|
a |
|
b/index.py |
|
|
1 |
# Our imports |
|
|
2 |
from Dicom import Dicom |
|
|
3 |
from CvImage import CvImage |
|
|
4 |
from Segment import Segment |
|
|
5 |
from geometry import distanceToPolygon, isPointsInsidePolygon |
|
|
6 |
import pandas as pd |
|
|
7 |
from os import listdir |
|
|
8 |
from os.path import isfile, join |
|
|
9 |
|
|
|
10 |
# Our interest segments |
|
|
11 |
# Bone |
|
|
12 |
bone = Segment("Bone") |
|
|
13 |
bone.setMinSegmentArea(200) |
|
|
14 |
bone.setHUInterval(700, 3000) |
|
|
15 |
bone.setRGB(0,0,255) |
|
|
16 |
bone.setHSVFilter(100, 50, 0, 130, 255, 255) |
|
|
17 |
|
|
|
18 |
# Blood |
|
|
19 |
blood = Segment("Blood") |
|
|
20 |
blood.setMinSegmentArea(100) |
|
|
21 |
blood.setHUInterval(60, 100) |
|
|
22 |
blood.setRGB(255,0,0) |
|
|
23 |
blood.setHSVFilter(0, 60, 0, 10, 255, 255) |
|
|
24 |
|
|
|
25 |
# Ventricle |
|
|
26 |
ventricle = Segment("Ventricle") |
|
|
27 |
ventricle.setMinSegmentArea(100) |
|
|
28 |
ventricle.setHUInterval(-15, 15) |
|
|
29 |
ventricle.setRGB(0,255,0) |
|
|
30 |
ventricle.setHSVFilter(50,100, 0, 70, 255, 255) |
|
|
31 |
|
|
|
32 |
# BrainMass |
|
|
33 |
brainMass = Segment("BrainMass") |
|
|
34 |
brainMass.setMinSegmentArea(200) |
|
|
35 |
brainMass.setHUInterval(20, 50) |
|
|
36 |
brainMass.setRGB(255,255,0) |
|
|
37 |
brainMass.setHSVFilter(25, 50, 0, 35, 255, 255) |
|
|
38 |
|
|
|
39 |
labels = pd.read_csv('D:/Downloads/stage2train.csv') |
|
|
40 |
|
|
|
41 |
# Here it comes! |
|
|
42 |
path = "D:/Downloads/stage2train/" |
|
|
43 |
dcmFiles = [] |
|
|
44 |
dirFiles = listdir(path) |
|
|
45 |
i = 0 |
|
|
46 |
while i < len(dirFiles) and i < 1: |
|
|
47 |
if isfile(join(path, dirFiles[i])): |
|
|
48 |
dcmFiles.append(dirFiles[i]) |
|
|
49 |
i = i + 1 |
|
|
50 |
|
|
|
51 |
results = open("./results/results.txt", "a") |
|
|
52 |
|
|
|
53 |
for filename in dcmFiles: |
|
|
54 |
ds = Dicom(path+filename) |
|
|
55 |
|
|
|
56 |
# Print labels and ID |
|
|
57 |
results.write(filename[:-4]) |
|
|
58 |
for label in ["epidural", "intraparenchymal", "intraventricular", "subarachnoid", "subdural", "any"]: |
|
|
59 |
results.write("," + str(labels.loc[labels["ID"] == (filename[:-4]+"_"+label)].values[0][1])) |
|
|
60 |
|
|
|
61 |
# Filter by Hounsfield units (HU) |
|
|
62 |
segmentedRGB = ds.getSegmentedRGB([ |
|
|
63 |
(bone.getLowerHU(), bone.getHigherHU(), bone.getBGR()), |
|
|
64 |
(ventricle.getLowerHU(), ventricle.getHigherHU(), ventricle.getBGR()), |
|
|
65 |
(blood.getLowerHU(), blood.getHigherHU(), blood.getBGR()), |
|
|
66 |
(brainMass.getLowerHU(), brainMass.getHigherHU(), brainMass.getBGR()) |
|
|
67 |
]) |
|
|
68 |
|
|
|
69 |
# Array of segments and their features |
|
|
70 |
segments = { |
|
|
71 |
bone.getName():{ |
|
|
72 |
"segment": bone, |
|
|
73 |
"extractedFeatures": {} |
|
|
74 |
}, |
|
|
75 |
brainMass.getName(): { |
|
|
76 |
"segment": brainMass, |
|
|
77 |
"extractedFeatures": {} |
|
|
78 |
}, |
|
|
79 |
ventricle.getName(): { |
|
|
80 |
"segment": ventricle, |
|
|
81 |
"extractedFeatures": {} |
|
|
82 |
}, |
|
|
83 |
blood.getName(): { |
|
|
84 |
"segment": blood, |
|
|
85 |
"extractedFeatures": {} |
|
|
86 |
} |
|
|
87 |
} |
|
|
88 |
|
|
|
89 |
for key in segments: |
|
|
90 |
|
|
|
91 |
segment = segments[key]["segment"] |
|
|
92 |
|
|
|
93 |
image = CvImage(segmentedRGB, segment.getName()) |
|
|
94 |
|
|
|
95 |
image.hsvFilter(segment.getLowerHSV(), segment.gethigherHSV()) |
|
|
96 |
|
|
|
97 |
# Perform some morph operations |
|
|
98 |
image.morphOperations() |
|
|
99 |
|
|
|
100 |
# Let's get all we want |
|
|
101 |
features = image.getContoursFeatures(segment.getMinSegmentArea()) |
|
|
102 |
|
|
|
103 |
# RGB to see green contour |
|
|
104 |
image.gray2bgr() |
|
|
105 |
|
|
|
106 |
if (key == "Ventricle" or key == "BrainMass"): |
|
|
107 |
for atrib in ["area", "eccentricity"]: |
|
|
108 |
results.write("," + str(features[0][atrib])) |
|
|
109 |
|
|
|
110 |
for i in range(len(features)): |
|
|
111 |
# Blood only features |
|
|
112 |
if key == "Blood": |
|
|
113 |
distanceToBone = distanceToPolygon(features[i]["centroid"], segments["Bone"]["extractedFeatures"][0]["convexHull"]) |
|
|
114 |
|
|
|
115 |
j = 0 |
|
|
116 |
isInsideVentricle = False |
|
|
117 |
while isInsideVentricle == False and j < len(segments["Ventricle"]["extractedFeatures"]): |
|
|
118 |
isInsideVentricle = isPointsInsidePolygon(features[i]["convexHull"], segments["Ventricle"]["extractedFeatures"][j]["convexHull"]).all() |
|
|
119 |
j = j + 1 |
|
|
120 |
|
|
|
121 |
isInsideBrainMass = False |
|
|
122 |
if isInsideVentricle == False: |
|
|
123 |
j = 0 |
|
|
124 |
while isInsideBrainMass == False and j < len(segments["BrainMass"]["extractedFeatures"]): |
|
|
125 |
isInsideBrainMass = isPointsInsidePolygon(features[i]["convexHull"], segments["BrainMass"]["extractedFeatures"][j]["convexHull"]).all() |
|
|
126 |
j = j + 1 |
|
|
127 |
|
|
|
128 |
features[i]["distanceToBone"] = distanceToBone |
|
|
129 |
features[i]["isInsideVentricle"] = isInsideVentricle |
|
|
130 |
features[i]["isInsideBrainMass"] = isInsideBrainMass |
|
|
131 |
|
|
|
132 |
results.write("\n\t") |
|
|
133 |
for atrib in ["area", "eccentricity", "distanceToBone", "isInsideVentricle", "isInsideBrainMass"]: |
|
|
134 |
if (features[i][atrib] == False or features[i][atrib] == True): |
|
|
135 |
if (features[i][atrib] == True): |
|
|
136 |
results.write(str(1)) |
|
|
137 |
else: |
|
|
138 |
results.write(str(0)) |
|
|
139 |
else: |
|
|
140 |
results.write(str(features[i][atrib])) |
|
|
141 |
if atrib != "isInsideBrainMass": |
|
|
142 |
results.write(",") |
|
|
143 |
|
|
|
144 |
|
|
|
145 |
image.drawCircle(features[i]["centroid"]) |
|
|
146 |
image.drawContours([features[i]["convexHull"]]) |
|
|
147 |
|
|
|
148 |
segments[key]["extractedFeatures"] = features |
|
|
149 |
results.write("\n") |
|
|
150 |
results.close() |