))\n",
    "transform=MyTransform(mean_change=15,\n",
    "                      std_change=0,\n",
    "                      flip=True,\n",
    "                      zoom=(0.2,0.2),\n",
    "                      rotate=30,\n",
    "                      out_size=512,\n",
    "                      shift=10,\n",
    "                      normal=False)\n",
    "imagedataset = ImageDataset(train_df,transform=transform.random,base_path=train_images_dir,\n",
    "                           window_eq=False,equalize=False,rescale=True)\n",
    "transform_val=MyTransform(out_size=512)\n",
    "imagedataset_val = ImageDataset(train_df,transform=transform_val.random,base_path=train_images_dir,\n",
    "                               window_eq=False,equalize=False,rescale=True)\n",
    "combined_dataset=DatasetCat([imagedataset,targets_dataset])\n",
    "combined_dataset_val=DatasetCat([imagedataset_val,targets_dataset])\n",
    "optimizer_grouped_parameters=get_optimizer_parameters(model,klr)\n",
    "sampling=simple_sampler(train_df[hemorrhage_types].values[idx_train],0.25)\n",
    "sample_ratio=1.0\n",
    "train_dataset=D.Subset(combined_dataset,idx_train)\n",
    "validate_dataset=D.Subset(combined_dataset_val,idx_validate)\n",
    "num_train_optimization_steps = num_epochs*(sample_ratio*len(train_dataset)//batch_size+int(len(train_dataset)%batch_size>0))\n",
    "fig,ax = plt.subplots(figsize=(10,7))\n",
    "gr=loss_graph(fig,ax,num_epochs,int(num_train_optimization_steps/num_epochs)+1,limits=(0.05,0.2))\n",
    "sched=WarmupExpCosineWithWarmupRestartsSchedule( t_total=num_train_optimization_steps, cycles=num_epochs,tau=1)\n",
    "#param_optimizer = model.parameters()\n",
    "#optimizer = torch.optim.Adam(param_optimizer, lr=klr*6e-5)\n",
    "optimizer = BertAdam(optimizer_grouped_parameters,lr=klr*1e-3,schedule=sched)\n",
    "model, optimizer = amp.initialize(model, optimizer, opt_level=\"O1\",verbosity=0)\n",
    "history,best_model= model_train(model,\n",
    "                                optimizer,\n",
    "                                train_dataset,\n",
    "                                batch_size,\n",
    "                                num_epochs,\n",
    "                                loss_func,\n",
    "                                weights=weights,\n",
    "                                do_apex=False,\n",
    "                                model_apexed=True,\n",
    "                                validate_dataset=validate_dataset,\n",
    "                                param_schedualer=None,\n",
    "                                weights_data=None,\n",
    "                                metric=None,\n",
    "                                return_model=True,\n",
    "                                num_workers=num_workers,\n",
    "                                sampler=None,\n",
    "                                pre_process = None,\n",
    "                                graph=gr,\n",
    "                                call_progress=sendmeemail)\n",
    "\n",
    "torch.save(model.state_dict(), models_dir+models_format.format(model_name,version,num_split))\n",
    "torch.save(best_model.state_dict(), models_dir+models_format.format(model_name,version+'_best',num_split))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "<All keys matched successfully>"
      ]
     },
     "execution_count": 11,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "6ac56489e1b84a8eb1e869dc01ba21c7",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=6546), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n"
     ]
    }
   ],
   "source": [
    "model_name,version, num_split =  'se_resnext101_32x4d' , 'classifier_splits',0\n",
    "model = MySENet(pretrainedmodels.__dict__['se_resnext101_32x4d'](num_classes=1000, pretrained='imagenet'),\n",
    "                   len(hemorrhage_types),\n",
    "                   num_channels=3,\n",
    "                   dropout=0.2,\n",
    "                   wso=((40,80),(80,200),(40,400)),\n",
    "                   dont_do_grad=[],\n",
    "                   extra_pool=8,\n",
    "                  return_features=True\n",
    "                   )\n",
    "model.load_state_dict(torch.load(models_dir+models_format.format(model_name,version,num_split),map_location=torch.device(device)))\n",
    "_=model.to(device)\n",
    "transform=MyTransform(mean_change=10,\n",
    "                      std_change=0,\n",
    "                      flip=True,\n",
    "                      zoom=(0.15,0.15),\n",
    "                      rotate=20,\n",
    "                      out_size=512,\n",
    "                      shift=0,\n",
    "                      normal=False)\n",
    "transform_val=MyTransform(out_size=512)\n",
    "indexes=np.arange(test_df.shape[0]).repeat(8)\n",
    "imagedataset_test=D.Subset(ImageDataset(test_df,transform=transform.random,base_path=test_images_dir,\n",
    "                              window_eq=False,equalize=False,rescale=True),indexes)\n",
    "pred,features = model_run(model,imagedataset_test,do_apex=True,batch_size=96,num_workers=18)\n",
    "pickle_file=open(outputs_dir+outputs_format.format(model_name,version,'features_test',num_split),'wb')\n",
    "pickle.dump(features,pickle_file,protocol=4)\n",
    "pickle_file.close()\n",
    "pickle_file=open(outputs_dir+outputs_format.format(model_name,version,'predictions_test',num_split),'wb')\n",
    "pickle.dump(pred,pickle_file,protocol=4)\n",
    "pickle_file.close()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "<All keys matched successfully>"
      ]
     },
     "execution_count": 12,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "7c7d8f1fd42d437b9db81ee768ecbc29",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=6546), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n"
     ]
    }
   ],
   "source": [
    "model_name,version, num_split =  'se_resnext101_32x4d' , 'classifier_splits',1\n",
    "model = MySENet(pretrainedmodels.__dict__['se_resnext101_32x4d'](num_classes=1000, pretrained='imagenet'),\n",
    "                   len(hemorrhage_types),\n",
    "                   num_channels=3,\n",
    "                   dropout=0.2,\n",
    "                   wso=((40,80),(80,200),(40,400)),\n",
    "                   dont_do_grad=[],\n",
    "                   extra_pool=8,\n",
    "                  return_features=True\n",
    "                   )\n",
    "model.load_state_dict(torch.load(models_dir+models_format.format(model_name,version,num_split),map_location=torch.device(device)))\n",
    "_=model.to(device)\n",
    "transform=MyTransform(mean_change=10,\n",
    "                      std_change=0,\n",
    "                      flip=True,\n",
    "                      zoom=(0.15,0.15),\n",
    "                      rotate=20,\n",
    "                      out_size=512,\n",
    "                      shift=0,\n",
    "                      normal=False)\n",
    "transform_val=MyTransform(out_size=512)\n",
    "indexes=np.arange(test_df.shape[0]).repeat(8)\n",
    "imagedataset_test=D.Subset(ImageDataset(test_df,transform=transform.random,base_path=test_images_dir,\n",
    "                              window_eq=False,equalize=False,rescale=True),indexes)\n",
    "pred,features = model_run(model,imagedataset_test,do_apex=True,batch_size=96,num_workers=18)\n",
    "pickle_file=open(outputs_dir+outputs_format.format(model_name,version,'features_test',num_split),'wb')\n",
    "pickle.dump(features,pickle_file,protocol=4)\n",
    "pickle_file.close()\n",
    "pickle_file=open(outputs_dir+outputs_format.format(model_name,version,'predictions_test',num_split),'wb')\n",
    "pickle.dump(pred,pickle_file,protocol=4)\n",
    "pickle_file.close()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "<All keys matched successfully>"
      ]
     },
     "execution_count": 13,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "1f2baa9881e74623867fbd7944813878",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=6546), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n"
     ]
    }
   ],
   "source": [
    "model_name,version, num_split =  'se_resnext101_32x4d' , 'classifier_splits',2\n",
    "model = MySENet(pretrainedmodels.__dict__['se_resnext101_32x4d'](num_classes=1000, pretrained='imagenet'),\n",
    "                   len(hemorrhage_types),\n",
    "                   num_channels=3,\n",
    "                   dropout=0.2,\n",
    "                   wso=((40,80),(80,200),(40,400)),\n",
    "                   dont_do_grad=[],\n",
    "                   extra_pool=8,\n",
    "                  return_features=True\n",
    "                   )\n",
    "model.load_state_dict(torch.load(models_dir+models_format.format(model_name,version,num_split),map_location=torch.device(device)))\n",
    "_=model.to(device)\n",
    "transform=MyTransform(mean_change=10,\n",
    "                      std_change=0,\n",
    "                      flip=True,\n",
    "                      zoom=(0.15,0.15),\n",
    "                      rotate=20,\n",
    "                      out_size=512,\n",
    "                      shift=0,\n",
    "                      normal=False)\n",
    "transform_val=MyTransform(out_size=512)\n",
    "indexes=np.arange(test_df.shape[0]).repeat(8)\n",
    "imagedataset_test=D.Subset(ImageDataset(test_df,transform=transform.random,base_path=test_images_dir,\n",
    "                              window_eq=False,equalize=False,rescale=True),indexes)\n",
    "pred,features = model_run(model,imagedataset_test,do_apex=True,batch_size=96,num_workers=18)\n",
    "pickle_file=open(outputs_dir+outputs_format.format(model_name,version,'features_test',num_split),'wb')\n",
    "pickle.dump(features,pickle_file,protocol=4)\n",
    "pickle_file.close()\n",
    "pickle_file=open(outputs_dir+outputs_format.format(model_name,version,'predictions_test',num_split),'wb')\n",
    "pickle.dump(pred,pickle_file,protocol=4)\n",
    "pickle_file.close()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "f8a7ace928d04d278fcc24167c24934b",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=3), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "torch.Size([78545, 24, 6])"
      ]
     },
     "execution_count": 18,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "preds=[]\n",
    "for i in tqdm_notebook(range(3)):\n",
    "    model_name,version, num_split =  'se_resnext101_32x4d' , 'classifier_splits',i\n",
    "    pickle_file=open(outputs_dir+outputs_format.format(model_name,version,'predictions_test',num_split),'rb')\n",
    "    pred=pickle.load(pickle_file)\n",
    "    pickle_file.close()\n",
    "    preds.append(pred[(np.arange(pred.shape[0]).reshape(pred.shape[0]//8,8))])\n",
    "predss = torch.cat(preds,1)\n",
    "predss.shape"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 76,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "78545.0"
      ]
     },
     "execution_count": 76,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "text/plain": [
       "torch.Size([78545, 6])"
      ]
     },
     "execution_count": 76,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "torch.sigmoid(pred).mean(1)\n",
    ".mean(1).shape"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 70,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "torch.Size([628360])"
      ]
     },
     "execution_count": 70,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "pred[(np.arange(pred.shape[0]).reshape()).transpose(1,0)].mean(1)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>ID</th>\n",
       "      <th>Label</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>ID_000012eaf_any</td>\n",
       "      <td>0.007760</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>ID_000012eaf_epidural</td>\n",
       "      <td>0.000215</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>ID_000012eaf_intraparenchymal</td>\n",
       "      <td>0.000772</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>ID_000012eaf_intraventricular</td>\n",
       "      <td>0.000473</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>ID_000012eaf_subarachnoid</td>\n",
       "      <td>0.001052</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>5</th>\n",
       "      <td>ID_000012eaf_subdural</td>\n",
       "      <td>0.005370</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>6</th>\n",
       "      <td>ID_0000ca2f6_any</td>\n",
       "      <td>0.004738</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>7</th>\n",
       "      <td>ID_0000ca2f6_epidural</td>\n",
       "      <td>0.000074</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>8</th>\n",
       "      <td>ID_0000ca2f6_intraparenchymal</td>\n",
       "      <td>0.000576</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>9</th>\n",
       "      <td>ID_0000ca2f6_intraventricular</td>\n",
       "      <td>0.000235</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>10</th>\n",
       "      <td>ID_0000ca2f6_subarachnoid</td>\n",
       "      <td>0.001335</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>11</th>\n",
       "      <td>ID_0000ca2f6_subdural</td>\n",
       "      <td>0.001597</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "                               ID     Label\n",
       "0                ID_000012eaf_any  0.007760\n",
       "1           ID_000012eaf_epidural  0.000215\n",
       "2   ID_000012eaf_intraparenchymal  0.000772\n",
       "3   ID_000012eaf_intraventricular  0.000473\n",
       "4       ID_000012eaf_subarachnoid  0.001052\n",
       "5           ID_000012eaf_subdural  0.005370\n",
       "6                ID_0000ca2f6_any  0.004738\n",
       "7           ID_0000ca2f6_epidural  0.000074\n",
       "8   ID_0000ca2f6_intraparenchymal  0.000576\n",
       "9   ID_0000ca2f6_intraventricular  0.000235\n",
       "10      ID_0000ca2f6_subarachnoid  0.001335\n",
       "11          ID_0000ca2f6_subdural  0.001597"
      ]
     },
     "execution_count": 19,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "text/plain": [
       "(471270, 2)"
      ]
     },
     "execution_count": 19,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "submission_df=get_submission(test_df,torch.sigmoid(predss).mean(1),False)\n",
    "submission_df.head(12)\n",
    "submission_df.shape\n",
    "sub_num=41\n",
    "submission_df.to_csv('/media/hd/notebooks/data/RSNA/submissions/submission{}.csv'.format(sub_num),\n",
    "                                                                  index=False, columns=['ID','Label'])\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.6.6"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}