[2bae97]: / 2DNet / src / train.py

Download this file

274 lines (222 with data), 10.5 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
import os
import time
import pandas as pd
import gc
import cv2
import csv
import random
from sklearn.metrics.ranking import roc_auc_score
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
from torch.optim.lr_scheduler import ReduceLROnPlateau,MultiStepLR
import torch.utils.data
import torch.utils.data as data
from net.models import *
from dataset.dataset import *
from tuils.tools import *
from tuils.lrs_scheduler import WarmRestart, warm_restart, AdamW, RAdam
from tuils.loss_function import *
import torch.nn.functional as F
from collections import OrderedDict
import warnings
warnings.filterwarnings('ignore')
torch.manual_seed(1992)
torch.cuda.manual_seed(1992)
np.random.seed(1992)
random.seed(1992)
from PIL import ImageFile
import sklearn
import copy
torch.backends.cudnn.benchmark = True
import argparse
def epochVal(model, dataLoader, loss_cls, c_val, val_batch_size):
model.eval ()
lossValNorm = 0
valLoss = 0
outGT = torch.FloatTensor().cuda()
outPRED = torch.FloatTensor().cuda()
for i, (input, target) in enumerate (dataLoader):
if i == 0:
ss_time = time.time()
print(str(i) + '/' + str(int(len(c_val)/val_batch_size)) + ' ' + str((time.time()-ss_time)/(i+1)), end='\r')
target = target.view(-1, 6).contiguous().cuda()
outGT = torch.cat((outGT, target), 0)
varInput = torch.autograd.Variable(input)
varTarget = torch.autograd.Variable(target.contiguous().cuda())
varOutput = model(varInput)
lossvalue = loss_cls(varOutput, varTarget)
valLoss = valLoss + lossvalue.item()
varOutput = varOutput.sigmoid()
outPRED = torch.cat((outPRED, varOutput.data), 0)
lossValNorm += 1
valLoss = valLoss / lossValNorm
auc = computeAUROC(outGT, outPRED, 6)
auc = [round(x, 4) for x in auc]
loss_list, loss_sum = weighted_log_loss(outPRED, outGT)
return valLoss, auc, loss_list, loss_sum
def train(model_name, image_size):
if not os.path.exists(snapshot_path):
os.makedirs(snapshot_path)
header = ['Epoch', 'Learning rate', 'Time', 'Train Loss', 'Val Loss']
if not os.path.isfile(snapshot_path + '/log.csv'):
with open(snapshot_path + '/log.csv', 'a', newline='') as f:
writer = csv.writer(f)
writer.writerow(header)
df_all = pd.read_csv(csv_path)
kfold_path_train = '../data/fold_5_by_study/'
kfold_path_val = '../data/fold_5_by_study_image/'
for num_fold in range(5):
print('fold_num:',num_fold)
with open(snapshot_path + '/log.csv', 'a', newline='') as f:
writer = csv.writer(f)
writer.writerow([num_fold])
f_train = open(kfold_path_train + 'fold' + str(num_fold) + '/train.txt', 'r')
f_val = open(kfold_path_val + 'fold' + str(num_fold) + '/val.txt', 'r')
c_train = f_train.readlines()
c_val = f_val.readlines()
f_train.close()
f_val.close()
c_train = [s.replace('\n', '') for s in c_train]
c_val = [s.replace('\n', '') for s in c_val]
# for debug
# c_train = c_train[0:1000]
# c_val = c_val[0:4000]
print('train dataset study num:', len(c_train), ' val dataset image num:', len(c_val))
with open(snapshot_path + '/log.csv', 'a', newline='') as f:
writer = csv.writer(f)
writer.writerow(['train dataset:', len(c_train), ' val dataset:', len(c_val)])
writer.writerow(['train_batch_size:', train_batch_size, 'val_batch_size:', val_batch_size])
train_transform, val_transform = generate_transforms(image_size)
train_loader, val_loader = generate_dataset_loader(df_all, c_train, train_transform, train_batch_size, c_val, val_transform, val_batch_size, workers)
model = eval(model_name+'()')
model = model.cuda()
optimizer = torch.optim.Adam(model.parameters(), lr=0.0005, betas=(0.9, 0.999), eps=1e-08, weight_decay=0.00002)
scheduler = WarmRestart(optimizer, T_max=5, T_mult=1, eta_min=1e-5)
model = torch.nn.DataParallel(model)
loss_cls = torch.nn.BCEWithLogitsLoss(pos_weight = torch.FloatTensor([1.0, 1.0, 1.0, 1.0, 1.0, 1.0]).cuda())
trMaxEpoch = 80
for epochID in range (0, trMaxEpoch):
epochID = epochID + 0
start_time = time.time()
model.train()
trainLoss = 0
lossTrainNorm = 10
if epochID < 10:
pass
elif epochID < 80:
if epochID != 10:
scheduler.step()
scheduler = warm_restart(scheduler, T_mult=2)
else:
optimizer.param_groups[0]['lr'] = 1e-5
for batchID, (input, target) in enumerate (train_loader):
if batchID == 0:
ss_time = time.time()
print(str(batchID) + '/' + str(int(len(c_train)/train_batch_size)) + ' ' + str((time.time()-ss_time)/(batchID+1)), end='\r')
varInput = torch.autograd.Variable(input)
target = target.view(-1, 6).contiguous().cuda()
varTarget = torch.autograd.Variable(target.contiguous().cuda())
varOutput = model(varInput)
lossvalue = loss_cls(varOutput, varTarget)
trainLoss = trainLoss + lossvalue.item()
lossTrainNorm = lossTrainNorm + 1
lossvalue.backward()
optimizer.step()
optimizer.zero_grad()
del lossvalue
trainLoss = trainLoss / lossTrainNorm
if (epochID+1)%5 == 0 or epochID > 79 or epochID == 0:
valLoss, auc, loss_list, loss_sum = epochVal(model, val_loader, loss_cls, c_val, val_batch_size)
epoch_time = time.time() - start_time
if (epochID+1)%5 == 0 or epochID > 79:
torch.save({'epoch': epochID + 1, 'state_dict': model.state_dict(), 'valLoss': valLoss}, snapshot_path + '/model_epoch_' + str(epochID) + '_' + str(num_fold) + '.pth')
result = [epochID,
round(optimizer.state_dict()['param_groups'][0]['lr'], 6),
round(epoch_time, 0),
round(trainLoss, 5),
round(valLoss, 5),
'auc:', auc,
'loss:',loss_list,
loss_sum]
print(result)
with open(snapshot_path + '/log.csv', 'a', newline='') as f:
writer = csv.writer(f)
writer.writerow(result)
del model
def valid_snapshot(model_name, image_size):
dir = r'./DenseNet121_change_avg_256'
if not os.path.exists(snapshot_path):
os.makedirs(snapshot_path)
header = ['Epoch', 'Learning rate', 'Time', 'Train Loss', 'Val Loss']
if not os.path.isfile(snapshot_path + '/log.csv'):
with open(snapshot_path + '/log.csv', 'a', newline='') as f:
writer = csv.writer(f)
writer.writerow(header)
df_all = pd.read_csv(csv_path)
kfold_path_val = '../data/fold_5_by_study_image/'
loss_cls = torch.nn.BCEWithLogitsLoss(pos_weight=torch.FloatTensor([1.0, 1.0, 1.0, 1.0, 1.0, 1.0]).cuda())
for num_fold in range(5):
print('fold_num:', num_fold)
ckpt = r'model_epoch_best_'+str(num_fold)+'.pth'
ckpt = os.path.join(dir,ckpt)
with open(snapshot_path + '/log.csv', 'a', newline='') as f:
writer = csv.writer(f)
writer.writerow([num_fold])
f_val = open(kfold_path_val + 'fold' + str(num_fold) + '/val.txt', 'r')
c_val = f_val.readlines()
f_val.close()
c_val = [s.replace('\n', '') for s in c_val]
print(' val dataset image num:', len(c_val))
val_transform = albumentations.Compose([
albumentations.Resize(image_size, image_size),
albumentations.Normalize(mean=(0.456, 0.456, 0.456), std=(0.224, 0.224, 0.224), max_pixel_value=255.0,
p=1.0)
])
val_dataset = RSNA_Dataset_val_by_study_context(df_all, c_val, val_transform)
val_loader = torch.utils.data.DataLoader(
val_dataset,
batch_size=val_batch_size,
shuffle=False,
num_workers=workers,
pin_memory=True,
drop_last=False)
model = eval(model_name + '()')
model = model.cuda()
model = torch.nn.DataParallel(model)
if ckpt is not None:
print(ckpt)
model.load_state_dict(torch.load(ckpt, map_location=lambda storage, loc: storage)["state_dict"])
valLoss, auc, loss_list, loss_sum = epochVal(model, val_loader, loss_cls, c_val, val_batch_size)
result = [round(valLoss, 5),
'auc:', auc,
'loss:', loss_list,
loss_sum]
with open(ckpt + '_log.csv', 'a', newline='') as f:
writer = csv.writer(f)
writer.writerow(result)
print(result)
if __name__ == '__main__':
csv_path = '../data/stage1_train_cls.csv'
parser = argparse.ArgumentParser(description=__doc__, formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument("-backbone", "--backbone", type=str, default='DenseNet121_change_avg', help='backbone')
parser.add_argument("-img_size", "--Image_size", type=int, default=256, help='image_size')
parser.add_argument("-tbs", "--train_batch_size", type=int, default=32, help='train_batch_size')
parser.add_argument("-vbs", "--val_batch_size", type=int, default=32, help='val_batch_size')
parser.add_argument("-save_path", "--model_save_path", type=str,
default='DenseNet169_change_avg', help='epoch')
args = parser.parse_args()
Image_size = args.Image_size
train_batch_size = args.train_batch_size
val_batch_size = args.val_batch_size
workers = 24
backbone = args.backbone
print(backbone)
print('image size:', Image_size)
print('train batch size:', train_batch_size)
print('val batch size:', val_batch_size)
snapshot_path = 'data_test/' + args.model_save_path.replace('\n', '').replace('\r', '')
train(backbone, Image_size)
# valid_snapshot(backbone, Image_size)