[974c13]: / FastRCNN / subMed.sh

Download this file

48 lines (35 with data), 1.5 kB

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
#!/usr/bin/env bash
# Ron the short-list GPU queue
#SBATCH -p slurm_priority
#SBATCH --account=cmg --qos=priority
## Request one CPU core from the scheduler
#SBATCH -c 1
## Request a GPU from the scheduler, we don't care what kind
#SBATCH --gres=gpu:p100:1
#SBATCH -t 14-3:00 # time (D-HH:MM)
## Create a unique output file for the job
#SBATCH -o cuda_Training-%j.log
## Load CUDA into your environment
## load custimized CUDA and cudaToolkit
module load usermods
module load user/cuda
#module load cuda/9.0
# activate retina virtual environment
source activate chainercv
#conda install -c anaconda --name retina cudatoolkit==9.0 --yes
#conda install -c anaconda --name retina cudnn --yes
#conda install -c anaconda --name retina keras --yes
# install tensorflow and other libraries for machine learning
#/srv/home/shenmr/anaconda3/envs/retina/bin/pip install tensorflow-gpu==1.6
#/srv/home/shenmr/anaconda3/envs/retina/bin/pip install numpy scipy scikit-learn pandas matplotlib seaborn
#
#/srv/home/shenmr/anaconda3/envs/retina/bin/pip msgpack
#conda install -c anaconda --name retina keras-gpu
##/srv/home/shenmr/anaconda3/envs/retina/bin/pip install keras
#
/srv/home/shenmr/anaconda3/envs/chainercv/bin/pip install scikit-image
/srv/home/shenmr/anaconda3/envs/chainercv/bin/pip install cupy-cuda90
/srv/home/shenmr/anaconda3/envs/chainercv/bin/pip install opencv-python
/srv/home/shenmr/anaconda3/envs/chainercv/bin/pip install Pillow
# run the training scripts
python train.py