a b/src/preprocessing.py
1
import numpy as np
2
import pandas as pd
3
import os
4
import click
5
import glob
6
import cv2
7
import pydicom
8
from tqdm import tqdm
9
from utils import get_windowing, window_image
10
from joblib import delayed, Parallel
11
12
13
@click.group()
14
def cli():
15
    print("CLI")
16
17
18
windows_range = {
19
    'brain': [40, 80],
20
    'bone': [600, 2800],
21
    'subdual': [75, 215]
22
}
23
24
25
def convert_dicom_to_jpg(dicomfile, outputdir):
26
    try:
27
        data = pydicom.read_file(dicomfile)
28
        image = data.pixel_array
29
        window_center, window_width, intercept, slope = get_windowing(data)
30
        id = dicomfile.split("/")[-1].split(".")[0]
31
32
        images = []
33
        for k, v in windows_range.items():
34
            image_windowed = window_image(image, v[0], v[1], intercept, slope)
35
            images.append(image_windowed)
36
37
        images = np.asarray(images).transpose((1, 2, 0))
38
        output_image = os.path.join(outputdir, id + ".jpg")
39
        cv2.imwrite(output_image, images)
40
    except:
41
        print(dicomfile)
42
43
44
@cli.command()
45
@click.option('--inputdir', type=str)
46
@click.option('--outputdir', type=str)
47
def extract_images(
48
    inputdir,
49
    outputdir,
50
):
51
    os.makedirs(outputdir, exist_ok=True)
52
    files = glob.glob(inputdir + "/*.dcm")
53
    Parallel(n_jobs=8)(delayed(convert_dicom_to_jpg)(file, outputdir) for file in tqdm(files, total=len(files)))
54
55
56
def split_by_patient(
57
    train_csv,
58
    train_meta_csv,
59
    n_folds,
60
    outdir
61
):
62
    os.makedirs(outdir, exist_ok=True)
63
    train_df = pd.read_csv(train_csv)
64
    train_meta_df = pd.read_csv(train_meta_csv)
65
    train_meta_df['ID'] = train_meta_df['ID'].apply(lambda x: "_".join(x.split("_")[:2]))
66
    train_meta_df = train_meta_df[['ID', 'PatientID']]
67
68
69
70
if __name__ == '__main__':
71
    cli()