|
a |
|
b/FastRCNN/utils/visualization.py |
|
|
1 |
import numpy as np |
|
|
2 |
|
|
|
3 |
|
|
|
4 |
def vis_image(img, ax=None): |
|
|
5 |
"""Visualize a color image. |
|
|
6 |
|
|
|
7 |
Args: |
|
|
8 |
img (~numpy.ndarray): An array of shape :math:`(3, height, width)`. |
|
|
9 |
This is in RGB format and the range of its value is |
|
|
10 |
:math:`[0, 255]`. |
|
|
11 |
ax (matplotlib.axes.Axis): The visualization is displayed on this |
|
|
12 |
axis. If this is :obj:`None` (default), a new axis is created. |
|
|
13 |
|
|
|
14 |
Returns: |
|
|
15 |
~matploblib.axes.Axes: |
|
|
16 |
Returns the Axes object with the plot for further tweaking. |
|
|
17 |
|
|
|
18 |
""" |
|
|
19 |
from matplotlib import pyplot as plot |
|
|
20 |
if ax is None: |
|
|
21 |
fig = plot.figure() |
|
|
22 |
ax = fig.add_subplot(1, 1, 1) |
|
|
23 |
# CHW -> HWC |
|
|
24 |
img = img.transpose((1, 2, 0))[:, :, 0] |
|
|
25 |
ax.imshow(img.astype(np.uint8), cmap='gray') |
|
|
26 |
return ax |
|
|
27 |
|
|
|
28 |
|
|
|
29 |
def vis_bbox(img, bbox, label=None, score=None, label_names=None, ax=None): |
|
|
30 |
"""Visualize bounding boxes inside image. |
|
|
31 |
|
|
|
32 |
Example: |
|
|
33 |
|
|
|
34 |
>>> from chainercv.datasets import VOCDetectionDataset |
|
|
35 |
>>> from chainercv.datasets import voc_bbox_label_names |
|
|
36 |
>>> from chainercv.visualizations import vis_bbox |
|
|
37 |
>>> import matplotlib.pyplot as plot |
|
|
38 |
>>> dataset = VOCDetectionDataset() |
|
|
39 |
>>> img, bbox, label = dataset[60] |
|
|
40 |
>>> vis_bbox(img, bbox, label, |
|
|
41 |
... label_names=voc_bbox_label_names) |
|
|
42 |
>>> plot.show() |
|
|
43 |
|
|
|
44 |
Args: |
|
|
45 |
img (~numpy.ndarray): An array of shape :math:`(3, height, width)`. |
|
|
46 |
This is in RGB format and the range of its value is |
|
|
47 |
:math:`[0, 255]`. |
|
|
48 |
bbox (~numpy.ndarray): An array of shape :math:`(R, 4)`, where |
|
|
49 |
:math:`R` is the number of bounding boxes in the image. |
|
|
50 |
Each element is organized |
|
|
51 |
by :math:`(y_{min}, x_{min}, y_{max}, x_{max})` in the second axis. |
|
|
52 |
label (~numpy.ndarray): An integer array of shape :math:`(R,)`. |
|
|
53 |
The values correspond to id for label names stored in |
|
|
54 |
:obj:`label_names`. This is optional. |
|
|
55 |
score (~numpy.ndarray): A float array of shape :math:`(R,)`. |
|
|
56 |
Each value indicates how confident the prediction is. |
|
|
57 |
This is optional. |
|
|
58 |
label_names (iterable of strings): Name of labels ordered according |
|
|
59 |
to label ids. If this is :obj:`None`, labels will be skipped. |
|
|
60 |
ax (matplotlib.axes.Axis): The visualization is displayed on this |
|
|
61 |
axis. If this is :obj:`None` (default), a new axis is created. |
|
|
62 |
|
|
|
63 |
Returns: |
|
|
64 |
~matploblib.axes.Axes: |
|
|
65 |
Returns the Axes object with the plot for further tweaking. |
|
|
66 |
|
|
|
67 |
""" |
|
|
68 |
from matplotlib import pyplot as plot |
|
|
69 |
|
|
|
70 |
#if label is not None and not len(bbox) == len(label): |
|
|
71 |
# raise ValueError('The length of label must be same as that of bbox') |
|
|
72 |
#if score is not None and not len(bbox) == len(score): |
|
|
73 |
# raise ValueError('The length of score must be same as that of bbox') |
|
|
74 |
|
|
|
75 |
# Returns newly instantiated matplotlib.axes.Axes object if ax is None |
|
|
76 |
ax = vis_image(img, ax=ax) |
|
|
77 |
|
|
|
78 |
# If there is no bounding box to display, visualize the image and exit. |
|
|
79 |
if len(bbox) == 0: |
|
|
80 |
return ax |
|
|
81 |
|
|
|
82 |
if len(bbox) != 0: |
|
|
83 |
#print(bbox) |
|
|
84 |
bb = bbox[0] |
|
|
85 |
i = 0 |
|
|
86 |
xy = (bb[1], bb[0]) |
|
|
87 |
height = bb[2] - bb[0] |
|
|
88 |
width = bb[3] - bb[1] |
|
|
89 |
ax.add_patch(plot.Rectangle( |
|
|
90 |
xy, width, height, fill=False, edgecolor='red', linewidth=3)) |
|
|
91 |
|
|
|
92 |
caption = list() |
|
|
93 |
|
|
|
94 |
if label is not None and label_names is not None: |
|
|
95 |
lb = label[i] |
|
|
96 |
if not (0 <= lb < len(label_names)): |
|
|
97 |
raise ValueError('No corresponding name is given') |
|
|
98 |
caption.append(label_names[lb]) |
|
|
99 |
if score is not None: |
|
|
100 |
sc = score[i] |
|
|
101 |
caption.append('{:.2f}'.format(sc)) |
|
|
102 |
|
|
|
103 |
if len(caption) > 0: |
|
|
104 |
ax.text(bb[1], bb[0], |
|
|
105 |
': '.join(caption), |
|
|
106 |
style='italic') |
|
|
107 |
# bbox={'facecolor': 'white', 'alpha': 0.7, 'pad': 5}) |
|
|
108 |
return ax |