[53d15f]: / Production / se_resnext101_32x4d + prepare densenet features.ipynb

Download this file

5734 lines (5733 with data), 460.3 kB

{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/home/reina/anaconda3/envs/RSNA/lib/python3.6/importlib/_bootstrap.py:219: ImportWarning: can't resolve package from __spec__ or __package__, falling back on __name__ and __path__\n",
      "  return f(*args, **kwds)\n",
      "/home/reina/anaconda3/envs/RSNA/lib/python3.6/importlib/_bootstrap.py:219: ImportWarning: can't resolve package from __spec__ or __package__, falling back on __name__ and __path__\n",
      "  return f(*args, **kwds)\n"
     ]
    }
   ],
   "source": [
    "from __future__ import absolute_import\n",
    "from __future__ import division\n",
    "from __future__ import print_function\n",
    "\n",
    "\n",
    "import numpy as np # linear algebra\n",
    "import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)\n",
    "import os\n",
    "import datetime\n",
    "import seaborn as sns\n",
    "import pydicom\n",
    "import time\n",
    "import gc\n",
    "import operator \n",
    "from apex import amp \n",
    "import matplotlib.pyplot as plt\n",
    "import torch\n",
    "import torch.nn as nn\n",
    "import torch.utils.data as D\n",
    "import torch.nn.functional as F\n",
    "from sklearn.model_selection import KFold\n",
    "from tqdm import tqdm, tqdm_notebook\n",
    "from IPython.core.interactiveshell import InteractiveShell\n",
    "InteractiveShell.ast_node_interactivity = \"all\"\n",
    "import warnings\n",
    "warnings.filterwarnings(action='once')\n",
    "import pickle\n",
    "%load_ext autoreload\n",
    "%autoreload 2\n",
    "%matplotlib inline\n",
    "from skimage.io import imread,imshow\n",
    "from helper import *\n",
    "from apex import amp\n",
    "import helper\n",
    "import torchvision.models as models\n",
    "import pretrainedmodels\n",
    "from torch.optim import Adam\n",
    "from defenitions import *"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "SEED = 8153\n",
    "#device=device_by_name(\"Tesla\")\n",
    "device=device_by_name(\"RTX\")\n",
    "#device = \"cpu\"\n",
    "torch.cuda.set_device(device)\n",
    "sendmeemail=Email_Progress(my_gmail,my_pass,to_email,'se_resnext101_32x4d-folds results')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "def get_submission(test_df,pred):\n",
    "    epidural_df=pd.DataFrame(data={'ID':'ID_'+test_df.PatientID.values+'_epidural','Label':torch.sigmoid(pred[:,0])})\n",
    "    intraparenchymal_df=pd.DataFrame(data={'ID':'ID_'+test_df.PatientID.values+'_intraparenchymal','Label':torch.sigmoid(pred[:,1])})\n",
    "    intraventricular_df=pd.DataFrame(data={'ID':'ID_'+test_df.PatientID.values+'_intraventricular','Label':torch.sigmoid(pred[:,2])})\n",
    "    subarachnoid_df=pd.DataFrame(data={'ID':'ID_'+test_df.PatientID.values+'_subarachnoid','Label':torch.sigmoid(pred[:,3])})\n",
    "    subdural_df=pd.DataFrame(data={'ID':'ID_'+test_df.PatientID.values+'_subdural','Label':torch.sigmoid(pred[:,4])})\n",
    "    any_df=pd.DataFrame(data={'ID':'ID_'+test_df.PatientID.values+'_any','Label':torch.sigmoid(pred[:,5])}) \n",
    "    return pd.concat([epidural_df,\n",
    "                        intraparenchymal_df,\n",
    "                        intraventricular_df,\n",
    "                        subarachnoid_df,\n",
    "                        subdural_df,\n",
    "                        any_df]).sort_values('ID').reset_index(drop=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(674510, 15)"
      ]
     },
     "execution_count": 4,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "text/plain": [
       "(674252, 15)"
      ]
     },
     "execution_count": 4,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>PatientID</th>\n",
       "      <th>epidural</th>\n",
       "      <th>intraparenchymal</th>\n",
       "      <th>intraventricular</th>\n",
       "      <th>subarachnoid</th>\n",
       "      <th>subdural</th>\n",
       "      <th>any</th>\n",
       "      <th>PID</th>\n",
       "      <th>StudyI</th>\n",
       "      <th>SeriesI</th>\n",
       "      <th>WindowCenter</th>\n",
       "      <th>WindowWidth</th>\n",
       "      <th>ImagePositionZ</th>\n",
       "      <th>ImagePositionX</th>\n",
       "      <th>ImagePositionY</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>63eb1e259</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>a449357f</td>\n",
       "      <td>62d125e5b2</td>\n",
       "      <td>0be5c0d1b3</td>\n",
       "      <td>['00036', '00036']</td>\n",
       "      <td>['00080', '00080']</td>\n",
       "      <td>180.199951</td>\n",
       "      <td>-125.0</td>\n",
       "      <td>-8.000000</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>2669954a7</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>363d5865</td>\n",
       "      <td>a20b80c7bf</td>\n",
       "      <td>3564d584db</td>\n",
       "      <td>['00047', '00047']</td>\n",
       "      <td>['00080', '00080']</td>\n",
       "      <td>922.530821</td>\n",
       "      <td>-156.0</td>\n",
       "      <td>45.572849</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>52c9913b1</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>9c2b4bd7</td>\n",
       "      <td>3e3634f8cf</td>\n",
       "      <td>973274ffc9</td>\n",
       "      <td>40</td>\n",
       "      <td>150</td>\n",
       "      <td>4.455000</td>\n",
       "      <td>-125.0</td>\n",
       "      <td>-115.063000</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>4e6ff6126</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>3ae81c2d</td>\n",
       "      <td>a1390c15c2</td>\n",
       "      <td>e5ccad8244</td>\n",
       "      <td>['00036', '00036']</td>\n",
       "      <td>['00080', '00080']</td>\n",
       "      <td>100.000000</td>\n",
       "      <td>-99.5</td>\n",
       "      <td>28.500000</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>7858edd88</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>c1867feb</td>\n",
       "      <td>c73e81ed3a</td>\n",
       "      <td>28e0531b3a</td>\n",
       "      <td>40</td>\n",
       "      <td>100</td>\n",
       "      <td>145.793000</td>\n",
       "      <td>-125.0</td>\n",
       "      <td>-132.190000</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "   PatientID  epidural  intraparenchymal  intraventricular  subarachnoid  \\\n",
       "0  63eb1e259         0                 0                 0             0   \n",
       "1  2669954a7         0                 0                 0             0   \n",
       "2  52c9913b1         0                 0                 0             0   \n",
       "3  4e6ff6126         0                 0                 0             0   \n",
       "4  7858edd88         0                 0                 0             0   \n",
       "\n",
       "   subdural  any       PID      StudyI     SeriesI        WindowCenter  \\\n",
       "0         0    0  a449357f  62d125e5b2  0be5c0d1b3  ['00036', '00036']   \n",
       "1         0    0  363d5865  a20b80c7bf  3564d584db  ['00047', '00047']   \n",
       "2         0    0  9c2b4bd7  3e3634f8cf  973274ffc9                  40   \n",
       "3         0    0  3ae81c2d  a1390c15c2  e5ccad8244  ['00036', '00036']   \n",
       "4         0    0  c1867feb  c73e81ed3a  28e0531b3a                  40   \n",
       "\n",
       "          WindowWidth  ImagePositionZ  ImagePositionX  ImagePositionY  \n",
       "0  ['00080', '00080']      180.199951          -125.0       -8.000000  \n",
       "1  ['00080', '00080']      922.530821          -156.0       45.572849  \n",
       "2                 150        4.455000          -125.0     -115.063000  \n",
       "3  ['00080', '00080']      100.000000           -99.5       28.500000  \n",
       "4                 100      145.793000          -125.0     -132.190000  "
      ]
     },
     "execution_count": 4,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "train_df = pd.read_csv(data_dir+'train.csv')\n",
    "train_df.shape\n",
    "train_df=train_df[~train_df.PatientID.isin(bad_images)].reset_index(drop=True)\n",
    "train_df=train_df.drop_duplicates().reset_index(drop=True)\n",
    "train_df.shape\n",
    "train_df.head()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>PatientID</th>\n",
       "      <th>epidural</th>\n",
       "      <th>intraparenchymal</th>\n",
       "      <th>intraventricular</th>\n",
       "      <th>subarachnoid</th>\n",
       "      <th>subdural</th>\n",
       "      <th>any</th>\n",
       "      <th>SeriesI</th>\n",
       "      <th>PID</th>\n",
       "      <th>StudyI</th>\n",
       "      <th>WindowCenter</th>\n",
       "      <th>WindowWidth</th>\n",
       "      <th>ImagePositionZ</th>\n",
       "      <th>ImagePositionX</th>\n",
       "      <th>ImagePositionY</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>28fbab7eb</td>\n",
       "      <td>0.5</td>\n",
       "      <td>0.5</td>\n",
       "      <td>0.5</td>\n",
       "      <td>0.5</td>\n",
       "      <td>0.5</td>\n",
       "      <td>0.5</td>\n",
       "      <td>ebfd7e4506</td>\n",
       "      <td>cf1b6b11</td>\n",
       "      <td>93407cadbb</td>\n",
       "      <td>30</td>\n",
       "      <td>80</td>\n",
       "      <td>158.458000</td>\n",
       "      <td>-125.0</td>\n",
       "      <td>-135.598000</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>877923b8b</td>\n",
       "      <td>0.5</td>\n",
       "      <td>0.5</td>\n",
       "      <td>0.5</td>\n",
       "      <td>0.5</td>\n",
       "      <td>0.5</td>\n",
       "      <td>0.5</td>\n",
       "      <td>6d95084e15</td>\n",
       "      <td>ad8ea58f</td>\n",
       "      <td>a337baa067</td>\n",
       "      <td>30</td>\n",
       "      <td>80</td>\n",
       "      <td>138.729050</td>\n",
       "      <td>-125.0</td>\n",
       "      <td>-101.797981</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>a591477cb</td>\n",
       "      <td>0.5</td>\n",
       "      <td>0.5</td>\n",
       "      <td>0.5</td>\n",
       "      <td>0.5</td>\n",
       "      <td>0.5</td>\n",
       "      <td>0.5</td>\n",
       "      <td>8e06b2c9e0</td>\n",
       "      <td>ecfb278b</td>\n",
       "      <td>0cfe838d54</td>\n",
       "      <td>30</td>\n",
       "      <td>80</td>\n",
       "      <td>60.830002</td>\n",
       "      <td>-125.0</td>\n",
       "      <td>-133.300003</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>42217c898</td>\n",
       "      <td>0.5</td>\n",
       "      <td>0.5</td>\n",
       "      <td>0.5</td>\n",
       "      <td>0.5</td>\n",
       "      <td>0.5</td>\n",
       "      <td>0.5</td>\n",
       "      <td>e800f419cf</td>\n",
       "      <td>e96e31f4</td>\n",
       "      <td>c497ac5bad</td>\n",
       "      <td>30</td>\n",
       "      <td>80</td>\n",
       "      <td>55.388000</td>\n",
       "      <td>-125.0</td>\n",
       "      <td>-146.081000</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>a130c4d2f</td>\n",
       "      <td>0.5</td>\n",
       "      <td>0.5</td>\n",
       "      <td>0.5</td>\n",
       "      <td>0.5</td>\n",
       "      <td>0.5</td>\n",
       "      <td>0.5</td>\n",
       "      <td>faeb7454f3</td>\n",
       "      <td>69affa42</td>\n",
       "      <td>854e4fbc01</td>\n",
       "      <td>30</td>\n",
       "      <td>80</td>\n",
       "      <td>33.516888</td>\n",
       "      <td>-125.0</td>\n",
       "      <td>-118.689819</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "   PatientID  epidural  intraparenchymal  intraventricular  subarachnoid  \\\n",
       "0  28fbab7eb       0.5               0.5               0.5           0.5   \n",
       "1  877923b8b       0.5               0.5               0.5           0.5   \n",
       "2  a591477cb       0.5               0.5               0.5           0.5   \n",
       "3  42217c898       0.5               0.5               0.5           0.5   \n",
       "4  a130c4d2f       0.5               0.5               0.5           0.5   \n",
       "\n",
       "   subdural  any     SeriesI       PID      StudyI WindowCenter WindowWidth  \\\n",
       "0       0.5  0.5  ebfd7e4506  cf1b6b11  93407cadbb           30          80   \n",
       "1       0.5  0.5  6d95084e15  ad8ea58f  a337baa067           30          80   \n",
       "2       0.5  0.5  8e06b2c9e0  ecfb278b  0cfe838d54           30          80   \n",
       "3       0.5  0.5  e800f419cf  e96e31f4  c497ac5bad           30          80   \n",
       "4       0.5  0.5  faeb7454f3  69affa42  854e4fbc01           30          80   \n",
       "\n",
       "   ImagePositionZ  ImagePositionX  ImagePositionY  \n",
       "0      158.458000          -125.0     -135.598000  \n",
       "1      138.729050          -125.0     -101.797981  \n",
       "2       60.830002          -125.0     -133.300003  \n",
       "3       55.388000          -125.0     -146.081000  \n",
       "4       33.516888          -125.0     -118.689819  "
      ]
     },
     "execution_count": 5,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "test_df = pd.read_csv(data_dir+'test.csv')\n",
    "test_df.head()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [],
   "source": [
    "split_sid = train_df.PID.unique()\n",
    "splits=list(KFold(n_splits=3,shuffle=True, random_state=SEED).split(split_sid))\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "pickle_file=open(outputs_dir+\"PID_splits.pkl\",'wb')\n",
    "pickle.dump((split_sid,splits),pickle_file,protocol=4)\n",
    "pickle_file.close()\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [],
   "source": [
    "def my_loss(y_pred,y_true,weights):\n",
    "    if len(y_pred.shape)==len(y_true.shape):\n",
    "        loss = F.binary_cross_entropy_with_logits(y_pred,y_true,weights.expand_as(y_pred))\n",
    "    else:\n",
    "        loss0 = F.binary_cross_entropy_with_logits(y_pred,y_true[...,0],weights.repeat(y_pred.shape[0],1),reduction='none')\n",
    "        loss1 = F.binary_cross_entropy_with_logits(y_pred,y_true[...,1],weights.repeat(y_pred.shape[0],1),reduction='none')\n",
    "        loss = (y_true[...,2]*loss0+(1.0-y_true[...,2])*loss1).mean() \n",
    "    return loss"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [],
   "source": [
    "class parameter_scheduler():\n",
    "    def __init__(self,model,do_first=['classifier'],num_epoch=1):\n",
    "        self.model=model\n",
    "        self.do_first = do_first\n",
    "        self.num_epoch=num_epoch\n",
    "    def __call__(self,epoch):\n",
    "        if epoch>=self.num_epoch:\n",
    "            for n,p in self.model.named_parameters():\n",
    "                p.requires_grad=True\n",
    "        else:\n",
    "            for n,p in self.model.named_parameters():\n",
    "                p.requires_grad= any(nd in n for nd in self.do_first)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [],
   "source": [
    "def get_optimizer_parameters(model,klr):\n",
    "    param_optimizer = list(model.named_parameters())\n",
    "    num_blocks=5\n",
    "    no_decay=['bias']\n",
    "    optimizer_grouped_parameters=[\n",
    "        {'params': [p for n, p in param_optimizer if (not any(nd in n for nd in no_decay) and ('classifier' in n))], 'lr':klr*2e-4,'weight_decay': 0.01},\n",
    "        {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)  and ('classifier' in n)], 'lr':klr*2e-4, 'weight_decay': 0.0}\n",
    "        ]\n",
    "    optimizer_grouped_parameters.extend([\n",
    "        {'params': [p for n, p in param_optimizer if (not any(nd in n for nd in no_decay) and ('wso' in n))], 'lr':klr*5e-6,'weight_decay': 0.01},\n",
    "        {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)  and ('wso' in n)], 'lr':klr*5e-6, 'weight_decay': 0.0}\n",
    "        ])\n",
    "    for i in range(num_blocks):\n",
    "        optimizer_grouped_parameters.extend([\n",
    "        {'params': [p for n, p in param_optimizer if (not any(nd in n for nd in no_decay) and ('layer{}'.format(i) in n))], 'lr':klr*(2.0**i)*1e-5,'weight_decay': 0.01},\n",
    "        {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)  and ('layer{}'.format(i) in n)], 'lr':klr*(2.0**i)*1e-5, 'weight_decay': 0.0}\n",
    "        ])\n",
    "    return(optimizer_grouped_parameters)\n",
    "\n",
    "     "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(21812, 15)"
      ]
     },
     "execution_count": 10,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>PatientID</th>\n",
       "      <th>epidural</th>\n",
       "      <th>intraparenchymal</th>\n",
       "      <th>intraventricular</th>\n",
       "      <th>subarachnoid</th>\n",
       "      <th>subdural</th>\n",
       "      <th>any</th>\n",
       "      <th>PID</th>\n",
       "      <th>StudyI</th>\n",
       "      <th>SeriesI</th>\n",
       "      <th>WindowCenter</th>\n",
       "      <th>WindowWidth</th>\n",
       "      <th>ImagePositionZ</th>\n",
       "      <th>ImagePositionX</th>\n",
       "      <th>ImagePositionY</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>1.2.276.0.7230010.3.1.4.296485376.1.1521714698...</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>CQ500-CT-58</td>\n",
       "      <td>1.2.276.0.7230010.3.1.2.296485376.1.1521714692...</td>\n",
       "      <td>NaN</td>\n",
       "      <td>350.0</td>\n",
       "      <td>2000.0</td>\n",
       "      <td>-125.0</td>\n",
       "      <td>-177.500</td>\n",
       "      <td>100.250</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>1.2.276.0.7230010.3.1.4.296485376.1.1521714729...</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>CQ500-CT-137</td>\n",
       "      <td>1.2.276.0.7230010.3.1.2.296485376.1.1521714726...</td>\n",
       "      <td>NaN</td>\n",
       "      <td>40.0</td>\n",
       "      <td>100.0</td>\n",
       "      <td>-113.0</td>\n",
       "      <td>-117.500</td>\n",
       "      <td>-10.250</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>1.2.276.0.7230010.3.1.4.296485376.1.1521713543...</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>CQ500-CT-220</td>\n",
       "      <td>1.2.276.0.7230010.3.1.2.296485376.1.1521713542...</td>\n",
       "      <td>NaN</td>\n",
       "      <td>30.0</td>\n",
       "      <td>100.0</td>\n",
       "      <td>-125.0</td>\n",
       "      <td>-123.784</td>\n",
       "      <td>48.797</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>1.2.276.0.7230010.3.1.4.296485376.1.1521713509...</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>CQ500-CT-149</td>\n",
       "      <td>1.2.276.0.7230010.3.1.2.296485376.1.1521713507...</td>\n",
       "      <td>NaN</td>\n",
       "      <td>30.0</td>\n",
       "      <td>80.0</td>\n",
       "      <td>-125.0</td>\n",
       "      <td>-148.027</td>\n",
       "      <td>19.567</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>1.2.276.0.7230010.3.1.4.296485376.1.1521714286...</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>CQ500-CT-348</td>\n",
       "      <td>1.2.276.0.7230010.3.1.2.296485376.1.1521714281...</td>\n",
       "      <td>NaN</td>\n",
       "      <td>30.0</td>\n",
       "      <td>100.0</td>\n",
       "      <td>-112.0</td>\n",
       "      <td>-123.142</td>\n",
       "      <td>24.306</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "                                           PatientID  epidural  \\\n",
       "0  1.2.276.0.7230010.3.1.4.296485376.1.1521714698...         0   \n",
       "1  1.2.276.0.7230010.3.1.4.296485376.1.1521714729...         0   \n",
       "2  1.2.276.0.7230010.3.1.4.296485376.1.1521713543...         0   \n",
       "3  1.2.276.0.7230010.3.1.4.296485376.1.1521713509...         0   \n",
       "4  1.2.276.0.7230010.3.1.4.296485376.1.1521714286...         0   \n",
       "\n",
       "   intraparenchymal  intraventricular  subarachnoid  subdural  any  \\\n",
       "0                 0                 0             0         0    0   \n",
       "1                 0                 0             0         0    0   \n",
       "2                 0                 0             0         0    0   \n",
       "3                 0                 0             0         0    0   \n",
       "4                 0                 0             0         0    0   \n",
       "\n",
       "            PID                                             StudyI  SeriesI  \\\n",
       "0   CQ500-CT-58  1.2.276.0.7230010.3.1.2.296485376.1.1521714692...      NaN   \n",
       "1  CQ500-CT-137  1.2.276.0.7230010.3.1.2.296485376.1.1521714726...      NaN   \n",
       "2  CQ500-CT-220  1.2.276.0.7230010.3.1.2.296485376.1.1521713542...      NaN   \n",
       "3  CQ500-CT-149  1.2.276.0.7230010.3.1.2.296485376.1.1521713507...      NaN   \n",
       "4  CQ500-CT-348  1.2.276.0.7230010.3.1.2.296485376.1.1521714281...      NaN   \n",
       "\n",
       "   WindowCenter  WindowWidth  ImagePositionZ  ImagePositionX  ImagePositionY  \n",
       "0         350.0       2000.0          -125.0        -177.500         100.250  \n",
       "1          40.0        100.0          -113.0        -117.500         -10.250  \n",
       "2          30.0        100.0          -125.0        -123.784          48.797  \n",
       "3          30.0         80.0          -125.0        -148.027          19.567  \n",
       "4          30.0        100.0          -112.0        -123.142          24.306  "
      ]
     },
     "execution_count": 10,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "text/plain": [
       "<All keys matched successfully>"
      ]
     },
     "execution_count": 10,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "783cf80a42dc4e5096d9fab510fa84b9",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=228), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "path = '/media/nvme/data/RSNA/CQ500'\n",
    "cq500_df=pd.read_csv(os.path.join(path,'CQ500_train.csv'))\n",
    "cq500_df.shape\n",
    "cq500_df.head()\n",
    "\n",
    "model_name,version, num_split =  'se_resnext101_32x4d' , 'classifier_splits',0\n",
    "model = MySENet(pretrainedmodels.__dict__['se_resnext101_32x4d'](num_classes=1000, pretrained='imagenet'),\n",
    "                   len(hemorrhage_types),\n",
    "                   num_channels=3,\n",
    "                   dropout=0.2,\n",
    "                   wso=((40,80),(80,200),(40,400)),\n",
    "                   dont_do_grad=[],\n",
    "                   extra_pool=8,\n",
    "                  return_features=True\n",
    "                   )\n",
    "model.load_state_dict(torch.load(models_dir+models_format.format(model_name,version,num_split),map_location=torch.device(device)))\n",
    "_=model.to(device)\n",
    "\n",
    "transform_val=MyTransform(out_size=512)\n",
    "imagedataset_val = ImageDataset(cq500_df,transform=transform_val.random,base_path=path+'/train/',\n",
    "                               window_eq=False,equalize=False,rescale=True)\n",
    "targets_dataset=D.TensorDataset(torch.tensor(cq500_df[hemorrhage_types].values,dtype=torch.float))\n",
    "combined_dataset_val=DatasetCat([imagedataset_val,targets_dataset])\n",
    "pred,features = model_run(model,imagedataset_val,do_apex=True,batch_size=96,num_workers=18)\n",
    "my_loss(pred,torch.tensor(cq500_df[hemorrhage_types].values,dtype=torch.float),torch.tensor([1.,1.,1.,1.,1.,2.]))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {
    "scrolled": false
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "<torch._C.Generator at 0x7f6c4f13e5f0>"
      ]
     },
     "execution_count": 11,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "text/plain": [
       "(449982,)"
      ]
     },
     "execution_count": 11,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "text/plain": [
       "(224270,)"
      ]
     },
     "execution_count": 11,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "application/javascript": [
       "/* Put everything inside the global mpl namespace */\n",
       "window.mpl = {};\n",
       "\n",
       "\n",
       "mpl.get_websocket_type = function() {\n",
       "    if (typeof(WebSocket) !== 'undefined') {\n",
       "        return WebSocket;\n",
       "    } else if (typeof(MozWebSocket) !== 'undefined') {\n",
       "        return MozWebSocket;\n",
       "    } else {\n",
       "        alert('Your browser does not have WebSocket support.' +\n",
       "              'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
       "              'Firefox 4 and 5 are also supported but you ' +\n",
       "              'have to enable WebSockets in about:config.');\n",
       "    };\n",
       "}\n",
       "\n",
       "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
       "    this.id = figure_id;\n",
       "\n",
       "    this.ws = websocket;\n",
       "\n",
       "    this.supports_binary = (this.ws.binaryType != undefined);\n",
       "\n",
       "    if (!this.supports_binary) {\n",
       "        var warnings = document.getElementById(\"mpl-warnings\");\n",
       "        if (warnings) {\n",
       "            warnings.style.display = 'block';\n",
       "            warnings.textContent = (\n",
       "                \"This browser does not support binary websocket messages. \" +\n",
       "                    \"Performance may be slow.\");\n",
       "        }\n",
       "    }\n",
       "\n",
       "    this.imageObj = new Image();\n",
       "\n",
       "    this.context = undefined;\n",
       "    this.message = undefined;\n",
       "    this.canvas = undefined;\n",
       "    this.rubberband_canvas = undefined;\n",
       "    this.rubberband_context = undefined;\n",
       "    this.format_dropdown = undefined;\n",
       "\n",
       "    this.image_mode = 'full';\n",
       "\n",
       "    this.root = $('<div/>');\n",
       "    this._root_extra_style(this.root)\n",
       "    this.root.attr('style', 'display: inline-block');\n",
       "\n",
       "    $(parent_element).append(this.root);\n",
       "\n",
       "    this._init_header(this);\n",
       "    this._init_canvas(this);\n",
       "    this._init_toolbar(this);\n",
       "\n",
       "    var fig = this;\n",
       "\n",
       "    this.waiting = false;\n",
       "\n",
       "    this.ws.onopen =  function () {\n",
       "            fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
       "            fig.send_message(\"send_image_mode\", {});\n",
       "            if (mpl.ratio != 1) {\n",
       "                fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
       "            }\n",
       "            fig.send_message(\"refresh\", {});\n",
       "        }\n",
       "\n",
       "    this.imageObj.onload = function() {\n",
       "            if (fig.image_mode == 'full') {\n",
       "                // Full images could contain transparency (where diff images\n",
       "                // almost always do), so we need to clear the canvas so that\n",
       "                // there is no ghosting.\n",
       "                fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
       "            }\n",
       "            fig.context.drawImage(fig.imageObj, 0, 0);\n",
       "        };\n",
       "\n",
       "    this.imageObj.onunload = function() {\n",
       "        fig.ws.close();\n",
       "    }\n",
       "\n",
       "    this.ws.onmessage = this._make_on_message_function(this);\n",
       "\n",
       "    this.ondownload = ondownload;\n",
       "}\n",
       "\n",
       "mpl.figure.prototype._init_header = function() {\n",
       "    var titlebar = $(\n",
       "        '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
       "        'ui-helper-clearfix\"/>');\n",
       "    var titletext = $(\n",
       "        '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
       "        'text-align: center; padding: 3px;\"/>');\n",
       "    titlebar.append(titletext)\n",
       "    this.root.append(titlebar);\n",
       "    this.header = titletext[0];\n",
       "}\n",
       "\n",
       "\n",
       "\n",
       "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
       "\n",
       "}\n",
       "\n",
       "\n",
       "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
       "\n",
       "}\n",
       "\n",
       "mpl.figure.prototype._init_canvas = function() {\n",
       "    var fig = this;\n",
       "\n",
       "    var canvas_div = $('<div/>');\n",
       "\n",
       "    canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
       "\n",
       "    function canvas_keyboard_event(event) {\n",
       "        return fig.key_event(event, event['data']);\n",
       "    }\n",
       "\n",
       "    canvas_div.keydown('key_press', canvas_keyboard_event);\n",
       "    canvas_div.keyup('key_release', canvas_keyboard_event);\n",
       "    this.canvas_div = canvas_div\n",
       "    this._canvas_extra_style(canvas_div)\n",
       "    this.root.append(canvas_div);\n",
       "\n",
       "    var canvas = $('<canvas/>');\n",
       "    canvas.addClass('mpl-canvas');\n",
       "    canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
       "\n",
       "    this.canvas = canvas[0];\n",
       "    this.context = canvas[0].getContext(\"2d\");\n",
       "\n",
       "    var backingStore = this.context.backingStorePixelRatio ||\n",
       "\tthis.context.webkitBackingStorePixelRatio ||\n",
       "\tthis.context.mozBackingStorePixelRatio ||\n",
       "\tthis.context.msBackingStorePixelRatio ||\n",
       "\tthis.context.oBackingStorePixelRatio ||\n",
       "\tthis.context.backingStorePixelRatio || 1;\n",
       "\n",
       "    mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
       "\n",
       "    var rubberband = $('<canvas/>');\n",
       "    rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
       "\n",
       "    var pass_mouse_events = true;\n",
       "\n",
       "    canvas_div.resizable({\n",
       "        start: function(event, ui) {\n",
       "            pass_mouse_events = false;\n",
       "        },\n",
       "        resize: function(event, ui) {\n",
       "            fig.request_resize(ui.size.width, ui.size.height);\n",
       "        },\n",
       "        stop: function(event, ui) {\n",
       "            pass_mouse_events = true;\n",
       "            fig.request_resize(ui.size.width, ui.size.height);\n",
       "        },\n",
       "    });\n",
       "\n",
       "    function mouse_event_fn(event) {\n",
       "        if (pass_mouse_events)\n",
       "            return fig.mouse_event(event, event['data']);\n",
       "    }\n",
       "\n",
       "    rubberband.mousedown('button_press', mouse_event_fn);\n",
       "    rubberband.mouseup('button_release', mouse_event_fn);\n",
       "    // Throttle sequential mouse events to 1 every 20ms.\n",
       "    rubberband.mousemove('motion_notify', mouse_event_fn);\n",
       "\n",
       "    rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
       "    rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
       "\n",
       "    canvas_div.on(\"wheel\", function (event) {\n",
       "        event = event.originalEvent;\n",
       "        event['data'] = 'scroll'\n",
       "        if (event.deltaY < 0) {\n",
       "            event.step = 1;\n",
       "        } else {\n",
       "            event.step = -1;\n",
       "        }\n",
       "        mouse_event_fn(event);\n",
       "    });\n",
       "\n",
       "    canvas_div.append(canvas);\n",
       "    canvas_div.append(rubberband);\n",
       "\n",
       "    this.rubberband = rubberband;\n",
       "    this.rubberband_canvas = rubberband[0];\n",
       "    this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
       "    this.rubberband_context.strokeStyle = \"#000000\";\n",
       "\n",
       "    this._resize_canvas = function(width, height) {\n",
       "        // Keep the size of the canvas, canvas container, and rubber band\n",
       "        // canvas in synch.\n",
       "        canvas_div.css('width', width)\n",
       "        canvas_div.css('height', height)\n",
       "\n",
       "        canvas.attr('width', width * mpl.ratio);\n",
       "        canvas.attr('height', height * mpl.ratio);\n",
       "        canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
       "\n",
       "        rubberband.attr('width', width);\n",
       "        rubberband.attr('height', height);\n",
       "    }\n",
       "\n",
       "    // Set the figure to an initial 600x600px, this will subsequently be updated\n",
       "    // upon first draw.\n",
       "    this._resize_canvas(600, 600);\n",
       "\n",
       "    // Disable right mouse context menu.\n",
       "    $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
       "        return false;\n",
       "    });\n",
       "\n",
       "    function set_focus () {\n",
       "        canvas.focus();\n",
       "        canvas_div.focus();\n",
       "    }\n",
       "\n",
       "    window.setTimeout(set_focus, 100);\n",
       "}\n",
       "\n",
       "mpl.figure.prototype._init_toolbar = function() {\n",
       "    var fig = this;\n",
       "\n",
       "    var nav_element = $('<div/>')\n",
       "    nav_element.attr('style', 'width: 100%');\n",
       "    this.root.append(nav_element);\n",
       "\n",
       "    // Define a callback function for later on.\n",
       "    function toolbar_event(event) {\n",
       "        return fig.toolbar_button_onclick(event['data']);\n",
       "    }\n",
       "    function toolbar_mouse_event(event) {\n",
       "        return fig.toolbar_button_onmouseover(event['data']);\n",
       "    }\n",
       "\n",
       "    for(var toolbar_ind in mpl.toolbar_items) {\n",
       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
       "\n",
       "        if (!name) {\n",
       "            // put a spacer in here.\n",
       "            continue;\n",
       "        }\n",
       "        var button = $('<button/>');\n",
       "        button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
       "                        'ui-button-icon-only');\n",
       "        button.attr('role', 'button');\n",
       "        button.attr('aria-disabled', 'false');\n",
       "        button.click(method_name, toolbar_event);\n",
       "        button.mouseover(tooltip, toolbar_mouse_event);\n",
       "\n",
       "        var icon_img = $('<span/>');\n",
       "        icon_img.addClass('ui-button-icon-primary ui-icon');\n",
       "        icon_img.addClass(image);\n",
       "        icon_img.addClass('ui-corner-all');\n",
       "\n",
       "        var tooltip_span = $('<span/>');\n",
       "        tooltip_span.addClass('ui-button-text');\n",
       "        tooltip_span.html(tooltip);\n",
       "\n",
       "        button.append(icon_img);\n",
       "        button.append(tooltip_span);\n",
       "\n",
       "        nav_element.append(button);\n",
       "    }\n",
       "\n",
       "    var fmt_picker_span = $('<span/>');\n",
       "\n",
       "    var fmt_picker = $('<select/>');\n",
       "    fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
       "    fmt_picker_span.append(fmt_picker);\n",
       "    nav_element.append(fmt_picker_span);\n",
       "    this.format_dropdown = fmt_picker[0];\n",
       "\n",
       "    for (var ind in mpl.extensions) {\n",
       "        var fmt = mpl.extensions[ind];\n",
       "        var option = $(\n",
       "            '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
       "        fmt_picker.append(option)\n",
       "    }\n",
       "\n",
       "    // Add hover states to the ui-buttons\n",
       "    $( \".ui-button\" ).hover(\n",
       "        function() { $(this).addClass(\"ui-state-hover\");},\n",
       "        function() { $(this).removeClass(\"ui-state-hover\");}\n",
       "    );\n",
       "\n",
       "    var status_bar = $('<span class=\"mpl-message\"/>');\n",
       "    nav_element.append(status_bar);\n",
       "    this.message = status_bar[0];\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
       "    // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
       "    // which will in turn request a refresh of the image.\n",
       "    this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.send_message = function(type, properties) {\n",
       "    properties['type'] = type;\n",
       "    properties['figure_id'] = this.id;\n",
       "    this.ws.send(JSON.stringify(properties));\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.send_draw_message = function() {\n",
       "    if (!this.waiting) {\n",
       "        this.waiting = true;\n",
       "        this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
       "    }\n",
       "}\n",
       "\n",
       "\n",
       "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
       "    var format_dropdown = fig.format_dropdown;\n",
       "    var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
       "    fig.ondownload(fig, format);\n",
       "}\n",
       "\n",
       "\n",
       "mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
       "    var size = msg['size'];\n",
       "    if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
       "        fig._resize_canvas(size[0], size[1]);\n",
       "        fig.send_message(\"refresh\", {});\n",
       "    };\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
       "    var x0 = msg['x0'] / mpl.ratio;\n",
       "    var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
       "    var x1 = msg['x1'] / mpl.ratio;\n",
       "    var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
       "    x0 = Math.floor(x0) + 0.5;\n",
       "    y0 = Math.floor(y0) + 0.5;\n",
       "    x1 = Math.floor(x1) + 0.5;\n",
       "    y1 = Math.floor(y1) + 0.5;\n",
       "    var min_x = Math.min(x0, x1);\n",
       "    var min_y = Math.min(y0, y1);\n",
       "    var width = Math.abs(x1 - x0);\n",
       "    var height = Math.abs(y1 - y0);\n",
       "\n",
       "    fig.rubberband_context.clearRect(\n",
       "        0, 0, fig.canvas.width, fig.canvas.height);\n",
       "\n",
       "    fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
       "    // Updates the figure title.\n",
       "    fig.header.textContent = msg['label'];\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
       "    var cursor = msg['cursor'];\n",
       "    switch(cursor)\n",
       "    {\n",
       "    case 0:\n",
       "        cursor = 'pointer';\n",
       "        break;\n",
       "    case 1:\n",
       "        cursor = 'default';\n",
       "        break;\n",
       "    case 2:\n",
       "        cursor = 'crosshair';\n",
       "        break;\n",
       "    case 3:\n",
       "        cursor = 'move';\n",
       "        break;\n",
       "    }\n",
       "    fig.rubberband_canvas.style.cursor = cursor;\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.handle_message = function(fig, msg) {\n",
       "    fig.message.textContent = msg['message'];\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
       "    // Request the server to send over a new figure.\n",
       "    fig.send_draw_message();\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
       "    fig.image_mode = msg['mode'];\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.updated_canvas_event = function() {\n",
       "    // Called whenever the canvas gets updated.\n",
       "    this.send_message(\"ack\", {});\n",
       "}\n",
       "\n",
       "// A function to construct a web socket function for onmessage handling.\n",
       "// Called in the figure constructor.\n",
       "mpl.figure.prototype._make_on_message_function = function(fig) {\n",
       "    return function socket_on_message(evt) {\n",
       "        if (evt.data instanceof Blob) {\n",
       "            /* FIXME: We get \"Resource interpreted as Image but\n",
       "             * transferred with MIME type text/plain:\" errors on\n",
       "             * Chrome.  But how to set the MIME type?  It doesn't seem\n",
       "             * to be part of the websocket stream */\n",
       "            evt.data.type = \"image/png\";\n",
       "\n",
       "            /* Free the memory for the previous frames */\n",
       "            if (fig.imageObj.src) {\n",
       "                (window.URL || window.webkitURL).revokeObjectURL(\n",
       "                    fig.imageObj.src);\n",
       "            }\n",
       "\n",
       "            fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
       "                evt.data);\n",
       "            fig.updated_canvas_event();\n",
       "            fig.waiting = false;\n",
       "            return;\n",
       "        }\n",
       "        else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
       "            fig.imageObj.src = evt.data;\n",
       "            fig.updated_canvas_event();\n",
       "            fig.waiting = false;\n",
       "            return;\n",
       "        }\n",
       "\n",
       "        var msg = JSON.parse(evt.data);\n",
       "        var msg_type = msg['type'];\n",
       "\n",
       "        // Call the  \"handle_{type}\" callback, which takes\n",
       "        // the figure and JSON message as its only arguments.\n",
       "        try {\n",
       "            var callback = fig[\"handle_\" + msg_type];\n",
       "        } catch (e) {\n",
       "            console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
       "            return;\n",
       "        }\n",
       "\n",
       "        if (callback) {\n",
       "            try {\n",
       "                // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
       "                callback(fig, msg);\n",
       "            } catch (e) {\n",
       "                console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
       "            }\n",
       "        }\n",
       "    };\n",
       "}\n",
       "\n",
       "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
       "mpl.findpos = function(e) {\n",
       "    //this section is from http://www.quirksmode.org/js/events_properties.html\n",
       "    var targ;\n",
       "    if (!e)\n",
       "        e = window.event;\n",
       "    if (e.target)\n",
       "        targ = e.target;\n",
       "    else if (e.srcElement)\n",
       "        targ = e.srcElement;\n",
       "    if (targ.nodeType == 3) // defeat Safari bug\n",
       "        targ = targ.parentNode;\n",
       "\n",
       "    // jQuery normalizes the pageX and pageY\n",
       "    // pageX,Y are the mouse positions relative to the document\n",
       "    // offset() returns the position of the element relative to the document\n",
       "    var x = e.pageX - $(targ).offset().left;\n",
       "    var y = e.pageY - $(targ).offset().top;\n",
       "\n",
       "    return {\"x\": x, \"y\": y};\n",
       "};\n",
       "\n",
       "/*\n",
       " * return a copy of an object with only non-object keys\n",
       " * we need this to avoid circular references\n",
       " * http://stackoverflow.com/a/24161582/3208463\n",
       " */\n",
       "function simpleKeys (original) {\n",
       "  return Object.keys(original).reduce(function (obj, key) {\n",
       "    if (typeof original[key] !== 'object')\n",
       "        obj[key] = original[key]\n",
       "    return obj;\n",
       "  }, {});\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.mouse_event = function(event, name) {\n",
       "    var canvas_pos = mpl.findpos(event)\n",
       "\n",
       "    if (name === 'button_press')\n",
       "    {\n",
       "        this.canvas.focus();\n",
       "        this.canvas_div.focus();\n",
       "    }\n",
       "\n",
       "    var x = canvas_pos.x * mpl.ratio;\n",
       "    var y = canvas_pos.y * mpl.ratio;\n",
       "\n",
       "    this.send_message(name, {x: x, y: y, button: event.button,\n",
       "                             step: event.step,\n",
       "                             guiEvent: simpleKeys(event)});\n",
       "\n",
       "    /* This prevents the web browser from automatically changing to\n",
       "     * the text insertion cursor when the button is pressed.  We want\n",
       "     * to control all of the cursor setting manually through the\n",
       "     * 'cursor' event from matplotlib */\n",
       "    event.preventDefault();\n",
       "    return false;\n",
       "}\n",
       "\n",
       "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
       "    // Handle any extra behaviour associated with a key event\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.key_event = function(event, name) {\n",
       "\n",
       "    // Prevent repeat events\n",
       "    if (name == 'key_press')\n",
       "    {\n",
       "        if (event.which === this._key)\n",
       "            return;\n",
       "        else\n",
       "            this._key = event.which;\n",
       "    }\n",
       "    if (name == 'key_release')\n",
       "        this._key = null;\n",
       "\n",
       "    var value = '';\n",
       "    if (event.ctrlKey && event.which != 17)\n",
       "        value += \"ctrl+\";\n",
       "    if (event.altKey && event.which != 18)\n",
       "        value += \"alt+\";\n",
       "    if (event.shiftKey && event.which != 16)\n",
       "        value += \"shift+\";\n",
       "\n",
       "    value += 'k';\n",
       "    value += event.which.toString();\n",
       "\n",
       "    this._key_event_extra(event, name);\n",
       "\n",
       "    this.send_message(name, {key: value,\n",
       "                             guiEvent: simpleKeys(event)});\n",
       "    return false;\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
       "    if (name == 'download') {\n",
       "        this.handle_save(this, null);\n",
       "    } else {\n",
       "        this.send_message(\"toolbar_button\", {name: name});\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
       "    this.message.textContent = tooltip;\n",
       "};\n",
       "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to  previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
       "\n",
       "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
       "\n",
       "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
       "    // Create a \"websocket\"-like object which calls the given IPython comm\n",
       "    // object with the appropriate methods. Currently this is a non binary\n",
       "    // socket, so there is still some room for performance tuning.\n",
       "    var ws = {};\n",
       "\n",
       "    ws.close = function() {\n",
       "        comm.close()\n",
       "    };\n",
       "    ws.send = function(m) {\n",
       "        //console.log('sending', m);\n",
       "        comm.send(m);\n",
       "    };\n",
       "    // Register the callback with on_msg.\n",
       "    comm.on_msg(function(msg) {\n",
       "        //console.log('receiving', msg['content']['data'], msg);\n",
       "        // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
       "        ws.onmessage(msg['content']['data'])\n",
       "    });\n",
       "    return ws;\n",
       "}\n",
       "\n",
       "mpl.mpl_figure_comm = function(comm, msg) {\n",
       "    // This is the function which gets called when the mpl process\n",
       "    // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
       "\n",
       "    var id = msg.content.data.id;\n",
       "    // Get hold of the div created by the display call when the Comm\n",
       "    // socket was opened in Python.\n",
       "    var element = $(\"#\" + id);\n",
       "    var ws_proxy = comm_websocket_adapter(comm)\n",
       "\n",
       "    function ondownload(figure, format) {\n",
       "        window.open(figure.imageObj.src);\n",
       "    }\n",
       "\n",
       "    var fig = new mpl.figure(id, ws_proxy,\n",
       "                           ondownload,\n",
       "                           element.get(0));\n",
       "\n",
       "    // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
       "    // web socket which is closed, not our websocket->open comm proxy.\n",
       "    ws_proxy.onopen();\n",
       "\n",
       "    fig.parent_element = element.get(0);\n",
       "    fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
       "    if (!fig.cell_info) {\n",
       "        console.error(\"Failed to find cell for figure\", id, fig);\n",
       "        return;\n",
       "    }\n",
       "\n",
       "    var output_index = fig.cell_info[2]\n",
       "    var cell = fig.cell_info[0];\n",
       "\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_close = function(fig, msg) {\n",
       "    var width = fig.canvas.width/mpl.ratio\n",
       "    fig.root.unbind('remove')\n",
       "\n",
       "    // Update the output cell to use the data from the current canvas.\n",
       "    fig.push_to_output();\n",
       "    var dataURL = fig.canvas.toDataURL();\n",
       "    // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
       "    // the notebook keyboard shortcuts fail.\n",
       "    IPython.keyboard_manager.enable()\n",
       "    $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
       "    fig.close_ws(fig, msg);\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.close_ws = function(fig, msg){\n",
       "    fig.send_message('closing', msg);\n",
       "    // fig.ws.close()\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
       "    // Turn the data on the canvas into data in the output cell.\n",
       "    var width = this.canvas.width/mpl.ratio\n",
       "    var dataURL = this.canvas.toDataURL();\n",
       "    this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.updated_canvas_event = function() {\n",
       "    // Tell IPython that the notebook contents must change.\n",
       "    IPython.notebook.set_dirty(true);\n",
       "    this.send_message(\"ack\", {});\n",
       "    var fig = this;\n",
       "    // Wait a second, then push the new image to the DOM so\n",
       "    // that it is saved nicely (might be nice to debounce this).\n",
       "    setTimeout(function () { fig.push_to_output() }, 1000);\n",
       "}\n",
       "\n",
       "mpl.figure.prototype._init_toolbar = function() {\n",
       "    var fig = this;\n",
       "\n",
       "    var nav_element = $('<div/>')\n",
       "    nav_element.attr('style', 'width: 100%');\n",
       "    this.root.append(nav_element);\n",
       "\n",
       "    // Define a callback function for later on.\n",
       "    function toolbar_event(event) {\n",
       "        return fig.toolbar_button_onclick(event['data']);\n",
       "    }\n",
       "    function toolbar_mouse_event(event) {\n",
       "        return fig.toolbar_button_onmouseover(event['data']);\n",
       "    }\n",
       "\n",
       "    for(var toolbar_ind in mpl.toolbar_items){\n",
       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
       "\n",
       "        if (!name) { continue; };\n",
       "\n",
       "        var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
       "        button.click(method_name, toolbar_event);\n",
       "        button.mouseover(tooltip, toolbar_mouse_event);\n",
       "        nav_element.append(button);\n",
       "    }\n",
       "\n",
       "    // Add the status bar.\n",
       "    var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
       "    nav_element.append(status_bar);\n",
       "    this.message = status_bar[0];\n",
       "\n",
       "    // Add the close button to the window.\n",
       "    var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
       "    var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
       "    button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
       "    button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
       "    buttongrp.append(button);\n",
       "    var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
       "    titlebar.prepend(buttongrp);\n",
       "}\n",
       "\n",
       "mpl.figure.prototype._root_extra_style = function(el){\n",
       "    var fig = this\n",
       "    el.on(\"remove\", function(){\n",
       "\tfig.close_ws(fig, {});\n",
       "    });\n",
       "}\n",
       "\n",
       "mpl.figure.prototype._canvas_extra_style = function(el){\n",
       "    // this is important to make the div 'focusable\n",
       "    el.attr('tabindex', 0)\n",
       "    // reach out to IPython and tell the keyboard manager to turn it's self\n",
       "    // off when our div gets focus\n",
       "\n",
       "    // location in version 3\n",
       "    if (IPython.notebook.keyboard_manager) {\n",
       "        IPython.notebook.keyboard_manager.register_events(el);\n",
       "    }\n",
       "    else {\n",
       "        // location in version 2\n",
       "        IPython.keyboard_manager.register_events(el);\n",
       "    }\n",
       "\n",
       "}\n",
       "\n",
       "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
       "    var manager = IPython.notebook.keyboard_manager;\n",
       "    if (!manager)\n",
       "        manager = IPython.keyboard_manager;\n",
       "\n",
       "    // Check for shift+enter\n",
       "    if (event.shiftKey && event.which == 13) {\n",
       "        this.canvas_div.blur();\n",
       "        event.shiftKey = false;\n",
       "        // Send a \"J\" for go to next cell\n",
       "        event.which = 74;\n",
       "        event.keyCode = 74;\n",
       "        manager.command_mode();\n",
       "        manager.handle_keydown(event);\n",
       "    }\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
       "    fig.ondownload(fig, null);\n",
       "}\n",
       "\n",
       "\n",
       "mpl.find_output_cell = function(html_output) {\n",
       "    // Return the cell and output element which can be found *uniquely* in the notebook.\n",
       "    // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
       "    // IPython event is triggered only after the cells have been serialised, which for\n",
       "    // our purposes (turning an active figure into a static one), is too late.\n",
       "    var cells = IPython.notebook.get_cells();\n",
       "    var ncells = cells.length;\n",
       "    for (var i=0; i<ncells; i++) {\n",
       "        var cell = cells[i];\n",
       "        if (cell.cell_type === 'code'){\n",
       "            for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
       "                var data = cell.output_area.outputs[j];\n",
       "                if (data.data) {\n",
       "                    // IPython >= 3 moved mimebundle to data attribute of output\n",
       "                    data = data.data;\n",
       "                }\n",
       "                if (data['text/html'] == html_output) {\n",
       "                    return [cell, data, j];\n",
       "                }\n",
       "            }\n",
       "        }\n",
       "    }\n",
       "}\n",
       "\n",
       "// Register the function which deals with the matplotlib target/channel.\n",
       "// The kernel may be null if the page has been refreshed.\n",
       "if (IPython.notebook.kernel != null) {\n",
       "    IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
       "}\n"
      ],
      "text/plain": [
       "<IPython.core.display.Javascript object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "<img src=\"\" width=\"720\">"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "19c7eb18a61843fcba226a7fbfe9df39",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "02d3b0af1af04f65a2141f500c752fef",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=14062), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "27b0b7b8470448339f857f668e312abb",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=7009), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "{'loss': 0.08708498111359227, 'val_loss': 0.09140608951017284}\n"
     ]
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "4360cfe0cd3442149534c0959700a0a5",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=14062), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "275d9201c419497daecffbf9a889bef7",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=7009), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "{'loss': 0.07940033984338522, 'val_loss': 0.08622274461326827}\n"
     ]
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "83492ea6913745bd9c7ec21afe9dec66",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=14062), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "f39f109826e54d18aca1e35e7369fa60",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=7009), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "{'loss': 0.0801681133140102, 'val_loss': 0.08486880704875223}\n"
     ]
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "55025eb860264954aca19eb96b6ba69a",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=14062), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "015eabf144cb4b7195892aa8e50518ce",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=7009), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "{'loss': 0.07770429895796388, 'val_loss': 0.08442260373238528}\n",
      "\n",
      "[0.0844226  0.08486881]\n"
     ]
    }
   ],
   "source": [
    "%matplotlib nbagg\n",
    "\n",
    "num_split=0\n",
    "np.random.seed(SEED+num_split)\n",
    "torch.manual_seed(SEED+num_split)\n",
    "torch.cuda.manual_seed(SEED+num_split)\n",
    "#torch.backends.cudnn.deterministic = True\n",
    "idx_train = train_df[train_df.PID.isin(set(split_sid[splits[num_split][0]]))].index.values\n",
    "idx_validate =  train_df[train_df.PID.isin(set(split_sid[splits[num_split][1]]))].index.values\n",
    "idx_train.shape\n",
    "idx_validate.shape\n",
    "\n",
    "klr=1\n",
    "batch_size=32\n",
    "num_workers=12\n",
    "num_epochs=4\n",
    "model_name,version = 'se_resnext101_32x4d' , 'bn_classifier_splits'\n",
    "model = MySENet(pretrainedmodels.__dict__['se_resnext101_32x4d'](num_classes=1000, pretrained='imagenet'),\n",
    "                   len(hemorrhage_types),\n",
    "                   num_channels=3,\n",
    "                   dropout=0.2,\n",
    "                   wso=((40,80),(80,200),(40,400)),\n",
    "                   dont_do_grad=[],\n",
    "                   extra_pool=8,\n",
    "                   do_bn=True\n",
    "                   )\n",
    "#model.load_state_dict(torch.load(models_dir+models_format.format(model_name,'basic_splits',num_split),map_location=torch.device(device)))\n",
    "_=model.to(device)\n",
    "weights = torch.tensor([1.,1.,1.,1.,1.,2.],device=device)\n",
    "loss_func=my_loss\n",
    "targets_dataset=D.TensorDataset(torch.tensor(train_df[hemorrhage_types].values,dtype=torch.float))\n",
    "transform=MyTransform(mean_change=15,\n",
    "                      std_change=0,\n",
    "                      flip=True,\n",
    "                      zoom=(0.2,0.2),\n",
    "                      rotate=30,\n",
    "                      out_size=512,\n",
    "                      shift=20,\n",
    "                      normal=False)\n",
    "imagedataset = ImageDataset(train_df,transform=transform.random,base_path=train_images_dir,\n",
    "                           window_eq=False,equalize=False,rescale=True)\n",
    "transform_val=MyTransform(out_size=512)\n",
    "imagedataset_val = ImageDataset(train_df,transform=transform_val.random,base_path=train_images_dir,\n",
    "                               window_eq=False,equalize=False,rescale=True)\n",
    "combined_dataset=DatasetCat([imagedataset,targets_dataset])\n",
    "combined_dataset_val=DatasetCat([imagedataset_val,targets_dataset])\n",
    "optimizer_grouped_parameters=get_optimizer_parameters(model,klr)\n",
    "sampling=simple_sampler(train_df[hemorrhage_types].values[idx_train],0.25)\n",
    "sample_ratio=1.0\n",
    "train_dataset=D.Subset(combined_dataset,idx_train)\n",
    "validate_dataset=D.Subset(combined_dataset_val,idx_validate)\n",
    "num_train_optimization_steps = num_epochs*(sample_ratio*len(train_dataset)//batch_size+int(len(train_dataset)%batch_size>0))\n",
    "fig,ax = plt.subplots(figsize=(10,7))\n",
    "gr=loss_graph(fig,ax,num_epochs,int(num_train_optimization_steps/num_epochs)+1,limits=(0.05,0.2))\n",
    "sched=WarmupExpCosineWithWarmupRestartsSchedule( t_total=num_train_optimization_steps, cycles=num_epochs,tau=1)\n",
    "#param_optimizer = model.parameters()\n",
    "#optimizer = torch.optim.Adam(param_optimizer, lr=klr*6e-5)\n",
    "optimizer = BertAdam(optimizer_grouped_parameters,lr=klr*1e-3,schedule=sched)\n",
    "model, optimizer = amp.initialize(model, optimizer, opt_level=\"O1\",verbosity=0)\n",
    "history,best_model= model_train(model,\n",
    "                                optimizer,\n",
    "                                train_dataset,\n",
    "                                batch_size,\n",
    "                                num_epochs,\n",
    "                                loss_func,\n",
    "                                weights=weights,\n",
    "                                do_apex=False,\n",
    "                                model_apexed=True,\n",
    "                                validate_dataset=validate_dataset,\n",
    "                                param_schedualer=None,\n",
    "                                weights_data=None,\n",
    "                                metric=None,\n",
    "                                return_model=True,\n",
    "                                num_workers=num_workers,\n",
    "                                sampler=None,\n",
    "                                pre_process = None,\n",
    "                                graph=gr,\n",
    "                                call_progress=sendmeemail)\n",
    "\n",
    "torch.save(model.state_dict(), models_dir+models_format.format(model_name,version+'_last',num_split))\n",
    "torch.save(best_model.state_dict(), models_dir+models_format.format(model_name,version,num_split))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {
    "scrolled": false
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "<torch._C.Generator at 0x7f6c4f13e5f0>"
      ]
     },
     "execution_count": 11,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "text/plain": [
       "(449982,)"
      ]
     },
     "execution_count": 11,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "text/plain": [
       "(224270,)"
      ]
     },
     "execution_count": 11,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "application/javascript": [
       "/* Put everything inside the global mpl namespace */\n",
       "window.mpl = {};\n",
       "\n",
       "\n",
       "mpl.get_websocket_type = function() {\n",
       "    if (typeof(WebSocket) !== 'undefined') {\n",
       "        return WebSocket;\n",
       "    } else if (typeof(MozWebSocket) !== 'undefined') {\n",
       "        return MozWebSocket;\n",
       "    } else {\n",
       "        alert('Your browser does not have WebSocket support.' +\n",
       "              'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
       "              'Firefox 4 and 5 are also supported but you ' +\n",
       "              'have to enable WebSockets in about:config.');\n",
       "    };\n",
       "}\n",
       "\n",
       "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
       "    this.id = figure_id;\n",
       "\n",
       "    this.ws = websocket;\n",
       "\n",
       "    this.supports_binary = (this.ws.binaryType != undefined);\n",
       "\n",
       "    if (!this.supports_binary) {\n",
       "        var warnings = document.getElementById(\"mpl-warnings\");\n",
       "        if (warnings) {\n",
       "            warnings.style.display = 'block';\n",
       "            warnings.textContent = (\n",
       "                \"This browser does not support binary websocket messages. \" +\n",
       "                    \"Performance may be slow.\");\n",
       "        }\n",
       "    }\n",
       "\n",
       "    this.imageObj = new Image();\n",
       "\n",
       "    this.context = undefined;\n",
       "    this.message = undefined;\n",
       "    this.canvas = undefined;\n",
       "    this.rubberband_canvas = undefined;\n",
       "    this.rubberband_context = undefined;\n",
       "    this.format_dropdown = undefined;\n",
       "\n",
       "    this.image_mode = 'full';\n",
       "\n",
       "    this.root = $('<div/>');\n",
       "    this._root_extra_style(this.root)\n",
       "    this.root.attr('style', 'display: inline-block');\n",
       "\n",
       "    $(parent_element).append(this.root);\n",
       "\n",
       "    this._init_header(this);\n",
       "    this._init_canvas(this);\n",
       "    this._init_toolbar(this);\n",
       "\n",
       "    var fig = this;\n",
       "\n",
       "    this.waiting = false;\n",
       "\n",
       "    this.ws.onopen =  function () {\n",
       "            fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
       "            fig.send_message(\"send_image_mode\", {});\n",
       "            if (mpl.ratio != 1) {\n",
       "                fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
       "            }\n",
       "            fig.send_message(\"refresh\", {});\n",
       "        }\n",
       "\n",
       "    this.imageObj.onload = function() {\n",
       "            if (fig.image_mode == 'full') {\n",
       "                // Full images could contain transparency (where diff images\n",
       "                // almost always do), so we need to clear the canvas so that\n",
       "                // there is no ghosting.\n",
       "                fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
       "            }\n",
       "            fig.context.drawImage(fig.imageObj, 0, 0);\n",
       "        };\n",
       "\n",
       "    this.imageObj.onunload = function() {\n",
       "        fig.ws.close();\n",
       "    }\n",
       "\n",
       "    this.ws.onmessage = this._make_on_message_function(this);\n",
       "\n",
       "    this.ondownload = ondownload;\n",
       "}\n",
       "\n",
       "mpl.figure.prototype._init_header = function() {\n",
       "    var titlebar = $(\n",
       "        '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
       "        'ui-helper-clearfix\"/>');\n",
       "    var titletext = $(\n",
       "        '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
       "        'text-align: center; padding: 3px;\"/>');\n",
       "    titlebar.append(titletext)\n",
       "    this.root.append(titlebar);\n",
       "    this.header = titletext[0];\n",
       "}\n",
       "\n",
       "\n",
       "\n",
       "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
       "\n",
       "}\n",
       "\n",
       "\n",
       "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
       "\n",
       "}\n",
       "\n",
       "mpl.figure.prototype._init_canvas = function() {\n",
       "    var fig = this;\n",
       "\n",
       "    var canvas_div = $('<div/>');\n",
       "\n",
       "    canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
       "\n",
       "    function canvas_keyboard_event(event) {\n",
       "        return fig.key_event(event, event['data']);\n",
       "    }\n",
       "\n",
       "    canvas_div.keydown('key_press', canvas_keyboard_event);\n",
       "    canvas_div.keyup('key_release', canvas_keyboard_event);\n",
       "    this.canvas_div = canvas_div\n",
       "    this._canvas_extra_style(canvas_div)\n",
       "    this.root.append(canvas_div);\n",
       "\n",
       "    var canvas = $('<canvas/>');\n",
       "    canvas.addClass('mpl-canvas');\n",
       "    canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
       "\n",
       "    this.canvas = canvas[0];\n",
       "    this.context = canvas[0].getContext(\"2d\");\n",
       "\n",
       "    var backingStore = this.context.backingStorePixelRatio ||\n",
       "\tthis.context.webkitBackingStorePixelRatio ||\n",
       "\tthis.context.mozBackingStorePixelRatio ||\n",
       "\tthis.context.msBackingStorePixelRatio ||\n",
       "\tthis.context.oBackingStorePixelRatio ||\n",
       "\tthis.context.backingStorePixelRatio || 1;\n",
       "\n",
       "    mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
       "\n",
       "    var rubberband = $('<canvas/>');\n",
       "    rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
       "\n",
       "    var pass_mouse_events = true;\n",
       "\n",
       "    canvas_div.resizable({\n",
       "        start: function(event, ui) {\n",
       "            pass_mouse_events = false;\n",
       "        },\n",
       "        resize: function(event, ui) {\n",
       "            fig.request_resize(ui.size.width, ui.size.height);\n",
       "        },\n",
       "        stop: function(event, ui) {\n",
       "            pass_mouse_events = true;\n",
       "            fig.request_resize(ui.size.width, ui.size.height);\n",
       "        },\n",
       "    });\n",
       "\n",
       "    function mouse_event_fn(event) {\n",
       "        if (pass_mouse_events)\n",
       "            return fig.mouse_event(event, event['data']);\n",
       "    }\n",
       "\n",
       "    rubberband.mousedown('button_press', mouse_event_fn);\n",
       "    rubberband.mouseup('button_release', mouse_event_fn);\n",
       "    // Throttle sequential mouse events to 1 every 20ms.\n",
       "    rubberband.mousemove('motion_notify', mouse_event_fn);\n",
       "\n",
       "    rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
       "    rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
       "\n",
       "    canvas_div.on(\"wheel\", function (event) {\n",
       "        event = event.originalEvent;\n",
       "        event['data'] = 'scroll'\n",
       "        if (event.deltaY < 0) {\n",
       "            event.step = 1;\n",
       "        } else {\n",
       "            event.step = -1;\n",
       "        }\n",
       "        mouse_event_fn(event);\n",
       "    });\n",
       "\n",
       "    canvas_div.append(canvas);\n",
       "    canvas_div.append(rubberband);\n",
       "\n",
       "    this.rubberband = rubberband;\n",
       "    this.rubberband_canvas = rubberband[0];\n",
       "    this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
       "    this.rubberband_context.strokeStyle = \"#000000\";\n",
       "\n",
       "    this._resize_canvas = function(width, height) {\n",
       "        // Keep the size of the canvas, canvas container, and rubber band\n",
       "        // canvas in synch.\n",
       "        canvas_div.css('width', width)\n",
       "        canvas_div.css('height', height)\n",
       "\n",
       "        canvas.attr('width', width * mpl.ratio);\n",
       "        canvas.attr('height', height * mpl.ratio);\n",
       "        canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
       "\n",
       "        rubberband.attr('width', width);\n",
       "        rubberband.attr('height', height);\n",
       "    }\n",
       "\n",
       "    // Set the figure to an initial 600x600px, this will subsequently be updated\n",
       "    // upon first draw.\n",
       "    this._resize_canvas(600, 600);\n",
       "\n",
       "    // Disable right mouse context menu.\n",
       "    $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
       "        return false;\n",
       "    });\n",
       "\n",
       "    function set_focus () {\n",
       "        canvas.focus();\n",
       "        canvas_div.focus();\n",
       "    }\n",
       "\n",
       "    window.setTimeout(set_focus, 100);\n",
       "}\n",
       "\n",
       "mpl.figure.prototype._init_toolbar = function() {\n",
       "    var fig = this;\n",
       "\n",
       "    var nav_element = $('<div/>')\n",
       "    nav_element.attr('style', 'width: 100%');\n",
       "    this.root.append(nav_element);\n",
       "\n",
       "    // Define a callback function for later on.\n",
       "    function toolbar_event(event) {\n",
       "        return fig.toolbar_button_onclick(event['data']);\n",
       "    }\n",
       "    function toolbar_mouse_event(event) {\n",
       "        return fig.toolbar_button_onmouseover(event['data']);\n",
       "    }\n",
       "\n",
       "    for(var toolbar_ind in mpl.toolbar_items) {\n",
       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
       "\n",
       "        if (!name) {\n",
       "            // put a spacer in here.\n",
       "            continue;\n",
       "        }\n",
       "        var button = $('<button/>');\n",
       "        button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
       "                        'ui-button-icon-only');\n",
       "        button.attr('role', 'button');\n",
       "        button.attr('aria-disabled', 'false');\n",
       "        button.click(method_name, toolbar_event);\n",
       "        button.mouseover(tooltip, toolbar_mouse_event);\n",
       "\n",
       "        var icon_img = $('<span/>');\n",
       "        icon_img.addClass('ui-button-icon-primary ui-icon');\n",
       "        icon_img.addClass(image);\n",
       "        icon_img.addClass('ui-corner-all');\n",
       "\n",
       "        var tooltip_span = $('<span/>');\n",
       "        tooltip_span.addClass('ui-button-text');\n",
       "        tooltip_span.html(tooltip);\n",
       "\n",
       "        button.append(icon_img);\n",
       "        button.append(tooltip_span);\n",
       "\n",
       "        nav_element.append(button);\n",
       "    }\n",
       "\n",
       "    var fmt_picker_span = $('<span/>');\n",
       "\n",
       "    var fmt_picker = $('<select/>');\n",
       "    fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
       "    fmt_picker_span.append(fmt_picker);\n",
       "    nav_element.append(fmt_picker_span);\n",
       "    this.format_dropdown = fmt_picker[0];\n",
       "\n",
       "    for (var ind in mpl.extensions) {\n",
       "        var fmt = mpl.extensions[ind];\n",
       "        var option = $(\n",
       "            '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
       "        fmt_picker.append(option)\n",
       "    }\n",
       "\n",
       "    // Add hover states to the ui-buttons\n",
       "    $( \".ui-button\" ).hover(\n",
       "        function() { $(this).addClass(\"ui-state-hover\");},\n",
       "        function() { $(this).removeClass(\"ui-state-hover\");}\n",
       "    );\n",
       "\n",
       "    var status_bar = $('<span class=\"mpl-message\"/>');\n",
       "    nav_element.append(status_bar);\n",
       "    this.message = status_bar[0];\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
       "    // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
       "    // which will in turn request a refresh of the image.\n",
       "    this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.send_message = function(type, properties) {\n",
       "    properties['type'] = type;\n",
       "    properties['figure_id'] = this.id;\n",
       "    this.ws.send(JSON.stringify(properties));\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.send_draw_message = function() {\n",
       "    if (!this.waiting) {\n",
       "        this.waiting = true;\n",
       "        this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
       "    }\n",
       "}\n",
       "\n",
       "\n",
       "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
       "    var format_dropdown = fig.format_dropdown;\n",
       "    var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
       "    fig.ondownload(fig, format);\n",
       "}\n",
       "\n",
       "\n",
       "mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
       "    var size = msg['size'];\n",
       "    if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
       "        fig._resize_canvas(size[0], size[1]);\n",
       "        fig.send_message(\"refresh\", {});\n",
       "    };\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
       "    var x0 = msg['x0'] / mpl.ratio;\n",
       "    var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
       "    var x1 = msg['x1'] / mpl.ratio;\n",
       "    var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
       "    x0 = Math.floor(x0) + 0.5;\n",
       "    y0 = Math.floor(y0) + 0.5;\n",
       "    x1 = Math.floor(x1) + 0.5;\n",
       "    y1 = Math.floor(y1) + 0.5;\n",
       "    var min_x = Math.min(x0, x1);\n",
       "    var min_y = Math.min(y0, y1);\n",
       "    var width = Math.abs(x1 - x0);\n",
       "    var height = Math.abs(y1 - y0);\n",
       "\n",
       "    fig.rubberband_context.clearRect(\n",
       "        0, 0, fig.canvas.width, fig.canvas.height);\n",
       "\n",
       "    fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
       "    // Updates the figure title.\n",
       "    fig.header.textContent = msg['label'];\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
       "    var cursor = msg['cursor'];\n",
       "    switch(cursor)\n",
       "    {\n",
       "    case 0:\n",
       "        cursor = 'pointer';\n",
       "        break;\n",
       "    case 1:\n",
       "        cursor = 'default';\n",
       "        break;\n",
       "    case 2:\n",
       "        cursor = 'crosshair';\n",
       "        break;\n",
       "    case 3:\n",
       "        cursor = 'move';\n",
       "        break;\n",
       "    }\n",
       "    fig.rubberband_canvas.style.cursor = cursor;\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.handle_message = function(fig, msg) {\n",
       "    fig.message.textContent = msg['message'];\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
       "    // Request the server to send over a new figure.\n",
       "    fig.send_draw_message();\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
       "    fig.image_mode = msg['mode'];\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.updated_canvas_event = function() {\n",
       "    // Called whenever the canvas gets updated.\n",
       "    this.send_message(\"ack\", {});\n",
       "}\n",
       "\n",
       "// A function to construct a web socket function for onmessage handling.\n",
       "// Called in the figure constructor.\n",
       "mpl.figure.prototype._make_on_message_function = function(fig) {\n",
       "    return function socket_on_message(evt) {\n",
       "        if (evt.data instanceof Blob) {\n",
       "            /* FIXME: We get \"Resource interpreted as Image but\n",
       "             * transferred with MIME type text/plain:\" errors on\n",
       "             * Chrome.  But how to set the MIME type?  It doesn't seem\n",
       "             * to be part of the websocket stream */\n",
       "            evt.data.type = \"image/png\";\n",
       "\n",
       "            /* Free the memory for the previous frames */\n",
       "            if (fig.imageObj.src) {\n",
       "                (window.URL || window.webkitURL).revokeObjectURL(\n",
       "                    fig.imageObj.src);\n",
       "            }\n",
       "\n",
       "            fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
       "                evt.data);\n",
       "            fig.updated_canvas_event();\n",
       "            fig.waiting = false;\n",
       "            return;\n",
       "        }\n",
       "        else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
       "            fig.imageObj.src = evt.data;\n",
       "            fig.updated_canvas_event();\n",
       "            fig.waiting = false;\n",
       "            return;\n",
       "        }\n",
       "\n",
       "        var msg = JSON.parse(evt.data);\n",
       "        var msg_type = msg['type'];\n",
       "\n",
       "        // Call the  \"handle_{type}\" callback, which takes\n",
       "        // the figure and JSON message as its only arguments.\n",
       "        try {\n",
       "            var callback = fig[\"handle_\" + msg_type];\n",
       "        } catch (e) {\n",
       "            console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
       "            return;\n",
       "        }\n",
       "\n",
       "        if (callback) {\n",
       "            try {\n",
       "                // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
       "                callback(fig, msg);\n",
       "            } catch (e) {\n",
       "                console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
       "            }\n",
       "        }\n",
       "    };\n",
       "}\n",
       "\n",
       "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
       "mpl.findpos = function(e) {\n",
       "    //this section is from http://www.quirksmode.org/js/events_properties.html\n",
       "    var targ;\n",
       "    if (!e)\n",
       "        e = window.event;\n",
       "    if (e.target)\n",
       "        targ = e.target;\n",
       "    else if (e.srcElement)\n",
       "        targ = e.srcElement;\n",
       "    if (targ.nodeType == 3) // defeat Safari bug\n",
       "        targ = targ.parentNode;\n",
       "\n",
       "    // jQuery normalizes the pageX and pageY\n",
       "    // pageX,Y are the mouse positions relative to the document\n",
       "    // offset() returns the position of the element relative to the document\n",
       "    var x = e.pageX - $(targ).offset().left;\n",
       "    var y = e.pageY - $(targ).offset().top;\n",
       "\n",
       "    return {\"x\": x, \"y\": y};\n",
       "};\n",
       "\n",
       "/*\n",
       " * return a copy of an object with only non-object keys\n",
       " * we need this to avoid circular references\n",
       " * http://stackoverflow.com/a/24161582/3208463\n",
       " */\n",
       "function simpleKeys (original) {\n",
       "  return Object.keys(original).reduce(function (obj, key) {\n",
       "    if (typeof original[key] !== 'object')\n",
       "        obj[key] = original[key]\n",
       "    return obj;\n",
       "  }, {});\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.mouse_event = function(event, name) {\n",
       "    var canvas_pos = mpl.findpos(event)\n",
       "\n",
       "    if (name === 'button_press')\n",
       "    {\n",
       "        this.canvas.focus();\n",
       "        this.canvas_div.focus();\n",
       "    }\n",
       "\n",
       "    var x = canvas_pos.x * mpl.ratio;\n",
       "    var y = canvas_pos.y * mpl.ratio;\n",
       "\n",
       "    this.send_message(name, {x: x, y: y, button: event.button,\n",
       "                             step: event.step,\n",
       "                             guiEvent: simpleKeys(event)});\n",
       "\n",
       "    /* This prevents the web browser from automatically changing to\n",
       "     * the text insertion cursor when the button is pressed.  We want\n",
       "     * to control all of the cursor setting manually through the\n",
       "     * 'cursor' event from matplotlib */\n",
       "    event.preventDefault();\n",
       "    return false;\n",
       "}\n",
       "\n",
       "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
       "    // Handle any extra behaviour associated with a key event\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.key_event = function(event, name) {\n",
       "\n",
       "    // Prevent repeat events\n",
       "    if (name == 'key_press')\n",
       "    {\n",
       "        if (event.which === this._key)\n",
       "            return;\n",
       "        else\n",
       "            this._key = event.which;\n",
       "    }\n",
       "    if (name == 'key_release')\n",
       "        this._key = null;\n",
       "\n",
       "    var value = '';\n",
       "    if (event.ctrlKey && event.which != 17)\n",
       "        value += \"ctrl+\";\n",
       "    if (event.altKey && event.which != 18)\n",
       "        value += \"alt+\";\n",
       "    if (event.shiftKey && event.which != 16)\n",
       "        value += \"shift+\";\n",
       "\n",
       "    value += 'k';\n",
       "    value += event.which.toString();\n",
       "\n",
       "    this._key_event_extra(event, name);\n",
       "\n",
       "    this.send_message(name, {key: value,\n",
       "                             guiEvent: simpleKeys(event)});\n",
       "    return false;\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
       "    if (name == 'download') {\n",
       "        this.handle_save(this, null);\n",
       "    } else {\n",
       "        this.send_message(\"toolbar_button\", {name: name});\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
       "    this.message.textContent = tooltip;\n",
       "};\n",
       "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to  previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
       "\n",
       "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
       "\n",
       "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
       "    // Create a \"websocket\"-like object which calls the given IPython comm\n",
       "    // object with the appropriate methods. Currently this is a non binary\n",
       "    // socket, so there is still some room for performance tuning.\n",
       "    var ws = {};\n",
       "\n",
       "    ws.close = function() {\n",
       "        comm.close()\n",
       "    };\n",
       "    ws.send = function(m) {\n",
       "        //console.log('sending', m);\n",
       "        comm.send(m);\n",
       "    };\n",
       "    // Register the callback with on_msg.\n",
       "    comm.on_msg(function(msg) {\n",
       "        //console.log('receiving', msg['content']['data'], msg);\n",
       "        // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
       "        ws.onmessage(msg['content']['data'])\n",
       "    });\n",
       "    return ws;\n",
       "}\n",
       "\n",
       "mpl.mpl_figure_comm = function(comm, msg) {\n",
       "    // This is the function which gets called when the mpl process\n",
       "    // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
       "\n",
       "    var id = msg.content.data.id;\n",
       "    // Get hold of the div created by the display call when the Comm\n",
       "    // socket was opened in Python.\n",
       "    var element = $(\"#\" + id);\n",
       "    var ws_proxy = comm_websocket_adapter(comm)\n",
       "\n",
       "    function ondownload(figure, format) {\n",
       "        window.open(figure.imageObj.src);\n",
       "    }\n",
       "\n",
       "    var fig = new mpl.figure(id, ws_proxy,\n",
       "                           ondownload,\n",
       "                           element.get(0));\n",
       "\n",
       "    // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
       "    // web socket which is closed, not our websocket->open comm proxy.\n",
       "    ws_proxy.onopen();\n",
       "\n",
       "    fig.parent_element = element.get(0);\n",
       "    fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
       "    if (!fig.cell_info) {\n",
       "        console.error(\"Failed to find cell for figure\", id, fig);\n",
       "        return;\n",
       "    }\n",
       "\n",
       "    var output_index = fig.cell_info[2]\n",
       "    var cell = fig.cell_info[0];\n",
       "\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_close = function(fig, msg) {\n",
       "    var width = fig.canvas.width/mpl.ratio\n",
       "    fig.root.unbind('remove')\n",
       "\n",
       "    // Update the output cell to use the data from the current canvas.\n",
       "    fig.push_to_output();\n",
       "    var dataURL = fig.canvas.toDataURL();\n",
       "    // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
       "    // the notebook keyboard shortcuts fail.\n",
       "    IPython.keyboard_manager.enable()\n",
       "    $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
       "    fig.close_ws(fig, msg);\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.close_ws = function(fig, msg){\n",
       "    fig.send_message('closing', msg);\n",
       "    // fig.ws.close()\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
       "    // Turn the data on the canvas into data in the output cell.\n",
       "    var width = this.canvas.width/mpl.ratio\n",
       "    var dataURL = this.canvas.toDataURL();\n",
       "    this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.updated_canvas_event = function() {\n",
       "    // Tell IPython that the notebook contents must change.\n",
       "    IPython.notebook.set_dirty(true);\n",
       "    this.send_message(\"ack\", {});\n",
       "    var fig = this;\n",
       "    // Wait a second, then push the new image to the DOM so\n",
       "    // that it is saved nicely (might be nice to debounce this).\n",
       "    setTimeout(function () { fig.push_to_output() }, 1000);\n",
       "}\n",
       "\n",
       "mpl.figure.prototype._init_toolbar = function() {\n",
       "    var fig = this;\n",
       "\n",
       "    var nav_element = $('<div/>')\n",
       "    nav_element.attr('style', 'width: 100%');\n",
       "    this.root.append(nav_element);\n",
       "\n",
       "    // Define a callback function for later on.\n",
       "    function toolbar_event(event) {\n",
       "        return fig.toolbar_button_onclick(event['data']);\n",
       "    }\n",
       "    function toolbar_mouse_event(event) {\n",
       "        return fig.toolbar_button_onmouseover(event['data']);\n",
       "    }\n",
       "\n",
       "    for(var toolbar_ind in mpl.toolbar_items){\n",
       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
       "\n",
       "        if (!name) { continue; };\n",
       "\n",
       "        var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
       "        button.click(method_name, toolbar_event);\n",
       "        button.mouseover(tooltip, toolbar_mouse_event);\n",
       "        nav_element.append(button);\n",
       "    }\n",
       "\n",
       "    // Add the status bar.\n",
       "    var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
       "    nav_element.append(status_bar);\n",
       "    this.message = status_bar[0];\n",
       "\n",
       "    // Add the close button to the window.\n",
       "    var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
       "    var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
       "    button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
       "    button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
       "    buttongrp.append(button);\n",
       "    var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
       "    titlebar.prepend(buttongrp);\n",
       "}\n",
       "\n",
       "mpl.figure.prototype._root_extra_style = function(el){\n",
       "    var fig = this\n",
       "    el.on(\"remove\", function(){\n",
       "\tfig.close_ws(fig, {});\n",
       "    });\n",
       "}\n",
       "\n",
       "mpl.figure.prototype._canvas_extra_style = function(el){\n",
       "    // this is important to make the div 'focusable\n",
       "    el.attr('tabindex', 0)\n",
       "    // reach out to IPython and tell the keyboard manager to turn it's self\n",
       "    // off when our div gets focus\n",
       "\n",
       "    // location in version 3\n",
       "    if (IPython.notebook.keyboard_manager) {\n",
       "        IPython.notebook.keyboard_manager.register_events(el);\n",
       "    }\n",
       "    else {\n",
       "        // location in version 2\n",
       "        IPython.keyboard_manager.register_events(el);\n",
       "    }\n",
       "\n",
       "}\n",
       "\n",
       "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
       "    var manager = IPython.notebook.keyboard_manager;\n",
       "    if (!manager)\n",
       "        manager = IPython.keyboard_manager;\n",
       "\n",
       "    // Check for shift+enter\n",
       "    if (event.shiftKey && event.which == 13) {\n",
       "        this.canvas_div.blur();\n",
       "        event.shiftKey = false;\n",
       "        // Send a \"J\" for go to next cell\n",
       "        event.which = 74;\n",
       "        event.keyCode = 74;\n",
       "        manager.command_mode();\n",
       "        manager.handle_keydown(event);\n",
       "    }\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
       "    fig.ondownload(fig, null);\n",
       "}\n",
       "\n",
       "\n",
       "mpl.find_output_cell = function(html_output) {\n",
       "    // Return the cell and output element which can be found *uniquely* in the notebook.\n",
       "    // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
       "    // IPython event is triggered only after the cells have been serialised, which for\n",
       "    // our purposes (turning an active figure into a static one), is too late.\n",
       "    var cells = IPython.notebook.get_cells();\n",
       "    var ncells = cells.length;\n",
       "    for (var i=0; i<ncells; i++) {\n",
       "        var cell = cells[i];\n",
       "        if (cell.cell_type === 'code'){\n",
       "            for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
       "                var data = cell.output_area.outputs[j];\n",
       "                if (data.data) {\n",
       "                    // IPython >= 3 moved mimebundle to data attribute of output\n",
       "                    data = data.data;\n",
       "                }\n",
       "                if (data['text/html'] == html_output) {\n",
       "                    return [cell, data, j];\n",
       "                }\n",
       "            }\n",
       "        }\n",
       "    }\n",
       "}\n",
       "\n",
       "// Register the function which deals with the matplotlib target/channel.\n",
       "// The kernel may be null if the page has been refreshed.\n",
       "if (IPython.notebook.kernel != null) {\n",
       "    IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
       "}\n"
      ],
      "text/plain": [
       "<IPython.core.display.Javascript object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "<img src=\"\" width=\"720\">"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "19c7eb18a61843fcba226a7fbfe9df39",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=4), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "02d3b0af1af04f65a2141f500c752fef",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=14062), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "27b0b7b8470448339f857f668e312abb",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=7009), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "{'loss': 0.08708498111359227, 'val_loss': 0.09140608951017284}\n"
     ]
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "4360cfe0cd3442149534c0959700a0a5",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=14062), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "275d9201c419497daecffbf9a889bef7",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=7009), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "{'loss': 0.07940033984338522, 'val_loss': 0.08622274461326827}\n"
     ]
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "83492ea6913745bd9c7ec21afe9dec66",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=14062), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "f39f109826e54d18aca1e35e7369fa60",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=7009), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "{'loss': 0.0801681133140102, 'val_loss': 0.08486880704875223}\n"
     ]
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "55025eb860264954aca19eb96b6ba69a",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=14062), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "015eabf144cb4b7195892aa8e50518ce",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=7009), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "{'loss': 0.07770429895796388, 'val_loss': 0.08442260373238528}\n",
      "\n",
      "[0.0844226  0.08486881]\n"
     ]
    }
   ],
   "source": [
    "%matplotlib nbagg\n",
    "\n",
    "num_split=1\n",
    "np.random.seed(SEED+num_split)\n",
    "torch.manual_seed(SEED+num_split)\n",
    "torch.cuda.manual_seed(SEED+num_split)\n",
    "#torch.backends.cudnn.deterministic = True\n",
    "idx_train = train_df[train_df.PID.isin(set(split_sid[splits[num_split][0]]))].index.values\n",
    "idx_validate =  train_df[train_df.PID.isin(set(split_sid[splits[num_split][1]]))].index.values\n",
    "idx_train.shape\n",
    "idx_validate.shape\n",
    "\n",
    "klr=1\n",
    "batch_size=32\n",
    "num_workers=12\n",
    "num_epochs=4\n",
    "model_name,version = 'se_resnext101_32x4d' , 'bn_classifier_splits'\n",
    "model = MySENet(pretrainedmodels.__dict__['se_resnext101_32x4d'](num_classes=1000, pretrained='imagenet'),\n",
    "                   len(hemorrhage_types),\n",
    "                   num_channels=3,\n",
    "                   dropout=0.2,\n",
    "                   wso=((40,80),(80,200),(40,400)),\n",
    "                   dont_do_grad=[],\n",
    "                   extra_pool=8,\n",
    "                   do_bn=True\n",
    "                   )\n",
    "#model.load_state_dict(torch.load(models_dir+models_format.format(model_name,'basic_splits',num_split),map_location=torch.device(device)))\n",
    "_=model.to(device)\n",
    "weights = torch.tensor([1.,1.,1.,1.,1.,2.],device=device)\n",
    "loss_func=my_loss\n",
    "targets_dataset=D.TensorDataset(torch.tensor(train_df[hemorrhage_types].values,dtype=torch.float))\n",
    "transform=MyTransform(mean_change=15,\n",
    "                      std_change=0,\n",
    "                      flip=True,\n",
    "                      zoom=(0.2,0.2),\n",
    "                      rotate=30,\n",
    "                      out_size=512,\n",
    "                      shift=20,\n",
    "                      normal=False)\n",
    "imagedataset = ImageDataset(train_df,transform=transform.random,base_path=train_images_dir,\n",
    "                           window_eq=False,equalize=False,rescale=True)\n",
    "transform_val=MyTransform(out_size=512)\n",
    "imagedataset_val = ImageDataset(train_df,transform=transform_val.random,base_path=train_images_dir,\n",
    "                               window_eq=False,equalize=False,rescale=True)\n",
    "combined_dataset=DatasetCat([imagedataset,targets_dataset])\n",
    "combined_dataset_val=DatasetCat([imagedataset_val,targets_dataset])\n",
    "optimizer_grouped_parameters=get_optimizer_parameters(model,klr)\n",
    "sampling=simple_sampler(train_df[hemorrhage_types].values[idx_train],0.25)\n",
    "sample_ratio=1.0\n",
    "train_dataset=D.Subset(combined_dataset,idx_train)\n",
    "validate_dataset=D.Subset(combined_dataset_val,idx_validate)\n",
    "num_train_optimization_steps = num_epochs*(sample_ratio*len(train_dataset)//batch_size+int(len(train_dataset)%batch_size>0))\n",
    "fig,ax = plt.subplots(figsize=(10,7))\n",
    "gr=loss_graph(fig,ax,num_epochs,int(num_train_optimization_steps/num_epochs)+1,limits=(0.05,0.2))\n",
    "sched=WarmupExpCosineWithWarmupRestartsSchedule( t_total=num_train_optimization_steps, cycles=num_epochs,tau=1)\n",
    "#param_optimizer = model.parameters()\n",
    "#optimizer = torch.optim.Adam(param_optimizer, lr=klr*6e-5)\n",
    "optimizer = BertAdam(optimizer_grouped_parameters,lr=klr*1e-3,schedule=sched)\n",
    "model, optimizer = amp.initialize(model, optimizer, opt_level=\"O1\",verbosity=0)\n",
    "history,best_model= model_train(model,\n",
    "                                optimizer,\n",
    "                                train_dataset,\n",
    "                                batch_size,\n",
    "                                num_epochs,\n",
    "                                loss_func,\n",
    "                                weights=weights,\n",
    "                                do_apex=False,\n",
    "                                model_apexed=True,\n",
    "                                validate_dataset=validate_dataset,\n",
    "                                param_schedualer=None,\n",
    "                                weights_data=None,\n",
    "                                metric=None,\n",
    "                                return_model=True,\n",
    "                                num_workers=num_workers,\n",
    "                                sampler=None,\n",
    "                                pre_process = None,\n",
    "                                graph=gr,\n",
    "                                call_progress=sendmeemail)\n",
    "\n",
    "torch.save(model.state_dict(), models_dir+models_format.format(model_name,version+'_last',num_split))\n",
    "torch.save(best_model.state_dict(), models_dir+models_format.format(model_name,version,num_split))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {
    "scrolled": false
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "<torch._C.Generator at 0x7fa5d77ad650>"
      ]
     },
     "execution_count": 12,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "text/plain": [
       "(449503,)"
      ]
     },
     "execution_count": 12,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "text/plain": [
       "(224749,)"
      ]
     },
     "execution_count": 12,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "application/javascript": [
       "/* Put everything inside the global mpl namespace */\n",
       "window.mpl = {};\n",
       "\n",
       "\n",
       "mpl.get_websocket_type = function() {\n",
       "    if (typeof(WebSocket) !== 'undefined') {\n",
       "        return WebSocket;\n",
       "    } else if (typeof(MozWebSocket) !== 'undefined') {\n",
       "        return MozWebSocket;\n",
       "    } else {\n",
       "        alert('Your browser does not have WebSocket support.' +\n",
       "              'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
       "              'Firefox 4 and 5 are also supported but you ' +\n",
       "              'have to enable WebSockets in about:config.');\n",
       "    };\n",
       "}\n",
       "\n",
       "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
       "    this.id = figure_id;\n",
       "\n",
       "    this.ws = websocket;\n",
       "\n",
       "    this.supports_binary = (this.ws.binaryType != undefined);\n",
       "\n",
       "    if (!this.supports_binary) {\n",
       "        var warnings = document.getElementById(\"mpl-warnings\");\n",
       "        if (warnings) {\n",
       "            warnings.style.display = 'block';\n",
       "            warnings.textContent = (\n",
       "                \"This browser does not support binary websocket messages. \" +\n",
       "                    \"Performance may be slow.\");\n",
       "        }\n",
       "    }\n",
       "\n",
       "    this.imageObj = new Image();\n",
       "\n",
       "    this.context = undefined;\n",
       "    this.message = undefined;\n",
       "    this.canvas = undefined;\n",
       "    this.rubberband_canvas = undefined;\n",
       "    this.rubberband_context = undefined;\n",
       "    this.format_dropdown = undefined;\n",
       "\n",
       "    this.image_mode = 'full';\n",
       "\n",
       "    this.root = $('<div/>');\n",
       "    this._root_extra_style(this.root)\n",
       "    this.root.attr('style', 'display: inline-block');\n",
       "\n",
       "    $(parent_element).append(this.root);\n",
       "\n",
       "    this._init_header(this);\n",
       "    this._init_canvas(this);\n",
       "    this._init_toolbar(this);\n",
       "\n",
       "    var fig = this;\n",
       "\n",
       "    this.waiting = false;\n",
       "\n",
       "    this.ws.onopen =  function () {\n",
       "            fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
       "            fig.send_message(\"send_image_mode\", {});\n",
       "            if (mpl.ratio != 1) {\n",
       "                fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
       "            }\n",
       "            fig.send_message(\"refresh\", {});\n",
       "        }\n",
       "\n",
       "    this.imageObj.onload = function() {\n",
       "            if (fig.image_mode == 'full') {\n",
       "                // Full images could contain transparency (where diff images\n",
       "                // almost always do), so we need to clear the canvas so that\n",
       "                // there is no ghosting.\n",
       "                fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
       "            }\n",
       "            fig.context.drawImage(fig.imageObj, 0, 0);\n",
       "        };\n",
       "\n",
       "    this.imageObj.onunload = function() {\n",
       "        fig.ws.close();\n",
       "    }\n",
       "\n",
       "    this.ws.onmessage = this._make_on_message_function(this);\n",
       "\n",
       "    this.ondownload = ondownload;\n",
       "}\n",
       "\n",
       "mpl.figure.prototype._init_header = function() {\n",
       "    var titlebar = $(\n",
       "        '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
       "        'ui-helper-clearfix\"/>');\n",
       "    var titletext = $(\n",
       "        '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
       "        'text-align: center; padding: 3px;\"/>');\n",
       "    titlebar.append(titletext)\n",
       "    this.root.append(titlebar);\n",
       "    this.header = titletext[0];\n",
       "}\n",
       "\n",
       "\n",
       "\n",
       "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
       "\n",
       "}\n",
       "\n",
       "\n",
       "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
       "\n",
       "}\n",
       "\n",
       "mpl.figure.prototype._init_canvas = function() {\n",
       "    var fig = this;\n",
       "\n",
       "    var canvas_div = $('<div/>');\n",
       "\n",
       "    canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
       "\n",
       "    function canvas_keyboard_event(event) {\n",
       "        return fig.key_event(event, event['data']);\n",
       "    }\n",
       "\n",
       "    canvas_div.keydown('key_press', canvas_keyboard_event);\n",
       "    canvas_div.keyup('key_release', canvas_keyboard_event);\n",
       "    this.canvas_div = canvas_div\n",
       "    this._canvas_extra_style(canvas_div)\n",
       "    this.root.append(canvas_div);\n",
       "\n",
       "    var canvas = $('<canvas/>');\n",
       "    canvas.addClass('mpl-canvas');\n",
       "    canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
       "\n",
       "    this.canvas = canvas[0];\n",
       "    this.context = canvas[0].getContext(\"2d\");\n",
       "\n",
       "    var backingStore = this.context.backingStorePixelRatio ||\n",
       "\tthis.context.webkitBackingStorePixelRatio ||\n",
       "\tthis.context.mozBackingStorePixelRatio ||\n",
       "\tthis.context.msBackingStorePixelRatio ||\n",
       "\tthis.context.oBackingStorePixelRatio ||\n",
       "\tthis.context.backingStorePixelRatio || 1;\n",
       "\n",
       "    mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
       "\n",
       "    var rubberband = $('<canvas/>');\n",
       "    rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
       "\n",
       "    var pass_mouse_events = true;\n",
       "\n",
       "    canvas_div.resizable({\n",
       "        start: function(event, ui) {\n",
       "            pass_mouse_events = false;\n",
       "        },\n",
       "        resize: function(event, ui) {\n",
       "            fig.request_resize(ui.size.width, ui.size.height);\n",
       "        },\n",
       "        stop: function(event, ui) {\n",
       "            pass_mouse_events = true;\n",
       "            fig.request_resize(ui.size.width, ui.size.height);\n",
       "        },\n",
       "    });\n",
       "\n",
       "    function mouse_event_fn(event) {\n",
       "        if (pass_mouse_events)\n",
       "            return fig.mouse_event(event, event['data']);\n",
       "    }\n",
       "\n",
       "    rubberband.mousedown('button_press', mouse_event_fn);\n",
       "    rubberband.mouseup('button_release', mouse_event_fn);\n",
       "    // Throttle sequential mouse events to 1 every 20ms.\n",
       "    rubberband.mousemove('motion_notify', mouse_event_fn);\n",
       "\n",
       "    rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
       "    rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
       "\n",
       "    canvas_div.on(\"wheel\", function (event) {\n",
       "        event = event.originalEvent;\n",
       "        event['data'] = 'scroll'\n",
       "        if (event.deltaY < 0) {\n",
       "            event.step = 1;\n",
       "        } else {\n",
       "            event.step = -1;\n",
       "        }\n",
       "        mouse_event_fn(event);\n",
       "    });\n",
       "\n",
       "    canvas_div.append(canvas);\n",
       "    canvas_div.append(rubberband);\n",
       "\n",
       "    this.rubberband = rubberband;\n",
       "    this.rubberband_canvas = rubberband[0];\n",
       "    this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
       "    this.rubberband_context.strokeStyle = \"#000000\";\n",
       "\n",
       "    this._resize_canvas = function(width, height) {\n",
       "        // Keep the size of the canvas, canvas container, and rubber band\n",
       "        // canvas in synch.\n",
       "        canvas_div.css('width', width)\n",
       "        canvas_div.css('height', height)\n",
       "\n",
       "        canvas.attr('width', width * mpl.ratio);\n",
       "        canvas.attr('height', height * mpl.ratio);\n",
       "        canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
       "\n",
       "        rubberband.attr('width', width);\n",
       "        rubberband.attr('height', height);\n",
       "    }\n",
       "\n",
       "    // Set the figure to an initial 600x600px, this will subsequently be updated\n",
       "    // upon first draw.\n",
       "    this._resize_canvas(600, 600);\n",
       "\n",
       "    // Disable right mouse context menu.\n",
       "    $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
       "        return false;\n",
       "    });\n",
       "\n",
       "    function set_focus () {\n",
       "        canvas.focus();\n",
       "        canvas_div.focus();\n",
       "    }\n",
       "\n",
       "    window.setTimeout(set_focus, 100);\n",
       "}\n",
       "\n",
       "mpl.figure.prototype._init_toolbar = function() {\n",
       "    var fig = this;\n",
       "\n",
       "    var nav_element = $('<div/>')\n",
       "    nav_element.attr('style', 'width: 100%');\n",
       "    this.root.append(nav_element);\n",
       "\n",
       "    // Define a callback function for later on.\n",
       "    function toolbar_event(event) {\n",
       "        return fig.toolbar_button_onclick(event['data']);\n",
       "    }\n",
       "    function toolbar_mouse_event(event) {\n",
       "        return fig.toolbar_button_onmouseover(event['data']);\n",
       "    }\n",
       "\n",
       "    for(var toolbar_ind in mpl.toolbar_items) {\n",
       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
       "\n",
       "        if (!name) {\n",
       "            // put a spacer in here.\n",
       "            continue;\n",
       "        }\n",
       "        var button = $('<button/>');\n",
       "        button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
       "                        'ui-button-icon-only');\n",
       "        button.attr('role', 'button');\n",
       "        button.attr('aria-disabled', 'false');\n",
       "        button.click(method_name, toolbar_event);\n",
       "        button.mouseover(tooltip, toolbar_mouse_event);\n",
       "\n",
       "        var icon_img = $('<span/>');\n",
       "        icon_img.addClass('ui-button-icon-primary ui-icon');\n",
       "        icon_img.addClass(image);\n",
       "        icon_img.addClass('ui-corner-all');\n",
       "\n",
       "        var tooltip_span = $('<span/>');\n",
       "        tooltip_span.addClass('ui-button-text');\n",
       "        tooltip_span.html(tooltip);\n",
       "\n",
       "        button.append(icon_img);\n",
       "        button.append(tooltip_span);\n",
       "\n",
       "        nav_element.append(button);\n",
       "    }\n",
       "\n",
       "    var fmt_picker_span = $('<span/>');\n",
       "\n",
       "    var fmt_picker = $('<select/>');\n",
       "    fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
       "    fmt_picker_span.append(fmt_picker);\n",
       "    nav_element.append(fmt_picker_span);\n",
       "    this.format_dropdown = fmt_picker[0];\n",
       "\n",
       "    for (var ind in mpl.extensions) {\n",
       "        var fmt = mpl.extensions[ind];\n",
       "        var option = $(\n",
       "            '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
       "        fmt_picker.append(option)\n",
       "    }\n",
       "\n",
       "    // Add hover states to the ui-buttons\n",
       "    $( \".ui-button\" ).hover(\n",
       "        function() { $(this).addClass(\"ui-state-hover\");},\n",
       "        function() { $(this).removeClass(\"ui-state-hover\");}\n",
       "    );\n",
       "\n",
       "    var status_bar = $('<span class=\"mpl-message\"/>');\n",
       "    nav_element.append(status_bar);\n",
       "    this.message = status_bar[0];\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
       "    // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
       "    // which will in turn request a refresh of the image.\n",
       "    this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.send_message = function(type, properties) {\n",
       "    properties['type'] = type;\n",
       "    properties['figure_id'] = this.id;\n",
       "    this.ws.send(JSON.stringify(properties));\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.send_draw_message = function() {\n",
       "    if (!this.waiting) {\n",
       "        this.waiting = true;\n",
       "        this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
       "    }\n",
       "}\n",
       "\n",
       "\n",
       "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
       "    var format_dropdown = fig.format_dropdown;\n",
       "    var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
       "    fig.ondownload(fig, format);\n",
       "}\n",
       "\n",
       "\n",
       "mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
       "    var size = msg['size'];\n",
       "    if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
       "        fig._resize_canvas(size[0], size[1]);\n",
       "        fig.send_message(\"refresh\", {});\n",
       "    };\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
       "    var x0 = msg['x0'] / mpl.ratio;\n",
       "    var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
       "    var x1 = msg['x1'] / mpl.ratio;\n",
       "    var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
       "    x0 = Math.floor(x0) + 0.5;\n",
       "    y0 = Math.floor(y0) + 0.5;\n",
       "    x1 = Math.floor(x1) + 0.5;\n",
       "    y1 = Math.floor(y1) + 0.5;\n",
       "    var min_x = Math.min(x0, x1);\n",
       "    var min_y = Math.min(y0, y1);\n",
       "    var width = Math.abs(x1 - x0);\n",
       "    var height = Math.abs(y1 - y0);\n",
       "\n",
       "    fig.rubberband_context.clearRect(\n",
       "        0, 0, fig.canvas.width, fig.canvas.height);\n",
       "\n",
       "    fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
       "    // Updates the figure title.\n",
       "    fig.header.textContent = msg['label'];\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
       "    var cursor = msg['cursor'];\n",
       "    switch(cursor)\n",
       "    {\n",
       "    case 0:\n",
       "        cursor = 'pointer';\n",
       "        break;\n",
       "    case 1:\n",
       "        cursor = 'default';\n",
       "        break;\n",
       "    case 2:\n",
       "        cursor = 'crosshair';\n",
       "        break;\n",
       "    case 3:\n",
       "        cursor = 'move';\n",
       "        break;\n",
       "    }\n",
       "    fig.rubberband_canvas.style.cursor = cursor;\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.handle_message = function(fig, msg) {\n",
       "    fig.message.textContent = msg['message'];\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
       "    // Request the server to send over a new figure.\n",
       "    fig.send_draw_message();\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
       "    fig.image_mode = msg['mode'];\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.updated_canvas_event = function() {\n",
       "    // Called whenever the canvas gets updated.\n",
       "    this.send_message(\"ack\", {});\n",
       "}\n",
       "\n",
       "// A function to construct a web socket function for onmessage handling.\n",
       "// Called in the figure constructor.\n",
       "mpl.figure.prototype._make_on_message_function = function(fig) {\n",
       "    return function socket_on_message(evt) {\n",
       "        if (evt.data instanceof Blob) {\n",
       "            /* FIXME: We get \"Resource interpreted as Image but\n",
       "             * transferred with MIME type text/plain:\" errors on\n",
       "             * Chrome.  But how to set the MIME type?  It doesn't seem\n",
       "             * to be part of the websocket stream */\n",
       "            evt.data.type = \"image/png\";\n",
       "\n",
       "            /* Free the memory for the previous frames */\n",
       "            if (fig.imageObj.src) {\n",
       "                (window.URL || window.webkitURL).revokeObjectURL(\n",
       "                    fig.imageObj.src);\n",
       "            }\n",
       "\n",
       "            fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
       "                evt.data);\n",
       "            fig.updated_canvas_event();\n",
       "            fig.waiting = false;\n",
       "            return;\n",
       "        }\n",
       "        else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
       "            fig.imageObj.src = evt.data;\n",
       "            fig.updated_canvas_event();\n",
       "            fig.waiting = false;\n",
       "            return;\n",
       "        }\n",
       "\n",
       "        var msg = JSON.parse(evt.data);\n",
       "        var msg_type = msg['type'];\n",
       "\n",
       "        // Call the  \"handle_{type}\" callback, which takes\n",
       "        // the figure and JSON message as its only arguments.\n",
       "        try {\n",
       "            var callback = fig[\"handle_\" + msg_type];\n",
       "        } catch (e) {\n",
       "            console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
       "            return;\n",
       "        }\n",
       "\n",
       "        if (callback) {\n",
       "            try {\n",
       "                // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
       "                callback(fig, msg);\n",
       "            } catch (e) {\n",
       "                console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
       "            }\n",
       "        }\n",
       "    };\n",
       "}\n",
       "\n",
       "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
       "mpl.findpos = function(e) {\n",
       "    //this section is from http://www.quirksmode.org/js/events_properties.html\n",
       "    var targ;\n",
       "    if (!e)\n",
       "        e = window.event;\n",
       "    if (e.target)\n",
       "        targ = e.target;\n",
       "    else if (e.srcElement)\n",
       "        targ = e.srcElement;\n",
       "    if (targ.nodeType == 3) // defeat Safari bug\n",
       "        targ = targ.parentNode;\n",
       "\n",
       "    // jQuery normalizes the pageX and pageY\n",
       "    // pageX,Y are the mouse positions relative to the document\n",
       "    // offset() returns the position of the element relative to the document\n",
       "    var x = e.pageX - $(targ).offset().left;\n",
       "    var y = e.pageY - $(targ).offset().top;\n",
       "\n",
       "    return {\"x\": x, \"y\": y};\n",
       "};\n",
       "\n",
       "/*\n",
       " * return a copy of an object with only non-object keys\n",
       " * we need this to avoid circular references\n",
       " * http://stackoverflow.com/a/24161582/3208463\n",
       " */\n",
       "function simpleKeys (original) {\n",
       "  return Object.keys(original).reduce(function (obj, key) {\n",
       "    if (typeof original[key] !== 'object')\n",
       "        obj[key] = original[key]\n",
       "    return obj;\n",
       "  }, {});\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.mouse_event = function(event, name) {\n",
       "    var canvas_pos = mpl.findpos(event)\n",
       "\n",
       "    if (name === 'button_press')\n",
       "    {\n",
       "        this.canvas.focus();\n",
       "        this.canvas_div.focus();\n",
       "    }\n",
       "\n",
       "    var x = canvas_pos.x * mpl.ratio;\n",
       "    var y = canvas_pos.y * mpl.ratio;\n",
       "\n",
       "    this.send_message(name, {x: x, y: y, button: event.button,\n",
       "                             step: event.step,\n",
       "                             guiEvent: simpleKeys(event)});\n",
       "\n",
       "    /* This prevents the web browser from automatically changing to\n",
       "     * the text insertion cursor when the button is pressed.  We want\n",
       "     * to control all of the cursor setting manually through the\n",
       "     * 'cursor' event from matplotlib */\n",
       "    event.preventDefault();\n",
       "    return false;\n",
       "}\n",
       "\n",
       "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
       "    // Handle any extra behaviour associated with a key event\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.key_event = function(event, name) {\n",
       "\n",
       "    // Prevent repeat events\n",
       "    if (name == 'key_press')\n",
       "    {\n",
       "        if (event.which === this._key)\n",
       "            return;\n",
       "        else\n",
       "            this._key = event.which;\n",
       "    }\n",
       "    if (name == 'key_release')\n",
       "        this._key = null;\n",
       "\n",
       "    var value = '';\n",
       "    if (event.ctrlKey && event.which != 17)\n",
       "        value += \"ctrl+\";\n",
       "    if (event.altKey && event.which != 18)\n",
       "        value += \"alt+\";\n",
       "    if (event.shiftKey && event.which != 16)\n",
       "        value += \"shift+\";\n",
       "\n",
       "    value += 'k';\n",
       "    value += event.which.toString();\n",
       "\n",
       "    this._key_event_extra(event, name);\n",
       "\n",
       "    this.send_message(name, {key: value,\n",
       "                             guiEvent: simpleKeys(event)});\n",
       "    return false;\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
       "    if (name == 'download') {\n",
       "        this.handle_save(this, null);\n",
       "    } else {\n",
       "        this.send_message(\"toolbar_button\", {name: name});\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
       "    this.message.textContent = tooltip;\n",
       "};\n",
       "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to  previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
       "\n",
       "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
       "\n",
       "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
       "    // Create a \"websocket\"-like object which calls the given IPython comm\n",
       "    // object with the appropriate methods. Currently this is a non binary\n",
       "    // socket, so there is still some room for performance tuning.\n",
       "    var ws = {};\n",
       "\n",
       "    ws.close = function() {\n",
       "        comm.close()\n",
       "    };\n",
       "    ws.send = function(m) {\n",
       "        //console.log('sending', m);\n",
       "        comm.send(m);\n",
       "    };\n",
       "    // Register the callback with on_msg.\n",
       "    comm.on_msg(function(msg) {\n",
       "        //console.log('receiving', msg['content']['data'], msg);\n",
       "        // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
       "        ws.onmessage(msg['content']['data'])\n",
       "    });\n",
       "    return ws;\n",
       "}\n",
       "\n",
       "mpl.mpl_figure_comm = function(comm, msg) {\n",
       "    // This is the function which gets called when the mpl process\n",
       "    // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
       "\n",
       "    var id = msg.content.data.id;\n",
       "    // Get hold of the div created by the display call when the Comm\n",
       "    // socket was opened in Python.\n",
       "    var element = $(\"#\" + id);\n",
       "    var ws_proxy = comm_websocket_adapter(comm)\n",
       "\n",
       "    function ondownload(figure, format) {\n",
       "        window.open(figure.imageObj.src);\n",
       "    }\n",
       "\n",
       "    var fig = new mpl.figure(id, ws_proxy,\n",
       "                           ondownload,\n",
       "                           element.get(0));\n",
       "\n",
       "    // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
       "    // web socket which is closed, not our websocket->open comm proxy.\n",
       "    ws_proxy.onopen();\n",
       "\n",
       "    fig.parent_element = element.get(0);\n",
       "    fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
       "    if (!fig.cell_info) {\n",
       "        console.error(\"Failed to find cell for figure\", id, fig);\n",
       "        return;\n",
       "    }\n",
       "\n",
       "    var output_index = fig.cell_info[2]\n",
       "    var cell = fig.cell_info[0];\n",
       "\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_close = function(fig, msg) {\n",
       "    var width = fig.canvas.width/mpl.ratio\n",
       "    fig.root.unbind('remove')\n",
       "\n",
       "    // Update the output cell to use the data from the current canvas.\n",
       "    fig.push_to_output();\n",
       "    var dataURL = fig.canvas.toDataURL();\n",
       "    // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
       "    // the notebook keyboard shortcuts fail.\n",
       "    IPython.keyboard_manager.enable()\n",
       "    $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
       "    fig.close_ws(fig, msg);\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.close_ws = function(fig, msg){\n",
       "    fig.send_message('closing', msg);\n",
       "    // fig.ws.close()\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
       "    // Turn the data on the canvas into data in the output cell.\n",
       "    var width = this.canvas.width/mpl.ratio\n",
       "    var dataURL = this.canvas.toDataURL();\n",
       "    this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.updated_canvas_event = function() {\n",
       "    // Tell IPython that the notebook contents must change.\n",
       "    IPython.notebook.set_dirty(true);\n",
       "    this.send_message(\"ack\", {});\n",
       "    var fig = this;\n",
       "    // Wait a second, then push the new image to the DOM so\n",
       "    // that it is saved nicely (might be nice to debounce this).\n",
       "    setTimeout(function () { fig.push_to_output() }, 1000);\n",
       "}\n",
       "\n",
       "mpl.figure.prototype._init_toolbar = function() {\n",
       "    var fig = this;\n",
       "\n",
       "    var nav_element = $('<div/>')\n",
       "    nav_element.attr('style', 'width: 100%');\n",
       "    this.root.append(nav_element);\n",
       "\n",
       "    // Define a callback function for later on.\n",
       "    function toolbar_event(event) {\n",
       "        return fig.toolbar_button_onclick(event['data']);\n",
       "    }\n",
       "    function toolbar_mouse_event(event) {\n",
       "        return fig.toolbar_button_onmouseover(event['data']);\n",
       "    }\n",
       "\n",
       "    for(var toolbar_ind in mpl.toolbar_items){\n",
       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
       "\n",
       "        if (!name) { continue; };\n",
       "\n",
       "        var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
       "        button.click(method_name, toolbar_event);\n",
       "        button.mouseover(tooltip, toolbar_mouse_event);\n",
       "        nav_element.append(button);\n",
       "    }\n",
       "\n",
       "    // Add the status bar.\n",
       "    var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
       "    nav_element.append(status_bar);\n",
       "    this.message = status_bar[0];\n",
       "\n",
       "    // Add the close button to the window.\n",
       "    var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
       "    var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
       "    button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
       "    button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
       "    buttongrp.append(button);\n",
       "    var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
       "    titlebar.prepend(buttongrp);\n",
       "}\n",
       "\n",
       "mpl.figure.prototype._root_extra_style = function(el){\n",
       "    var fig = this\n",
       "    el.on(\"remove\", function(){\n",
       "\tfig.close_ws(fig, {});\n",
       "    });\n",
       "}\n",
       "\n",
       "mpl.figure.prototype._canvas_extra_style = function(el){\n",
       "    // this is important to make the div 'focusable\n",
       "    el.attr('tabindex', 0)\n",
       "    // reach out to IPython and tell the keyboard manager to turn it's self\n",
       "    // off when our div gets focus\n",
       "\n",
       "    // location in version 3\n",
       "    if (IPython.notebook.keyboard_manager) {\n",
       "        IPython.notebook.keyboard_manager.register_events(el);\n",
       "    }\n",
       "    else {\n",
       "        // location in version 2\n",
       "        IPython.keyboard_manager.register_events(el);\n",
       "    }\n",
       "\n",
       "}\n",
       "\n",
       "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
       "    var manager = IPython.notebook.keyboard_manager;\n",
       "    if (!manager)\n",
       "        manager = IPython.keyboard_manager;\n",
       "\n",
       "    // Check for shift+enter\n",
       "    if (event.shiftKey && event.which == 13) {\n",
       "        this.canvas_div.blur();\n",
       "        event.shiftKey = false;\n",
       "        // Send a \"J\" for go to next cell\n",
       "        event.which = 74;\n",
       "        event.keyCode = 74;\n",
       "        manager.command_mode();\n",
       "        manager.handle_keydown(event);\n",
       "    }\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
       "    fig.ondownload(fig, null);\n",
       "}\n",
       "\n",
       "\n",
       "mpl.find_output_cell = function(html_output) {\n",
       "    // Return the cell and output element which can be found *uniquely* in the notebook.\n",
       "    // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
       "    // IPython event is triggered only after the cells have been serialised, which for\n",
       "    // our purposes (turning an active figure into a static one), is too late.\n",
       "    var cells = IPython.notebook.get_cells();\n",
       "    var ncells = cells.length;\n",
       "    for (var i=0; i<ncells; i++) {\n",
       "        var cell = cells[i];\n",
       "        if (cell.cell_type === 'code'){\n",
       "            for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
       "                var data = cell.output_area.outputs[j];\n",
       "                if (data.data) {\n",
       "                    // IPython >= 3 moved mimebundle to data attribute of output\n",
       "                    data = data.data;\n",
       "                }\n",
       "                if (data['text/html'] == html_output) {\n",
       "                    return [cell, data, j];\n",
       "                }\n",
       "            }\n",
       "        }\n",
       "    }\n",
       "}\n",
       "\n",
       "// Register the function which deals with the matplotlib target/channel.\n",
       "// The kernel may be null if the page has been refreshed.\n",
       "if (IPython.notebook.kernel != null) {\n",
       "    IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
       "}\n"
      ],
      "text/plain": [
       "<IPython.core.display.Javascript object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "<img src=\"\" width=\"720\">"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "04e150fb09004c30b5c2c22c69200c10",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=5), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "bcec273149084a43b88cf296678af00d",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=14047), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "66b4d1fc441143a39cf4479c4cf1e61c",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=7024), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "{'loss': 0.08708496055030071, 'val_loss': 0.08658122033702055}\n"
     ]
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "a7a6b6cb22a94b0c91a4f0cf6709086e",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=14047), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "6826011c11254889b15f42a71c3d097c",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=7024), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "{'loss': 0.0780205198713553, 'val_loss': 0.08204707779546623}\n"
     ]
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "0aa5b0788dae427eb32fafa4dfca15e8",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=14047), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "55a78311db9242b591dbacfdc447c480",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=7024), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "{'loss': 0.0754115106339116, 'val_loss': 0.08162673559881256}\n"
     ]
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "727fadda5bea40ba85dc07655b207076",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=14047), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "86456a2947cd4da49b57fafb9054920b",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=7024), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "{'loss': 0.06450096885030035, 'val_loss': 0.08201706268433359}\n",
      "\n",
      "[0.08162674 0.08201706]\n"
     ]
    }
   ],
   "source": [
    "%matplotlib nbagg\n",
    "\n",
    "num_split=2\n",
    "np.random.seed(SEED+num_split)\n",
    "torch.manual_seed(SEED+num_split)\n",
    "torch.cuda.manual_seed(SEED+num_split)\n",
    "#torch.backends.cudnn.deterministic = True\n",
    "idx_train = train_df[train_df.PID.isin(set(split_sid[splits[num_split][0]]))].index.values\n",
    "idx_validate =  train_df[train_df.PID.isin(set(split_sid[splits[num_split][1]]))].index.values\n",
    "idx_train.shape\n",
    "idx_validate.shape\n",
    "\n",
    "klr=1\n",
    "batch_size=32\n",
    "num_workers=12\n",
    "num_epochs=5\n",
    "model_name,version = 'se_resnext101_32x4d' , 'classifier_splits'\n",
    "model = MySENet(pretrainedmodels.__dict__['se_resnext101_32x4d'](num_classes=1000, pretrained='imagenet'),\n",
    "                   len(hemorrhage_types),\n",
    "                   num_channels=3,\n",
    "                   dropout=0.2,\n",
    "                   wso=((40,80),(80,200),(40,400)),\n",
    "                   dont_do_grad=[],\n",
    "                   extra_pool=8,\n",
    "                   )\n",
    "\n",
    "_=model.to(device)\n",
    "weights = torch.tensor([1.,1.,1.,1.,1.,2.],device=device)\n",
    "loss_func=my_loss\n",
    "targets_dataset=D.TensorDataset(torch.tensor(train_df[hemorrhage_types].values,dtype=torch.float))\n",
    "transform=MyTransform(mean_change=15,\n",
    "                      std_change=0,\n",
    "                      flip=True,\n",
    "                      zoom=(0.2,0.2),\n",
    "                      rotate=30,\n",
    "                      out_size=512,\n",
    "                      shift=10,\n",
    "                      normal=False)\n",
    "imagedataset = ImageDataset(train_df,transform=transform.random,base_path=train_images_dir,\n",
    "                           window_eq=False,equalize=False,rescale=True)\n",
    "transform_val=MyTransform(out_size=512)\n",
    "imagedataset_val = ImageDataset(train_df,transform=transform_val.random,base_path=train_images_dir,\n",
    "                               window_eq=False,equalize=False,rescale=True)\n",
    "combined_dataset=DatasetCat([imagedataset,targets_dataset])\n",
    "combined_dataset_val=DatasetCat([imagedataset_val,targets_dataset])\n",
    "optimizer_grouped_parameters=get_optimizer_parameters(model,klr)\n",
    "sampling=simple_sampler(train_df[hemorrhage_types].values[idx_train],0.25)\n",
    "sample_ratio=1.0\n",
    "train_dataset=D.Subset(combined_dataset,idx_train)\n",
    "validate_dataset=D.Subset(combined_dataset_val,idx_validate)\n",
    "num_train_optimization_steps = num_epochs*(sample_ratio*len(train_dataset)//batch_size+int(len(train_dataset)%batch_size>0))\n",
    "fig,ax = plt.subplots(figsize=(10,7))\n",
    "gr=loss_graph(fig,ax,num_epochs,int(num_train_optimization_steps/num_epochs)+1,limits=(0.05,0.2))\n",
    "sched=WarmupExpCosineWithWarmupRestartsSchedule( t_total=num_train_optimization_steps, cycles=num_epochs,tau=1)\n",
    "#param_optimizer = model.parameters()\n",
    "#optimizer = torch.optim.Adam(param_optimizer, lr=klr*6e-5)\n",
    "optimizer = BertAdam(optimizer_grouped_parameters,lr=klr*1e-3,schedule=sched)\n",
    "model, optimizer = amp.initialize(model, optimizer, opt_level=\"O1\",verbosity=0)\n",
    "history,best_model= model_train(model,\n",
    "                                optimizer,\n",
    "                                train_dataset,\n",
    "                                batch_size,\n",
    "                                num_epochs,\n",
    "                                loss_func,\n",
    "                                weights=weights,\n",
    "                                do_apex=False,\n",
    "                                model_apexed=True,\n",
    "                                validate_dataset=validate_dataset,\n",
    "                                param_schedualer=None,\n",
    "                                weights_data=None,\n",
    "                                metric=None,\n",
    "                                return_model=True,\n",
    "                                num_workers=num_workers,\n",
    "                                sampler=None,\n",
    "                                pre_process = None,\n",
    "                                graph=gr,\n",
    "                                call_progress=sendmeemail)\n",
    "\n",
    "torch.save(model.state_dict(), models_dir+models_format.format(model_name,version,num_split))\n",
    "torch.save(best_model.state_dict(), models_dir+models_format.format(model_name,version+'_best',num_split))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "<All keys matched successfully>"
      ]
     },
     "execution_count": 11,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "03bd62c8054845c9b859ca61ec63b873",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=28094), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "tensor(0.0816)"
      ]
     },
     "execution_count": 11,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "text/plain": [
       "tensor(0.0816)"
      ]
     },
     "execution_count": 11,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "model_name,version, num_split =  'se_resnext101_32x4d' , 'classifier_splits',0\n",
    "idx_validate =  train_df[train_df.PID.isin(set(split_sid[splits[num_split][1]]))].index.values\n",
    "model = MySENet(pretrainedmodels.__dict__['se_resnext101_32x4d'](num_classes=1000, pretrained='imagenet'),\n",
    "                   len(hemorrhage_types),\n",
    "                   num_channels=3,\n",
    "                   dropout=0.2,\n",
    "                   wso=((40,80),(80,200),(40,400)),\n",
    "                   dont_do_grad=[],\n",
    "                   extra_pool=8,\n",
    "                   return_features=True\n",
    "                   )\n",
    "model.load_state_dict(torch.load(models_dir+models_format.format(model_name,version,num_split),map_location=torch.device(device)))\n",
    "_=model.to(device)\n",
    "transform=MyTransform(mean_change=15,\n",
    "                      std_change=0,\n",
    "                      flip=True,\n",
    "                      zoom=(0.2,0.2),\n",
    "                      rotate=30,\n",
    "                      out_size=512,\n",
    "                      shift=10,\n",
    "                      normal=False)\n",
    "transform_val=MyTransform(out_size=512)\n",
    "indexes=np.arange(train_df.shape[0]).repeat(4)\n",
    "train_dataset=D.Subset(ImageDataset(train_df,transform=transform.random,base_path=train_images_dir,\n",
    "                          window_eq=False,equalize=False,rescale=True),indexes)\n",
    "pred,features = model_run(model,train_dataset,do_apex=True,batch_size=96,num_workers=14)\n",
    "\n",
    "pickle_file=open(outputs_dir+outputs_format.format(model_name,version,'features_train_tta',num_split),'wb')\n",
    "pickle.dump(features,pickle_file,protocol=4)\n",
    "pickle_file.close()\n",
    "\n",
    "pickle_file=open(outputs_dir+outputs_format.format(model_name,version,'predictions_train_tta',num_split),'wb')\n",
    "pickle.dump(pred,pickle_file,protocol=4)\n",
    "pickle_file.close()\n",
    "\n",
    "\n",
    "my_loss(pred[(idx_validate*4+np.arange(4)[:,None]).transpose(1,0)].mean(1),\n",
    "        torch.tensor(train_df[hemorrhage_types].values[idx_validate],dtype=torch.float),\n",
    "        torch.tensor([1.,1.,1.,1.,1.,2.]))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "<All keys matched successfully>"
      ]
     },
     "execution_count": 11,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "1bf486be0f9f4f3a8e441d389b2c3a70",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=28094), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "tensor(0.0799)"
      ]
     },
     "execution_count": 11,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "model_name,version, num_split =  'se_resnext101_32x4d' , 'classifier_splits',1\n",
    "idx_validate =  train_df[train_df.PID.isin(set(split_sid[splits[num_split][1]]))].index.values\n",
    "model = MySENet(pretrainedmodels.__dict__['se_resnext101_32x4d'](num_classes=1000, pretrained='imagenet'),\n",
    "                   len(hemorrhage_types),\n",
    "                   num_channels=3,\n",
    "                   dropout=0.2,\n",
    "                   wso=((40,80),(80,200),(40,400)),\n",
    "                   dont_do_grad=[],\n",
    "                   extra_pool=8,\n",
    "                   return_features=True\n",
    "                   )\n",
    "model.load_state_dict(torch.load(models_dir+models_format.format(model_name,version,num_split),map_location=torch.device(device)))\n",
    "_=model.to(device)\n",
    "transform=MyTransform(mean_change=15,\n",
    "                      std_change=0,\n",
    "                      flip=True,\n",
    "                      zoom=(0.2,0.2),\n",
    "                      rotate=30,\n",
    "                      out_size=512,\n",
    "                      shift=10,\n",
    "                      normal=False)\n",
    "transform_val=MyTransform(out_size=512)\n",
    "indexes=np.arange(train_df.shape[0]).repeat(4)\n",
    "train_dataset=D.Subset(ImageDataset(train_df,transform=transform.random,base_path=train_images_dir,\n",
    "                          window_eq=False,equalize=False,rescale=True),indexes)\n",
    "pred,features = model_run(model,train_dataset,do_apex=True,batch_size=96,num_workers=14)\n",
    "\n",
    "pickle_file=open(outputs_dir+outputs_format.format(model_name,version,'features_train_tta',num_split),'wb')\n",
    "pickle.dump(features,pickle_file,protocol=4)\n",
    "pickle_file.close()\n",
    "\n",
    "pickle_file=open(outputs_dir+outputs_format.format(model_name,version,'predictions_train_tta',num_split),'wb')\n",
    "pickle.dump(pred,pickle_file,protocol=4)\n",
    "pickle_file.close()\n",
    "\n",
    "\n",
    "my_loss(pred[(idx_validate*4+np.arange(4)[:,None]).transpose(1,0)].mean(1),\n",
    "        torch.tensor(train_df[hemorrhage_types].values[idx_validate],dtype=torch.float),\n",
    "        torch.tensor([1.,1.,1.,1.,1.,2.]))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "<All keys matched successfully>"
      ]
     },
     "execution_count": 12,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "34350dab1add4e0db1ff4bf556941b5f",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=28094), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "tensor(0.0777)"
      ]
     },
     "execution_count": 12,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "model_name,version, num_split =  'se_resnext101_32x4d' , 'classifier_splits',2\n",
    "idx_validate =  train_df[train_df.PID.isin(set(split_sid[splits[num_split][1]]))].index.values\n",
    "model = MySENet(pretrainedmodels.__dict__['se_resnext101_32x4d'](num_classes=1000, pretrained='imagenet'),\n",
    "                   len(hemorrhage_types),\n",
    "                   num_channels=3,\n",
    "                   dropout=0.2,\n",
    "                   wso=((40,80),(80,200),(40,400)),\n",
    "                   dont_do_grad=[],\n",
    "                   extra_pool=8,\n",
    "                   return_features=True\n",
    "                   )\n",
    "model.load_state_dict(torch.load(models_dir+models_format.format(model_name,version,num_split),map_location=torch.device(device)))\n",
    "_=model.to(device)\n",
    "transform=MyTransform(mean_change=15,\n",
    "                      std_change=0,\n",
    "                      flip=True,\n",
    "                      zoom=(0.2,0.2),\n",
    "                      rotate=30,\n",
    "                      out_size=512,\n",
    "                      shift=10,\n",
    "                      normal=False)\n",
    "transform_val=MyTransform(out_size=512)\n",
    "indexes=np.arange(train_df.shape[0]).repeat(4)\n",
    "train_dataset=D.Subset(ImageDataset(train_df,transform=transform.random,base_path=train_images_dir,\n",
    "                          window_eq=False,equalize=False,rescale=True),indexes)\n",
    "pred,features = model_run(model,train_dataset,do_apex=True,batch_size=96,num_workers=14)\n",
    "\n",
    "pickle_file=open(outputs_dir+outputs_format.format(model_name,version,'features_train_tta',num_split),'wb')\n",
    "pickle.dump(features,pickle_file,protocol=4)\n",
    "pickle_file.close()\n",
    "\n",
    "pickle_file=open(outputs_dir+outputs_format.format(model_name,version,'predictions_train_tta',num_split),'wb')\n",
    "pickle.dump(pred,pickle_file,protocol=4)\n",
    "pickle_file.close()\n",
    "\n",
    "\n",
    "my_loss(pred[(idx_validate*4+np.arange(4)[:,None]).transpose(1,0)].mean(1),\n",
    "        torch.tensor(train_df[hemorrhage_types].values[idx_validate],dtype=torch.float),\n",
    "        torch.tensor([1.,1.,1.,1.,1.,2.]))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "<All keys matched successfully>"
      ]
     },
     "execution_count": 11,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=6546), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n"
     ]
    }
   ],
   "source": [
    "model_name,version, num_split =  'se_resnext101_32x4d' , 'classifier_splits',0\n",
    "model = MySENet(pretrainedmodels.__dict__['se_resnext101_32x4d'](num_classes=1000, pretrained='imagenet'),\n",
    "                   len(hemorrhage_types),\n",
    "                   num_channels=3,\n",
    "                   dropout=0.2,\n",
    "                   wso=((40,80),(80,200),(40,400)),\n",
    "                   dont_do_grad=[],\n",
    "                   extra_pool=8,\n",
    "                  return_features=True\n",
    "                   )\n",
    "model.load_state_dict(torch.load(models_dir+models_format.format(model_name,version,num_split),map_location=torch.device(device)))\n",
    "_=model.to(device)\n",
    "transform=MyTransform(mean_change=15,\n",
    "                      std_change=0,\n",
    "                      flip=True,\n",
    "                      zoom=(0.2,0.2),\n",
    "                      rotate=30,\n",
    "                      out_size=512,\n",
    "                      shift=10,\n",
    "                      normal=False)\n",
    "transform_val=MyTransform(out_size=512)\n",
    "indexes=np.arange(test_df.shape[0]).repeat(8)\n",
    "imagedataset_test=D.Subset(ImageDataset(test_df,transform=transform.random,base_path=test_images_dir,\n",
    "                              window_eq=False,equalize=False,rescale=True),indexes)\n",
    "pred,features = model_run(model,imagedataset_test,do_apex=True,batch_size=96,num_workers=18)\n",
    "pickle_file=open(outputs_dir+outputs_format.format(model_name,version,'features_test_tta',num_split),'wb')\n",
    "pickle.dump(features,pickle_file,protocol=4)\n",
    "pickle_file.close()\n",
    "pickle_file=open(outputs_dir+outputs_format.format(model_name,version,'predictions_test_tta',num_split),'wb')\n",
    "pickle.dump(pred,pickle_file,protocol=4)\n",
    "pickle_file.close()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "<All keys matched successfully>"
      ]
     },
     "execution_count": 12,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "6817df4856844a6aa3a95c2dbd3df40a",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=6546), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n"
     ]
    }
   ],
   "source": [
    "model_name,version, num_split =  'se_resnext101_32x4d' , 'classifier_splits',1\n",
    "model = MySENet(pretrainedmodels.__dict__['se_resnext101_32x4d'](num_classes=1000, pretrained='imagenet'),\n",
    "                   len(hemorrhage_types),\n",
    "                   num_channels=3,\n",
    "                   dropout=0.2,\n",
    "                   wso=((40,80),(80,200),(40,400)),\n",
    "                   dont_do_grad=[],\n",
    "                   extra_pool=8,\n",
    "                  return_features=True\n",
    "                   )\n",
    "model.load_state_dict(torch.load(models_dir+models_format.format(model_name,version,num_split),map_location=torch.device(device)))\n",
    "_=model.to(device)\n",
    "transform=MyTransform(mean_change=15,\n",
    "                      std_change=0,\n",
    "                      flip=True,\n",
    "                      zoom=(0.2,0.2),\n",
    "                      rotate=30,\n",
    "                      out_size=512,\n",
    "                      shift=10,\n",
    "                      normal=False)\n",
    "transform_val=MyTransform(out_size=512)\n",
    "indexes=np.arange(test_df.shape[0]).repeat(8)\n",
    "imagedataset_test=D.Subset(ImageDataset(test_df,transform=transform.random,base_path=test_images_dir,\n",
    "                              window_eq=False,equalize=False,rescale=True),indexes)\n",
    "pred,features = model_run(model,imagedataset_test,do_apex=True,batch_size=96,num_workers=18)\n",
    "pickle_file=open(outputs_dir+outputs_format.format(model_name,version,'features_test_tta',num_split),'wb')\n",
    "pickle.dump(features,pickle_file,protocol=4)\n",
    "pickle_file.close()\n",
    "pickle_file=open(outputs_dir+outputs_format.format(model_name,version,'predictions_test_tta',num_split),'wb')\n",
    "pickle.dump(pred,pickle_file,protocol=4)\n",
    "pickle_file.close()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "<All keys matched successfully>"
      ]
     },
     "execution_count": 13,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "0ee67942738344dfb319e09a4046b945",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=6546), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n"
     ]
    }
   ],
   "source": [
    "model_name,version, num_split =  'se_resnext101_32x4d' , 'classifier_splits',2\n",
    "model = MySENet(pretrainedmodels.__dict__['se_resnext101_32x4d'](num_classes=1000, pretrained='imagenet'),\n",
    "                   len(hemorrhage_types),\n",
    "                   num_channels=3,\n",
    "                   dropout=0.2,\n",
    "                   wso=((40,80),(80,200),(40,400)),\n",
    "                   dont_do_grad=[],\n",
    "                   extra_pool=8,\n",
    "                  return_features=True\n",
    "                   )\n",
    "model.load_state_dict(torch.load(models_dir+models_format.format(model_name,version,num_split),map_location=torch.device(device)))\n",
    "_=model.to(device)\n",
    "transform=MyTransform(mean_change=15,\n",
    "                      std_change=0,\n",
    "                      flip=True,\n",
    "                      zoom=(0.2,0.2),\n",
    "                      rotate=30,\n",
    "                      out_size=512,\n",
    "                      shift=10,\n",
    "                      normal=False)\n",
    "transform_val=MyTransform(out_size=512)\n",
    "indexes=np.arange(test_df.shape[0]).repeat(8)\n",
    "imagedataset_test=D.Subset(ImageDataset(test_df,transform=transform.random,base_path=test_images_dir,\n",
    "                              window_eq=False,equalize=False,rescale=True),indexes)\n",
    "pred,features = model_run(model,imagedataset_test,do_apex=True,batch_size=96,num_workers=18)\n",
    "pickle_file=open(outputs_dir+outputs_format.format(model_name,version,'features_test_tta',num_split),'wb')\n",
    "pickle.dump(features,pickle_file,protocol=4)\n",
    "pickle_file.close()\n",
    "pickle_file=open(outputs_dir+outputs_format.format(model_name,version,'predictions_test_tta',num_split),'wb')\n",
    "pickle.dump(pred,pickle_file,protocol=4)\n",
    "pickle_file.close()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "<All keys matched successfully>"
      ]
     },
     "execution_count": 14,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=28094), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "tensor(0.0833)"
      ]
     },
     "execution_count": 14,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "model_name,version, num_split =  'Densenet161_3' , 'classifier_splits',0\n",
    "idx_validate =  train_df[train_df.PID.isin(set(split_sid[splits[num_split][1]]))].index.values\n",
    "model = MyDenseNet(models.densenet161(pretrained=True),\n",
    "                   len(hemorrhage_types),\n",
    "                   num_channels=3,\n",
    "                   drop_out=0.2,\n",
    "                   wso=((40,80),(80,200),(600,2800)),\n",
    "                   strategy='none',\n",
    "                   dont_do_grad=[],\n",
    "                   pool_type='max',\n",
    "                   extra_pool=4,\n",
    "                   return_features=True\n",
    "                   )\n",
    "model.load_state_dict(torch.load(models_dir+models_format.format(model_name,version,num_split),map_location=torch.device(device)))\n",
    "_=model.to(device)\n",
    "transform=MyTransform(flip=True,zoom=0.05,rotate=15,out_size=512,shift=40)\n",
    "transform_val=MyTransform(out_size=512)\n",
    "indexes=np.arange(train_df.shape[0]).repeat(4)\n",
    "train_dataset=D.Subset(ImageDataset(train_df,transform=transform.random,base_path=train_images_dir,\n",
    "                          window_eq=False,equalize=False,rescale=True),indexes)\n",
    "pred,features = model_run(model,train_dataset,do_apex=True,batch_size=96,num_workers=14)\n",
    "\n",
    "pickle_file=open(outputs_dir+outputs_format.format(model_name,version,'features_train_tta2',num_split),'wb')\n",
    "pickle.dump(features,pickle_file,protocol=4)\n",
    "pickle_file.close()\n",
    "\n",
    "pickle_file=open(outputs_dir+outputs_format.format(model_name,version,'predictions_train_tta2',num_split),'wb')\n",
    "pickle.dump(pred,pickle_file,protocol=4)\n",
    "pickle_file.close()\n",
    "\n",
    "\n",
    "my_loss(pred[(idx_validate*4+np.arange(4)[:,None]).transpose(1,0)].mean(1),\n",
    "        torch.tensor(train_df[hemorrhage_types].values[idx_validate],dtype=torch.float),\n",
    "        torch.tensor([1.,1.,1.,1.,1.,2.]))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "<All keys matched successfully>"
      ]
     },
     "execution_count": 15,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=28094), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "tensor(0.0808)"
      ]
     },
     "execution_count": 15,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "model_name,version, num_split =  'Densenet161_3' , 'classifier_splits',1\n",
    "idx_validate =  train_df[train_df.PID.isin(set(split_sid[splits[num_split][1]]))].index.values\n",
    "model = MyDenseNet(models.densenet161(pretrained=True),\n",
    "                   len(hemorrhage_types),\n",
    "                   num_channels=3,\n",
    "                   drop_out=0.2,\n",
    "                   wso=((40,80),(80,200),(600,2800)),\n",
    "                   strategy='none',\n",
    "                   dont_do_grad=[],\n",
    "                   pool_type='max',\n",
    "                   extra_pool=4,\n",
    "                   return_features=True\n",
    "                   )\n",
    "model.load_state_dict(torch.load(models_dir+models_format.format(model_name,version,num_split),map_location=torch.device(device)))\n",
    "_=model.to(device)\n",
    "transform=MyTransform(flip=True,zoom=0.05,rotate=15,out_size=512,shift=40)\n",
    "transform_val=MyTransform(out_size=512)\n",
    "indexes=np.arange(train_df.shape[0]).repeat(4)\n",
    "train_dataset=D.Subset(ImageDataset(train_df,transform=transform.random,base_path=train_images_dir,\n",
    "                          window_eq=False,equalize=False,rescale=True),indexes)\n",
    "pred,features = model_run(model,train_dataset,do_apex=True,batch_size=96,num_workers=14)\n",
    "\n",
    "pickle_file=open(outputs_dir+outputs_format.format(model_name,version,'features_train_tta2',num_split),'wb')\n",
    "pickle.dump(features,pickle_file,protocol=4)\n",
    "pickle_file.close()\n",
    "\n",
    "pickle_file=open(outputs_dir+outputs_format.format(model_name,version,'predictions_train_tta2',num_split),'wb')\n",
    "pickle.dump(pred,pickle_file,protocol=4)\n",
    "pickle_file.close()\n",
    "\n",
    "\n",
    "my_loss(pred[(idx_validate*4+np.arange(4)[:,None]).transpose(1,0)].mean(1),\n",
    "        torch.tensor(train_df[hemorrhage_types].values[idx_validate],dtype=torch.float),\n",
    "        torch.tensor([1.,1.,1.,1.,1.,2.]))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "<All keys matched successfully>"
      ]
     },
     "execution_count": 10,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "4b341615bf694b3bacb407d4405c89ed",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=28094), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "tensor(0.0786)"
      ]
     },
     "execution_count": 10,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "model_name,version, num_split =  'Densenet161_3' , 'classifier_splits',2\n",
    "idx_validate =  train_df[train_df.PID.isin(set(split_sid[splits[num_split][1]]))].index.values\n",
    "model = MyDenseNet(models.densenet161(pretrained=True),\n",
    "                   len(hemorrhage_types),\n",
    "                   num_channels=3,\n",
    "                   drop_out=0.2,\n",
    "                   wso=((40,80),(80,200),(600,2800)),\n",
    "                   strategy='none',\n",
    "                   dont_do_grad=[],\n",
    "                   pool_type='max',\n",
    "                   extra_pool=4,\n",
    "                   return_features=True\n",
    "                   )\n",
    "model.load_state_dict(torch.load(models_dir+models_format.format(model_name,version,num_split),map_location=torch.device(device)))\n",
    "_=model.to(device)\n",
    "transform=MyTransform(flip=True,zoom=0.05,rotate=15,out_size=512,shift=40)\n",
    "transform_val=MyTransform(out_size=512)\n",
    "indexes=np.arange(train_df.shape[0]).repeat(4)\n",
    "train_dataset=D.Subset(ImageDataset(train_df,transform=transform.random,base_path=train_images_dir,\n",
    "                          window_eq=False,equalize=False,rescale=True),indexes)\n",
    "pred,features = model_run(model,train_dataset,do_apex=True,batch_size=96,num_workers=14)\n",
    "\n",
    "pickle_file=open(outputs_dir+outputs_format.format(model_name,version,'features_train_tta2',num_split),'wb')\n",
    "pickle.dump(features,pickle_file,protocol=4)\n",
    "pickle_file.close()\n",
    "\n",
    "pickle_file=open(outputs_dir+outputs_format.format(model_name,version,'predictions_train_tta2',num_split),'wb')\n",
    "pickle.dump(pred,pickle_file,protocol=4)\n",
    "pickle_file.close()\n",
    "\n",
    "\n",
    "my_loss(pred[(idx_validate*4+np.arange(4)[:,None]).transpose(1,0)].mean(1),\n",
    "        torch.tensor(train_df[hemorrhage_types].values[idx_validate],dtype=torch.float),\n",
    "        torch.tensor([1.,1.,1.,1.,1.,2.]))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "<All keys matched successfully>"
      ]
     },
     "execution_count": 10,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "848a0d385e574e7aa7036a2ccd430f2f",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=6546), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n"
     ]
    }
   ],
   "source": [
    "model_name,version, num_split =  'Densenet161_3' , 'classifier_splits',0\n",
    "model = MyDenseNet(models.densenet161(pretrained=True),\n",
    "                   len(hemorrhage_types),\n",
    "                   num_channels=3,\n",
    "                   drop_out=0.2,\n",
    "                   wso=((40,80),(80,200),(600,2800)),\n",
    "                   strategy='none',\n",
    "                   dont_do_grad=[],\n",
    "                   pool_type='max',\n",
    "                   extra_pool=4,\n",
    "                   return_features=True\n",
    "                   )\n",
    "model.load_state_dict(torch.load(models_dir+models_format.format(model_name,version,num_split),map_location=torch.device(device)))\n",
    "_=model.to(device)\n",
    "transform=MyTransform(flip=True,zoom=0.05,rotate=15,out_size=512,shift=40)\n",
    "transform_val=MyTransform(out_size=512)\n",
    "indexes=np.arange(test_df.shape[0]).repeat(8)\n",
    "imagedataset_test=D.Subset(ImageDataset(test_df,transform=transform.random,base_path=test_images_dir,\n",
    "                              window_eq=False,equalize=False,rescale=True),indexes)\n",
    "pred,features = model_run(model,imagedataset_test,do_apex=True,batch_size=96,num_workers=18)\n",
    "pickle_file=open(outputs_dir+outputs_format.format(model_name,version,'features_test2',num_split),'wb')\n",
    "pickle.dump(features,pickle_file,protocol=4)\n",
    "pickle_file.close()\n",
    "pickle_file=open(outputs_dir+outputs_format.format(model_name,version,'predictions_test2',num_split),'wb')\n",
    "pickle.dump(pred,pickle_file,protocol=4)\n",
    "pickle_file.close()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "<All keys matched successfully>"
      ]
     },
     "execution_count": 11,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "fc74dd7f7b9848efa75cb56db0e39aa1",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=6546), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n"
     ]
    }
   ],
   "source": [
    "model_name,version, num_split =  'Densenet161_3' , 'classifier_splits',1\n",
    "model = MyDenseNet(models.densenet161(pretrained=True),\n",
    "                   len(hemorrhage_types),\n",
    "                   num_channels=3,\n",
    "                   drop_out=0.2,\n",
    "                   wso=((40,80),(80,200),(600,2800)),\n",
    "                   strategy='none',\n",
    "                   dont_do_grad=[],\n",
    "                   pool_type='max',\n",
    "                   extra_pool=4,\n",
    "                   return_features=True\n",
    "                   )\n",
    "model.load_state_dict(torch.load(models_dir+models_format.format(model_name,version,num_split),map_location=torch.device(device)))\n",
    "_=model.to(device)\n",
    "transform=MyTransform(flip=True,zoom=0.05,rotate=15,out_size=512,shift=40)\n",
    "transform_val=MyTransform(out_size=512)\n",
    "indexes=np.arange(test_df.shape[0]).repeat(8)\n",
    "imagedataset_test=D.Subset(ImageDataset(test_df,transform=transform.random,base_path=test_images_dir,\n",
    "                              window_eq=False,equalize=False,rescale=True),indexes)\n",
    "pred,features = model_run(model,imagedataset_test,do_apex=True,batch_size=96,num_workers=18)\n",
    "pickle_file=open(outputs_dir+outputs_format.format(model_name,version,'features_test2',num_split),'wb')\n",
    "pickle.dump(features,pickle_file,protocol=4)\n",
    "pickle_file.close()\n",
    "pickle_file=open(outputs_dir+outputs_format.format(model_name,version,'predictions_test2',num_split),'wb')\n",
    "pickle.dump(pred,pickle_file,protocol=4)\n",
    "pickle_file.close()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "<All keys matched successfully>"
      ]
     },
     "execution_count": 12,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "5cb96c3166c4455ca17e21cefbbd9c7b",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=6546), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n"
     ]
    }
   ],
   "source": [
    "model_name,version, num_split =  'Densenet161_3' , 'classifier_splits',2\n",
    "model = MyDenseNet(models.densenet161(pretrained=True),\n",
    "                   len(hemorrhage_types),\n",
    "                   num_channels=3,\n",
    "                   drop_out=0.2,\n",
    "                   wso=((40,80),(80,200),(600,2800)),\n",
    "                   strategy='none',\n",
    "                   dont_do_grad=[],\n",
    "                   pool_type='max',\n",
    "                   extra_pool=4,\n",
    "                   return_features=True\n",
    "                   )\n",
    "model.load_state_dict(torch.load(models_dir+models_format.format(model_name,version,num_split),map_location=torch.device(device)))\n",
    "_=model.to(device)\n",
    "transform=MyTransform(flip=True,zoom=0.05,rotate=15,out_size=512,shift=40)\n",
    "transform_val=MyTransform(out_size=512)\n",
    "indexes=np.arange(test_df.shape[0]).repeat(8)\n",
    "imagedataset_test=D.Subset(ImageDataset(test_df,transform=transform.random,base_path=test_images_dir,\n",
    "                              window_eq=False,equalize=False,rescale=True),indexes)\n",
    "pred,features = model_run(model,imagedataset_test,do_apex=True,batch_size=96,num_workers=18)\n",
    "pickle_file=open(outputs_dir+outputs_format.format(model_name,version,'features_test2',num_split),'wb')\n",
    "pickle.dump(features,pickle_file,protocol=4)\n",
    "pickle_file.close()\n",
    "pickle_file=open(outputs_dir+outputs_format.format(model_name,version,'predictions_test2',num_split),'wb')\n",
    "pickle.dump(pred,pickle_file,protocol=4)\n",
    "pickle_file.close()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "<All keys matched successfully>"
      ]
     },
     "execution_count": 12,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "ec96873d08684d1ca62744d0121b1f5d",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=6546), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n"
     ]
    }
   ],
   "source": [
    "model_name,version, num_split =  'Densenet169_3' , 'classifier_splits',1\n",
    "model = MyDenseNet(models.densenet169(pretrained=True),\n",
    "                   len(hemorrhage_types),\n",
    "                   num_channels=3,\n",
    "                   drop_out=0.2,\n",
    "                   wso=((40,80),(80,200),(600,2800)),\n",
    "                   strategy='none',\n",
    "                   dont_do_grad=[],\n",
    "                   pool_type='max',\n",
    "                   extra_pool=8,\n",
    "                   return_features=True\n",
    "                   )\n",
    "model.load_state_dict(torch.load(models_dir+models_format.format(model_name,version,num_split),map_location=torch.device(device)))\n",
    "_=model.to(device)\n",
    "transform=MyTransform(flip=True,zoom=0.05,rotate=15,out_size=512,shift=40)\n",
    "transform_val=MyTransform(out_size=512)\n",
    "indexes=np.arange(test_df.shape[0]).repeat(8)\n",
    "imagedataset_test=D.Subset(ImageDataset(test_df,transform=transform.random,base_path=test_images_dir,\n",
    "                              window_eq=False,equalize=False,rescale=True),indexes)\n",
    "pred,features = model_run(model,imagedataset_test,do_apex=True,batch_size=96,num_workers=18)\n",
    "pickle_file=open(outputs_dir+outputs_format.format(model_name,version,'features_test',num_split),'wb')\n",
    "pickle.dump(features,pickle_file,protocol=4)\n",
    "pickle_file.close()\n",
    "pickle_file=open(outputs_dir+outputs_format.format(model_name,version,'predictions_test',num_split),'wb')\n",
    "pickle.dump(pred,pickle_file,protocol=4)\n",
    "pickle_file.close()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "<All keys matched successfully>"
      ]
     },
     "execution_count": 13,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=6546), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n"
     ]
    }
   ],
   "source": [
    "model_name,version, num_split =  'Densenet169_3' , 'classifier_splits',2\n",
    "model = MyDenseNet(models.densenet169(pretrained=True),\n",
    "                   len(hemorrhage_types),\n",
    "                   num_channels=3,\n",
    "                   drop_out=0.2,\n",
    "                   wso=((40,80),(80,200),(600,2800)),\n",
    "                   strategy='none',\n",
    "                   dont_do_grad=[],\n",
    "                   pool_type='max',\n",
    "                   extra_pool=8,\n",
    "                   return_features=True\n",
    "                   )\n",
    "model.load_state_dict(torch.load(models_dir+models_format.format(model_name,version,num_split),map_location=torch.device(device)))\n",
    "_=model.to(device)\n",
    "transform=MyTransform(flip=True,zoom=0.05,rotate=15,out_size=512,shift=40)\n",
    "transform_val=MyTransform(out_size=512)\n",
    "indexes=np.arange(test_df.shape[0]).repeat(8)\n",
    "imagedataset_test=D.Subset(ImageDataset(test_df,transform=transform.random,base_path=test_images_dir,\n",
    "                              window_eq=False,equalize=False,rescale=True),indexes)\n",
    "pred,features = model_run(model,imagedataset_test,do_apex=True,batch_size=96,num_workers=18)\n",
    "pickle_file=open(outputs_dir+outputs_format.format(model_name,version,'features_test',num_split),'wb')\n",
    "pickle.dump(features,pickle_file,protocol=4)\n",
    "pickle_file.close()\n",
    "pickle_file=open(outputs_dir+outputs_format.format(model_name,version,'predictions_test',num_split),'wb')\n",
    "pickle.dump(pred,pickle_file,protocol=4)\n",
    "pickle_file.close()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "<All keys matched successfully>"
      ]
     },
     "execution_count": 15,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "4e40fc1d740c44ea81610ce1a8765f06",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=28094), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "tensor(0.0833)"
      ]
     },
     "execution_count": 15,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "model_name,version, num_split =  'Densenet161_3' , 'classifier_splits',0\n",
    "idx_validate =  train_df[train_df.PID.isin(set(split_sid[splits[num_split][1]]))].index.values\n",
    "model = MyDenseNet(models.densenet161(pretrained=True),\n",
    "                   len(hemorrhage_types),\n",
    "                   num_channels=3,\n",
    "                   drop_out=0.2,\n",
    "                   wso=((40,80),(80,200),(600,2800)),\n",
    "                   strategy='none',\n",
    "                   dont_do_grad=[],\n",
    "                   pool_type='max',\n",
    "                   extra_pool=4,\n",
    "                   return_features=True\n",
    "                   )\n",
    "model.load_state_dict(torch.load(models_dir+models_format.format(model_name,version,num_split),map_location=torch.device(device)))\n",
    "_=model.to(device)\n",
    "transform=MyTransform(flip=True,zoom=0.05,rotate=15,out_size=512,shift=40)\n",
    "transform_val=MyTransform(out_size=512)\n",
    "indexes=np.arange(train_df.shape[0]).repeat(4)\n",
    "train_dataset=D.Subset(ImageDataset(train_df,transform=transform.random,base_path=train_images_dir,\n",
    "                          window_eq=False,equalize=False,rescale=True),indexes)\n",
    "pred,features = model_run(model,train_dataset,do_apex=True,batch_size=96,num_workers=14)\n",
    "\n",
    "pickle_file=open(outputs_dir+outputs_format.format(model_name,version,'features_train_tta',num_split),'wb')\n",
    "pickle.dump(features,pickle_file,protocol=4)\n",
    "pickle_file.close()\n",
    "\n",
    "pickle_file=open(outputs_dir+outputs_format.format(model_name,version,'predictions_train_tta',num_split),'wb')\n",
    "pickle.dump(pred,pickle_file,protocol=4)\n",
    "pickle_file.close()\n",
    "\n",
    "\n",
    "my_loss(pred[(idx_validate*4+np.arange(4)[:,None]).transpose(1,0)].mean(1),\n",
    "        torch.tensor(train_df[hemorrhage_types].values[idx_validate],dtype=torch.float),\n",
    "        torch.tensor([1.,1.,1.,1.,1.,2.]))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "<All keys matched successfully>"
      ]
     },
     "execution_count": 16,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "8d17515b4d4a472f8edcba7c8585d862",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=28094), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "tensor(0.0808)"
      ]
     },
     "execution_count": 16,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "model_name,version, num_split =  'Densenet161_3' , 'classifier_splits',1\n",
    "idx_validate =  train_df[train_df.PID.isin(set(split_sid[splits[num_split][1]]))].index.values\n",
    "model = MyDenseNet(models.densenet161(pretrained=True),\n",
    "                   len(hemorrhage_types),\n",
    "                   num_channels=3,\n",
    "                   drop_out=0.2,\n",
    "                   wso=((40,80),(80,200),(600,2800)),\n",
    "                   strategy='none',\n",
    "                   dont_do_grad=[],\n",
    "                   pool_type='max',\n",
    "                   extra_pool=4,\n",
    "                   return_features=True\n",
    "                   )\n",
    "model.load_state_dict(torch.load(models_dir+models_format.format(model_name,version,num_split),map_location=torch.device(device)))\n",
    "_=model.to(device)\n",
    "transform=MyTransform(flip=True,zoom=0.05,rotate=15,out_size=512,shift=40)\n",
    "transform_val=MyTransform(out_size=512)\n",
    "indexes=np.arange(train_df.shape[0]).repeat(4)\n",
    "train_dataset=D.Subset(ImageDataset(train_df,transform=transform.random,base_path=train_images_dir,\n",
    "                          window_eq=False,equalize=False,rescale=True),indexes)\n",
    "pred,features = model_run(model,train_dataset,do_apex=True,batch_size=96,num_workers=14)\n",
    "\n",
    "pickle_file=open(outputs_dir+outputs_format.format(model_name,version,'features_train_tta',num_split),'wb')\n",
    "pickle.dump(features,pickle_file,protocol=4)\n",
    "pickle_file.close()\n",
    "\n",
    "pickle_file=open(outputs_dir+outputs_format.format(model_name,version,'predictions_train_tta',num_split),'wb')\n",
    "pickle.dump(pred,pickle_file,protocol=4)\n",
    "pickle_file.close()\n",
    "\n",
    "\n",
    "my_loss(pred[(idx_validate*4+np.arange(4)[:,None]).transpose(1,0)].mean(1),\n",
    "        torch.tensor(train_df[hemorrhage_types].values[idx_validate],dtype=torch.float),\n",
    "        torch.tensor([1.,1.,1.,1.,1.,2.]))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "<All keys matched successfully>"
      ]
     },
     "execution_count": 17,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "4ecbaad7deb343979958b7b245aa9fdb",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=28094), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "tensor(0.0786)"
      ]
     },
     "execution_count": 17,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "model_name,version, num_split =  'Densenet161_3' , 'classifier_splits',2\n",
    "idx_validate =  train_df[train_df.PID.isin(set(split_sid[splits[num_split][1]]))].index.values\n",
    "model = MyDenseNet(models.densenet161(pretrained=True),\n",
    "                   len(hemorrhage_types),\n",
    "                   num_channels=3,\n",
    "                   drop_out=0.2,\n",
    "                   wso=((40,80),(80,200),(600,2800)),\n",
    "                   strategy='none',\n",
    "                   dont_do_grad=[],\n",
    "                   pool_type='max',\n",
    "                   extra_pool=4,\n",
    "                   return_features=True\n",
    "                   )\n",
    "model.load_state_dict(torch.load(models_dir+models_format.format(model_name,version,num_split),map_location=torch.device(device)))\n",
    "_=model.to(device)\n",
    "transform=MyTransform(flip=True,zoom=0.05,rotate=15,out_size=512,shift=40)\n",
    "transform_val=MyTransform(out_size=512)\n",
    "indexes=np.arange(train_df.shape[0]).repeat(4)\n",
    "train_dataset=D.Subset(ImageDataset(train_df,transform=transform.random,base_path=train_images_dir,\n",
    "                          window_eq=False,equalize=False,rescale=True),indexes)\n",
    "pred,features = model_run(model,train_dataset,do_apex=True,batch_size=96,num_workers=14)\n",
    "\n",
    "pickle_file=open(outputs_dir+outputs_format.format(model_name,version,'features_train_tta',num_split),'wb')\n",
    "pickle.dump(features,pickle_file,protocol=4)\n",
    "pickle_file.close()\n",
    "\n",
    "pickle_file=open(outputs_dir+outputs_format.format(model_name,version,'predictions_train_tta',num_split),'wb')\n",
    "pickle.dump(pred,pickle_file,protocol=4)\n",
    "pickle_file.close()\n",
    "\n",
    "\n",
    "my_loss(pred[(idx_validate*4+np.arange(4)[:,None]).transpose(1,0)].mean(1),\n",
    "        torch.tensor(train_df[hemorrhage_types].values[idx_validate],dtype=torch.float),\n",
    "        torch.tensor([1.,1.,1.,1.,1.,2.]))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "<All keys matched successfully>"
      ]
     },
     "execution_count": 18,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "c34dd7af5972445985ccd1c1dddf599d",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=6546), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n"
     ]
    }
   ],
   "source": [
    "model_name,version, num_split =  'Densenet161_3' , 'classifier_splits',0\n",
    "model = MyDenseNet(models.densenet161(pretrained=True),\n",
    "                   len(hemorrhage_types),\n",
    "                   num_channels=3,\n",
    "                   drop_out=0.2,\n",
    "                   wso=((40,80),(80,200),(600,2800)),\n",
    "                   strategy='none',\n",
    "                   dont_do_grad=[],\n",
    "                   pool_type='max',\n",
    "                   extra_pool=4,\n",
    "                   return_features=True\n",
    "                   )\n",
    "model.load_state_dict(torch.load(models_dir+models_format.format(model_name,version,num_split),map_location=torch.device(device)))\n",
    "_=model.to(device)\n",
    "transform=MyTransform(flip=True,zoom=0.05,rotate=15,out_size=512,shift=40)\n",
    "transform_val=MyTransform(out_size=512)\n",
    "indexes=np.arange(test_df.shape[0]).repeat(8)\n",
    "imagedataset_test=D.Subset(ImageDataset(test_df,transform=transform.random,base_path=test_images_dir,\n",
    "                              window_eq=False,equalize=False,rescale=True),indexes)\n",
    "pred,features = model_run(model,imagedataset_test,do_apex=True,batch_size=96,num_workers=18)\n",
    "pickle_file=open(outputs_dir+outputs_format.format(model_name,version,'features_test',num_split),'wb')\n",
    "pickle.dump(features,pickle_file,protocol=4)\n",
    "pickle_file.close()\n",
    "pickle_file=open(outputs_dir+outputs_format.format(model_name,version,'predictions_test',num_split),'wb')\n",
    "pickle.dump(pred,pickle_file,protocol=4)\n",
    "pickle_file.close()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "<All keys matched successfully>"
      ]
     },
     "execution_count": 19,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "3912162368d64ab084f6569d1351b72c",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=6546), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n"
     ]
    }
   ],
   "source": [
    "model_name,version, num_split =  'Densenet161_3' , 'classifier_splits',1\n",
    "model = MyDenseNet(models.densenet161(pretrained=True),\n",
    "                   len(hemorrhage_types),\n",
    "                   num_channels=3,\n",
    "                   drop_out=0.2,\n",
    "                   wso=((40,80),(80,200),(600,2800)),\n",
    "                   strategy='none',\n",
    "                   dont_do_grad=[],\n",
    "                   pool_type='max',\n",
    "                   extra_pool=4,\n",
    "                   return_features=True\n",
    "                   )\n",
    "model.load_state_dict(torch.load(models_dir+models_format.format(model_name,version,num_split),map_location=torch.device(device)))\n",
    "_=model.to(device)\n",
    "transform=MyTransform(flip=True,zoom=0.05,rotate=15,out_size=512,shift=40)\n",
    "transform_val=MyTransform(out_size=512)\n",
    "indexes=np.arange(test_df.shape[0]).repeat(8)\n",
    "imagedataset_test=D.Subset(ImageDataset(test_df,transform=transform.random,base_path=test_images_dir,\n",
    "                              window_eq=False,equalize=False,rescale=True),indexes)\n",
    "pred,features = model_run(model,imagedataset_test,do_apex=True,batch_size=96,num_workers=18)\n",
    "pickle_file=open(outputs_dir+outputs_format.format(model_name,version,'features_test',num_split),'wb')\n",
    "pickle.dump(features,pickle_file,protocol=4)\n",
    "pickle_file.close()\n",
    "pickle_file=open(outputs_dir+outputs_format.format(model_name,version,'predictions_test',num_split),'wb')\n",
    "pickle.dump(pred,pickle_file,protocol=4)\n",
    "pickle_file.close()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "<All keys matched successfully>"
      ]
     },
     "execution_count": 20,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "81d705998ac24533acf8509b6514e977",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "HBox(children=(IntProgress(value=0, max=6546), HTML(value='')))"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n"
     ]
    }
   ],
   "source": [
    "model_name,version, num_split =  'Densenet161_3' , 'classifier_splits',2\n",
    "model = MyDenseNet(models.densenet161(pretrained=True),\n",
    "                   len(hemorrhage_types),\n",
    "                   num_channels=3,\n",
    "                   drop_out=0.2,\n",
    "                   wso=((40,80),(80,200),(600,2800)),\n",
    "                   strategy='none',\n",
    "                   dont_do_grad=[],\n",
    "                   pool_type='max',\n",
    "                   extra_pool=4,\n",
    "                   return_features=True\n",
    "                   )\n",
    "model.load_state_dict(torch.load(models_dir+models_format.format(model_name,version,num_split),map_location=torch.device(device)))\n",
    "_=model.to(device)\n",
    "transform=MyTransform(flip=True,zoom=0.05,rotate=15,out_size=512,shift=40)\n",
    "transform_val=MyTransform(out_size=512)\n",
    "indexes=np.arange(test_df.shape[0]).repeat(8)\n",
    "imagedataset_test=D.Subset(ImageDataset(test_df,transform=transform.random,base_path=test_images_dir,\n",
    "                              window_eq=False,equalize=False,rescale=True),indexes)\n",
    "pred,features = model_run(model,imagedataset_test,do_apex=True,batch_size=96,num_workers=18)\n",
    "pickle_file=open(outputs_dir+outputs_format.format(model_name,version,'features_test',num_split),'wb')\n",
    "pickle.dump(features,pickle_file,protocol=4)\n",
    "pickle_file.close()\n",
    "pickle_file=open(outputs_dir+outputs_format.format(model_name,version,'predictions_test',num_split),'wb')\n",
    "pickle.dump(pred,pickle_file,protocol=4)\n",
    "pickle_file.close()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 76,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "78545.0"
      ]
     },
     "execution_count": 76,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "text/plain": [
       "torch.Size([78545, 6])"
      ]
     },
     "execution_count": 76,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "pred.shape[0]/8\n",
    "pred[(np.arange(pred.shape[0]).reshape(pred.shape[0]//8,8))].mean(1).shape"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 70,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "torch.Size([628360])"
      ]
     },
     "execution_count": 70,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "pred[(np.arange(pred.shape[0]).reshape()).transpose(1,0)].mean(1)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 77,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>ID</th>\n",
       "      <th>Label</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>ID_000012eaf_any</td>\n",
       "      <td>0.004856</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>ID_000012eaf_epidural</td>\n",
       "      <td>0.000064</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>ID_000012eaf_intraparenchymal</td>\n",
       "      <td>0.000782</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>ID_000012eaf_intraventricular</td>\n",
       "      <td>0.000217</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>ID_000012eaf_subarachnoid</td>\n",
       "      <td>0.001258</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>5</th>\n",
       "      <td>ID_000012eaf_subdural</td>\n",
       "      <td>0.002873</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>6</th>\n",
       "      <td>ID_0000ca2f6_any</td>\n",
       "      <td>0.001444</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>7</th>\n",
       "      <td>ID_0000ca2f6_epidural</td>\n",
       "      <td>0.000016</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>8</th>\n",
       "      <td>ID_0000ca2f6_intraparenchymal</td>\n",
       "      <td>0.000420</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>9</th>\n",
       "      <td>ID_0000ca2f6_intraventricular</td>\n",
       "      <td>0.000067</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>10</th>\n",
       "      <td>ID_0000ca2f6_subarachnoid</td>\n",
       "      <td>0.000409</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>11</th>\n",
       "      <td>ID_0000ca2f6_subdural</td>\n",
       "      <td>0.000577</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "                               ID     Label\n",
       "0                ID_000012eaf_any  0.004856\n",
       "1           ID_000012eaf_epidural  0.000064\n",
       "2   ID_000012eaf_intraparenchymal  0.000782\n",
       "3   ID_000012eaf_intraventricular  0.000217\n",
       "4       ID_000012eaf_subarachnoid  0.001258\n",
       "5           ID_000012eaf_subdural  0.002873\n",
       "6                ID_0000ca2f6_any  0.001444\n",
       "7           ID_0000ca2f6_epidural  0.000016\n",
       "8   ID_0000ca2f6_intraparenchymal  0.000420\n",
       "9   ID_0000ca2f6_intraventricular  0.000067\n",
       "10      ID_0000ca2f6_subarachnoid  0.000409\n",
       "11          ID_0000ca2f6_subdural  0.000577"
      ]
     },
     "execution_count": 77,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "text/plain": [
       "(471270, 2)"
      ]
     },
     "execution_count": 77,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "submission_df=get_submission(test_df,pred[(np.arange(pred.shape[0]).reshape(pred.shape[0]//8,8))].mean(1))\n",
    "submission_df.head(12)\n",
    "submission_df.shape\n",
    "sub_num=24\n",
    "submission_df.to_csv('/media/hd/notebooks/data/RSNA/submissions/submission{}.csv'.format(sub_num),\n",
    "                                                                  index=False, columns=['ID','Label'])\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.6.6"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}