[974c13]: / FastRCNN / utils / add_transforms.py

Download this file

235 lines (191 with data), 8.2 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
from chainercv import transforms
import random
import numpy as np
from chainercv import utils
import six
def rotate_bbox(bbox, size, k):
"""Rotate bounding boxes accordingly
The bounding boxes are expected to be packed into a two dimensional
tensor of shape :math:`(R, 4)`, where :math:`R` is the number of
bounding boxes in the image. The second axis represents attributes of
the bounding box. They are :math:`(y_{min}, x_{min}, y_{max}, x_{max})`,
where the four attributes are coordinates of the top left and the
bottom right vertices.
:param bbox:
:param size:
:param k:
:return:
"""
H, W = size
origin = (W/2, H/2)
p1 = (bbox[:, 1], bbox[:, 0])
p2 = (bbox[:, 3], bbox[:, 2])
k = k % 4
if k != 0 and len(p1) > 0:
new_p1 = rotate_point(p1, origin, k)
new_p2 = rotate_point(p2, origin, k)
bbox[:, 0] = np.min([new_p1[1], new_p2[1]],axis=0)
bbox[:, 2] = np.max([new_p1[1], new_p2[1]],axis=0)
bbox[:, 1] = np.min([new_p1[0], new_p2[0]],axis=0)
bbox[:, 3] = np.max([new_p1[0], new_p2[0]],axis=0)
return bbox
def random_resize(img):
rv = random.random()
if rv < 0.5:
ratio = round(rv*2, 1)
_, H, W = img.shape
img = transforms.resize(img, (int(ratio*H), int(ratio*W)))
return img
def rotate_point(point, origin, k):
x, y = point
offset_x, offset_y = origin
adjusted_x = (x - offset_x)
adjusted_y = (y - offset_y)
cos_rad = [1, 0, -1, 0][k]
sin_rad = [0, 1, 0, -1][k]
if k%2 == 1:
offset_x, offset_y = offset_y, offset_x
qx = offset_x + cos_rad * adjusted_x + sin_rad * adjusted_y
qy = offset_y + -sin_rad * adjusted_x + cos_rad * adjusted_y
return qx, qy
def random_distort(
img,
brightness_delta=32,
contrast_low=0.5, contrast_high=1.5):
"""An adjusted color related data augmentation.
This function is a combination of four augmentation methods:
brightness, contrast, saturation and hue.
* brightness: Adding a random offset to the intensity of the image.
* contrast: Multiplying the intensity of the image by a random scale.
Args:
img (~numpy.ndarray): An image array to be augmented. This is in
CHW and RGB format.
brightness_delta (float): The offset for saturation will be
drawn from :math:`[-brightness\_delta, brightness\_delta]`.
The default value is :obj:`32`.
contrast_low (float): The scale for contrast will be
drawn from :math:`[contrast\_low, contrast\_high]`.
The default value is :obj:`0.5`.
contrast_high (float): See :obj:`contrast_low`.
The default value is :obj:`1.5`.
Returns:
An image in CHW and RGB format.
"""
cv_img = img[::-1].transpose((1, 2, 0)).astype(np.uint8)
def convert(img, alpha=1, beta=0):
img = img.astype(float) * alpha + beta
img[img < 0] = 0
img[img > 255] = 255
return img.astype(np.uint8)
def brightness(cv_img, delta):
if random.randrange(2):
return convert(
cv_img,
beta=random.uniform(-delta, delta))
else:
return cv_img
def contrast(cv_img, low, high):
if random.randrange(2):
return convert(
cv_img,
alpha=random.uniform(low, high))
else:
return cv_img
if random.randrange(2):
cv_img = brightness(cv_img, brightness_delta)
cv_img = contrast(cv_img, contrast_low, contrast_high)
else:
cv_img = contrast(cv_img, contrast_low, contrast_high)
cv_img = brightness(cv_img, brightness_delta)
return cv_img.astype(np.float32).transpose((2, 0, 1))[::-1]
def random_crop_with_bbox_constraints(
img, bbox, min_scale=0.3, max_scale=1,
max_aspect_ratio=2, constraints=None,
max_trial=50, return_param=False):
"""Crop an image randomly with bounding box constraints.
This data augmentation is used in training of
Single Shot Multibox Detector [#]_. More details can be found in
data augmentation section of the original paper.
.. [#] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy,
Scott Reed, Cheng-Yang Fu, Alexander C. Berg.
SSD: Single Shot MultiBox Detector. ECCV 2016.
Args:
img (~numpy.ndarray): An image array to be cropped. This is in
CHW format.
bbox (~numpy.ndarray): Bounding boxes used for constraints.
The shape is :math:`(R, 4)`.
:math:`R` is the number of bounding boxes.
min_scale (float): The minimum ratio between a cropped
region and the original image. The default value is :obj:`0.3`.
max_scale (float): The maximum ratio between a cropped
region and the original image. The default value is :obj:`1`.
max_aspect_ratio (float): The maximum aspect ratio of cropped region.
The default value is :obj:`2`.
constaraints (iterable of tuples): An iterable of constraints.
Each constraint should be :obj:`(min_iou, max_iou)` format.
If you set :obj:`min_iou` or :obj:`max_iou` to :obj:`None`,
it means not limited.
If this argument is not specified, :obj:`((0.1, None), (0.3, None),
(0.5, None), (0.7, None), (0.9, None), (None, 1))` will be used.
max_trial (int): The maximum number of trials to be conducted
for each constraint. If this function
can not find any region that satisfies the constraint in
:math:`max\_trial` trials, this function skips the constraint.
The default value is :obj:`50`.
return_param (bool): If :obj:`True`, this function returns
information of intermediate values.
Returns:
~numpy.ndarray or (~numpy.ndarray, dict):
If :obj:`return_param = False`,
returns an array :obj:`img` that is cropped from the input
array.
If :obj:`return_param = True`,
returns a tuple whose elements are :obj:`img, param`.
:obj:`param` is a dictionary of intermediate parameters whose
contents are listed below with key, value-type and the description
of the value.
* **constraint** (*tuple*): The chosen constraint.
* **y_slice** (*slice*): A slice in vertical direction used to crop \
the input image.
* **x_slice** (*slice*): A slice in horizontal direction used to crop \
the input image.
"""
if constraints is None:
constraints = (
(0.1, None),
(None, 1),
)
_, H, W = img.shape
params = [{
'constraint': None, 'y_slice': slice(0, H), 'x_slice': slice(0, W)}]
if len(bbox) == 0:
constraints = list()
for min_iou, max_iou in constraints:
if min_iou is None:
min_iou = 0
if max_iou is None:
max_iou = 1
for _ in six.moves.range(max_trial):
scale = random.uniform(min_scale, max_scale)
aspect_ratio = random.uniform(
max(1 / max_aspect_ratio, scale * scale),
min(max_aspect_ratio, 1 / (scale * scale)))
crop_h = int(H * scale / np.sqrt(aspect_ratio))
crop_w = int(W * scale * np.sqrt(aspect_ratio))
crop_t = random.randrange(H - crop_h)
crop_l = random.randrange(W - crop_w)
crop_bb = np.array((
crop_t, crop_l, crop_t + crop_h, crop_l + crop_w))
iou = utils.bbox_iou(bbox, crop_bb[np.newaxis])
if min_iou <= iou.min() and iou.max() <= max_iou and iou.sum() > 0.05:
params.append({
'constraint': (min_iou, max_iou),
'y_slice': slice(crop_t, crop_t + crop_h),
'x_slice': slice(crop_l, crop_l + crop_w)})
break
param = random.choice(params)
img = img[:, param['y_slice'], param['x_slice']]
if return_param:
return img, param
else:
return img