[2ceedb]: / 3DNet / train_TReNDs.py

Download this file

242 lines (192 with data), 7.9 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
'''
Written by SeuTao
'''
import os
import time
import numpy as np
import torch
from setting import parse_opts
from torch.utils.data import DataLoader
from datasets.TReNDs import TReNDsDataset
from model import generate_model
from tqdm import tqdm
def metric(y_true, y_pred):
return np.mean(np.sum(np.abs(y_true - y_pred), axis=0) / np.sum(y_true, axis=0))
def weighted_nae(inp, targ):
W = torch.FloatTensor([0.3, 0.175, 0.175, 0.175, 0.175])
return torch.mean(torch.matmul(torch.abs(inp - targ), W.cuda() / torch.mean(targ, axis=0)))
def valid(data_loader, model, sets):
# settings
print("validation")
model.eval()
y_pred = []
y_true = []
loss_ave = []
with torch.no_grad():
for batch_data in tqdm(data_loader):
# getting data batch
volumes, label = batch_data
if not sets.no_cuda:
volumes = volumes.cuda()
label = label.cuda()
logits = model(volumes)
# calculating loss
loss_value = weighted_nae(logits, label)
y_pred.append(logits.data.cpu().numpy())
y_true.append(label.data.cpu().numpy())
loss_ave.append(loss_value.data.cpu().numpy())
print('valid loss', np.mean(loss_ave))
y_pred = np.concatenate(y_pred,axis=0)
y_true = np.concatenate(y_true,axis=0)
domain = ['age', 'domain1_var1', 'domain1_var2', 'domain2_var1', 'domain2_var2']
w = [0.3, 0.175, 0.175, 0.175, 0.175]
m_all = 0
for i in range(5):
m = metric(y_true[:,i], y_pred[:,i])
print(domain[i],'metric:', m)
m_all += m*w[i]
print('all_metric:', m_all)
model.train()
return np.mean(loss_ave)
def test(data_loader, model, sets, save_path):
# settings
print("validation")
model.eval()
y_pred = []
ids_all = []
with torch.no_grad():
for batch_data in tqdm(data_loader):
# getting data batch
ids, volumes = batch_data
if not sets.no_cuda:
volumes = volumes.cuda()
logits = model(volumes)
y_pred.append(logits.data.cpu().numpy())
ids_all += ids
y_pred = np.concatenate(y_pred, axis=0)
np.savez_compressed(save_path,
y_pred = y_pred,
ids = ids_all)
print(y_pred.shape)
def train(train_loader,valid_loader, model, optimizer, ajust_lr, total_epochs, save_interval, save_folder, sets):
f = open(os.path.join(save_folder,'log.txt'),'w')
# settings
batches_per_epoch = len(train_loader)
print("Current setting is:")
print(sets)
print("\n\n")
model.train()
train_time_sp = time.time()
valid_loss = 99999
min_loss = 99999
for epoch in range(total_epochs):
rate = ajust_lr(optimizer, epoch)
# log.info('lr = {}'.format(scheduler.get_lr()))
for batch_id, batch_data in enumerate(train_loader):
# getting data batch
batch_id_sp = epoch * batches_per_epoch
volumes, label = batch_data
if not sets.no_cuda:
volumes = volumes.cuda()
label = label.cuda()
optimizer.zero_grad()
logits = model(volumes)
# calculating loss
loss = weighted_nae(logits, label)
loss.backward()
optimizer.step()
avg_batch_time = (time.time() - train_time_sp) / (1 + batch_id_sp)
log_ = '{} Batch: {}-{} ({}), ' \
'lr = {:.5f}, ' \
'train loss = {:.3f}, ' \
'valid loss = {:.3f}, ' \
'avg_batch_time = {:.3f} '.format(sets.model_name, epoch, batch_id, batch_id_sp, rate, loss.item(), valid_loss, avg_batch_time)
print(log_)
f.write(log_ + '\n')
f.flush()
if 1:
valid_loss = valid(valid_loader,model,sets)
if valid_loss < min_loss:
min_loss = valid_loss
model_save_path = '{}/epoch_{}_batch_{}_loss_{}.pth.tar'.format(save_folder, epoch, batch_id, valid_loss)
model_save_dir = os.path.dirname(model_save_path)
if not os.path.exists(model_save_dir):
os.makedirs(model_save_dir)
log_ = 'Save checkpoints: epoch = {}, batch_id = {}'.format(epoch, batch_id)
print(log_)
f.write(log_ + '\n')
torch.save({'ecpoch': epoch,
'batch_id': batch_id,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict()},
model_save_path)
print('Finished training')
f.close()
if __name__ == '__main__':
sets = parse_opts()
sets.no_cuda = False
sets.resume_path = None
sets.pretrain_path = None
sets.batch_size = 32
sets.num_workers = 16
sets.model_depth = 10
sets.resnet_shortcut = 'A'
sets.n_epochs = 50
sets.fold_index = 1
sets.model_name = r'prue_3dconv'
sets.save_folder = r'./TReNDs/{}/' \
r'models_{}_{}_{}_fold_{}'.format(sets.model_name, 'resnet',sets.model_depth,sets.resnet_shortcut,sets.fold_index)
if not os.path.exists(sets.save_folder):
os.makedirs(sets.save_folder)
# getting model
torch.manual_seed(sets.manual_seed)
model, parameters = generate_model(sets)
print(model)
# optimizer
def get_optimizer(net):
optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, net.parameters()), lr=3e-4, betas=(0.9, 0.999), eps=1e-08)
def ajust_lr(optimizer, epoch):
if epoch < 24 :
lr = 3e-4
elif epoch < 36:
lr = 1e-4
else:
lr = 1e-5
for p in optimizer.param_groups:
p['lr'] = lr
return lr
rate = ajust_lr(optimizer, 0)
return optimizer, ajust_lr
optimizer, ajust_lr = get_optimizer(model)
# train from resume
if sets.resume_path:
if os.path.isfile(sets.resume_path):
print("=> loading checkpoint '{}'".format(sets.resume_path))
checkpoint = torch.load(sets.resume_path)
model.load_state_dict(checkpoint['state_dict'])
# getting data
sets.phase = 'train'
if sets.no_cuda:
sets.pin_memory = False
else:
sets.pin_memory = True
train_dataset = TReNDsDataset(mode='train', fold_index=sets.fold_index)
train_loader = DataLoader(train_dataset, batch_size=sets.batch_size,
shuffle=True, num_workers=sets.num_workers,
pin_memory=sets.pin_memory,drop_last=True)
valid_dataset = TReNDsDataset(mode='valid', fold_index=sets.fold_index)
valid_loader = DataLoader(valid_dataset, batch_size=sets.batch_size,
shuffle=False, num_workers=sets.num_workers,
pin_memory=sets.pin_memory, drop_last=False)
# # training
train(train_loader, valid_loader,model, optimizer,ajust_lr,
total_epochs=sets.n_epochs,
save_interval=sets.save_intervals,
save_folder=sets.save_folder, sets=sets)
# # validate
# valid(valid_loader, model, sets)
test_dataset = TReNDsDataset(mode='test', fold_index=sets.fold_index)
test_loader = DataLoader(test_dataset, batch_size=sets.batch_size,
shuffle=False, num_workers=sets.num_workers,
pin_memory=sets.pin_memory, drop_last=False)
test(test_loader, model, sets, sets.resume_path.replace('.pth.tar','.npz'))