[f45789]: / src / config.py

Download this file

192 lines (154 with data), 6.6 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import sys
sys.path.append('.')
import yaml
import os
from shutil import rmtree
import torch
import torchvision.transforms as transforms
from src.data import get_datasets, get_dataloaders
from src.model import initialize_model
from src.optimizer import get_optimizer
from src.criterion import get_criterion
from src.scheduler import get_scheduler
import yaml
def get_transforms(conf):
model_name = conf['model']['name']
if 'efficientdet' in model_name:
train_transform = transforms.Compose([transforms.Resize((512,512)),
transforms.RandomVerticalFlip(p=0.5),
transforms.RandomHorizontalFlip(p=0.5),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
valid_transform = transforms.Compose([transforms.Resize((512,512)),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
test_transform = transforms.Compose([transforms.Resize((512,512)),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
elif 'resnet' in model_name:
train_transform = transforms.Compose([transforms.Resize((224,224)),
transforms.RandomVerticalFlip(p=0.5),
transforms.RandomHorizontalFlip(p=0.5),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
valid_transform = transforms.Compose([transforms.Resize((224,224)),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
test_transform = transforms.Compose([transforms.Resize((224,224)),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
return train_transform, valid_transform, test_transform
def get_experiment_dir(conf):
experiments_dir = conf['experiments_dir']
if not os.path.exists(experiments_dir):
os.makedirs(experiments_dir)
experiment_dir = os.path.join(conf['experiments_dir'],
conf['experiment_code'])
if conf['task'] == 'training':
if not os.path.exists(experiment_dir):
os.makedirs(experiment_dir)
save_conf = os.path.join(experiment_dir, conf['task'] + '.yaml')
with open(save_conf, 'w') as fp:
yaml.dump(conf, fp)
else:
print(f'Experiment dir {experiment_dir} exists.')
exit()
return experiment_dir
def get_test_config(conf):
# Check if results dir exists and create it
results_dir = conf['results_dir']
if os.path.exists(results_dir): rmtree(results_dir)
os.makedirs(results_dir)
# Get transforms
transforms = get_transforms(conf)
conf['train_transform'] = transforms[0]
conf['valid_transform'] = transforms[1]
conf['test_transform'] = transforms[2]
# Get datasets
dataset_name = conf['data']['name']
print(f'Dataset: {dataset_name}')
_, _, conf['test_dataset'] = get_datasets(conf)
# Check if GPU is available
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
conf['device'] = device
print(f'Device: {device}')
# Initialize model
model_name = conf['model']['name']
print(f'Model: {model_name}')
conf['model'] = initialize_model(conf)
return conf
def get_config(yaml_path):
# Load YAML conf
conf = yaml.safe_load(open(yaml_path, 'r'))
# Task
task = conf['task']
if task in ['training', 'evaluation']:
print(f'Task: {task}')
elif task == 'testing':
return get_test_config(conf)
else:
print(f'Task {task} not supported.')
exit()
# Get experiment directory
experiment_dir = get_experiment_dir(conf)
conf['experiment_dir'] = experiment_dir
print(f'Experiment directory: {experiment_dir}')
# Get transforms
transforms = get_transforms(conf)
conf['train_transform'] = transforms[0]
conf['valid_transform'] = transforms[1]
conf['test_transform'] = transforms[2]
# Get datasets
dataset_name = conf['data']['name']
print(f'Dataset: {dataset_name}')
datasets = get_datasets(conf)
conf['train_dataset'] = datasets[0]
conf['valid_dataset'] = datasets[1]
conf['test_dataset'] = datasets[2]
conf['patients_dataset'] = datasets[3]
# Get dataloaders
dataloaders = get_dataloaders(conf)
train_dataloader = dataloaders[0]
valid_dataloader = dataloaders[1]
test_dataloader = dataloaders[2]
conf['dataloaders'] = {'train':train_dataloader,
'valid':valid_dataloader,
'test': test_dataloader}
# Check if GPU is available
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
conf['device'] = device
print(f'Device: {device}')
# Initialize model
model_name = conf['model']['name']
print(f'Model: {model_name}')
conf['model'] = initialize_model(conf)
# Only in traning task
if task == 'training':
# Get optimizer
optimizer_name = conf['optimizer']['name']
print(f'Optimizer: {optimizer_name}')
conf['optimizer'] = get_optimizer(conf)
# Get criterion
criterion_name = conf['criterion']['name']
print(f'Criterion: {criterion_name}')
conf['criterion'] = get_criterion(conf)
# Get scheduler
scheduler_name = conf['scheduler']['name']
print(f'Scheduler: {scheduler_name}')
conf['scheduler'] = get_scheduler(conf)
# Only in evaluation task
elif task == 'evaluation':
path = os.path.join(conf['experiment_dir'], 'best_weights.pt')
if os.path.exists(path):
print(f'Loading weights from {path}')
conf['best_weights'] = torch.load(path)
else:
print(f'Experiment weights {path} not found.')
exit()
return conf