|
a |
|
b/src/optimizer.py |
|
|
1 |
import torch.optim as optim |
|
|
2 |
|
|
|
3 |
def get_params_to_update(model, print_params=True): |
|
|
4 |
# Gather the parameters to be optimized/updated in this run. If we are |
|
|
5 |
# finetuning we will be updating all parameters. However, if we are |
|
|
6 |
# doing feature extract method, we will only update the parameters |
|
|
7 |
# that we have just initialized, i.e. the parameters with requires_grad |
|
|
8 |
# is True. |
|
|
9 |
params_to_update = [] |
|
|
10 |
if print_params: print("Params to learn:") |
|
|
11 |
for name, param in model.named_parameters(): |
|
|
12 |
if param.requires_grad == True: |
|
|
13 |
params_to_update.append(param) |
|
|
14 |
if print_params: print(name) |
|
|
15 |
return params_to_update |
|
|
16 |
|
|
|
17 |
def get_optimizer(conf): |
|
|
18 |
model = conf['model'] |
|
|
19 |
print_params=conf['optimizer']['print_params'] |
|
|
20 |
params_to_update = get_params_to_update(model=model, |
|
|
21 |
print_params=print_params) |
|
|
22 |
|
|
|
23 |
optimizer = conf['optimizer']['name'] |
|
|
24 |
# SGD |
|
|
25 |
if optimizer == 'SGD': |
|
|
26 |
lr = conf['optimizer']['lr'] |
|
|
27 |
momentum = conf['optimizer'].get('momentum', 0) |
|
|
28 |
dampening = conf['optimizer'].get('dampening', 0) |
|
|
29 |
weight_decay = conf['optimizer'].get('weight_decay', 0) |
|
|
30 |
nesterov = conf['optimizer'].get('nesterov', False) |
|
|
31 |
optimizer = optim.SGD(params=params_to_update, |
|
|
32 |
lr=lr, |
|
|
33 |
dampening=dampening, |
|
|
34 |
momentum=momentum, |
|
|
35 |
weight_decay=weight_decay, |
|
|
36 |
nesterov=nesterov) |
|
|
37 |
# Adam |
|
|
38 |
elif optimizer == 'Adam': |
|
|
39 |
lr = conf['optimizer'].get('lr', 0.001) |
|
|
40 |
beta0 = conf['optimizer']['beta'].get('beta0', 0.9) |
|
|
41 |
beta1 = conf['optimizer']['beta'].get('beta1', 0.999) |
|
|
42 |
eps=conf['optimizer'].get('eps', 1e-8) |
|
|
43 |
weight_decay = conf['optimizer'].get('weight_decay', 0.0) |
|
|
44 |
amsgrad = conf['optimizer'].get('amsgrad', False) |
|
|
45 |
optimizer = optim.Adam(params=params_to_update, |
|
|
46 |
lr=lr, |
|
|
47 |
betas=(beta0, beta1), |
|
|
48 |
eps=eps, |
|
|
49 |
weight_decay=weight_decay, |
|
|
50 |
amsgrad=amsgrad) |
|
|
51 |
# AdamW |
|
|
52 |
elif optimizer == 'AdamW': |
|
|
53 |
lr = conf['optimizer'].get('lr', 0.001) |
|
|
54 |
beta0 = conf['optimizer']['beta'].get('beta0', 0.9) |
|
|
55 |
beta1 = conf['optimizer']['beta'].get('beta1', 0.999) |
|
|
56 |
eps=conf['optimizer'].get('eps', 1e-8) |
|
|
57 |
weight_decay = conf['optimizer'].get('weight_decay', 0.01) |
|
|
58 |
amsgrad = conf['optimizer'].get('amsgrad', False) |
|
|
59 |
optimizer = optim.AdamW(params=params_to_update, |
|
|
60 |
lr=lr, |
|
|
61 |
betas=(beta0, beta1), |
|
|
62 |
eps=eps, |
|
|
63 |
weight_decay=weight_decay, |
|
|
64 |
amsgrad=amsgrad) |
|
|
65 |
else: |
|
|
66 |
print('Optimizer {optimizer} not supported.') |
|
|
67 |
exit() |
|
|
68 |
return optimizer |