|
a |
|
b/drunet/data.py |
|
|
1 |
import os |
|
|
2 |
import pathlib |
|
|
3 |
|
|
|
4 |
import tqdm |
|
|
5 |
import cv2 as cv |
|
|
6 |
import numpy as np |
|
|
7 |
import tensorflow as tf |
|
|
8 |
from tensorflow.keras import * |
|
|
9 |
import matplotlib.pyplot as plt |
|
|
10 |
import tensorflow.keras as keras |
|
|
11 |
import utils |
|
|
12 |
|
|
|
13 |
|
|
|
14 |
def return_inputs(inputs): |
|
|
15 |
"""Returns the output value according to the input type, used for image path input""" |
|
|
16 |
all_image_paths = None |
|
|
17 |
if type(inputs) is str: |
|
|
18 |
if os.path.isfile(inputs): |
|
|
19 |
all_image_paths = [inputs] |
|
|
20 |
elif os.path.isdir(inputs): |
|
|
21 |
all_image_paths = utils.list_file(inputs) |
|
|
22 |
elif type(inputs) is list: |
|
|
23 |
all_image_paths = inputs |
|
|
24 |
return all_image_paths |
|
|
25 |
|
|
|
26 |
|
|
|
27 |
# 1. make dataset |
|
|
28 |
def get_path_name(data_dir, get_id=False, nums=-1): |
|
|
29 |
name_list = [] |
|
|
30 |
path_list = [] |
|
|
31 |
for path in pathlib.Path(data_dir).iterdir(): |
|
|
32 |
path_list.append(str(path)) |
|
|
33 |
if get_id: |
|
|
34 |
name_list.append(path.stem[-5:]) |
|
|
35 |
else: |
|
|
36 |
name_list.append(path.stem) |
|
|
37 |
if nums != -1: |
|
|
38 |
name_list = name_list[:nums] |
|
|
39 |
path_list = path_list[:nums] |
|
|
40 |
name_list = sorted(name_list, key=lambda path_: int(pathlib.Path(path_).stem)) |
|
|
41 |
path_list = sorted(path_list, key=lambda path_: int(pathlib.Path(path_).stem)) |
|
|
42 |
return name_list, path_list |
|
|
43 |
|
|
|
44 |
|
|
|
45 |
class TFData: |
|
|
46 |
def __init__(self, image_shape, image_dir=None, mask_dir=None, |
|
|
47 |
out_name=None, out_dir='', zip_file=True, mask_gray=True): |
|
|
48 |
self.image_shape = image_shape |
|
|
49 |
self.zip_file = zip_file |
|
|
50 |
self.image_dir = image_dir |
|
|
51 |
self.mask_dir = mask_dir |
|
|
52 |
self.out_name = out_name |
|
|
53 |
self.out_dir = os.path.join(out_dir, out_name) |
|
|
54 |
self.mask_gray = mask_gray |
|
|
55 |
|
|
|
56 |
if len(image_shape) == 3 and image_shape[-1] != 1: |
|
|
57 |
self.image_gray = False |
|
|
58 |
else: |
|
|
59 |
self.image_gray = True |
|
|
60 |
if self.zip_file: |
|
|
61 |
self.options = tf.io.TFRecordOptions(compression_type='GZIP') |
|
|
62 |
|
|
|
63 |
if image_dir is not None and mask_dir is not None: |
|
|
64 |
self.image_name, self.image_list = get_path_name(self.image_dir, False) |
|
|
65 |
self.mask_name, self.mask_list = get_path_name(self.mask_dir, False) |
|
|
66 |
self.data_zip = zip(self.image_list, self.mask_list) |
|
|
67 |
|
|
|
68 |
def image_to_byte(self, path, gray_scale): |
|
|
69 |
image = cv.imread(path) |
|
|
70 |
if not gray_scale: |
|
|
71 |
image = cv.cvtColor(image, cv.COLOR_BGR2RGB) |
|
|
72 |
elif len(image.shape) == 3: |
|
|
73 |
image = cv.cvtColor(image, cv.COLOR_BGR2GRAY) |
|
|
74 |
else: |
|
|
75 |
pass |
|
|
76 |
image = cv.resize(image, tuple(self.image_shape[:2])) |
|
|
77 |
|
|
|
78 |
return image.tobytes() |
|
|
79 |
|
|
|
80 |
def write_tfrecord(self): |
|
|
81 |
if not os.path.exists(self.out_dir): |
|
|
82 |
if self.zip_file: |
|
|
83 |
writer = tf.io.TFRecordWriter(self.out_dir, self.options) |
|
|
84 |
else: |
|
|
85 |
writer = tf.io.TFRecordWriter(self.out_dir) |
|
|
86 |
|
|
|
87 |
print(len(self.image_list)) |
|
|
88 |
for image_path, mask_path in tqdm.tqdm(self.data_zip, total=len(self.image_list)): |
|
|
89 |
image = self.image_to_byte(image_path, self.image_gray) |
|
|
90 |
mask = self.image_to_byte(mask_path, self.mask_gray) |
|
|
91 |
|
|
|
92 |
example = tf.train.Example(features=tf.train.Features( |
|
|
93 |
feature={ |
|
|
94 |
'mask': tf.train.Feature(bytes_list=tf.train.BytesList(value=[mask])), |
|
|
95 |
'image': tf.train.Feature(bytes_list=tf.train.BytesList(value=[image])) |
|
|
96 |
} |
|
|
97 |
)) |
|
|
98 |
writer.write(example.SerializeToString()) |
|
|
99 |
writer.close() |
|
|
100 |
print('Dataset finished!') |
|
|
101 |
|
|
|
102 |
def _parse_function(self, example_proto): |
|
|
103 |
features = tf.io.parse_single_example( |
|
|
104 |
example_proto, |
|
|
105 |
features={ |
|
|
106 |
'mask': tf.io.FixedLenFeature([], tf.string), |
|
|
107 |
'image': tf.io.FixedLenFeature([], tf.string) |
|
|
108 |
} |
|
|
109 |
) |
|
|
110 |
|
|
|
111 |
image = features['image'] |
|
|
112 |
image = tf.io.decode_raw(image, tf.uint8) |
|
|
113 |
if self.image_gray: |
|
|
114 |
image = tf.reshape(image, self.image_shape[:2]) |
|
|
115 |
image = tf.expand_dims(image, -1) |
|
|
116 |
else: |
|
|
117 |
image = tf.reshape(image, self.image_shape) |
|
|
118 |
|
|
|
119 |
label = features['mask'] |
|
|
120 |
label = tf.io.decode_raw(label, tf.uint8) |
|
|
121 |
if self.mask_gray: |
|
|
122 |
label = tf.reshape(label, self.image_shape[:2]) |
|
|
123 |
label = tf.expand_dims(label, -1) |
|
|
124 |
else: |
|
|
125 |
label = tf.reshape(label, self.image_shape) |
|
|
126 |
|
|
|
127 |
return image, label |
|
|
128 |
|
|
|
129 |
def data_iterator(self, batch_size, data_name='', repeat=1, shuffle=True): |
|
|
130 |
if len(data_name) == 0: |
|
|
131 |
data_name = self.out_dir |
|
|
132 |
else: |
|
|
133 |
data_name = data_name |
|
|
134 |
|
|
|
135 |
if self.zip_file: |
|
|
136 |
dataset = tf.data.TFRecordDataset(data_name, compression_type='GZIP') |
|
|
137 |
else: |
|
|
138 |
dataset = tf.data.TFRecordDataset(data_name) |
|
|
139 |
dataset = dataset.map(self._parse_function) |
|
|
140 |
|
|
|
141 |
if shuffle: |
|
|
142 |
dataset = dataset.shuffle(buffer_size=100).repeat(repeat).batch(batch_size, drop_remainder=True) |
|
|
143 |
else: |
|
|
144 |
dataset = dataset.repeat(repeat).batch(batch_size, drop_remainder=True) |
|
|
145 |
return dataset |
|
|
146 |
|
|
|
147 |
|
|
|
148 |
def data_preprocess(image, mask): |
|
|
149 |
"""Normalize the image and mask data sets between 0-1""" |
|
|
150 |
image = tf.cast(image, np.float32) |
|
|
151 |
image = image / 127.5 - 1 |
|
|
152 |
mask = tf.cast(mask, np.float32) |
|
|
153 |
mask = mask / 255.0 |
|
|
154 |
return image, mask |
|
|
155 |
|
|
|
156 |
|
|
|
157 |
def make_data(image_shape, image_dir, mask_dir, out_name=None, out_dir=''): |
|
|
158 |
tf_data = TFData(image_shape=image_shape, out_dir=out_dir, out_name=out_name, |
|
|
159 |
image_dir=image_dir, mask_dir=mask_dir) |
|
|
160 |
tf_data.write_tfrecord() |
|
|
161 |
return |
|
|
162 |
|
|
|
163 |
|
|
|
164 |
def get_tfrecord_data(tf_record_path, tf_record_name, data_shape, batch_size=32, repeat=1, shuffle=True): |
|
|
165 |
tf_data = TFData(image_shape=data_shape, out_dir=tf_record_path, out_name=tf_record_name) |
|
|
166 |
seg_data = tf_data.data_iterator(batch_size=batch_size, repeat=repeat, shuffle=shuffle) |
|
|
167 |
seg_data = seg_data.map(data_preprocess) |
|
|
168 |
return seg_data |
|
|
169 |
|
|
|
170 |
|
|
|
171 |
def get_test_data(test_data_path, image_shape, image_nums=16): |
|
|
172 |
""" |
|
|
173 |
:param test_data_path: test image path |
|
|
174 |
:param image_shape: Need to resize the shape of the test image, a tuple of length 3, [height, width, channel] |
|
|
175 |
:param image_nums: How many images need to be tested, the default is 16 |
|
|
176 |
:return: normalized image collection |
|
|
177 |
""" |
|
|
178 |
or_resize_shape = (1440, 1440) |
|
|
179 |
normalize_test_data = [] |
|
|
180 |
original_test_data = [] |
|
|
181 |
test_image_name = [] |
|
|
182 |
test_data_paths = return_inputs(test_data_path) |
|
|
183 |
|
|
|
184 |
for path in test_data_paths: |
|
|
185 |
try: |
|
|
186 |
test_image_name.append(pathlib.Path(path).name) |
|
|
187 |
original_test_image = cv.imread(str(path)) |
|
|
188 |
original_test_image = cv.resize(original_test_image, or_resize_shape) |
|
|
189 |
original_shape = original_test_image.shape |
|
|
190 |
if len(original_shape) == 0: |
|
|
191 |
print('Unable to read the {} file, please keep the path without Chinese! --First'.format(str(path))) |
|
|
192 |
else: |
|
|
193 |
original_test_data.append(original_test_image) |
|
|
194 |
if image_shape[-1] == 1: |
|
|
195 |
original_test_image = cv.cvtColor(original_test_image, cv.COLOR_BGR2GRAY) |
|
|
196 |
image = cv.resize(original_test_image, tuple(image_shape[:2])) |
|
|
197 |
image = image.astype(np.float32) |
|
|
198 |
image = image / 127.5 - 1 |
|
|
199 |
normalize_test_data.append(image) |
|
|
200 |
if image_nums == -1: |
|
|
201 |
pass |
|
|
202 |
else: |
|
|
203 |
if len(normalize_test_data) == image_nums: |
|
|
204 |
break |
|
|
205 |
except Exception as e: |
|
|
206 |
print('Unable to read the {} file, please keep the path without Chinese! --Second'.format(str(path))) |
|
|
207 |
print(e) |
|
|
208 |
|
|
|
209 |
normalize_test_array = np.array(normalize_test_data) |
|
|
210 |
if image_shape[-1] == 1: |
|
|
211 |
normalize_test_array = np.expand_dims(normalize_test_array, -1) |
|
|
212 |
original_test_array = np.array(original_test_data) |
|
|
213 |
if original_test_array.shape == 3: |
|
|
214 |
original_test_array = np.expand_dims(original_test_array, 0) |
|
|
215 |
normalize_test_array = np.expand_dims(normalize_test_array, 0) |
|
|
216 |
return test_image_name, original_test_array, normalize_test_array |