Switch to side-by-side view

--- a/README.md
+++ b/README.md
@@ -1,110 +1,110 @@
-# A deep learning algorithm for automatic detection and classification of acute intracranial hemorrhages in head CT scans
-
-[Journal Link](https://doi.org/10.1016/j.nicl.2021.102785)
-
-# RSNA Intracranial Hemorrhage Detection
-This is the source code for the first place solution to the [RSNA2019 Intracranial Hemorrhage Detection Challenge](https://www.kaggle.com/c/rsna-intracranial-hemorrhage-detection).
-
-Solution write up: [Link](https://www.kaggle.com/c/rsna-intracranial-hemorrhage-detection/discussion/117210#latest-682640).
-
-## Solutuoin Overview
-![image](https://github.com/SeuTao/RSNA2019_1st_place_solution/blob/master/docs/overview.png)
-
-#### Dependencies
-- opencv-python==3.4.2
-- scikit-image==0.14.0
-- scikit-learn==0.19.1
-- scipy==1.1.0
-- torch==1.1.0
-- torchvision==0.2.1
-
-### CODE
-- 2DNet
-- 3DNet
-- SequenceModel
-
-# 2D CNN Classifier
-
-## Pretrained models
-- seresnext101_256*256 [\[seresnext101\]](https://drive.google.com/open?id=18Py5eW1E4hSbTT6658IAjQjJGS28grdx)
-- densenet169_256*256 [\[densenet169\]](https://drive.google.com/open?id=1vCsX12pMZxBmuGGNVnjFFiZ-5u5vD-h6)
-- densenet121_512*512 [\[densenet121\]](https://drive.google.com/open?id=1o0ok-6I2hY1ygSWdZOKmSD84FsEpgDaa)
-
-## Preprocessing
-![image](https://github.com/SeuTao/RSNA2019_1st_place_solution/blob/master/docs/preprocessing.png)
-
-Prepare csv file:
-
-download data.zip:  https://drive.google.com/open?id=1buISR_b3HQDU4KeNc_DmvKTYJ1gvj5-3
-
-1. convert dcm to png
-```
-python3 prepare_data.py -dcm_path stage_1_train_images -png_path train_png
-python3 prepare_data.py -dcm_path stage_1_test_images -png_path train_png
-python3 prepare_data.py -dcm_path stage_2_test_images -png_path test_png
-```
-
-2. train
-
-```
-python3 train_model.py -backbone DenseNet121_change_avg -img_size 256 -tbs 256 -vbs 128 -save_path DenseNet121_change_avg_256
-python3 train_model.py -backbone DenseNet169_change_avg -img_size 256 -tbs 256 -vbs 128 -save_path DenseNet169_change_avg_256
-python3 train_model.py -backbone se_resnext101_32x4d -img_size 256 -tbs 80 -vbs 40 -save_path se_resnext101_32x4d_256
-```
-
-3. predict
-```
-python3 predict.py -backbone DenseNet121_change_avg -img_size 256 -tbs 4 -vbs 4 -spth DenseNet121_change_avg_256
-python3 predict.py -backbone DenseNet169_change_avg -img_size 256 -tbs 4 -vbs 4 -spth DenseNet169_change_avg_256
-python3 predict.py -backbone se_resnext101_32x4d -img_size 256 -tbs 4 -vbs 4 -spth se_resnext101_32x4d_256
-```
-
-After single models training,  the oof files will be saved in ./SingleModelOutput(three folders for three pipelines). 
-
-After training the sequence model, the final submission will be ./FinalSubmission/final_version/submission_tta.csv
-
-# Sequence Models
-
-## Sequence Model 1
-![image](https://github.com/SeuTao/RSNA2019_1st_place_solution/blob/master/docs/s1.png)
-
-## Sequence Model 2
-![image](https://github.com/SeuTao/RSNA2019_1st_place_solution/blob/master/docs/s2.png)
-
-#### Path Setup
-Set data path in ./setting.py
-
-#### download 
-
-download [\[csv.zip\]](https://drive.google.com/open?id=1qYi4k-DuOLJmyZ7uYYrnomU2U7MrYRBV)
-
-download [\[feature samples\]](https://drive.google.com/open?id=1lJgzZoHFu6HI4JBktkGY3qMk--28IUkC)
-
-#### Sequence Model Training
-```
-CUDA_VISIBLE_DEVICES=0 python main.py
-```
-The final submissions are in the folder ../FinalSubmission/version2/submission_tta.csv
-
-## Final Submission
-### Private Leaderboard:
-- 0.04383
-## Reference
-If you find our work useful in your research or if you use parts of this code please consider citing our [paper](https://doi.org/10.1016/j.nicl.2021.102785):
-
-```@article{wang2021deep,
-  title={A deep learning algorithm for automatic detection and classification of acute intracranial hemorrhages in head CT scans},
-  author={Wang, Xiyue and Shen, Tao and Yang, Sen and Lan, Jun and Xu, Yanming and Wang, Minghui and Zhang, Jing and Han, Xiao},
-  journal={NeuroImage: Clinical},
-  volume={32},
-  pages={102785},
-  year={2021},
-  publisher={Elsevier}
-} 
-```
-
-
-### TODO
-- [ ] Pre-trained models
-- [ ] 2DCNN + SeqModel end-to-end training 
-- [ ] 3DCNN training
+# A deep learning algorithm for automatic detection and classification of acute intracranial hemorrhages in head CT scans
+
+[Journal Link](https://doi.org/10.1016/j.nicl.2021.102785)
+
+# RSNA Intracranial Hemorrhage Detection
+This is the source code for the first place solution to the [RSNA2019 Intracranial Hemorrhage Detection Challenge](https://www.kaggle.com/c/rsna-intracranial-hemorrhage-detection).
+
+Solution write up: [Link](https://www.kaggle.com/c/rsna-intracranial-hemorrhage-detection/discussion/117210#latest-682640).
+
+## Solutuoin Overview
+![image](https://github.com/SeuTao/RSNA2019_1st_place_solution/blob/master/docs/overview.png?raw=true)
+
+#### Dependencies
+- opencv-python==3.4.2
+- scikit-image==0.14.0
+- scikit-learn==0.19.1
+- scipy==1.1.0
+- torch==1.1.0
+- torchvision==0.2.1
+
+### CODE
+- 2DNet
+- 3DNet
+- SequenceModel
+
+# 2D CNN Classifier
+
+## Pretrained models
+- seresnext101_256*256 [\[seresnext101\]](https://drive.google.com/open?id=18Py5eW1E4hSbTT6658IAjQjJGS28grdx)
+- densenet169_256*256 [\[densenet169\]](https://drive.google.com/open?id=1vCsX12pMZxBmuGGNVnjFFiZ-5u5vD-h6)
+- densenet121_512*512 [\[densenet121\]](https://drive.google.com/open?id=1o0ok-6I2hY1ygSWdZOKmSD84FsEpgDaa)
+
+## Preprocessing
+![image](https://github.com/SeuTao/RSNA2019_1st_place_solution/blob/master/docs/preprocessing.png?raw=true)
+
+Prepare csv file:
+
+download data.zip:  https://drive.google.com/open?id=1buISR_b3HQDU4KeNc_DmvKTYJ1gvj5-3
+
+1. convert dcm to png
+```
+python3 prepare_data.py -dcm_path stage_1_train_images -png_path train_png
+python3 prepare_data.py -dcm_path stage_1_test_images -png_path train_png
+python3 prepare_data.py -dcm_path stage_2_test_images -png_path test_png
+```
+
+2. train
+
+```
+python3 train_model.py -backbone DenseNet121_change_avg -img_size 256 -tbs 256 -vbs 128 -save_path DenseNet121_change_avg_256
+python3 train_model.py -backbone DenseNet169_change_avg -img_size 256 -tbs 256 -vbs 128 -save_path DenseNet169_change_avg_256
+python3 train_model.py -backbone se_resnext101_32x4d -img_size 256 -tbs 80 -vbs 40 -save_path se_resnext101_32x4d_256
+```
+
+3. predict
+```
+python3 predict.py -backbone DenseNet121_change_avg -img_size 256 -tbs 4 -vbs 4 -spth DenseNet121_change_avg_256
+python3 predict.py -backbone DenseNet169_change_avg -img_size 256 -tbs 4 -vbs 4 -spth DenseNet169_change_avg_256
+python3 predict.py -backbone se_resnext101_32x4d -img_size 256 -tbs 4 -vbs 4 -spth se_resnext101_32x4d_256
+```
+
+After single models training,  the oof files will be saved in ./SingleModelOutput(three folders for three pipelines). 
+
+After training the sequence model, the final submission will be ./FinalSubmission/final_version/submission_tta.csv
+
+# Sequence Models
+
+## Sequence Model 1
+![image](https://github.com/SeuTao/RSNA2019_1st_place_solution/blob/master/docs/s1.png)
+
+## Sequence Model 2
+![image](https://github.com/SeuTao/RSNA2019_1st_place_solution/blob/master/docs/s2.png)
+
+#### Path Setup
+Set data path in ./setting.py
+
+#### download 
+
+download [\[csv.zip\]](https://drive.google.com/open?id=1qYi4k-DuOLJmyZ7uYYrnomU2U7MrYRBV)
+
+download [\[feature samples\]](https://drive.google.com/open?id=1lJgzZoHFu6HI4JBktkGY3qMk--28IUkC)
+
+#### Sequence Model Training
+```
+CUDA_VISIBLE_DEVICES=0 python main.py
+```
+The final submissions are in the folder ../FinalSubmission/version2/submission_tta.csv
+
+## Final Submission
+### Private Leaderboard:
+- 0.04383
+## Reference
+If you find our work useful in your research or if you use parts of this code please consider citing our [paper](https://doi.org/10.1016/j.nicl.2021.102785):
+
+```@article{wang2021deep,
+  title={A deep learning algorithm for automatic detection and classification of acute intracranial hemorrhages in head CT scans},
+  author={Wang, Xiyue and Shen, Tao and Yang, Sen and Lan, Jun and Xu, Yanming and Wang, Minghui and Zhang, Jing and Han, Xiao},
+  journal={NeuroImage: Clinical},
+  volume={32},
+  pages={102785},
+  year={2021},
+  publisher={Elsevier}
+} 
+```
+
+
+### TODO
+- [ ] Pre-trained models
+- [ ] 2DCNN + SeqModel end-to-end training 
+- [ ] 3DCNN training