--- a +++ b/YOLO/yolo.py @@ -0,0 +1,213 @@ +# -*- coding: utf-8 -*- +""" +Class definition of YOLO_v3 style detection model on image and video +""" + +import colorsys +import os +from timeit import default_timer as timer + +import numpy as np +from keras import backend as K +from keras.models import load_model +from keras.layers import Input +from PIL import Image, ImageFont, ImageDraw + +from yolo3.model import yolo_eval, yolo_body, tiny_yolo_body +from yolo3.utils import letterbox_image +import os +from keras.utils import multi_gpu_model + +class YOLO(object): + _defaults = { + "model_path": 'model_data/yolo.h5', + "anchors_path": 'model_data/yolo_anchors.txt', + "classes_path": 'model_data/med_classes.txt', + "score" : 0.3, + "iou" : 0.45, + "model_image_size" : (416, 416), + "gpu_num" : 1, + } + + @classmethod + def get_defaults(cls, n): + if n in cls._defaults: + return cls._defaults[n] + else: + return "Unrecognized attribute name '" + n + "'" + + def __init__(self, **kwargs): + self.__dict__.update(self._defaults) # set up default values + self.__dict__.update(kwargs) # and update with user overrides + self.class_names = self._get_class() + self.anchors = self._get_anchors() + self.sess = K.get_session() + self.boxes, self.scores, self.classes = self.generate() + + def _get_class(self): + classes_path = os.path.expanduser(self.classes_path) + with open(classes_path) as f: + class_names = f.readlines() + class_names = [c.strip() for c in class_names] + return class_names + + def _get_anchors(self): + anchors_path = os.path.expanduser(self.anchors_path) + with open(anchors_path) as f: + anchors = f.readline() + anchors = [float(x) for x in anchors.split(',')] + return np.array(anchors).reshape(-1, 2) + + def generate(self): + model_path = os.path.expanduser(self.model_path) + assert model_path.endswith('.h5'), 'Keras model or weights must be a .h5 file.' + + # Load model, or construct model and load weights. + num_anchors = len(self.anchors) + num_classes = len(self.class_names) + is_tiny_version = num_anchors==6 # default setting + try: + self.yolo_model = load_model(model_path, compile=False) + print(self.yolo_model.layers[-1].output_shape[-1]) + except: + self.yolo_model = tiny_yolo_body(Input(shape=(None,None,3)), num_anchors//2, num_classes) \ + if is_tiny_version else yolo_body(Input(shape=(None,None,3)), num_anchors//3, num_classes) + self.yolo_model.load_weights(self.model_path) # make sure model, anchors and classes match + else: + assert self.yolo_model.layers[-1].output_shape[-1] == \ + num_anchors/len(self.yolo_model.output) * (num_classes + 5), \ + 'Mismatch between model and given anchor and class sizes' + + print('{} model, anchors, and classes loaded.'.format(model_path)) + + # Generate colors for drawing bounding boxes. + hsv_tuples = [(x / len(self.class_names), 1., 1.) + for x in range(len(self.class_names))] + self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples)) + self.colors = list( + map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)), + self.colors)) + np.random.seed(10101) # Fixed seed for consistent colors across runs. + np.random.shuffle(self.colors) # Shuffle colors to decorrelate adjacent classes. + np.random.seed(None) # Reset seed to default. + + # Generate output tensor targets for filtered bounding boxes. + self.input_image_shape = K.placeholder(shape=(2, )) + if self.gpu_num>=2: + self.yolo_model = multi_gpu_model(self.yolo_model, gpus=self.gpu_num) + boxes, scores, classes = yolo_eval(self.yolo_model.output, self.anchors, + len(self.class_names), self.input_image_shape, + score_threshold=self.score, iou_threshold=self.iou) + return boxes, scores, classes + + def detect_image(self, image): + start = timer() + + if self.model_image_size != (None, None): + assert self.model_image_size[0]%32 == 0, 'Multiples of 32 required' + assert self.model_image_size[1]%32 == 0, 'Multiples of 32 required' + boxed_image = letterbox_image(image, tuple(reversed(self.model_image_size))) + else: + new_image_size = (image.width - (image.width % 32), + image.height - (image.height % 32)) + boxed_image = letterbox_image(image, new_image_size) + image_data = np.array(boxed_image, dtype='float32') + + print(image_data.shape) + image_data /= 255. + image_data = np.expand_dims(image_data, 0) # Add batch dimension. + + out_boxes, out_scores, out_classes = self.sess.run( + [self.boxes, self.scores, self.classes], + feed_dict={ + self.yolo_model.input: image_data, + self.input_image_shape: [image.size[1], image.size[0]], + K.learning_phase(): 0 + }) + + print('Found {} boxes for {}'.format(len(out_boxes), 'img')) + print(out_boxes) + + font = ImageFont.truetype(font='font/FiraMono-Medium.otf', + size=np.floor(3e-2 * image.size[1] + 0.5).astype('int32')) + thickness = (image.size[0] + image.size[1]) // 300 + + for i, c in reversed(list(enumerate(out_classes))): + predicted_class = self.class_names[c] + box = out_boxes[i] + score = out_scores[i] + + label = '{} {:.2f}'.format(predicted_class, score) + draw = ImageDraw.Draw(image) + label_size = draw.textsize(label, font) + + top, left, bottom, right = box + top = max(0, np.floor(top + 0.5).astype('int32')) + left = max(0, np.floor(left + 0.5).astype('int32')) + bottom = min(image.size[1], np.floor(bottom + 0.5).astype('int32')) + right = min(image.size[0], np.floor(right + 0.5).astype('int32')) + print(label, (left, top), (right, bottom)) + + if top - label_size[1] >= 0: + text_origin = np.array([left, top - label_size[1]]) + else: + text_origin = np.array([left, top + 1]) + + # My kingdom for a good redistributable image drawing library. + for i in range(thickness): + draw.rectangle( + [left + i, top + i, right - i, bottom - i], + outline=self.colors[c]) + draw.rectangle( + [tuple(text_origin), tuple(text_origin + label_size)], + fill=self.colors[c]) + draw.text(text_origin, label, fill=(0, 0, 0), font=font) + del draw + + end = timer() + print(end - start) + return image + + def close_session(self): + self.sess.close() + +def detect_video(yolo, video_path, output_path=""): + import cv2 + vid = cv2.VideoCapture(video_path) + if not vid.isOpened(): + raise IOError("Couldn't open webcam or video") + video_FourCC = int(vid.get(cv2.CAP_PROP_FOURCC)) + video_fps = vid.get(cv2.CAP_PROP_FPS) + video_size = (int(vid.get(cv2.CAP_PROP_FRAME_WIDTH)), + int(vid.get(cv2.CAP_PROP_FRAME_HEIGHT))) + isOutput = True if output_path != "" else False + if isOutput: + print("!!! TYPE:", type(output_path), type(video_FourCC), type(video_fps), type(video_size)) + out = cv2.VideoWriter(output_path, video_FourCC, video_fps, video_size) + accum_time = 0 + curr_fps = 0 + fps = "FPS: ??" + prev_time = timer() + while True: + return_value, frame = vid.read() + image = Image.fromarray(frame) + image = yolo.detect_image(image) + result = np.asarray(image) + curr_time = timer() + exec_time = curr_time - prev_time + prev_time = curr_time + accum_time = accum_time + exec_time + curr_fps = curr_fps + 1 + if accum_time > 1: + accum_time = accum_time - 1 + fps = "FPS: " + str(curr_fps) + curr_fps = 0 + cv2.putText(result, text=fps, org=(3, 15), fontFace=cv2.FONT_HERSHEY_SIMPLEX, + fontScale=0.50, color=(255, 0, 0), thickness=2) + cv2.namedWindow("result", cv2.WINDOW_NORMAL) + cv2.imshow("result", result) + if isOutput: + out.write(result) + if cv2.waitKey(1) & 0xFF == ord('q'): + break + yolo.close_session()