[95f789]: / configs / config_3w.yml

Download this file

130 lines (106 with data), 2.7 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
model_params:
model: &model CNNFinetuneModels
model_name: &model_name resnet50
num_classes: 6
args:
expdir: "src"
logdir: &logdir "./logs/rsna"
baselogdir: "./logs/rsna"
distributed_params:
opt_level: O1
stages:
state_params:
main_metric: &reduce_metric loss
minimize_metric: True
criterion_params:
criterion: &criterion LogLoss
weight: [1,1,1,1,1,2]
data_params:
batch_size: 64
num_workers: 4
drop_last: False
train_csv: "./csv/stratified_kfold/train_0.csv.gz"
valid_csv: "./csv/stratified_kfold/valid_0.csv.gz"
with_any: True
root: "/data/stage_1_train_3w/"
image_type: "jpg"
# root: "/data/png/train/adjacent-brain-cropped/"
# image_type: "png"
callbacks_params: &callbacks_params
loss:
callback: CriterionCallback
optimizer:
callback: OptimizerCallback
accumulation_steps: 1
scheduler:
callback: SchedulerCallback
reduce_metric: *reduce_metric
saver:
callback: CheckpointCallback
save_n_best: 5
early_stoping:
callback: EarlyStoppingCallback
patience: 2
warmup:
data_params:
image_size: [512, 512]
optimizer_params:
optimizer: AdamW
lr: 0.001
scheduler_params:
scheduler: MultiStepLR
milestones: [10]
gamma: 0.3
state_params:
num_epochs: 3
callbacks_params:
loss:
callback: CriterionCallback
optimizer:
callback: OptimizerCallback
accumulation_steps: 1
scheduler:
callback: SchedulerCallback
reduce_metric: *reduce_metric
saver:
callback: CheckpointCallback
save_n_best: 5
early_stoping:
callback: EarlyStoppingCallback
patience: 3
train512:
data_params:
image_size: [512, 512]
optimizer_params:
optimizer: AdamW
lr: 0.0001
scheduler_params:
# scheduler: MultiStepLR
# milestones: [3]
# gamma: 0.1
scheduler: ReduceLROnPlateau
patience: 0
min_lr: 0.00001
state_params:
num_epochs: 20
callbacks_params:
loss:
callback: CriterionCallback
optimizer:
callback: OptimizerCallback
accumulation_steps: 1
scheduler:
callback: SchedulerCallback
reduce_metric: *reduce_metric
saver:
callback: CheckpointCallback
save_n_best: 5
early_stoping:
callback: EarlyStoppingCallback
patience: 3
# metric: "accuracy01"
# minimize: False
# callbacks_params: *callbacks_params
monitoring_params:
project: "Kaggle-RSNA"
tags: [*model, *model_name, *criterion]