|
a |
|
b/CvImage.py |
|
|
1 |
import cv2 |
|
|
2 |
import imutils |
|
|
3 |
import numpy as np |
|
|
4 |
from math import sqrt |
|
|
5 |
|
|
|
6 |
def abs (n): |
|
|
7 |
if n >= 0: |
|
|
8 |
return n |
|
|
9 |
return abs((-1 * n)) |
|
|
10 |
|
|
|
11 |
class CvImage: |
|
|
12 |
def __init__ (self, image, name): |
|
|
13 |
self.__name = name |
|
|
14 |
self.__originalImage = image |
|
|
15 |
self.__image = image |
|
|
16 |
self.__contours = False |
|
|
17 |
self.__contoursFeatures = False |
|
|
18 |
|
|
|
19 |
def getName (self): |
|
|
20 |
return self.__name |
|
|
21 |
|
|
|
22 |
def getOriginalImage (self): |
|
|
23 |
return self.__originalImage |
|
|
24 |
|
|
|
25 |
def getImage (self): |
|
|
26 |
return self.__image |
|
|
27 |
|
|
|
28 |
def drawCircle (self, center, radious = 1, color = (0, 255, 0), thickness = 2): |
|
|
29 |
cv2.circle(self.__image, center, radious, color, thickness) |
|
|
30 |
|
|
|
31 |
def drawContours (self, contours, color = (0, 255, 0), thickness = 2): |
|
|
32 |
cv2.drawContours(self.__image, contours, -1, color, thickness) |
|
|
33 |
|
|
|
34 |
def __show (self, name, image): |
|
|
35 |
cv2.imshow(name, image) |
|
|
36 |
cv2.waitKey(0) |
|
|
37 |
|
|
|
38 |
def showOriginal (self): |
|
|
39 |
self.__show(self.__name + "-original", self.getOriginalImage()) |
|
|
40 |
|
|
|
41 |
def show (self): |
|
|
42 |
self.__show(self.__name, self.__image) |
|
|
43 |
|
|
|
44 |
def morphOperations (self, kernelSize = 3): |
|
|
45 |
# Open and close morph operations |
|
|
46 |
kernel = np.ones((kernelSize, kernelSize),np.uint8) |
|
|
47 |
self.__image = cv2.morphologyEx(self.__image, cv2.MORPH_OPEN, kernel) |
|
|
48 |
self.__image = cv2.morphologyEx(self.__image, cv2.MORPH_CLOSE, kernel) |
|
|
49 |
|
|
|
50 |
def hsvFilter (self, lowerHSV, higherHSV): |
|
|
51 |
# Convert to HSV |
|
|
52 |
self.__image = cv2.cvtColor(self.__image, cv2.COLOR_BGR2HSV) |
|
|
53 |
|
|
|
54 |
# InRange filter |
|
|
55 |
self.__image = cv2.inRange(self.__image, lowerHSV, higherHSV) |
|
|
56 |
|
|
|
57 |
|
|
|
58 |
def getContours(self): |
|
|
59 |
if self.__contours == False: |
|
|
60 |
self.__contours = self.__findCountours() |
|
|
61 |
return self.__contours |
|
|
62 |
|
|
|
63 |
def getContoursFeatures(self, n = 5): |
|
|
64 |
if self.__contoursFeatures == False: |
|
|
65 |
self.__contoursFeatures = self.__findContoursFeatures(n) |
|
|
66 |
return self.__contoursFeatures |
|
|
67 |
|
|
|
68 |
def gray2bgr (self): |
|
|
69 |
self.__image = cv2.cvtColor(self.__image, cv2.COLOR_GRAY2BGR) |
|
|
70 |
|
|
|
71 |
def bgr2gray (self): |
|
|
72 |
self.__image = cv2.cvtColor(self.__image, cv2.COLOR_BGR2GRAY) |
|
|
73 |
|
|
|
74 |
def __findCountours(self): |
|
|
75 |
# ConvertToGrayScale and filter |
|
|
76 |
gray = cv2.bilateralFilter(self.__image, 11, 17, 17) |
|
|
77 |
|
|
|
78 |
# Edge algoritm |
|
|
79 |
edged = cv2.Canny(gray, 30, 200) |
|
|
80 |
|
|
|
81 |
cnts = cv2.findContours(edged.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) |
|
|
82 |
cnts = imutils.grab_contours(cnts) |
|
|
83 |
|
|
|
84 |
# Sort by larger areas |
|
|
85 |
cnts = sorted(cnts, key = cv2.contourArea, reverse = True) |
|
|
86 |
return cnts |
|
|
87 |
|
|
|
88 |
def __findContoursFeatures (self, minArea): |
|
|
89 |
contoursFeatures = [] |
|
|
90 |
cnts = self.getContours() |
|
|
91 |
for i in range(0, len(cnts)): |
|
|
92 |
if cv2.contourArea(cnts[i]) >= minArea: |
|
|
93 |
# Compute the center of the contour |
|
|
94 |
M = cv2.moments(cnts[i]) |
|
|
95 |
cx = int(M["m10"] / M["m00"]) |
|
|
96 |
cy = int(M["m01"] / M["m00"]) |
|
|
97 |
|
|
|
98 |
# Get some basic features |
|
|
99 |
perimeter = cv2.arcLength(cnts[i], True) |
|
|
100 |
epsilon = 0.1*perimeter |
|
|
101 |
approx = cv2.approxPolyDP(cnts[i],epsilon,True) |
|
|
102 |
|
|
|
103 |
# Calculate eccentricity |
|
|
104 |
(x, y), (MA, ma), angle = cv2.fitEllipse(cnts[i]) |
|
|
105 |
a = ma/2 |
|
|
106 |
b = MA/2 |
|
|
107 |
|
|
|
108 |
if (a > b): |
|
|
109 |
eccentricity = sqrt(pow(a, 2)-pow(b, 2)) |
|
|
110 |
eccentricity = round(eccentricity/a, 2) |
|
|
111 |
else: |
|
|
112 |
eccentricity = sqrt(pow(b, 2)-pow(a, 2)) |
|
|
113 |
eccentricity = round(eccentricity/b, 2) |
|
|
114 |
|
|
|
115 |
# Append features |
|
|
116 |
contoursFeatures.append({ |
|
|
117 |
"area": cv2.contourArea(cnts[i]), |
|
|
118 |
"perimeter": perimeter, |
|
|
119 |
"eccentricity": eccentricity, |
|
|
120 |
"centroid": (cx, cy), |
|
|
121 |
"approxDp": np.squeeze(approx), |
|
|
122 |
"convexHull": np.squeeze(cv2.convexHull(cnts[i])) |
|
|
123 |
}) |
|
|
124 |
else: |
|
|
125 |
break |
|
|
126 |
return contoursFeatures |