|
a |
|
b/src/preprocessing_3w.py |
|
|
1 |
import numpy as np |
|
|
2 |
import pandas as pd |
|
|
3 |
import os |
|
|
4 |
import click |
|
|
5 |
import glob |
|
|
6 |
import cv2 |
|
|
7 |
import pydicom |
|
|
8 |
from tqdm import tqdm |
|
|
9 |
from joblib import delayed, Parallel |
|
|
10 |
import random |
|
|
11 |
import pydicom |
|
|
12 |
from scipy import ndimage |
|
|
13 |
import pydicom |
|
|
14 |
from skimage import exposure |
|
|
15 |
|
|
|
16 |
|
|
|
17 |
def window_image(img, window_center, window_width, intercept, slope): |
|
|
18 |
img = (img * slope + intercept) |
|
|
19 |
img_min = window_center - window_width // 2 |
|
|
20 |
img_max = window_center + window_width // 2 |
|
|
21 |
img[img < img_min] = img_min |
|
|
22 |
img[img > img_max] = img_max |
|
|
23 |
return img |
|
|
24 |
|
|
|
25 |
|
|
|
26 |
def get_first_of_dicom_field_as_int(x): |
|
|
27 |
# get x[0] as in int is x is a 'pydicom.multival.MultiValue', otherwise get int(x) |
|
|
28 |
if type(x) == pydicom.multival.MultiValue: |
|
|
29 |
return int(x[0]) |
|
|
30 |
else: |
|
|
31 |
return int(x) |
|
|
32 |
|
|
|
33 |
|
|
|
34 |
def get_windowing(data): |
|
|
35 |
dicom_fields = [data[('0028', '1050')].value, # window center |
|
|
36 |
data[('0028', '1051')].value, # window width |
|
|
37 |
data[('0028', '1052')].value, # intercept |
|
|
38 |
data[('0028', '1053')].value] # slope |
|
|
39 |
return [get_first_of_dicom_field_as_int(x) for x in dicom_fields] |
|
|
40 |
|
|
|
41 |
|
|
|
42 |
@click.group() |
|
|
43 |
def cli(): |
|
|
44 |
print("CLI") |
|
|
45 |
|
|
|
46 |
|
|
|
47 |
windows_range = { |
|
|
48 |
'brain': [40, 80], |
|
|
49 |
'bone': [600, 2800], |
|
|
50 |
'subdual': [75, 215] |
|
|
51 |
} |
|
|
52 |
|
|
|
53 |
|
|
|
54 |
def refine_label(label_mask): |
|
|
55 |
label_mask = label_mask.astype(np.bool) |
|
|
56 |
# Fill hole |
|
|
57 |
label_mask = ndimage.binary_fill_holes(label_mask) |
|
|
58 |
# Get largest connected component |
|
|
59 |
label_im, nb_labels = ndimage.label(label_mask) |
|
|
60 |
sizes = ndimage.sum(label_mask, label_im, range(nb_labels + 1)) |
|
|
61 |
mask_size = sizes < max(sizes) |
|
|
62 |
remove_pixel = mask_size[label_im] |
|
|
63 |
label_im[remove_pixel] = 0 |
|
|
64 |
labels = np.unique(label_im) |
|
|
65 |
label_mask = np.searchsorted(labels, label_im) |
|
|
66 |
return label_mask |
|
|
67 |
|
|
|
68 |
|
|
|
69 |
def cut_edge(image, keep_margin): |
|
|
70 |
''' |
|
|
71 |
function that cuts zero edge |
|
|
72 |
''' |
|
|
73 |
H, W = image.shape |
|
|
74 |
H_s, H_e = 0, H - 1 |
|
|
75 |
W_s, W_e = 0, W - 1 |
|
|
76 |
|
|
|
77 |
while H_s < H: |
|
|
78 |
if image[H_s, :].sum() != 0: |
|
|
79 |
break |
|
|
80 |
H_s += 1 |
|
|
81 |
while H_e > H_s: |
|
|
82 |
if image[H_e, :].sum() != 0: |
|
|
83 |
break |
|
|
84 |
H_e -= 1 |
|
|
85 |
while W_s < W: |
|
|
86 |
if image[:, W_s].sum() != 0: |
|
|
87 |
break |
|
|
88 |
W_s += 1 |
|
|
89 |
while W_e > W_s: |
|
|
90 |
if image[:, W_e].sum() != 0: |
|
|
91 |
break |
|
|
92 |
W_e -= 1 |
|
|
93 |
if keep_margin != 0: |
|
|
94 |
H_s = max(0, H_s - keep_margin) |
|
|
95 |
H_e = min(H - 1, H_e + keep_margin) |
|
|
96 |
W_s = max(0, W_s - keep_margin) |
|
|
97 |
W_e = min(W - 1, W_e + keep_margin) |
|
|
98 |
return int(H_s), int(H_e) + 1, int(W_s), int(W_e) + 1 |
|
|
99 |
|
|
|
100 |
|
|
|
101 |
def pre_preocessing(image, pad_size=(512, 512)): |
|
|
102 |
# Convert to [0, 255] |
|
|
103 |
# image = (image-image.min()) / (image.max() - image.min()) |
|
|
104 |
# image= image*255 |
|
|
105 |
image[image < 0] = 0 |
|
|
106 |
# Remove unwanted region |
|
|
107 |
mask = image > 0 |
|
|
108 |
mask = refine_label(mask) |
|
|
109 |
image = image * mask |
|
|
110 |
# Center crop and pad to size |
|
|
111 |
# mask = image>0 |
|
|
112 |
# min_H_s, max_H_e, min_W_s, max_W_e = cut_edge(mask, 32) |
|
|
113 |
# image = image[min_H_s: max_H_e, min_W_s:max_W_e] |
|
|
114 |
# Pad to size |
|
|
115 |
H, W = image.shape |
|
|
116 |
pad_H, pad_W = pad_size[0], pad_size[1] |
|
|
117 |
pad_H0 = max((pad_H - H) // 2, 0) |
|
|
118 |
pad_H1 = max(pad_H - H - pad_H0, 0) |
|
|
119 |
pad_W0 = max((pad_W - W) // 2, 0) |
|
|
120 |
pad_W1 = max(pad_W - W - pad_W0, 0) |
|
|
121 |
image = np.pad(image, [(pad_H0, pad_H1), (pad_W0, pad_W1)], mode='constant', constant_values=0) |
|
|
122 |
return image |
|
|
123 |
|
|
|
124 |
|
|
|
125 |
def convert_dicom_to_jpg(dicomfile, outputdir): |
|
|
126 |
try: |
|
|
127 |
data = pydicom.read_file(dicomfile) |
|
|
128 |
image = data.pixel_array |
|
|
129 |
window_center, window_width, intercept, slope = get_windowing(data) |
|
|
130 |
id = dicomfile.split("/")[-1].split(".")[0] |
|
|
131 |
|
|
|
132 |
images = [] |
|
|
133 |
# count =0 |
|
|
134 |
|
|
|
135 |
for k, v in windows_range.items(): |
|
|
136 |
image_windowed = window_image(image, v[0], v[1], intercept, slope) |
|
|
137 |
image_windowed = pre_preocessing(image_windowed, pad_size=(512, 512)) |
|
|
138 |
images.append(image_windowed) |
|
|
139 |
|
|
|
140 |
# image_windowed = exposure.equalize_adapthist(image_windowed, clip_limit=0.01) |
|
|
141 |
# min_value= image_windowed.min() |
|
|
142 |
# max_value = image_windowed.max() |
|
|
143 |
# print (image_windowed.min(),image_windowed.max()) |
|
|
144 |
# if count ==0: |
|
|
145 |
# image_windowed=np.uint8(image_windowed) |
|
|
146 |
# clahe = cv2.createCLAHE(clipLimit = 1.0, tileGridSize = (8,8)) |
|
|
147 |
# image_windowed = clahe.apply(image_windowed) |
|
|
148 |
# images.append(image_windowed) |
|
|
149 |
# print (image_windowed.min(),image_windowed.max()) |
|
|
150 |
# count +=1 |
|
|
151 |
images = np.asarray(images).transpose((1, 2, 0)) |
|
|
152 |
# print (images.shape) |
|
|
153 |
|
|
|
154 |
output_image = os.path.join(outputdir, id + ".jpg") |
|
|
155 |
cv2.imwrite(output_image, images) |
|
|
156 |
except: |
|
|
157 |
print(dicomfile) |
|
|
158 |
|
|
|
159 |
|
|
|
160 |
@cli.command() |
|
|
161 |
@click.option('--inputdir', type=str) |
|
|
162 |
@click.option('--outputdir', type=str) |
|
|
163 |
def extract_images( |
|
|
164 |
inputdir, |
|
|
165 |
outputdir, |
|
|
166 |
): |
|
|
167 |
os.makedirs(outputdir, exist_ok=True) |
|
|
168 |
files = glob.glob(inputdir + "/*.dcm") |
|
|
169 |
Parallel(n_jobs=8)(delayed(convert_dicom_to_jpg)(file, outputdir) for file in tqdm(files, total=len(files))) |
|
|
170 |
|
|
|
171 |
|
|
|
172 |
def split_by_patient( |
|
|
173 |
train_csv, |
|
|
174 |
train_meta_csv, |
|
|
175 |
n_folds, |
|
|
176 |
outdir |
|
|
177 |
): |
|
|
178 |
os.makedirs(outdir, exist_ok=True) |
|
|
179 |
train_df = pd.read_csv(train_csv) |
|
|
180 |
train_meta_df = pd.read_csv(train_meta_csv) |
|
|
181 |
train_meta_df['ID'] = train_meta_df['ID'].apply(lambda x: "_".join(x.split("_")[:2])) |
|
|
182 |
train_meta_df = train_meta_df[['ID', 'PatientID']] |
|
|
183 |
|
|
|
184 |
|
|
|
185 |
if __name__ == '__main__': |
|
|
186 |
cli() |