[2ceedb]: / 3DNet / README.md

Download this file

125 lines (111 with data), 4.0 kB

3DConvNet Solutions for Medical Image Challenges

This repository contains 3d ConvNet Solutions for Medical Image Challenges.
The project is based on Tencent MedicalNet and MONAI framework
which provides a series of 3D-ResNet pre-trained models and domain-optimized foundational capabilities for developing healthcare imaging training workflows.

Update(2020/05/01)

I provide a baseline 3DConvNet code for TReNDS Neuroimaging challenge host on Kaggle.

Contents

  1. Requirements
  2. Code
  3. Experiments
  4. TODO

Requirements

  • Python 3.7.0
  • PyTorch-1.5
  • monai-0.1.0

Code

  • Structure of data directories base on MedicalNet
/
    |--datasets/Data preprocessing module
    |   |--brains18.pyMRBrainS18 data preprocessing script
    |   |--RSNA19.pyRSNA19 data preprocessing script
    |   |--TReNDs.pyTReNDs data preprocessing script
    |--models/Model construction module
    |   |--resnet.py3D-ResNet network build script
    |--utils/tools
    |   |--logger.pyLogging script
    |--toy_data/For CI test
    |--data/Data storage module
    |   |--MRBrainS18/MRBrainS18 dataset
    |   |   |--images/source image named with patient ID
    |   |   |--labels/mask named with patient ID
    |   |--train.txt: training data lists
    |   |--val.txt: validation data lists
    |--pretrain/Pre-trained models storage module
    |--model.py: Network processing script
    |--setting.py: Parameter setting script
    |--train_MRBrainS18.py: MRBrainS18 training demo script
    |--train_TReNDs.py: TReNDs training script
    |--train_RSNA19.py
    |--README.md

Download data & pre-trained models from Tencent MedicalNet official repo (Google Drive or Tencent Weiyun)

  • Network structure parameter settings
Model name   : parameters settings
resnet_10.pth: --model resnet --model_depth 10 --resnet_shortcut B
resnet_18.pth: --model resnet --model_depth 18 --resnet_shortcut A
resnet_34.pth: --model resnet --model_depth 34 --resnet_shortcut A
resnet_50.pth: --model resnet --model_depth 50 --resnet_shortcut B
resnet_101.pth: --model resnet --model_depth 101 --resnet_shortcut B
resnet_152.pth: --model resnet --model_depth 152 --resnet_shortcut B
resnet_200.pth: --model resnet --model_depth 200 --resnet_shortcut B
Network fold 0 fold 1 fold 2 fold 3 fold 4
3D-Resnet10 Train from scratch 0.1700 0.1685 0.1729 0.1734 0.1734
3D-Resnet10 MedicalNet pretrained 0.1694 0.1691 0.1726 0.1746 0.1734

Computational Cost

GPU:NVIDIA Tesla P40
Network Paramerers (M) Running time (s)
3D-ResNet10 14.36 0.18
3D-ResNet18 32.99 0.19
3D-ResNet34 63.31 0.22
3D-ResNet50 46.21 0.21
3D-ResNet101 85.31 0.29
3D-ResNet152 117.51 0.34
3D-ResNet200 126.74 0.45

TODO

  • Baseline (pure 3D ConvNet) code for TReNDS Neuroimaging challenge
  • Code and pretrained models for Intracranial-Hemorrhage-Detection (RSNA2019 challenge dataset)
  • More baseline code and pretrained models for recent Medical Image Challenges