[f6d9b9]: / lib / RayMasking.cpp

Download this file

267 lines (216 with data), 10.7 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
#include "../includes/Masking/MaskingMethods/RayMasking.h"
RayMasking::RayMasking(sitk::Image &image)
: MaskingStrategy(image) {}
void RayMasking::run()
{
//image = gaussianFilter.Execute(image);
sitk::Image initialMask = binaryThresholdImageFilter.Execute(image, lowerThreshold, upperThreshold, 1, 0);
sitk::Image boneMask = binaryThresholdImageFilter.Execute(image, boneLowerThreshold, boneUpperThreshold, 1, 0);
mask = isolateIntracranialVoxels(initialMask, boneMask);
//mask = LCC(mask, 2); // along z-axis
}
void RayMasking::sitkToBinaryItk( const sitk::Image &image, MaskImageType::Pointer &outputImage )
{
caster.SetOutputPixelType( sitk::sitkUInt8 );
sitk::Image castedImage = caster.Execute( image );
outputImage = dynamic_cast <MaskImageType*>( castedImage.GetITKBase() );
outputImage->DisconnectPipeline();
outputImage->SetBufferedRegion( outputImage->GetLargestPossibleRegion() );
}
sitk::Image RayMasking::isolateIntracranialVoxels(sitk::Image &initialMask, sitk::Image &boneMask)
{
/* ------ Init Variables ------ */
// Cast sitk images to itk image
MaskImageType::Pointer itkInitialMask = MaskImageType::New();
sitkToBinaryItk( initialMask, itkInitialMask );
MaskImageType::Pointer itkBoneMask = MaskImageType::New();
sitkToBinaryItk( boneMask, itkBoneMask );
// Create output mask
MaskImageType::Pointer outputMask = MaskImageType::New();
MaskImageType::RegionType region;
region.SetSize( itkInitialMask->GetLargestPossibleRegion().GetSize() );
region.SetIndex( itkInitialMask->GetLargestPossibleRegion().GetIndex() );
outputMask->SetRegions( region );
outputMask->Allocate();
outputMask->FillBuffer(0);
// Init variables required for extract filter
MaskImageType::IndexType start = { 0,0,0 };
MaskImageType::RegionType inputRegion = itkInitialMask->GetLargestPossibleRegion();
MaskImageType::SizeType size = inputRegion.GetSize();
size[2] = 0; // extract along z direction
// Init extract filter for initial mask
// Extract filter is used to extract a 2D slice from a 3D image
// TODO: Wrap this in a function
ExtractFilterType::Pointer extractFilter = ExtractFilterType::New();
extractFilter->SetDirectionCollapseToSubmatrix();
extractFilter->SetInput( itkInitialMask );
MaskImageType::RegionType desiredRegion;
desiredRegion.SetSize( size );
// Init extract filter for bone mask
ExtractFilterType::Pointer extractFilterBone = ExtractFilterType::New();
extractFilterBone->SetDirectionCollapseToSubmatrix();
extractFilterBone->SetInput( itkBoneMask );
MaskImageType::RegionType desiredRegionBone;
desiredRegionBone.SetSize( size );
// Init extract filter for output
ExtractFilterType::Pointer extractFilterOutput = ExtractFilterType::New();
extractFilterOutput->SetDirectionCollapseToSubmatrix();
extractFilterOutput->SetInput( outputMask );
MaskImageType::RegionType desiredRegionOutput;
desiredRegionOutput.SetSize( size );
int nSlices = inputRegion.GetSize()[2];
constexpr unsigned int intersectionTreshold = 6;
// Layout is used with tile mask filter which is used to stack 2d slices into a 3d image
itk::FixedArray< unsigned int, 3 > layout;
layout[0] = 1;
layout[1] = 1;
layout[2] = nSlices;
tileMaskFilter->SetLayout( layout );
MaskImage2DType::Pointer initialMaskSlice;
MaskImage2DType::Pointer boneMaskSlice;
MaskImage2DType::Pointer outputMaskSlice;
for (int sliceIdx = 0; sliceIdx < nSlices; ++sliceIdx)
{
std::cout << "Slice idx: " << sliceIdx << std::endl;
/*------ Extract 2d slice from 3d image ------*/
// Specify slice idx to be extracted from 3d image
start[2] = sliceIdx;
// Extract 2d slice from initial mask
desiredRegion.SetIndex( start );
extractFilter->SetExtractionRegion( desiredRegion );
extractFilter->Update();
initialMaskSlice = extractFilter->GetOutput();
// Extract 2d slice from bone mask
desiredRegionBone.SetIndex( start );
extractFilterBone->SetExtractionRegion( desiredRegionBone );
extractFilterBone->Update();
boneMaskSlice = extractFilterBone->GetOutput();
// Extract 2d slice from output mask
desiredRegionOutput.SetIndex( start );
extractFilterOutput->SetExtractionRegion( desiredRegionOutput );
extractFilterOutput->Update();
outputMaskSlice = extractFilterOutput->GetOutput();
/*------ Init iterators ------*/
// Ray casting
// Init iterators
constIterType it(initialMaskSlice, initialMaskSlice->GetLargestPossibleRegion());
iterType itOutput(outputMaskSlice, outputMaskSlice->GetLargestPossibleRegion());
// Init chain code which will be used to encode ray directions
chainCodeType::Pointer chainCode = chainCodeType::New();
// Path iter will be used to iterate on image starting from a certain position and following the
// path specified in chainCode
pathConstIterType pathIter(boneMaskSlice, chainCode);
// Index at which the image iterator is currently
MaskImage2DType::IndexType currentIndex;
// Number of intersection that rays casted from a pixel made with bone pixels (skull)
unsigned int numberOfIntersections;
// Max number of steps that one can take along ray directions without going out of bounds
std::vector<long> numberOfSteps;
// Ray directions in freeman codes
std::vector<unsigned int> pathDirections = { 1,2,3,4,5,6,7,8 };
/* ----- Iterate over image ----- */
it.GoToBegin();
itOutput.GoToBegin();
while ( !it.IsAtEnd() )
{
// If current pixel on mask is 0 it is also 0 in outputmask, so continue
if (it.Get() == 0) { ++it; ++itOutput; continue; }
numberOfIntersections = 0;
currentIndex = it.GetIndex();
// Init numberOfSteps for current pixel
numberOfSteps = {
511 - currentIndex[1],
std::min( 511 - currentIndex[0], 511 - currentIndex[1]),
511 - currentIndex[0],
std::min( 511 - currentIndex[0], currentIndex[1]),
currentIndex[1],
std::min( currentIndex[0], currentIndex[1]),
currentIndex[0],
std::min( currentIndex[0], 511 - currentIndex[1])
};
chainCode->SetStart( currentIndex );
for (unsigned int i : pathDirections)
{
// Fill the chain code vector with same chain code
chainCode->FillWithSteps(numberOfSteps[i-1], i); // Custom
// Iterate by following the path on the image
pathIter.GoToBegin();
while ( !pathIter.IsAtEnd() )
{
// If coincides with bone pixel
if ( pathIter.Get() == 1)
{
++numberOfIntersections;
break;
}
++pathIter;
}
chainCode->Clear();
}
// If, for the current pixel, at least 7 rays intersected with bone pixels out of 8, then that pixel is interpreted as
// inside skull and is marked as 1 in output mask
if (numberOfIntersections > intersectionTreshold) { itOutput.Set(1); }
++it; ++itOutput;
}
// To use the output mask slice independent from the filter that owns it, the mask slice should be disconnected from filter's pipeline
outputMaskSlice->DisconnectPipeline();
// Put 2d slice into the final 3d image
tileMaskFilter->SetInput( sliceIdx, outputMaskSlice );
}
MaskImageType::Pointer output = tileMaskFilter->GetOutput();
sitk::Image outputImage = sitk::Image( output );
return outputImage;
}
/*
Extracts largest connected components for each slice along an axis
*/
sitk::Image RayMasking::LCC( sitk::Image inputMask, int axis=2)
{
MaskImageType::Pointer itkMask = MaskImageType::New();
// Cast input to itk image
caster.SetOutputPixelType( sitk::sitkUInt8 );
inputMask = caster.Execute( inputMask );
itkMask = dynamic_cast <itk::Image< uint8_t, 3 >*>( inputMask.GetITKBase() );
itkMask->SetBufferedRegion( itkMask->GetLargestPossibleRegion() );
// Extract filter for initial mask
ExtractFilterType::Pointer extractFilter = ExtractFilterType::New();
extractFilter->SetDirectionCollapseToSubmatrix();
extractFilter->SetInput( itkMask );
MaskImageType::RegionType inputRegion = itkMask->GetLargestPossibleRegion();
MaskImageType::SizeType size = inputRegion.GetSize();
size[axis] = 0; // we extract along an axis
MaskImageType::IndexType start = { 0,0,0 };
MaskImageType::RegionType desiredRegion;
desiredRegion.SetSize( size );
int nSlices = inputRegion.GetSize()[axis];
itk::FixedArray< unsigned int, 3 > layout;
layout.Fill(1);
layout[axis] = nSlices;
tileFilter->SetLayout( layout );
MaskImage2DType::Pointer maskSlice = MaskImage2DType::New();
InputImage2DType::Pointer outputSlice = InputImage2DType::New();
for ( int i=0; i<nSlices; ++i)
{
// Extract slices
start[axis] = i;
desiredRegion.SetIndex( start );
extractFilter->SetExtractionRegion( desiredRegion );
extractFilter->Update();
maskSlice = extractFilter->GetOutput();
connCompFilter->SetInput( maskSlice );
connCompFilter->Update();
labelShapeKeepNObjectsImageFilter->SetInput( connCompFilter->GetOutput() );
labelShapeKeepNObjectsImageFilter->SetBackgroundValue( 0 );
labelShapeKeepNObjectsImageFilter->SetNumberOfObjects( 1 );
labelShapeKeepNObjectsImageFilter->SetAttribute( LabelShapeKeepNObjectsImageFilterType::LabelObjectType::NUMBER_OF_PIXELS);
outputSlice = labelShapeKeepNObjectsImageFilter->GetOutput();
//sitk::Show( sitk::Image( outputSlice ) );
outputSlice->DisconnectPipeline();
tileFilter->SetInput(i, outputSlice);
}
InputImageType::Pointer itkOutput = tileFilter->GetOutput();
itkOutput->DisconnectPipeline();
sitk::Image output = sitk::Image( itkOutput );
sitk::Show(output);
return output;
}