|
a |
|
b/src/evaluation.py |
|
|
1 |
import sys |
|
|
2 |
sys.path.append('.') |
|
|
3 |
from tqdm import tqdm |
|
|
4 |
import torch |
|
|
5 |
from torch.nn import functional as F |
|
|
6 |
from .metrics import roc_auc, pr_auc, calc_metrics |
|
|
7 |
import os |
|
|
8 |
import yaml |
|
|
9 |
import numpy as np |
|
|
10 |
|
|
|
11 |
|
|
|
12 |
def evaluate(conf): |
|
|
13 |
device = conf['device'] |
|
|
14 |
dataloader = conf['dataloaders']['test'] |
|
|
15 |
experiment_dir = conf['experiment_dir'] |
|
|
16 |
classes = conf['data']['classes'] |
|
|
17 |
batch_size = conf['data']['batch_size'] |
|
|
18 |
|
|
|
19 |
model = conf['model'] |
|
|
20 |
model.load_state_dict(conf['best_weights']) |
|
|
21 |
model = model.to(device) |
|
|
22 |
model.eval() |
|
|
23 |
|
|
|
24 |
|
|
|
25 |
ground_truth = None |
|
|
26 |
inferences = None |
|
|
27 |
|
|
|
28 |
batch_bar = tqdm(dataloader, desc='Batch', unit='batches', leave=True) |
|
|
29 |
for inputs, labels in batch_bar: |
|
|
30 |
inputs = inputs.to(device) |
|
|
31 |
with torch.set_grad_enabled(False): |
|
|
32 |
outputs = model(inputs) |
|
|
33 |
|
|
|
34 |
probs = F.softmax(outputs, dim=1)[:, 1] |
|
|
35 |
probs = probs.cpu() |
|
|
36 |
if ground_truth is None and inferences is None: |
|
|
37 |
ground_truth = labels |
|
|
38 |
inferences = probs |
|
|
39 |
else: |
|
|
40 |
ground_truth = torch.cat((ground_truth, labels)) |
|
|
41 |
inferences = torch.cat((inferences, probs)) |
|
|
42 |
|
|
|
43 |
# Calculate save metrics |
|
|
44 |
|
|
|
45 |
metrics = {'metrics0.5': calc_metrics(ground_truth=ground_truth, |
|
|
46 |
inferences=inferences, |
|
|
47 |
threshold=0.5), |
|
|
48 |
'metrics0.7': calc_metrics(ground_truth=ground_truth, |
|
|
49 |
inferences=inferences, |
|
|
50 |
threshold=0.7), |
|
|
51 |
'metrics0.9': calc_metrics(ground_truth=ground_truth, |
|
|
52 |
inferences=inferences, |
|
|
53 |
threshold=0.9), |
|
|
54 |
'roc_auc': roc_auc(ground_truth=ground_truth, |
|
|
55 |
inferences=inferences, |
|
|
56 |
experiment_dir=experiment_dir), |
|
|
57 |
'pr_auc': pr_auc(ground_truth=ground_truth, |
|
|
58 |
inferences=inferences, |
|
|
59 |
experiment_dir=experiment_dir), |
|
|
60 |
} |
|
|
61 |
|
|
|
62 |
patients_dataset = conf['patients_dataset'] |
|
|
63 |
test_patients = patients_dataset.test_patients |
|
|
64 |
patients_bar = tqdm(test_patients.items(), |
|
|
65 |
desc='Patient', unit='patients', leave=True) |
|
|
66 |
|
|
|
67 |
inferences = {1: [], 2:[], 3: [], 4: [], 5: [], |
|
|
68 |
'5%':[], '7.5%': [], '10%': []} |
|
|
69 |
ground_truth = [] |
|
|
70 |
for patient, patient_data in patients_bar: |
|
|
71 |
patient_IH = patient_data['IH'] # If the patient has IH or not |
|
|
72 |
slices = patient_data['slices_IH'] + patient_data['slices_noIH'] |
|
|
73 |
slices_with_IH = 0 |
|
|
74 |
samples = [] |
|
|
75 |
for slice_id in slices: |
|
|
76 |
sample, _ = patients_dataset.getSlice(slice_id) |
|
|
77 |
samples.append(sample) |
|
|
78 |
|
|
|
79 |
for i in range(0, len(samples), batch_size): |
|
|
80 |
batch = torch.stack(samples[i:i+batch_size], dim=0) |
|
|
81 |
batch = batch.to(device) |
|
|
82 |
with torch.set_grad_enabled(False): |
|
|
83 |
outputs = model(batch) |
|
|
84 |
IH_probs = F.softmax(outputs, dim=1)[:, 1] |
|
|
85 |
slices_with_IH += (IH_probs > 0.8).sum() |
|
|
86 |
for num_IH_threshold in [1,2,3,4,5]: |
|
|
87 |
net_IH_prediction = slices_with_IH >= num_IH_threshold |
|
|
88 |
inferences[num_IH_threshold].append(net_IH_prediction) |
|
|
89 |
for percentage, key in [(0.05, '5%'), (0.075, '7.5%'), (0.10, '10%')]: |
|
|
90 |
num_IH_threshold = max(1, round(percentage * len(slices))) |
|
|
91 |
net_IH_prediction = slices_with_IH >= num_IH_threshold |
|
|
92 |
inferences[key].append(net_IH_prediction) |
|
|
93 |
|
|
|
94 |
ground_truth.append(patient_IH) |
|
|
95 |
|
|
|
96 |
|
|
|
97 |
ground_truth = np.array(ground_truth).astype(float) |
|
|
98 |
inferences1 = np.array(inferences[1]).astype(float) |
|
|
99 |
inferences2 = np.array(inferences[2]).astype(float) |
|
|
100 |
inferences3 = np.array(inferences[3]).astype(float) |
|
|
101 |
inferences4 = np.array(inferences[4]).astype(float) |
|
|
102 |
inferences5 = np.array(inferences[5]).astype(float) |
|
|
103 |
inferencesperc1 = np.array(inferences['5%']).astype(float) |
|
|
104 |
inferencesperc2 = np.array(inferences['7.5%']).astype(float) |
|
|
105 |
inferencesperc3 = np.array(inferences['10%']).astype(float) |
|
|
106 |
metrics['patients_metrics (>= 1 IH slice)'] = calc_metrics( |
|
|
107 |
ground_truth=ground_truth, |
|
|
108 |
inferences=inferences1) |
|
|
109 |
metrics['patients_metrics (>= 2 IH slice)'] = calc_metrics( |
|
|
110 |
ground_truth=ground_truth, |
|
|
111 |
inferences=inferences2) |
|
|
112 |
metrics['patients_metrics (>= 3 IH slice)'] = calc_metrics( |
|
|
113 |
ground_truth=ground_truth, |
|
|
114 |
inferences=inferences3) |
|
|
115 |
metrics['patients_metrics (>= 4 IH slice)'] = calc_metrics( |
|
|
116 |
ground_truth=ground_truth, |
|
|
117 |
inferences=inferences4) |
|
|
118 |
metrics['patients_metrics (>= 5 IH slice)'] = calc_metrics( |
|
|
119 |
ground_truth=ground_truth, |
|
|
120 |
inferences=inferences5) |
|
|
121 |
metrics['patients_metrics (>= 5% IH slice)'] = calc_metrics( |
|
|
122 |
ground_truth=ground_truth, |
|
|
123 |
inferences=inferencesperc1) |
|
|
124 |
metrics['patients_metrics (>= 7.5% IH slice)'] = calc_metrics( |
|
|
125 |
ground_truth=ground_truth, |
|
|
126 |
inferences=inferencesperc2) |
|
|
127 |
metrics['patients_metrics (>= 10% IH slice)'] = calc_metrics( |
|
|
128 |
ground_truth=ground_truth, |
|
|
129 |
inferences=inferencesperc3) |
|
|
130 |
|
|
|
131 |
del metrics['patients_metrics (>= 1 IH slice)']['threshold'] |
|
|
132 |
del metrics['patients_metrics (>= 2 IH slice)']['threshold'] |
|
|
133 |
del metrics['patients_metrics (>= 3 IH slice)']['threshold'] |
|
|
134 |
del metrics['patients_metrics (>= 4 IH slice)']['threshold'] |
|
|
135 |
del metrics['patients_metrics (>= 5 IH slice)']['threshold'] |
|
|
136 |
del metrics['patients_metrics (>= 5% IH slice)']['threshold'] |
|
|
137 |
del metrics['patients_metrics (>= 7.5% IH slice)']['threshold'] |
|
|
138 |
del metrics['patients_metrics (>= 10% IH slice)']['threshold'] |
|
|
139 |
|
|
|
140 |
with open(os.path.join(experiment_dir, 'metrics.yaml'), 'w') as fp: |
|
|
141 |
yaml.dump(metrics, fp) |