[9f60b7]: / 3DNet / datasets / TReNDs.py

Download this file

221 lines (178 with data), 8.6 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import os
import h5py
import numpy as np
import pandas as pd
from torch.utils.data import Dataset
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import GridSearchCV, KFold,StratifiedKFold, GroupKFold, KFold
import nilearn as nl
import torch
import random
from tqdm import tqdm
import monai
from monai.transforms import \
LoadNifti, LoadNiftid, AddChanneld, ScaleIntensityRanged, \
Rand3DElasticd, RandAffined, \
Spacingd, Orientationd
root = r'./competition_root'
train = pd.read_csv('{}/train_scores.csv'.format(root)).sort_values(by='Id')
loadings = pd.read_csv('{}/loading.csv'.format(root))
sample = pd.read_csv('{}/sample_submission.csv'.format(root))
reveal = pd.read_csv('{}/reveal_ID_site2.csv'.format(root))
ICN = pd.read_csv('{}/ICN_numbers.csv'.format(root))
"""
Load and display a subject's spatial map
"""
def load_subject(filename, mask_niimg):
"""
Load a subject saved in .mat format with the version 7.3 flag. Return the subject niimg, using a mask niimg as a template for nifti headers.
Args:
filename <str> the .mat filename for the subject data
mask_niimg niimg object the mask niimg object used for nifti headers
"""
subject_data = None
with h5py.File(filename, 'r') as f:
subject_data = f['SM_feature'][()]
# print(subject_data.shape)
# It's necessary to reorient the axes, since h5py flips axis order
subject_data = np.moveaxis(subject_data, [0, 1, 2, 3], [3, 2, 1, 0])
# print(subject_data.shape)
return subject_data
# subject_niimg = nl.image.new_img_like(mask_niimg, subject_data, affine=mask_niimg.affine, copy_header=True)
# return subject_niimg
def read_data_sample():
# Input data files are available in the "../input/" directory.
# For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory
mask_filename = r'{}/fMRI_mask.nii'.format(root)
subject_filename = '{}/fMRI_train/10004.mat'.format(root)
mask_niimg = nl.image.load_img(mask_filename)
print("mask shape is %s" % (str(mask_niimg.shape)))
subject_niimg = load_subject(subject_filename, mask_niimg)
print("Image shape is %s" % (str(subject_niimg.shape)))
num_components = subject_niimg.shape[-1]
print("Detected {num_components} spatial maps".format(num_components=num_components))
class TReNDsDataset(Dataset):
def __init__(self, mode='train', fold_index = 0):
# print("Processing {} datas".format(len(self.img_list)))
self.mode = mode
self.fold_index = fold_index
if self.mode=='train' or self.mode=='valid' or self.mode=='valid_tta':
features = ('age', 'domain1_var1', 'domain1_var2', 'domain2_var1', 'domain2_var2')
data = pd.merge(loadings, train, on='Id').dropna()
id_train = list(data.Id)
fea_train = np.asarray(data.drop(list(features), axis=1).drop('Id', axis=1))
lbl_train = np.asarray(data[list(features)])
self.all_samples = []
for i in range(len(id_train)):
id = id_train[i]
fea = fea_train[i]
lbl = lbl_train[i]
filename = os.path.join('{}/fMRI_train_npy/{}.npy'.format(root, id))
self.all_samples.append([filename, fea, lbl, str(id)])
fold = 0
kf = KFold(n_splits=5, shuffle=True, random_state=1337)
for train_index, valid_index in kf.split(self.all_samples):
if fold_index == fold:
self.train_index = train_index
self.valid_index = valid_index
fold+=1
if self.mode=='train':
self.train_index = [tmp for tmp in self.train_index if os.path.exists(self.all_samples[tmp][0])]
self.len = len(self.train_index)
print('fold index:',fold_index)
print('train num:', self.len)
elif self.mode=='valid' or self.mode=='valid_tta':
self.valid_index = [tmp for tmp in self.valid_index if os.path.exists(self.all_samples[tmp][0])]
self.len = len(self.valid_index)
print('fold index:',fold_index)
print('valid num:', self.len)
elif self.mode=='test':
labels_df = pd.read_csv("{}/train_scores.csv".format(root))
labels_df["is_train"] = True
features = ('age', 'domain1_var1', 'domain1_var2', 'domain2_var1', 'domain2_var2')
data = pd.merge(loadings, labels_df, on="Id", how="left")
id_test = list(data[data["is_train"] != True].Id)
fea_test = np.asarray(data.drop(list(features), axis=1).drop('Id', axis=1)[data["is_train"] != True].drop("is_train", axis=1))
lbl_test = np.asarray(data[list(features)][data["is_train"] != True])
self.all_samples = []
for i in range(len(id_test)):
id = id_test[i]
fea = fea_test[i]
lbl = lbl_test[i]
filename = os.path.join('{}/fMRI_test_npy/{}.npy'.format(root, id))
if os.path.exists(filename):
self.all_samples.append([id, filename, fea, lbl])
self.len = len(self.all_samples)
print(len(id_test))
print('test num:', self.len)
def __getitem__(self, idx):
if self.mode == "train" :
filename, _, lbl, id = self.all_samples[self.train_index[idx]]
train_img = np.load(filename).astype(np.float32)
train_img = train_img.transpose((3,2,1,0))
# (53, 52, 63, 53)
train_lbl = lbl
data_dict = {'image':train_img}
rand_affine = RandAffined(keys=['image'],
mode=('bilinear', 'nearest'),
prob=0.5,
spatial_size=(52, 63, 53),
translate_range=(5, 5, 5),
rotate_range=(np.pi * 4, np.pi * 4, np.pi * 4),
scale_range=(0.15, 0.15, 0.15),
padding_mode='border')
affined_data_dict = rand_affine(data_dict)
train_img = affined_data_dict['image']
return torch.FloatTensor(train_img), \
torch.FloatTensor(train_lbl)
elif self.mode == "valid":
filename, _, lbl, id = self.all_samples[self.valid_index[idx]]
train_img = np.load(filename).astype(np.float32)
train_img = train_img.transpose((3, 2, 1, 0))
# (53, 52, 63, 53)
train_lbl = lbl
return torch.FloatTensor(train_img),\
torch.FloatTensor(train_lbl)
elif self.mode == 'test':
id, filename, fea, lbl = self.all_samples[idx]
test_img = np.load(filename).astype(np.float32)
test_img = test_img.transpose((3, 2, 1, 0))
return str(id), \
torch.FloatTensor(test_img)
def __len__(self):
return self.len
def run_check_datasets():
dataset = TReNDsDataset(mode='test')
for m in range(len(dataset)):
tmp = dataset[m]
print(m)
def convert_mat2nii2npy():
def get_data(filename):
with h5py.File(filename, 'r') as f:
subject_data = f['SM_feature'][()]
# print(subject_data.shape)
# It's necessary to reorient the axes, since h5py flips axis order
subject_data = np.moveaxis(subject_data, [0, 1, 2, 3], [3, 2, 1, 0])
return subject_data
# train_root = '{}/fMRI_train/'.format(root)
# train_npy_root = '{}/fMRI_train_npy/'.format(root)
train_root = '{}/fMRI_test/'.format(root)
train_npy_root = '{}/fMRI_test_npy/'.format(root)
os.makedirs(train_npy_root, exist_ok=True)
mats = os.listdir(train_root)
mats = [mat for mat in mats if '.mat' in mat]
random.shuffle(mats)
for mat in tqdm(mats):
mat_path = os.path.join(train_root, mat)
if os.path.exists(mat_path):
print(mat_path)
npy_path = os.path.join(train_npy_root, mat.replace('.mat','.npy'))
if os.path.exists(npy_path):
print(npy_path, 'exist')
else:
data = get_data(mat_path)
print(npy_path,data.shape)
np.save(npy_path,data.astype(np.float16))
if __name__ == '__main__':
run_check_datasets()
# convert_mat2nii2npy()