326 lines (325 with data), 11.4 kB
{
"cells": [
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import pandas as pd\n",
"import os\n",
"import click\n",
"import glob\n",
"import cv2\n",
"import pydicom\n",
"from tqdm import tqdm\n",
"from joblib import delayed, Parallel\n",
"import random\n",
"from PIL import Image\n",
"import pydicom\n",
"from scipy import ndimage\n",
"import pydicom\n",
"from skimage import exposure\n",
"\n",
"base_url = '/home/ubuntu/kaggle/rsna-intracranial-hemorrhage-detection/'\n",
"TRAIN_DIR = '/home/ubuntu/kaggle/rsna-intracranial-hemorrhage-detection/stage_2_train'\n",
"TEST_DIR = '/home/ubuntu/kaggle/rsna-intracranial-hemorrhage-detection/stage_2_test'\n",
"os.listdir(base_url)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"class CropHead(object):\n",
" def __init__(self, offset=10):\n",
" \"\"\"\n",
" Crops the head by labelling the objects in an image and keeping the second largest object (the largest object\n",
" is the background). This method removes most of the headrest\n",
"\n",
" Originally made as a image transform for use with PyTorch, but too slow to run on the fly :(\n",
" :param offset: Pixel offset to apply to the crop so that it isn't too tight\n",
" \"\"\"\n",
" self.offset = offset\n",
"\n",
" def crop_extents(self, img):\n",
" try:\n",
" if type(img) != np.array:\n",
" img_array = np.array(img)\n",
" else:\n",
" img_array = img\n",
"\n",
" labeled_blobs, number_of_blobs = ndimage.label(img_array)\n",
" blob_sizes = np.bincount(labeled_blobs.flatten())\n",
" head_blob = labeled_blobs == np.argmax(blob_sizes[1:]) + 1 # The number of the head blob\n",
" head_blob = np.max(head_blob, axis=-1)\n",
"\n",
" mask = head_blob == 0\n",
" rows = np.flatnonzero((~mask).sum(axis=1))\n",
" cols = np.flatnonzero((~mask).sum(axis=0))\n",
"\n",
" x_min = max([rows.min() - self.offset, 0])\n",
" x_max = min([rows.max() + self.offset + 1, img_array.shape[0]])\n",
" y_min = max([cols.min() - self.offset, 0])\n",
" y_max = min([cols.max() + self.offset + 1, img_array.shape[1]])\n",
"\n",
" return x_min, x_max, y_min, y_max\n",
" except ValueError:\n",
" return 0, 0, -1, -1\n",
"\n",
" def __call__(self, img):\n",
" \"\"\"\n",
" Crops a CT image to so that as much black area is removed as possible\n",
" :param img: PIL image\n",
" :return: Cropped image\n",
" \"\"\"\n",
"\n",
" x_min, x_max, y_min, y_max = self.crop_extents(img)\n",
"\n",
" try:\n",
" if type(img) != np.array:\n",
" img_array = np.array(img)\n",
" else:\n",
" img_array = img\n",
"\n",
" return Image.fromarray(np.uint8(img_array[x_min:x_max, y_min:y_max]))\n",
" except ValueError:\n",
" return img\n",
"\n",
" def __repr__(self):\n",
" return self.__class__.__name__ + '(offset={})'.format(self.offset)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"crop_head = CropHead()"
]
},
{
"cell_type": "code",
"execution_count": 113,
"metadata": {},
"outputs": [],
"source": [
"def sigmoid(x):\n",
" return 1 / (1 + np.exp(-x))\n",
"\n",
"\n",
"def linear_windowing(img, window_width, window_length):\n",
" \"\"\"\n",
" Applies a linear window on an array\n",
" :param img: Image array (in Hounsfield units)\n",
" :param window_width:\n",
" :param window_length:\n",
" :return:\n",
" \"\"\"\n",
" if window_width and window_length:\n",
" lower = window_length - (window_width / 2)\n",
" upper = window_length + (window_width / 2)\n",
" img = np.clip(img, lower, upper)\n",
" img = (img - lower) / (upper - lower)\n",
" return (img*255).astype(np.uint8)\n",
" else:\n",
" return img\n",
"\n",
"\n",
"def sigmoid_windowing(img, window_width, window_length, u=255, epsilon=255):\n",
" \"\"\"\n",
" Applies a sigmoid window on an array\n",
" From Practical Window Setting Optimization for Medical Image Deep Learning https://arxiv.org/pdf/1812.00572.pdf\n",
" :param img: Image array (in Hounsfield units)\n",
" :param window_width:\n",
" :param window_length:\n",
" :param u:\n",
" :param epsilon:\n",
" :return:\n",
" \"\"\"\n",
" if window_width and window_length:\n",
" weight = (2 / window_width) * np.log((u / epsilon) - 1)\n",
" bias = (-2 * window_length / window_width) * np.log((u / epsilon) - 1)\n",
" img = u * sigmoid(weight * img + bias)\n",
" return img.astype(np.uint8)\n",
" else:\n",
" return img\n"
]
},
{
"cell_type": "code",
"execution_count": 109,
"metadata": {},
"outputs": [],
"source": [
"def prepare_dicom(dcm, default_window=False):\n",
" \"\"\"\n",
" Converts a DICOM object to a 16-bit Numpy array (in Housnfield units) or a uint8 image if the default window is used\n",
" :param dcm: DICOM Object\n",
" :param default_window: Flag to use the window settings specified in the metadata\n",
" :return: Numpy array in either int16 or uint8\n",
" \"\"\"\n",
"\n",
" try:\n",
" if dcm.BitsStored == 12 and dcm.PixelRepresentation == 0 and dcm.RescaleIntercept > -100:\n",
" x = dcm.pixel_array + 1000\n",
" px_mode = 4096\n",
" x[x >= px_mode] = x[x >= px_mode] - px_mode\n",
" dcm.PixelData = x.tobytes()\n",
" dcm.RescaleIntercept = -1000\n",
"\n",
" pixels = dcm.pixel_array.astype(np.float32) * dcm.RescaleSlope + dcm.RescaleIntercept\n",
" except ValueError as e:\n",
" print(\"ValueError with\", dcm.SOPInstanceUID, e)\n",
" return np.zeros((512, 512))\n",
"\n",
" # Pad the image if it isn't square\n",
" if pixels.shape[0] != pixels.shape[1]:\n",
" (a, b) = pixels.shape\n",
" if a > b:\n",
" padding = ((0, 0), ((a - b) // 2, (a - b) // 2))\n",
" else:\n",
" padding = (((b - a) // 2, (b - a) // 2), (0, 0))\n",
" pixels = np.pad(pixels, padding, mode='constant', constant_values=0)\n",
" # Return image windows as per the metadata parameters\n",
" if default_window:\n",
" width = dcm.WindowWidth\n",
" if type(width) != pydicom.valuerep.DSfloat:\n",
" width = width[0]\n",
"\n",
" level = dcm.WindowCenter\n",
" if type(level) != pydicom.valuerep.DSfloat:\n",
" level = level[0]\n",
"\n",
" img_windowed = linear_windowing(pixels, width, level)\n",
" return img_windowed\n",
" # Return array Hounsfield units only\n",
" else:\n",
" return pixels.astype(np.int16)\n"
]
},
{
"cell_type": "code",
"execution_count": 126,
"metadata": {},
"outputs": [],
"source": [
"def prepare_png(dataset, folder_name, channels=(0, 1, 2), crop=False):\n",
" \"\"\"\n",
" Create PNG images using 3 specified window settings\n",
" :param dataset: One of \"train\", \"test_stage_1\" or \"test_stage_2\"\n",
" :param folder_name: Name of the output folder\n",
" :param channels: Tuple to specifiy what windows to use for RGB channels\n",
" :param crop: Flag to crop image to only the head\n",
" :return:\n",
" \"\"\"\n",
"\n",
" start = time()\n",
"\n",
" image_dirs = {\n",
" \"train\": os.path.join(base_path, \"stage_2_train\"),\n",
" \"test_stage_2\": os.path.join(base_path, \"stage_2_test\")\n",
" }\n",
"\n",
" windows = [\n",
" (None, None), # No windowing\n",
" (80, 40), # Brain\n",
" (200, 80), # Subdural\n",
" (40, 40), # Stroke\n",
" (2800, 600), # Temporal bone\n",
" (380, 40), # Soft tissue\n",
" (2000, 600), # Bone\n",
" ]\n",
"\n",
" output_path = os.path.join(data_path, \"png\", dataset, f\"{folder_name}\")\n",
" crop_head = CropHead()\n",
"\n",
" if not os.path.exists(output_path):\n",
" os.makedirs(output_path)\n",
"\n",
" for image_name in tqdm(os.listdir(image_dirs[dataset])):\n",
" ds = pydicom.dcmread(os.path.join(image_dirs[dataset], image_name))\n",
"\n",
" rgb = []\n",
" for c in channels:\n",
" if c == 0:\n",
" ch = prepare_dicom(ds, default_window=False)\n",
" else:\n",
" ch = prepare_dicom(ds)\n",
" ch = linear_windowing(ch, windows[c][0], windows[c][1])\n",
" rgb.append(ch)\n",
"\n",
" img = np.stack(rgb, -1)\n",
"\n",
" if crop:\n",
" x_min, x_max, y_min, y_max = crop_head.crop_extents(img > 0)\n",
" img = img[x_min:x_max, y_min:y_max]\n",
"\n",
" if img.shape[0] == 0 or img.shape[1] == 0:\n",
" img = np.zeros(shape=(512, 512, 3), dtype=np.uint8)\n",
"\n",
" im = Image.fromarray(img.astype(np.uint8))\n",
" im.save(os.path.join(output_path, image_name[:-4] + \".png\"))\n",
"\n",
" print(\"Done in\", (time() - start) // 60, \"minutes\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Prepare 3 window images (brain-subdural-bone)\n",
"prepare_png(\"train\", \"brain-subdural-bone\", channels=(1, 2, 6), crop=True)\n",
"#prepare_png(\"test_stage_1\", \"brain-subdural-bone\", channels=(1, 2, 6), crop=True)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.3"
}
},
"nbformat": 4,
"nbformat_minor": 4
}