a b/YOLO/train_bottleneck.py
1
"""
2
Retrain the YOLO model for your own dataset.
3
"""
4
import os
5
import numpy as np
6
import keras.backend as K
7
from keras.layers import Input, Lambda
8
from keras.models import Model
9
from keras.optimizers import Adam
10
from keras.callbacks import TensorBoard, ModelCheckpoint, ReduceLROnPlateau, EarlyStopping
11
12
from yolo3.model import preprocess_true_boxes, yolo_body, tiny_yolo_body, yolo_loss
13
from yolo3.utils import get_random_data
14
15
16
def _main():
17
    annotation_path = 'train.txt'
18
    log_dir = 'logs/000/'
19
    classes_path = 'model_data/coco_classes.txt'
20
    anchors_path = 'model_data/yolo_anchors.txt'
21
    class_names = get_classes(classes_path)
22
    num_classes = len(class_names)
23
    anchors = get_anchors(anchors_path)
24
25
    input_shape = (416,416) # multiple of 32, hw
26
27
    model, bottleneck_model, last_layer_model = create_model(input_shape, anchors, num_classes,
28
            freeze_body=2, weights_path='model_data/yolo_weights.h5') # make sure you know what you freeze
29
30
    logging = TensorBoard(log_dir=log_dir)
31
    checkpoint = ModelCheckpoint(log_dir + 'ep{epoch:03d}-loss{loss:.3f}-val_loss{val_loss:.3f}.h5',
32
        monitor='val_loss', save_weights_only=True, save_best_only=True, period=3)
33
    reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=3, verbose=1)
34
    early_stopping = EarlyStopping(monitor='val_loss', min_delta=0, patience=10, verbose=1)
35
36
    val_split = 0.1
37
    with open(annotation_path) as f:
38
        lines = f.readlines()
39
    np.random.seed(10101)
40
    np.random.shuffle(lines)
41
    np.random.seed(None)
42
    num_val = int(len(lines)*val_split)
43
    num_train = len(lines) - num_val
44
45
    # Train with frozen layers first, to get a stable loss.
46
    # Adjust num epochs to your dataset. This step is enough to obtain a not bad model.
47
    if True:
48
        # perform bottleneck training
49
        if not os.path.isfile("bottlenecks.npz"):
50
            print("calculating bottlenecks")
51
            batch_size=8
52
            bottlenecks=bottleneck_model.predict_generator(data_generator_wrapper(lines, batch_size, input_shape, anchors, num_classes, random=False, verbose=True),
53
             steps=(len(lines)//batch_size)+1, max_queue_size=1)
54
            np.savez("bottlenecks.npz", bot0=bottlenecks[0], bot1=bottlenecks[1], bot2=bottlenecks[2])
55
    
56
        # load bottleneck features from file
57
        dict_bot=np.load("bottlenecks.npz")
58
        bottlenecks_train=[dict_bot["bot0"][:num_train], dict_bot["bot1"][:num_train], dict_bot["bot2"][:num_train]]
59
        bottlenecks_val=[dict_bot["bot0"][num_train:], dict_bot["bot1"][num_train:], dict_bot["bot2"][num_train:]]
60
61
        # train last layers with fixed bottleneck features
62
        batch_size=8
63
        print("Training last layers with bottleneck features")
64
        print('with {} samples, val on {} samples and batch size {}.'.format(num_train, num_val, batch_size))
65
        last_layer_model.compile(optimizer='adam', loss={'yolo_loss': lambda y_true, y_pred: y_pred})
66
        last_layer_model.fit_generator(bottleneck_generator(lines[:num_train], batch_size, input_shape, anchors, num_classes, bottlenecks_train),
67
                steps_per_epoch=max(1, num_train//batch_size),
68
                validation_data=bottleneck_generator(lines[num_train:], batch_size, input_shape, anchors, num_classes, bottlenecks_val),
69
                validation_steps=max(1, num_val//batch_size),
70
                epochs=30,
71
                initial_epoch=0, max_queue_size=1)
72
        model.save_weights(log_dir + 'trained_weights_stage_0.h5')
73
        
74
        # train last layers with random augmented data
75
        model.compile(optimizer=Adam(lr=1e-3), loss={
76
            # use custom yolo_loss Lambda layer.
77
            'yolo_loss': lambda y_true, y_pred: y_pred})
78
        batch_size = 16
79
        print('Train on {} samples, val on {} samples, with batch size {}.'.format(num_train, num_val, batch_size))
80
        model.fit_generator(data_generator_wrapper(lines[:num_train], batch_size, input_shape, anchors, num_classes),
81
                steps_per_epoch=max(1, num_train//batch_size),
82
                validation_data=data_generator_wrapper(lines[num_train:], batch_size, input_shape, anchors, num_classes),
83
                validation_steps=max(1, num_val//batch_size),
84
                epochs=50,
85
                initial_epoch=0,
86
                callbacks=[logging, checkpoint])
87
        model.save_weights(log_dir + 'trained_weights_stage_1.h5')
88
89
    # Unfreeze and continue training, to fine-tune.
90
    # Train longer if the result is not good.
91
    if True:
92
        for i in range(len(model.layers)):
93
            model.layers[i].trainable = True
94
        model.compile(optimizer=Adam(lr=1e-4), loss={'yolo_loss': lambda y_true, y_pred: y_pred}) # recompile to apply the change
95
        print('Unfreeze all of the layers.')
96
97
        batch_size = 4 # note that more GPU memory is required after unfreezing the body
98
        print('Train on {} samples, val on {} samples, with batch size {}.'.format(num_train, num_val, batch_size))
99
        model.fit_generator(data_generator_wrapper(lines[:num_train], batch_size, input_shape, anchors, num_classes),
100
            steps_per_epoch=max(1, num_train//batch_size),
101
            validation_data=data_generator_wrapper(lines[num_train:], batch_size, input_shape, anchors, num_classes),
102
            validation_steps=max(1, num_val//batch_size),
103
            epochs=100,
104
            initial_epoch=50,
105
            callbacks=[logging, checkpoint, reduce_lr, early_stopping])
106
        model.save_weights(log_dir + 'trained_weights_final.h5')
107
108
    # Further training if needed.
109
110
111
def get_classes(classes_path):
112
    '''loads the classes'''
113
    with open(classes_path) as f:
114
        class_names = f.readlines()
115
    class_names = [c.strip() for c in class_names]
116
    return class_names
117
118
def get_anchors(anchors_path):
119
    '''loads the anchors from a file'''
120
    with open(anchors_path) as f:
121
        anchors = f.readline()
122
    anchors = [float(x) for x in anchors.split(',')]
123
    return np.array(anchors).reshape(-1, 2)
124
125
126
def create_model(input_shape, anchors, num_classes, load_pretrained=True, freeze_body=2,
127
            weights_path='model_data/yolo_weights.h5'):
128
    '''create the training model'''
129
    K.clear_session() # get a new session
130
    image_input = Input(shape=(None, None, 3))
131
    h, w = input_shape
132
    num_anchors = len(anchors)
133
134
    y_true = [Input(shape=(h//{0:32, 1:16, 2:8}[l], w//{0:32, 1:16, 2:8}[l], \
135
        num_anchors//3, num_classes+5)) for l in range(3)]
136
137
    model_body = yolo_body(image_input, num_anchors//3, num_classes)
138
    print('Create YOLOv3 model with {} anchors and {} classes.'.format(num_anchors, num_classes))
139
140
    if load_pretrained:
141
        model_body.load_weights(weights_path, by_name=True, skip_mismatch=True)
142
        print('Load weights {}.'.format(weights_path))
143
        if freeze_body in [1, 2]:
144
            # Freeze darknet53 body or freeze all but 3 output layers.
145
            num = (185, len(model_body.layers)-3)[freeze_body-1]
146
            for i in range(num): model_body.layers[i].trainable = False
147
            print('Freeze the first {} layers of total {} layers.'.format(num, len(model_body.layers)))
148
149
    # get output of second last layers and create bottleneck model of it
150
    out1=model_body.layers[246].output
151
    out2=model_body.layers[247].output
152
    out3=model_body.layers[248].output
153
    bottleneck_model = Model([model_body.input, *y_true], [out1, out2, out3])
154
155
    # create last layer model of last layers from yolo model
156
    in0 = Input(shape=bottleneck_model.output[0].shape[1:].as_list()) 
157
    in1 = Input(shape=bottleneck_model.output[1].shape[1:].as_list())
158
    in2 = Input(shape=bottleneck_model.output[2].shape[1:].as_list())
159
    last_out0=model_body.layers[249](in0)
160
    last_out1=model_body.layers[250](in1)
161
    last_out2=model_body.layers[251](in2)
162
    model_last=Model(inputs=[in0, in1, in2], outputs=[last_out0, last_out1, last_out2])
163
    model_loss_last =Lambda(yolo_loss, output_shape=(1,), name='yolo_loss',
164
        arguments={'anchors': anchors, 'num_classes': num_classes, 'ignore_thresh': 0.5})(
165
        [*model_last.output, *y_true])
166
    last_layer_model = Model([in0,in1,in2, *y_true], model_loss_last)
167
168
    
169
    model_loss = Lambda(yolo_loss, output_shape=(1,), name='yolo_loss',
170
        arguments={'anchors': anchors, 'num_classes': num_classes, 'ignore_thresh': 0.5})(
171
        [*model_body.output, *y_true])
172
    model = Model([model_body.input, *y_true], model_loss)
173
174
    return model, bottleneck_model, last_layer_model
175
176
def data_generator(annotation_lines, batch_size, input_shape, anchors, num_classes, random=True, verbose=False):
177
    '''data generator for fit_generator'''
178
    n = len(annotation_lines)
179
    i = 0
180
    while True:
181
        image_data = []
182
        box_data = []
183
        for b in range(batch_size):
184
            if i==0 and random:
185
                np.random.shuffle(annotation_lines)
186
            image, box = get_random_data(annotation_lines[i], input_shape, random=random)
187
            image_data.append(image)
188
            box_data.append(box)
189
            i = (i+1) % n
190
        image_data = np.array(image_data)
191
        if verbose:
192
            print("Progress: ",i,"/",n)
193
        box_data = np.array(box_data)
194
        y_true = preprocess_true_boxes(box_data, input_shape, anchors, num_classes)
195
        yield [image_data, *y_true], np.zeros(batch_size)
196
197
def data_generator_wrapper(annotation_lines, batch_size, input_shape, anchors, num_classes, random=True, verbose=False):
198
    n = len(annotation_lines)
199
    if n==0 or batch_size<=0: return None
200
    return data_generator(annotation_lines, batch_size, input_shape, anchors, num_classes, random, verbose)
201
202
def bottleneck_generator(annotation_lines, batch_size, input_shape, anchors, num_classes, bottlenecks):
203
    n = len(annotation_lines)
204
    i = 0
205
    while True:
206
        box_data = []
207
        b0=np.zeros((batch_size,bottlenecks[0].shape[1],bottlenecks[0].shape[2],bottlenecks[0].shape[3]))
208
        b1=np.zeros((batch_size,bottlenecks[1].shape[1],bottlenecks[1].shape[2],bottlenecks[1].shape[3]))
209
        b2=np.zeros((batch_size,bottlenecks[2].shape[1],bottlenecks[2].shape[2],bottlenecks[2].shape[3]))
210
        for b in range(batch_size):
211
            _, box = get_random_data(annotation_lines[i], input_shape, random=False, proc_img=False)
212
            box_data.append(box)
213
            b0[b]=bottlenecks[0][i]
214
            b1[b]=bottlenecks[1][i]
215
            b2[b]=bottlenecks[2][i]
216
            i = (i+1) % n
217
        box_data = np.array(box_data)
218
        y_true = preprocess_true_boxes(box_data, input_shape, anchors, num_classes)
219
        yield [b0, b1, b2, *y_true], np.zeros(batch_size)
220
221
if __name__ == '__main__':
222
    _main()