|
a |
|
b/YOLO/subYOLO.sh |
|
|
1 |
#!/usr/bin/env bash |
|
|
2 |
|
|
|
3 |
# set up queue |
|
|
4 |
#SBATCH -p slurm_sbel_cmg |
|
|
5 |
#SBATCH --account=cmg --qos=cmg_owner |
|
|
6 |
|
|
|
7 |
## Request one CPU core from the scheduler |
|
|
8 |
#SBATCH -c 1 |
|
|
9 |
|
|
|
10 |
## Request a GPU from the scheduler, we don't care what kind |
|
|
11 |
#SBATCH --gres=gpu:gtx1080:1 |
|
|
12 |
#SBATCH -t 14-2:00 # time (D-HH:MM) |
|
|
13 |
|
|
|
14 |
## Create a unique output file for the job |
|
|
15 |
#SBATCH -o cuda_Training-%j.log |
|
|
16 |
|
|
|
17 |
source activate yolo |
|
|
18 |
## Load CUDA into your environment |
|
|
19 |
#module load cuda/9.0 |
|
|
20 |
## Load CUDA into your environment |
|
|
21 |
module load cuda/9.0 |
|
|
22 |
|
|
|
23 |
source activate Python3.6 |
|
|
24 |
# install cudatoolkit and cudnn |
|
|
25 |
conda install -c anaconda cudatoolkit --yes |
|
|
26 |
conda install -c anaconda cudnn --yes |
|
|
27 |
|
|
|
28 |
## Run the installe |
|
|
29 |
pip install numpy |
|
|
30 |
pip install tensorflow-gpu==1.8 |
|
|
31 |
pip install numpy scipy scikit-learn pandas matplotlib seaborn |
|
|
32 |
pip install Pillow |
|
|
33 |
pip uninstall cupy |
|
|
34 |
pip install keras |
|
|
35 |
pip install cupy-cuda90 |
|
|
36 |
pip install opencv-python |
|
|
37 |
|
|
|
38 |
export CUDA_HOME=/usr/local/cuda |
|
|
39 |
export PATH=$PATH:$CUDA_HOME/bin |
|
|
40 |
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$CUDA_HOME/lib64 |
|
|
41 |
# this installs the right pip and dependencies for the fresh python |
|
|
42 |
|
|
|
43 |
# maskrcnn_benchmark and coco api dependencies |
|
|
44 |
|
|
|
45 |
#export INSTALL_DIR=$PWD |
|
|
46 |
# install pycocotools |
|
|
47 |
#cd $INSTALL_DIR |
|
|
48 |
#git clone https://github.com/cocodataset/cocoapi.git |
|
|
49 |
#cd cocoapi/PythonAPI |
|
|
50 |
#python setup.py build_ext install |
|
|
51 |
|
|
|
52 |
# install PyTorch Detection |
|
|
53 |
#cd $INSTALL_DIR |
|
|
54 |
#git clone https://github.com/facebookresearch/maskrcnn-benchmark.git |
|
|
55 |
#cd maskrcnn-benchmark |
|
|
56 |
|
|
|
57 |
# follow PyTorch installation in https://pytorch.org/get-started/locally/ |
|
|
58 |
# we give the instructions for CUDA 9.0 |
|
|
59 |
# conda install -c pytorch pytorch-nightly torchvision cudatoolkit=9.0 |
|
|
60 |
|
|
|
61 |
#python setup.py build develop |
|
|
62 |
#unset INSTALL_DIR |
|
|
63 |
#cd .. |
|
|
64 |
#pwd |
|
|
65 |
# running scripts |
|
|
66 |
python train.py |
|
|
67 |
#python tools/train_net.py --config-file "configs/defect_detection.yaml" SOLVER.IMS_PER_BATCH 2 SOLVER.BASE_LR 0.0005 SOLVER.MAX_ITER 60000 SOLVER.STEPS "(30000, 40000)" TEST.IMS_PER_BATCH 1 |