This repository contains 3d ConvNet Solutions for Medical Image Challenges.
The project is based on Tencent MedicalNet and MONAI framework
which provides a series of 3D-ResNet pre-trained models and domain-optimized foundational capabilities for developing healthcare imaging training workflows.
I provide a baseline 3DConvNet code for TReNDS Neuroimaging challenge host on Kaggle.
/
|--datasets/:Data preprocessing module
| |--brains18.py:MRBrainS18 data preprocessing script
| |--RSNA19.py:RSNA19 data preprocessing script
| |--TReNDs.py:TReNDs data preprocessing script
|--models/:Model construction module
| |--resnet.py:3D-ResNet network build script
|--utils/:tools
| |--logger.py:Logging script
|--toy_data/:For CI test
|--data/:Data storage module
| |--MRBrainS18/:MRBrainS18 dataset
| | |--images/:source image named with patient ID
| | |--labels/:mask named with patient ID
| |--train.txt: training data lists
| |--val.txt: validation data lists
|--pretrain/:Pre-trained models storage module
|--model.py: Network processing script
|--setting.py: Parameter setting script
|--train_MRBrainS18.py: MRBrainS18 training demo script
|--train_TReNDs.py: TReNDs training script
|--train_RSNA19.py
|--README.md
Download data & pre-trained models from Tencent MedicalNet official repo (Google Drive or Tencent Weiyun)
Model name : parameters settings
resnet_10.pth: --model resnet --model_depth 10 --resnet_shortcut B
resnet_18.pth: --model resnet --model_depth 18 --resnet_shortcut A
resnet_34.pth: --model resnet --model_depth 34 --resnet_shortcut A
resnet_50.pth: --model resnet --model_depth 50 --resnet_shortcut B
resnet_101.pth: --model resnet --model_depth 101 --resnet_shortcut B
resnet_152.pth: --model resnet --model_depth 152 --resnet_shortcut B
resnet_200.pth: --model resnet --model_depth 200 --resnet_shortcut B
Network | fold 0 | fold 1 | fold 2 | fold 3 | fold 4 |
---|---|---|---|---|---|
3D-Resnet10 Train from scratch | 0.1700 | 0.1685 | 0.1729 | 0.1734 | 0.1734 |
3D-Resnet10 MedicalNet pretrained | 0.1694 | 0.1691 | 0.1726 | 0.1746 | 0.1734 |
GPU:NVIDIA Tesla P40
Network | Paramerers (M) | Running time (s) |
---|---|---|
3D-ResNet10 | 14.36 | 0.18 |
3D-ResNet18 | 32.99 | 0.19 |
3D-ResNet34 | 63.31 | 0.22 |
3D-ResNet50 | 46.21 | 0.21 |
3D-ResNet101 | 85.31 | 0.29 |
3D-ResNet152 | 117.51 | 0.34 |
3D-ResNet200 | 126.74 | 0.45 |