Diff of /ClassifierCompare.py [000000] .. [f85ae2]

Switch to unified view

a b/ClassifierCompare.py
1
from sklearn.linear_model import RidgeClassifier
2
3
print(__doc__)
4
5
# Code source: Gaël Varoquaux
6
#              Andreas Müller
7
# Modified for documentation by Jaques Grobler
8
# License: BSD 3 clause
9
import pandas as pd
10
import numpy as np
11
import matplotlib.pyplot as plt
12
from matplotlib.colors import ListedColormap
13
from sklearn.model_selection import train_test_split
14
from sklearn.preprocessing import StandardScaler
15
from sklearn.datasets import make_moons, make_circles, make_classification
16
from sklearn.neural_network import MLPClassifier
17
from sklearn.neighbors import KNeighborsClassifier
18
from sklearn.svm import SVC
19
from sklearn.gaussian_process import GaussianProcessClassifier
20
from sklearn.gaussian_process.kernels import RBF
21
from sklearn.tree import DecisionTreeClassifier
22
from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier
23
from sklearn.naive_bayes import GaussianNB
24
from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis, LinearDiscriminantAnalysis
25
26
h = .02  # step size in the mesh
27
28
names = ["KNN", "Linear SVM",
29
         "Naive Bayes", "LDA", "QDA"]
30
31
classifiers = [
32
    KNeighborsClassifier(),
33
    SVC(kernel="linear", C=0.025),
34
    GaussianNB(),
35
    LinearDiscriminantAnalysis(),
36
    QuadraticDiscriminantAnalysis()]
37
38
train_original = pd.read_csv("DataUsed/method23_real2.csv")
39
test_original = pd.read_csv("DataUsed/method23_real2_valid.csv")
40
df = train_original.append(test_original, ignore_index=True)
41
42
# df.insert(3, "num2", num2)
43
targetIndex = -1
44
# df = df.iloc[pd.isna(df.iloc[:, targetIndex]).values == False, :]
45
# df = df.drop(columns=["Num1"])
46
47
vars = df.columns[range(len(df.columns) - 1)]
48
df = df.values
49
X1 = df[:, [0, -2]]
50
X2 = df[:, [0, -6]]
51
X3 = df[:, [-6, -2]]
52
y = df[:, targetIndex]
53
54
datasetsNames = ["450,810 nm", "450, 610 nm", "610,810 nm"]
55
C450810 = (X1, y)
56
C450610 = (X2, y)
57
C610810 = (X3, y)
58
59
datasets = [C450810, C450610, C610810]
60
61
figure = plt.figure(figsize=(27, 9))
62
i = 1
63
# iterate over datasets
64
for ds_cnt, ds in enumerate(datasets):
65
    # preprocess dataset, split into training and test part
66
    X, y = ds
67
    X = StandardScaler().fit_transform(X)
68
    X_train, X_test, y_train, y_test = \
69
        train_test_split(X, y, test_size=.8)
70
71
    x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
72
    y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
73
    xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
74
                         np.arange(y_min, y_max, h))
75
76
    # just plot the dataset first
77
    cm = plt.cm.RdBu
78
    cm_bright = ListedColormap(['#FF0000', '#0000FF'])
79
    ax = plt.subplot(len(datasets), len(classifiers) + 1, i)
80
    if ds_cnt == 0:
81
        ax.set_title("Input data")
82
    # Plot the training points
83
    ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright,
84
               edgecolors='k')
85
    # Plot the testing points
86
    ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright, alpha=0.6,
87
               edgecolors='k')
88
    ax.set_xlim(xx.min(), xx.max())
89
    ax.set_ylim(yy.min(), yy.max())
90
    ax.set_xticks(())
91
    ax.set_yticks(())
92
    ax.set_ylabel(datasetsNames[ds_cnt])
93
    i += 1
94
95
    # iterate over classifiers
96
    for name, clf in zip(names, classifiers):
97
        ax = plt.subplot(len(datasets), len(classifiers) + 1, i)
98
        clf.fit(X_train, y_train)
99
        score = clf.score(X_test, y_test)
100
101
        # Plot the decision boundary. For that, we will assign a color to each
102
        # point in the mesh [x_min, x_max]x[y_min, y_max].
103
        if hasattr(clf, "decision_function"):
104
            Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])
105
        else:
106
            Z = clf.predict_proba(np.c_[xx.ravel(), yy.ravel()])[:, 1]
107
108
        # Put the result into a color plot
109
        Z = Z.reshape(xx.shape)
110
        ax.contourf(xx, yy, Z, cmap=cm, alpha=.8)
111
112
        # Plot the training points
113
        ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright,
114
                   edgecolors='k')
115
        # Plot the testing points
116
        ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright,
117
                   edgecolors='k', alpha=0.6)
118
119
        ax.set_xlim(xx.min(), xx.max())
120
        ax.set_ylim(yy.min(), yy.max())
121
        ax.set_xticks(())
122
        ax.set_yticks(())
123
        if ds_cnt == 0:
124
            ax.set_title(name)
125
        ax.text(xx.max() - .3, yy.min() + .3, ('Accuracy: %.2f' % score).lstrip('0'),
126
                size=15, horizontalalignment='right')
127
        i += 1
128
129
plt.tight_layout()
130
plt.show()
131
pass