|
a |
|
b/README.md |
|
|
1 |
# CluelessCoders AutoWCEBleedGen Challenge MISAHUB |
|
|
2 |
Welcome to CluelessCoders’ GitHub repository on Auto-WCEBleedGen Challenge MISAHUB 2023! This repository contains code, datasets, and a stored model for the image classification as bleeding or non-bleeding. We also have an Excel sheet containing the image IDs and predicted class labels for testing datasets 1 and 2. |
|
|
3 |
|
|
|
4 |
Finalised ColabNotebook is MisaHubResNet_FINAL.ipynb |
|
|
5 |
|
|
|
6 |
Achieved evaluation metrics of the validation dataset. |
|
|
7 |
|
|
|
8 |
Classification - |
|
|
9 |
|
|
|
10 |
| Parameter | Score | |
|
|
11 |
| ------------- | ------------- | |
|
|
12 |
| Accuracy | 0.99 | |
|
|
13 |
| Recall | 0.99 | |
|
|
14 |
| F1 - Score | 0.99 | |
|
|
15 |
|
|
|
16 |
Detection - |
|
|
17 |
|
|
|
18 |
| Parameter | Score | |
|
|
19 |
| ---------------------------------------| ------------- | |
|
|
20 |
| Mean average precision | 0.58 | |
|
|
21 |
| Intersection over union (IoU) (AVERAGE)| 0.44 | |
|
|
22 |
| Average precision | - | |
|
|
23 |
|
|
|
24 |
Screenshot of the best 5 predicted frames with bounding boxes and confidence level from DATASET 1 (including the CI in the screenshot itself)- |
|
|
25 |
|
|
|
26 |
<img width="419" alt="1_3" src="https://github.com/stonerrb/MisaHub/assets/90149808/8f49bae5-fbf8-409f-9d65-99d3e83d34c9"> |
|
|
27 |
|
|
|
28 |
<img width="404" alt="1_1" src="https://github.com/stonerrb/MisaHub/assets/90149808/8b288937-56be-4fec-816f-a8bc76f08004"> |
|
|
29 |
|
|
|
30 |
<img width="386" alt="1_4" src="https://github.com/stonerrb/MisaHub/assets/90149808/d55e5e4f-09c2-4462-898f-a533747cef37"> |
|
|
31 |
|
|
|
32 |
<img width="367" alt="1_2" src="https://github.com/stonerrb/MisaHub/assets/90149808/15ead4e8-c097-4fe7-a8e8-2f439a01128c"> |
|
|
33 |
|
|
|
34 |
<img width="466" alt="1_5" src="https://github.com/stonerrb/MisaHub/assets/90149808/1b756339-1752-4432-9d36-bf27a9ab830f"> |
|
|
35 |
|
|
|
36 |
Screenshot of the best 5 predicted frames with bounding boxes and confidence level from DATASET 2 (including the CI in the screenshot itself)- |
|
|
37 |
|
|
|
38 |
<img width="475" alt="2_1" src="https://github.com/stonerrb/MisaHub/assets/90149808/2cc59f67-d18b-46ef-a91d-120f6c787c1b"> |
|
|
39 |
<img width="455" alt="2_2" src="https://github.com/stonerrb/MisaHub/assets/90149808/4595ad21-166a-43d0-a037-20ff742741c1"> |
|
|
40 |
<img width="446" alt="2_5" src="https://github.com/stonerrb/MisaHub/assets/90149808/9de19acd-cb5b-4dd5-99fb-aae4150d887e"> |
|
|
41 |
<img width="409" alt="2_4" src="https://github.com/stonerrb/MisaHub/assets/90149808/7d0c5930-755e-45bb-a71c-31c66cd70f9b"> |
|
|
42 |
<img width="442" alt="2_3" src="https://github.com/stonerrb/MisaHub/assets/90149808/39bbcef9-9361-4af6-a090-bd7724265a20"> |
|
|
43 |
|
|
|
44 |
Stored Model drive link with access : https://drive.google.com/drive/folders/1s5poG5v3myJqoR2GBYZwbCbMeDJ9wSSu?usp=sharing |
|
|
45 |
resnet_model_MISAHUB for classification <br> |
|
|
46 |
best.pt for yolov5 |
|
|
47 |
|