from keras.optimizers import Adam, SGD
from keras.callbacks import ModelCheckpoint, LearningRateScheduler, TerminateOnNaN, CSVLogger
from keras import backend as K
from keras.models import load_model
from math import ceil
import numpy as np
from matplotlib import pyplot as plt
from models.keras_ssd512 import ssd_512
from keras_loss_function.keras_ssd_loss import SSDLoss
from keras_layers.keras_layer_AnchorBoxes import AnchorBoxes
from keras_layers.keras_layer_DecodeDetections import DecodeDetections
from keras_layers.keras_layer_DecodeDetectionsFast import DecodeDetectionsFast
from keras_layers.keras_layer_L2Normalization import L2Normalization
from ssd_encoder_decoder.ssd_input_encoder import SSDInputEncoder
from ssd_encoder_decoder.ssd_output_decoder import decode_detections, decode_detections_fast
from data_generator.object_detection_2d_data_generator import DataGenerator
from data_generator.object_detection_2d_geometric_ops import Resize
from data_generator.object_detection_2d_photometric_ops import ConvertTo3Channels
from data_generator.data_augmentation_chain_original_ssd import SSDDataAugmentation
from data_generator.object_detection_2d_misc_utils import apply_inverse_transforms
#%matplotlib inline
img_height = 512 # Height of the model input images
img_width = 512 # Width of the model input images
img_channels = 3 # Number of color channels of the model input images
mean_color = [122, 122, 122] # The per-channel mean of the images in the dataset. Do not change this value if you're using any of the pre-trained weights.
swap_channels = [2, 1, 0] # The color channel order in the original SSD is BGR, so we'll have the model reverse the color channel order of the input images.
n_classes = 1 # Number of positive classes, e.g. 20 for Pascal VOC, 80 for MS COCO
scales_pascal = [0.07, 0.15, 0.3, 0.45, 0.6, 0.75, 0.9, 1.05] # The anchor box scaling factors used in the original SSD512 for the Pascal VOC datasets
scales_coco = [0.07, 0.15, 0.33, 0.51, 0.69, 0.87, 1.05] # The anchor box scaling factors used in the original SSD512 for the MS COCO datasets
scales = scales_pascal
aspect_ratios = [[1.0, 2.0, 0.5],
[1.0, 2.0, 0.5, 3.0, 1.0/3.0],
[1.0, 2.0, 0.5, 3.0, 1.0/3.0],
[1.0, 2.0, 0.5, 3.0, 1.0/3.0],
[1.0, 2.0, 0.5, 3.0, 1.0/3.0],
[1.0, 2.0, 0.5],
[1.0, 2.0, 0.5]] # The anchor box aspect ratios used in the original SSD512; the order matters
two_boxes_for_ar1 = True
steps = [8, 16, 32, 64, 128, 256, 512] # The space between two adjacent anchor box center points for each predictor layer.
offsets = [0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5] # The offsets of the first anchor box center points from the top and left borders of the image as a fraction of the step size for each predictor layer.
clip_boxes = False # Whether or not to clip the anchor boxes to lie entirely within the image boundaries
variances = [0.1, 0.1, 0.2, 0.2] # The variances by which the encoded target coordinates are divided as in the original implementation
normalize_coords = True
# 1: Build the Keras model.
K.clear_session() # Clear previous models from memory.
model = ssd_512(image_size=(img_height, img_width, img_channels),
n_classes=n_classes,
mode='training',
l2_regularization=0.0005,
scales=scales,
aspect_ratios_per_layer=aspect_ratios,
two_boxes_for_ar1=two_boxes_for_ar1,
steps=steps,
offsets=offsets,
clip_boxes=clip_boxes,
variances=variances,
normalize_coords=normalize_coords,
subtract_mean=mean_color,
swap_channels=swap_channels)
# 2: Load some weights into the model.
# TODO: Set the path to the weights you want to load.
weights_path = 'VGG_ILSVRC_16_layers_fc_reduced.h5'
model.load_weights(weights_path, by_name=True)
# 3: Instantiate an optimizer and the SSD loss function and compile the model.
# If you want to follow the original Caffe implementation, use the preset SGD
# optimizer, otherwise I'd recommend the commented-out Adam optimizer.
adam = Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0)
#sgd = SGD(lr=0.001, momentum=0.9, decay=0.0, nesterov=False)
ssd_loss = SSDLoss(neg_pos_ratio=3, alpha=1.0)
model.compile(optimizer=adam, loss=ssd_loss.compute_loss)
# 1: Instantiate two `DataGenerator` objects: One for training, one for validation.
# Optional: If you have enough memory, consider loading the images into memory for the reasons explained above.
train_dataset = DataGenerator(load_images_into_memory=False, hdf5_dataset_path=None)
val_dataset = DataGenerator(load_images_into_memory=False, hdf5_dataset_path=None)
# 2: Parse the image and label lists for the training and validation datasets. This can take a while.
# TODO: Set the paths to the datasets here.
# The directories that contain the images.
trainimages_dir = './data/trainImages/'
testimages_dir = './data/testImages/'
# The files that contain the annotations.
trainlabels = './data/trainlabels.csv'
testlabels = './data/testlabels.csv'
input_format = ['image_name', 'class_id', 'ymin', 'xmin', 'ymax', 'xmax']
# The XML parser needs to now what object class names to look for and in which order to map them to integers.
classes = ['B']
train_dataset.parse_csv(images_dir=trainimages_dir,
labels_filename=trainlabels,
input_format=input_format,
include_classes='all',
random_sample=False,
ret=False,
verbose=True)
val_dataset.parse_csv(images_dir=testimages_dir,
labels_filename=testlabels,
input_format=input_format,
include_classes='all',
random_sample=False,
ret=False,
verbose=True)
# Optional: Convert the dataset into an HDF5 dataset. This will require more disk space, but will
# speed up the training. Doing this is not relevant in case you activated the `load_images_into_memory`
# option in the constructor, because in that cas the images are in memory already anyway. If you don't
# want to create HDF5 datasets, comment out the subsequent two function calls.
train_dataset.create_hdf5_dataset(file_path='dataset_pascal_voc_07+12_trainval.h5',
resize=False,
variable_image_size=True,
verbose=True)
val_dataset.create_hdf5_dataset(file_path='dataset_pascal_voc_07_test.h5',
resize=False,
variable_image_size=True,
verbose=True)
# 3: Set the batch size.
batch_size = 10 # Change the batch size if you like, or if you run into GPU memory issues.
# 4: Set the image transformations for pre-processing and data augmentation options.
# For the training generator:
ssd_data_augmentation = SSDDataAugmentation(img_height=img_height,
img_width=img_width,
background=mean_color)
# For the validation generator:
convert_to_3_channels = ConvertTo3Channels()
resize = Resize(height=img_height, width=img_width)
# 5: Instantiate an encoder that can encode ground truth labels into the format needed by the SSD loss function.
# The encoder constructor needs the spatial dimensions of the model's predictor layers to create the anchor boxes.
predictor_sizes = [model.get_layer('conv4_3_norm_mbox_conf').output_shape[1:3],
model.get_layer('fc7_mbox_conf').output_shape[1:3],
model.get_layer('conv6_2_mbox_conf').output_shape[1:3],
model.get_layer('conv7_2_mbox_conf').output_shape[1:3],
model.get_layer('conv8_2_mbox_conf').output_shape[1:3],
model.get_layer('conv9_2_mbox_conf').output_shape[1:3],
model.get_layer('conv10_2_mbox_conf').output_shape[1:3]]
ssd_input_encoder = SSDInputEncoder(img_height=img_height,
img_width=img_width,
n_classes=n_classes,
predictor_sizes=predictor_sizes,
scales=scales,
aspect_ratios_per_layer=aspect_ratios,
two_boxes_for_ar1=two_boxes_for_ar1,
steps=steps,
offsets=offsets,
clip_boxes=clip_boxes,
variances=variances,
matching_type='multi',
pos_iou_threshold=0.5,
neg_iou_limit=0.5,
normalize_coords=normalize_coords)
# 6: Create the generator handles that will be passed to Keras' `fit_generator()` function.
train_generator = train_dataset.generate(batch_size=batch_size,
shuffle=True,
transformations=[ssd_data_augmentation],
label_encoder=ssd_input_encoder,
returns={'processed_images',
'encoded_labels'},
keep_images_without_gt=False)
val_generator = val_dataset.generate(batch_size=batch_size,
shuffle=False,
transformations=[convert_to_3_channels,
resize],
label_encoder=ssd_input_encoder,
returns={'processed_images',
'encoded_labels'},
keep_images_without_gt=False)
# Get the number of samples in the training and validations datasets.
train_dataset_size = train_dataset.get_dataset_size()
val_dataset_size = val_dataset.get_dataset_size()
print("Number of images in the training dataset:\t{:>6}".format(train_dataset_size))
print("Number of images in the validation dataset:\t{:>6}".format(val_dataset_size))
# Define a learning rate schedule.
def lr_schedule(epoch):
if epoch < 80:
return 0.001
elif epoch < 100:
return 0.0001
else:
return 0.00001
# Define model callbacks.
# TODO: Set the filepath under which you want to save the model.
model_checkpoint = ModelCheckpoint(filepath='ssd512_pascal_07+12_epoch-{epoch:02d}_loss-{loss:.4f}_val_loss-{val_loss:.4f}.h5',
monitor='val_loss',
verbose=1,
save_best_only=True,
save_weights_only=False,
mode='auto',
period=100)
#model_checkpoint.best =
csv_logger = CSVLogger(filename='ssd512_pascal_07+12_training_log.csv',
separator=',',
append=True)
learning_rate_scheduler = LearningRateScheduler(schedule=lr_schedule,
verbose=1)
terminate_on_nan = TerminateOnNaN()
callbacks = [model_checkpoint,
csv_logger,
learning_rate_scheduler,
terminate_on_nan]
# If you're resuming a previous training, set `initial_epoch` and `final_epoch` accordingly.
initial_epoch = 0
final_epoch = 300
steps_per_epoch = 30
history = model.fit_generator(generator=train_generator,
steps_per_epoch=steps_per_epoch,
epochs=final_epoch,
callbacks=callbacks,
validation_data=val_generator,
validation_steps=ceil(val_dataset_size/batch_size),
initial_epoch=initial_epoch)
model.save('ssd512_mine.h5')