--- a +++ b/YOLO/train_bottleneck.py @@ -0,0 +1,222 @@ +""" +Retrain the YOLO model for your own dataset. +""" +import os +import numpy as np +import keras.backend as K +from keras.layers import Input, Lambda +from keras.models import Model +from keras.optimizers import Adam +from keras.callbacks import TensorBoard, ModelCheckpoint, ReduceLROnPlateau, EarlyStopping + +from yolo3.model import preprocess_true_boxes, yolo_body, tiny_yolo_body, yolo_loss +from yolo3.utils import get_random_data + + +def _main(): + annotation_path = 'train.txt' + log_dir = 'logs/000/' + classes_path = 'model_data/coco_classes.txt' + anchors_path = 'model_data/yolo_anchors.txt' + class_names = get_classes(classes_path) + num_classes = len(class_names) + anchors = get_anchors(anchors_path) + + input_shape = (416,416) # multiple of 32, hw + + model, bottleneck_model, last_layer_model = create_model(input_shape, anchors, num_classes, + freeze_body=2, weights_path='model_data/yolo_weights.h5') # make sure you know what you freeze + + logging = TensorBoard(log_dir=log_dir) + checkpoint = ModelCheckpoint(log_dir + 'ep{epoch:03d}-loss{loss:.3f}-val_loss{val_loss:.3f}.h5', + monitor='val_loss', save_weights_only=True, save_best_only=True, period=3) + reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=3, verbose=1) + early_stopping = EarlyStopping(monitor='val_loss', min_delta=0, patience=10, verbose=1) + + val_split = 0.1 + with open(annotation_path) as f: + lines = f.readlines() + np.random.seed(10101) + np.random.shuffle(lines) + np.random.seed(None) + num_val = int(len(lines)*val_split) + num_train = len(lines) - num_val + + # Train with frozen layers first, to get a stable loss. + # Adjust num epochs to your dataset. This step is enough to obtain a not bad model. + if True: + # perform bottleneck training + if not os.path.isfile("bottlenecks.npz"): + print("calculating bottlenecks") + batch_size=8 + bottlenecks=bottleneck_model.predict_generator(data_generator_wrapper(lines, batch_size, input_shape, anchors, num_classes, random=False, verbose=True), + steps=(len(lines)//batch_size)+1, max_queue_size=1) + np.savez("bottlenecks.npz", bot0=bottlenecks[0], bot1=bottlenecks[1], bot2=bottlenecks[2]) + + # load bottleneck features from file + dict_bot=np.load("bottlenecks.npz") + bottlenecks_train=[dict_bot["bot0"][:num_train], dict_bot["bot1"][:num_train], dict_bot["bot2"][:num_train]] + bottlenecks_val=[dict_bot["bot0"][num_train:], dict_bot["bot1"][num_train:], dict_bot["bot2"][num_train:]] + + # train last layers with fixed bottleneck features + batch_size=8 + print("Training last layers with bottleneck features") + print('with {} samples, val on {} samples and batch size {}.'.format(num_train, num_val, batch_size)) + last_layer_model.compile(optimizer='adam', loss={'yolo_loss': lambda y_true, y_pred: y_pred}) + last_layer_model.fit_generator(bottleneck_generator(lines[:num_train], batch_size, input_shape, anchors, num_classes, bottlenecks_train), + steps_per_epoch=max(1, num_train//batch_size), + validation_data=bottleneck_generator(lines[num_train:], batch_size, input_shape, anchors, num_classes, bottlenecks_val), + validation_steps=max(1, num_val//batch_size), + epochs=30, + initial_epoch=0, max_queue_size=1) + model.save_weights(log_dir + 'trained_weights_stage_0.h5') + + # train last layers with random augmented data + model.compile(optimizer=Adam(lr=1e-3), loss={ + # use custom yolo_loss Lambda layer. + 'yolo_loss': lambda y_true, y_pred: y_pred}) + batch_size = 16 + print('Train on {} samples, val on {} samples, with batch size {}.'.format(num_train, num_val, batch_size)) + model.fit_generator(data_generator_wrapper(lines[:num_train], batch_size, input_shape, anchors, num_classes), + steps_per_epoch=max(1, num_train//batch_size), + validation_data=data_generator_wrapper(lines[num_train:], batch_size, input_shape, anchors, num_classes), + validation_steps=max(1, num_val//batch_size), + epochs=50, + initial_epoch=0, + callbacks=[logging, checkpoint]) + model.save_weights(log_dir + 'trained_weights_stage_1.h5') + + # Unfreeze and continue training, to fine-tune. + # Train longer if the result is not good. + if True: + for i in range(len(model.layers)): + model.layers[i].trainable = True + model.compile(optimizer=Adam(lr=1e-4), loss={'yolo_loss': lambda y_true, y_pred: y_pred}) # recompile to apply the change + print('Unfreeze all of the layers.') + + batch_size = 4 # note that more GPU memory is required after unfreezing the body + print('Train on {} samples, val on {} samples, with batch size {}.'.format(num_train, num_val, batch_size)) + model.fit_generator(data_generator_wrapper(lines[:num_train], batch_size, input_shape, anchors, num_classes), + steps_per_epoch=max(1, num_train//batch_size), + validation_data=data_generator_wrapper(lines[num_train:], batch_size, input_shape, anchors, num_classes), + validation_steps=max(1, num_val//batch_size), + epochs=100, + initial_epoch=50, + callbacks=[logging, checkpoint, reduce_lr, early_stopping]) + model.save_weights(log_dir + 'trained_weights_final.h5') + + # Further training if needed. + + +def get_classes(classes_path): + '''loads the classes''' + with open(classes_path) as f: + class_names = f.readlines() + class_names = [c.strip() for c in class_names] + return class_names + +def get_anchors(anchors_path): + '''loads the anchors from a file''' + with open(anchors_path) as f: + anchors = f.readline() + anchors = [float(x) for x in anchors.split(',')] + return np.array(anchors).reshape(-1, 2) + + +def create_model(input_shape, anchors, num_classes, load_pretrained=True, freeze_body=2, + weights_path='model_data/yolo_weights.h5'): + '''create the training model''' + K.clear_session() # get a new session + image_input = Input(shape=(None, None, 3)) + h, w = input_shape + num_anchors = len(anchors) + + y_true = [Input(shape=(h//{0:32, 1:16, 2:8}[l], w//{0:32, 1:16, 2:8}[l], \ + num_anchors//3, num_classes+5)) for l in range(3)] + + model_body = yolo_body(image_input, num_anchors//3, num_classes) + print('Create YOLOv3 model with {} anchors and {} classes.'.format(num_anchors, num_classes)) + + if load_pretrained: + model_body.load_weights(weights_path, by_name=True, skip_mismatch=True) + print('Load weights {}.'.format(weights_path)) + if freeze_body in [1, 2]: + # Freeze darknet53 body or freeze all but 3 output layers. + num = (185, len(model_body.layers)-3)[freeze_body-1] + for i in range(num): model_body.layers[i].trainable = False + print('Freeze the first {} layers of total {} layers.'.format(num, len(model_body.layers))) + + # get output of second last layers and create bottleneck model of it + out1=model_body.layers[246].output + out2=model_body.layers[247].output + out3=model_body.layers[248].output + bottleneck_model = Model([model_body.input, *y_true], [out1, out2, out3]) + + # create last layer model of last layers from yolo model + in0 = Input(shape=bottleneck_model.output[0].shape[1:].as_list()) + in1 = Input(shape=bottleneck_model.output[1].shape[1:].as_list()) + in2 = Input(shape=bottleneck_model.output[2].shape[1:].as_list()) + last_out0=model_body.layers[249](in0) + last_out1=model_body.layers[250](in1) + last_out2=model_body.layers[251](in2) + model_last=Model(inputs=[in0, in1, in2], outputs=[last_out0, last_out1, last_out2]) + model_loss_last =Lambda(yolo_loss, output_shape=(1,), name='yolo_loss', + arguments={'anchors': anchors, 'num_classes': num_classes, 'ignore_thresh': 0.5})( + [*model_last.output, *y_true]) + last_layer_model = Model([in0,in1,in2, *y_true], model_loss_last) + + + model_loss = Lambda(yolo_loss, output_shape=(1,), name='yolo_loss', + arguments={'anchors': anchors, 'num_classes': num_classes, 'ignore_thresh': 0.5})( + [*model_body.output, *y_true]) + model = Model([model_body.input, *y_true], model_loss) + + return model, bottleneck_model, last_layer_model + +def data_generator(annotation_lines, batch_size, input_shape, anchors, num_classes, random=True, verbose=False): + '''data generator for fit_generator''' + n = len(annotation_lines) + i = 0 + while True: + image_data = [] + box_data = [] + for b in range(batch_size): + if i==0 and random: + np.random.shuffle(annotation_lines) + image, box = get_random_data(annotation_lines[i], input_shape, random=random) + image_data.append(image) + box_data.append(box) + i = (i+1) % n + image_data = np.array(image_data) + if verbose: + print("Progress: ",i,"/",n) + box_data = np.array(box_data) + y_true = preprocess_true_boxes(box_data, input_shape, anchors, num_classes) + yield [image_data, *y_true], np.zeros(batch_size) + +def data_generator_wrapper(annotation_lines, batch_size, input_shape, anchors, num_classes, random=True, verbose=False): + n = len(annotation_lines) + if n==0 or batch_size<=0: return None + return data_generator(annotation_lines, batch_size, input_shape, anchors, num_classes, random, verbose) + +def bottleneck_generator(annotation_lines, batch_size, input_shape, anchors, num_classes, bottlenecks): + n = len(annotation_lines) + i = 0 + while True: + box_data = [] + b0=np.zeros((batch_size,bottlenecks[0].shape[1],bottlenecks[0].shape[2],bottlenecks[0].shape[3])) + b1=np.zeros((batch_size,bottlenecks[1].shape[1],bottlenecks[1].shape[2],bottlenecks[1].shape[3])) + b2=np.zeros((batch_size,bottlenecks[2].shape[1],bottlenecks[2].shape[2],bottlenecks[2].shape[3])) + for b in range(batch_size): + _, box = get_random_data(annotation_lines[i], input_shape, random=False, proc_img=False) + box_data.append(box) + b0[b]=bottlenecks[0][i] + b1[b]=bottlenecks[1][i] + b2[b]=bottlenecks[2][i] + i = (i+1) % n + box_data = np.array(box_data) + y_true = preprocess_true_boxes(box_data, input_shape, anchors, num_classes) + yield [b0, b1, b2, *y_true], np.zeros(batch_size) + +if __name__ == '__main__': + _main()