--- a +++ b/FastRCNN/subMed.sh @@ -0,0 +1,47 @@ +#!/usr/bin/env bash + +# Ron the short-list GPU queue +#SBATCH -p slurm_priority +#SBATCH --account=cmg --qos=priority + +## Request one CPU core from the scheduler +#SBATCH -c 1 + +## Request a GPU from the scheduler, we don't care what kind +#SBATCH --gres=gpu:p100:1 +#SBATCH -t 14-3:00 # time (D-HH:MM) + +## Create a unique output file for the job +#SBATCH -o cuda_Training-%j.log + +## Load CUDA into your environment +## load custimized CUDA and cudaToolkit + +module load usermods +module load user/cuda +#module load cuda/9.0 + +# activate retina virtual environment +source activate chainercv +#conda install -c anaconda --name retina cudatoolkit==9.0 --yes +#conda install -c anaconda --name retina cudnn --yes +#conda install -c anaconda --name retina keras --yes + +# install tensorflow and other libraries for machine learning + +#/srv/home/shenmr/anaconda3/envs/retina/bin/pip install tensorflow-gpu==1.6 +#/srv/home/shenmr/anaconda3/envs/retina/bin/pip install numpy scipy scikit-learn pandas matplotlib seaborn +# +#/srv/home/shenmr/anaconda3/envs/retina/bin/pip msgpack +#conda install -c anaconda --name retina keras-gpu +##/srv/home/shenmr/anaconda3/envs/retina/bin/pip install keras +# + +/srv/home/shenmr/anaconda3/envs/chainercv/bin/pip install scikit-image +/srv/home/shenmr/anaconda3/envs/chainercv/bin/pip install cupy-cuda90 +/srv/home/shenmr/anaconda3/envs/chainercv/bin/pip install opencv-python +/srv/home/shenmr/anaconda3/envs/chainercv/bin/pip install Pillow + +# run the training scripts +python train.py +