118 lines (117 with data), 3.6 kB
{
"cells": [
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"ename": "ModuleNotFoundError",
"evalue": "No module named 'cv2'",
"output_type": "error",
"traceback": [
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[1;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)",
"\u001b[1;32m<ipython-input-6-52622fdc5d50>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m()\u001b[0m\n\u001b[0;32m 2\u001b[0m \u001b[1;32mimport\u001b[0m \u001b[0mcsv\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 3\u001b[0m \u001b[1;32mimport\u001b[0m \u001b[0mshutil\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 4\u001b[1;33m \u001b[1;32mimport\u001b[0m \u001b[0mcv2\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 5\u001b[0m \u001b[1;32mimport\u001b[0m \u001b[0mnumpy\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 6\u001b[0m \u001b[1;32mfrom\u001b[0m \u001b[0mPIL\u001b[0m \u001b[1;32mimport\u001b[0m \u001b[0mImage\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
"\u001b[1;31mModuleNotFoundError\u001b[0m: No module named 'cv2'"
]
}
],
"source": [
"import os\n",
"import csv\n",
"import shutil\n",
"import cv2\n",
"import numpy \n",
"from PIL import Image\n",
"import matplotlib.pyplot as plt\n",
"import matplotlib.patches as patches"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"with open('trains.txt') as filenames:\n",
" reader = csv.reader(filenames)\n",
" for f in reader:\n",
" shutil.move(\"./images/\" + f[0][:-4] + '.jpg' , \"./trainImages\")"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"with open('testimages.txt') as filenames:\n",
" reader = csv.reader(filenames)\n",
" for f in reader:\n",
" shutil.move(\"./images/\" + f[0][:-4] + '.jpg', \"./testImages\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"allfiles=os.listdir('images')\n",
"imlist=[filename for filename in allfiles if filename[-4:] in [\".jpg\",\".JPG\"]]\n",
"\n",
"\n",
"w,h=Image.open('images/' + imlist[0]).size\n",
"N=len(imlist)\n",
"\n",
"res = 0\n",
"\n",
"for im in imlist:\n",
" tempim = Image.open('images/' + im)\n",
" w, h = tempim.size\n",
" \n",
" imarr=numpy.array(tempim,dtype=numpy.float)\n",
" if(len(imarr.shape) == 3):\n",
" imarr = imarr[:,:,0]\n",
" avg = 0\n",
" for x in range(w):\n",
" for y in range(h):\n",
" avg = avg + imarr[y][x]\n",
" avg = avg/(w*h)\n",
" res = res + avg/N\n",
"\n",
"print(res)\n",
" "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.5"
}
},
"nbformat": 4,
"nbformat_minor": 2
}