--- a
+++ b/YOLO/kmeans.py
@@ -0,0 +1,101 @@
+import numpy as np
+
+
+class YOLO_Kmeans:
+
+    def __init__(self, cluster_number, filename):
+        self.cluster_number = cluster_number
+        self.filename = "2012_train.txt"
+
+    def iou(self, boxes, clusters):  # 1 box -> k clusters
+        n = boxes.shape[0]
+        k = self.cluster_number
+
+        box_area = boxes[:, 0] * boxes[:, 1]
+        box_area = box_area.repeat(k)
+        box_area = np.reshape(box_area, (n, k))
+
+        cluster_area = clusters[:, 0] * clusters[:, 1]
+        cluster_area = np.tile(cluster_area, [1, n])
+        cluster_area = np.reshape(cluster_area, (n, k))
+
+        box_w_matrix = np.reshape(boxes[:, 0].repeat(k), (n, k))
+        cluster_w_matrix = np.reshape(np.tile(clusters[:, 0], (1, n)), (n, k))
+        min_w_matrix = np.minimum(cluster_w_matrix, box_w_matrix)
+
+        box_h_matrix = np.reshape(boxes[:, 1].repeat(k), (n, k))
+        cluster_h_matrix = np.reshape(np.tile(clusters[:, 1], (1, n)), (n, k))
+        min_h_matrix = np.minimum(cluster_h_matrix, box_h_matrix)
+        inter_area = np.multiply(min_w_matrix, min_h_matrix)
+
+        result = inter_area / (box_area + cluster_area - inter_area)
+        return result
+
+    def avg_iou(self, boxes, clusters):
+        accuracy = np.mean([np.max(self.iou(boxes, clusters), axis=1)])
+        return accuracy
+
+    def kmeans(self, boxes, k, dist=np.median):
+        box_number = boxes.shape[0]
+        distances = np.empty((box_number, k))
+        last_nearest = np.zeros((box_number,))
+        np.random.seed()
+        clusters = boxes[np.random.choice(
+            box_number, k, replace=False)]  # init k clusters
+        while True:
+
+            distances = 1 - self.iou(boxes, clusters)
+
+            current_nearest = np.argmin(distances, axis=1)
+            if (last_nearest == current_nearest).all():
+                break  # clusters won't change
+            for cluster in range(k):
+                clusters[cluster] = dist(  # update clusters
+                    boxes[current_nearest == cluster], axis=0)
+
+            last_nearest = current_nearest
+
+        return clusters
+
+    def result2txt(self, data):
+        f = open("yolo_anchors.txt", 'w')
+        row = np.shape(data)[0]
+        for i in range(row):
+            if i == 0:
+                x_y = "%d,%d" % (data[i][0], data[i][1])
+            else:
+                x_y = ", %d,%d" % (data[i][0], data[i][1])
+            f.write(x_y)
+        f.close()
+
+    def txt2boxes(self):
+        f = open(self.filename, 'r')
+        dataSet = []
+        for line in f:
+            infos = line.split(" ")
+            length = len(infos)
+            for i in range(1, length):
+                width = int(infos[i].split(",")[2]) - \
+                    int(infos[i].split(",")[0])
+                height = int(infos[i].split(",")[3]) - \
+                    int(infos[i].split(",")[1])
+                dataSet.append([width, height])
+        result = np.array(dataSet)
+        f.close()
+        return result
+
+    def txt2clusters(self):
+        all_boxes = self.txt2boxes()
+        result = self.kmeans(all_boxes, k=self.cluster_number)
+        result = result[np.lexsort(result.T[0, None])]
+        self.result2txt(result)
+        print("K anchors:\n {}".format(result))
+        print("Accuracy: {:.2f}%".format(
+            self.avg_iou(all_boxes, result) * 100))
+
+
+if __name__ == "__main__":
+    cluster_number = 9
+    filename = "2012_train.txt"
+    kmeans = YOLO_Kmeans(cluster_number, filename)
+    kmeans.txt2clusters()