|
a |
|
b/DataAugmentation/DatAug.py |
|
|
1 |
dataPath = "../Data_postiveOnly/" |
|
|
2 |
import os |
|
|
3 |
print(os.getcwd()) |
|
|
4 |
import imgaug as ia |
|
|
5 |
import skimage.io |
|
|
6 |
import errno |
|
|
7 |
import numpy as np |
|
|
8 |
import skimage.color as color |
|
|
9 |
#import matplotlib.pyplot as plt |
|
|
10 |
import os |
|
|
11 |
#from skimage.color import gray2rgb |
|
|
12 |
|
|
|
13 |
|
|
|
14 |
def bboxSetupInImage(datapath, txtFile, img): |
|
|
15 |
""" |
|
|
16 |
This is the function that reads in the bounding box files and then using imgaug to set up the bounding box on images |
|
|
17 |
|
|
|
18 |
:param txtFile: the txt file that store bounding box information |
|
|
19 |
:param img: the image file variable to represent the img to be plotted bounding box on it |
|
|
20 |
:return bbs: the image with bounding box in it |
|
|
21 |
""" |
|
|
22 |
with open(datapath + 'bounding_boxes/' + txtFile, 'r') as f: |
|
|
23 |
content = [line.rstrip('\n') for line in f] |
|
|
24 |
iaBBoxList = [] |
|
|
25 |
for bbline in content: |
|
|
26 |
bbox = bbline.strip().split() |
|
|
27 |
# print(bbox[1]) |
|
|
28 |
if len(bbox) == 4: |
|
|
29 |
iaBBoxList.append(ia.BoundingBox( |
|
|
30 |
x1=float(bbox[1]), |
|
|
31 |
y1=float(bbox[0]), |
|
|
32 |
x2=float(bbox[3]), |
|
|
33 |
y2=float(bbox[2]))) |
|
|
34 |
bbs = ia.BoundingBoxesOnImage(iaBBoxList, shape=img.shape) |
|
|
35 |
return bbs |
|
|
36 |
|
|
|
37 |
|
|
|
38 |
def saveAugbbox2TXT(txtFile, bbs): |
|
|
39 |
""" |
|
|
40 |
This is the function that save the augmented bounding box files into ChainerCV bbox format |
|
|
41 |
|
|
|
42 |
:param txtFile: the txt file that want to save |
|
|
43 |
:param bbs: bounding box lists |
|
|
44 |
""" |
|
|
45 |
with open('' + txtFile, 'w') as f: |
|
|
46 |
for i in range(len(bbs.bounding_boxes)): |
|
|
47 |
bb = bbs_aug.bounding_boxes[i] |
|
|
48 |
# print("%s %.2f %.2f %.2f %.2f"%(bb.label,bb.y1,bb.x1,bb.y2,bb.x2)) |
|
|
49 |
f.write("%.2f %.2f %.2f %.2f\n" % ( bb.y1, bb.x1, bb.y2, bb.x2)) |
|
|
50 |
|
|
|
51 |
def getImageList(imageTXT): |
|
|
52 |
""" |
|
|
53 |
Function to loop the testing images for test |
|
|
54 |
:param imageTXT: the txt that stores the |
|
|
55 |
:return: imageFileList: the list contains all the original test image list |
|
|
56 |
""" |
|
|
57 |
imageFileList = list() |
|
|
58 |
with open(imageTXT,'r') as f: |
|
|
59 |
lines = f.readlines() |
|
|
60 |
for line in lines: |
|
|
61 |
imageFileList.append(line.strip()) |
|
|
62 |
return imageFileList |
|
|
63 |
|
|
|
64 |
|
|
|
65 |
def createFolder(folderName): |
|
|
66 |
""" |
|
|
67 |
Safely create folder when needed |
|
|
68 |
|
|
|
69 |
:param folderName : the directory that you want to safely create |
|
|
70 |
:return: None |
|
|
71 |
""" |
|
|
72 |
if not os.path.exists(folderName): |
|
|
73 |
try: |
|
|
74 |
os.makedirs(folderName) |
|
|
75 |
except OSError as exc: # Guard against race condition |
|
|
76 |
if exc.errno != errno.EEXIST: |
|
|
77 |
raise |
|
|
78 |
|
|
|
79 |
################################################## |
|
|
80 |
# 1. Define data augmentation operations |
|
|
81 |
################################################## |
|
|
82 |
|
|
|
83 |
trainImageTxtFile = dataPath + "trainimages.txt" |
|
|
84 |
imageList = getImageList(trainImageTxtFile) |
|
|
85 |
|
|
|
86 |
current_operation = "GaussianNoise" |
|
|
87 |
|
|
|
88 |
# Add gaussian noise. |
|
|
89 |
# For 50% of all images, we sample the noise once per pixel. |
|
|
90 |
# For the other 50% of all images, we sample the noise per pixel AND |
|
|
91 |
# channel. This can change the color (not only brightness) of the |
|
|
92 |
# pixels. |
|
|
93 |
|
|
|
94 |
from imgaug import augmenters as iaa |
|
|
95 |
|
|
|
96 |
ia.seed(1) |
|
|
97 |
seq = iaa.Sequential([ |
|
|
98 |
iaa.AdditiveGaussianNoise(loc=0, |
|
|
99 |
scale=(0.0, 0.01 * 255), |
|
|
100 |
per_channel=0.5) |
|
|
101 |
]) |
|
|
102 |
|
|
|
103 |
# seq = iaa.Sequential([ |
|
|
104 |
# # Adjust contrast by scaling each pixel value to (I_ij/255.0)**gamma. |
|
|
105 |
# # Values in the range gamma=(0.5, 2.0) seem to be sensible. |
|
|
106 |
# iaa.GammaContrast((0.5, 1.5)) |
|
|
107 |
# ]) |
|
|
108 |
|
|
|
109 |
# Make our sequence deterministic. |
|
|
110 |
# We can now apply it to the image and then to the BBs and it will |
|
|
111 |
# lead to the same augmentations. |
|
|
112 |
# IMPORTANT: Call this once PER BATCH, otherwise you will always get the exactly same augmentations for every batch! |
|
|
113 |
seq_det = seq.to_deterministic() |
|
|
114 |
|
|
|
115 |
################################################## |
|
|
116 |
# 2. loop through images |
|
|
117 |
################################################## |
|
|
118 |
|
|
|
119 |
for img in imageList: |
|
|
120 |
print(img) |
|
|
121 |
# Grayscale images must have shape (height, width, 1) each. |
|
|
122 |
# print(os.listdir(dataPath+'images/')) |
|
|
123 |
currentimage = skimage.io.imread(dataPath + 'images/' + img).astype(np.uint8) |
|
|
124 |
# gray2rgb() simply duplicates the gray values over the three color channels. |
|
|
125 |
currentimage = color.gray2rgb(currentimage) |
|
|
126 |
bbs = bboxSetupInImage(dataPath, img.rstrip('.jpg') + '.txt', currentimage) |
|
|
127 |
# Augment BBs and images. |
|
|
128 |
# As we only have one image and list of BBs, we use |
|
|
129 |
# [image] and [bbs] to turn both into lists (batches) for the# functions and then [0] to reverse that. In a real experiment, your |
|
|
130 |
# variables would likely already be lists. |
|
|
131 |
image_aug = seq_det.augment_images([currentimage])[0] |
|
|
132 |
bbs_aug = seq_det.augment_bounding_boxes([bbs])[0] |
|
|
133 |
print(bbs_aug) |
|
|
134 |
augImgFolder = current_operation + "Images" |
|
|
135 |
augTxTFolder = current_operation + "TXT" |
|
|
136 |
createFolder(augImgFolder) |
|
|
137 |
createFolder(augTxTFolder) |
|
|
138 |
# Save aug images and bboxes |
|
|
139 |
skimage.io.imsave(augImgFolder + '/' + |
|
|
140 |
img.rstrip('.jpg') + |
|
|
141 |
'_' + current_operation + |
|
|
142 |
'.jpg' |
|
|
143 |
, image_aug) |
|
|
144 |
saveAugbbox2TXT(augTxTFolder + '/' + |
|
|
145 |
img.rstrip('.jpg') + |
|
|
146 |
'_' + current_operation + |
|
|
147 |
'.txt', bbs_aug) |
|
|
148 |
# image with BBs before/after augmentation (shown below) |
|
|
149 |
# image_before = bbs.draw_on_image(currentimage, thickness=2) |
|
|
150 |
# image_after = bbs_aug.draw_on_image(image_aug, |
|
|
151 |
# thickness=2, color=[0, 0, 255]) |
|
|
152 |
# image with BBs before/after augmentation (shown below) |
|
|
153 |
# plot and save figures before and after data augmentations |
|
|
154 |
# skimage.io.imshow(image_before) |
|
|
155 |
# skimage.io.imshow(image_after) |
|
|
156 |
# for i in range(len(bbs.bounding_boxes)): |
|
|
157 |
# before = bbs.bounding_boxes[i] |
|
|
158 |
# after = bbs_aug.bounding_boxes[i] |
|
|
159 |
# print("BB %d: (%.4f, %.4f, %.4f, %.4f) -> (%.4f, %.4f, %.4f, %.4f)" % ( |
|
|
160 |
# i, |
|
|
161 |
# before.x1, before.y1, before.x2, before.y2, |
|
|
162 |
# after.x1, after.y1, after.x2, after.y2) |
|
|
163 |
# ) |
|
|
164 |
|
|
|
165 |
################################################## |
|
|
166 |
# 1. Define data augmentation operations |
|
|
167 |
################################################## |
|
|
168 |
|
|
|
169 |
trainImageTxtFile = dataPath + "trainimages.txt" |
|
|
170 |
imageList = getImageList(trainImageTxtFile) |
|
|
171 |
|
|
|
172 |
current_operation = "GaussianBlur" |
|
|
173 |
|
|
|
174 |
# blur images with a sigma of 0 to 3.0 |
|
|
175 |
from imgaug import augmenters as iaa |
|
|
176 |
ia.seed(1) |
|
|
177 |
seq = iaa.Sequential([ |
|
|
178 |
iaa.GaussianBlur(sigma=(0, 3)) |
|
|
179 |
]) |
|
|
180 |
|
|
|
181 |
# seq = iaa.Sequential([ |
|
|
182 |
# # Adjust contrast by scaling each pixel value to (I_ij/255.0)**gamma. |
|
|
183 |
# # Values in the range gamma=(0.5, 2.0) seem to be sensible. |
|
|
184 |
# iaa.GammaContrast((0.5, 1.5)) |
|
|
185 |
# ]) |
|
|
186 |
|
|
|
187 |
# Make our sequence deterministic. |
|
|
188 |
# We can now apply it to the image and then to the BBs and it will |
|
|
189 |
# lead to the same augmentations. |
|
|
190 |
# IMPORTANT: Call this once PER BATCH, otherwise you will always get the exactly same augmentations for every batch! |
|
|
191 |
seq_det = seq.to_deterministic() |
|
|
192 |
|
|
|
193 |
################################################## |
|
|
194 |
# 2. loop through images |
|
|
195 |
################################################## |
|
|
196 |
|
|
|
197 |
for img in imageList: |
|
|
198 |
print(img) |
|
|
199 |
# Grayscale images must have shape (height, width, 1) each. |
|
|
200 |
#print(os.listdir(dataPath+'images/')) |
|
|
201 |
currentimage = skimage.io.imread(dataPath+'images/'+img).astype(np.uint8) |
|
|
202 |
# gray2rgb() simply duplicates the gray values over the three color channels. |
|
|
203 |
currentimage = color.gray2rgb(currentimage) |
|
|
204 |
bbs = bboxSetupInImage(dataPath , img.rstrip('.jpg') + '.txt',currentimage) |
|
|
205 |
# Augment BBs and images. |
|
|
206 |
# As we only have one image and list of BBs, we use |
|
|
207 |
# [image] and [bbs] to turn both into lists (batches) for the# functions and then [0] to reverse that. In a real experiment, your |
|
|
208 |
# variables would likely already be lists. |
|
|
209 |
image_aug = seq_det.augment_images([currentimage])[0] |
|
|
210 |
bbs_aug = seq_det.augment_bounding_boxes([bbs])[0] |
|
|
211 |
augImgFolder = current_operation + "Images" |
|
|
212 |
augTxTFolder = current_operation + "TXT" |
|
|
213 |
createFolder(augImgFolder) |
|
|
214 |
createFolder(augTxTFolder) |
|
|
215 |
# Save aug images and bboxes |
|
|
216 |
skimage.io.imsave(augImgFolder + '/'+ |
|
|
217 |
img.rstrip('.jpg') + |
|
|
218 |
'_' + current_operation + |
|
|
219 |
'.jpg' |
|
|
220 |
,image_aug) |
|
|
221 |
saveAugbbox2TXT(augTxTFolder+ '/'+ |
|
|
222 |
img.rstrip('.jpg') + |
|
|
223 |
'_'+ current_operation + |
|
|
224 |
'.txt',bbs_aug) |
|
|
225 |
# image with BBs before/after augmentation (shown below) |
|
|
226 |
# image_before = bbs.draw_on_image(currentimage, thickness=2) |
|
|
227 |
# image_after = bbs_aug.draw_on_image(image_aug, |
|
|
228 |
# thickness=2, color=[0, 0, 255]) |
|
|
229 |
# image with BBs before/after augmentation (shown below) |
|
|
230 |
# plot and save figures before and after data augmentations |
|
|
231 |
#skimage.io.imshow(image_before) |
|
|
232 |
#skimage.io.imshow(image_after) |
|
|
233 |
# for i in range(len(bbs.bounding_boxes)): |
|
|
234 |
# before = bbs.bounding_boxes[i] |
|
|
235 |
# after = bbs_aug.bounding_boxes[i] |
|
|
236 |
# print("BB %d: (%.4f, %.4f, %.4f, %.4f) -> (%.4f, %.4f, %.4f, %.4f)" % ( |
|
|
237 |
# i, |
|
|
238 |
# before.x1, before.y1, before.x2, before.y2, |
|
|
239 |
# after.x1, after.y1, after.x2, after.y2) |
|
|
240 |
# ) |
|
|
241 |
|
|
|
242 |
################################################## |
|
|
243 |
# 1. Define data augmentation operations |
|
|
244 |
################################################## |
|
|
245 |
|
|
|
246 |
trainImageTxtFile = dataPath + "trainimages.txt" |
|
|
247 |
imageList = getImageList(trainImageTxtFile) |
|
|
248 |
|
|
|
249 |
current_operation = "Brightness" |
|
|
250 |
|
|
|
251 |
# Strengthen or weaken the contrast in each image. |
|
|
252 |
from imgaug import augmenters as iaa |
|
|
253 |
ia.seed(1) |
|
|
254 |
seq = iaa.Sequential([ |
|
|
255 |
iaa.Multiply((1.2, 1.5)) |
|
|
256 |
]) |
|
|
257 |
|
|
|
258 |
# seq = iaa.Sequential([ |
|
|
259 |
# # Adjust contrast by scaling each pixel value to (I_ij/255.0)**gamma. |
|
|
260 |
# # Values in the range gamma=(0.5, 2.0) seem to be sensible. |
|
|
261 |
# iaa.GammaContrast((0.5, 1.5)) |
|
|
262 |
# ]) |
|
|
263 |
|
|
|
264 |
# Make our sequence deterministic. |
|
|
265 |
# We can now apply it to the image and then to the BBs and it will |
|
|
266 |
# lead to the same augmentations. |
|
|
267 |
# IMPORTANT: Call this once PER BATCH, otherwise you will always get the exactly same augmentations for every batch! |
|
|
268 |
seq_det = seq.to_deterministic() |
|
|
269 |
|
|
|
270 |
################################################## |
|
|
271 |
# 2. loop through images |
|
|
272 |
################################################## |
|
|
273 |
|
|
|
274 |
for img in imageList: |
|
|
275 |
print(img) |
|
|
276 |
# Grayscale images must have shape (height, width, 1) each. |
|
|
277 |
#print(os.listdir(dataPath+'images/')) |
|
|
278 |
currentimage = skimage.io.imread(dataPath+'images/'+img).astype(np.uint8) |
|
|
279 |
# gray2rgb() simply duplicates the gray values over the three color channels. |
|
|
280 |
currentimage = color.gray2rgb(currentimage) |
|
|
281 |
bbs = bboxSetupInImage(dataPath , img.rstrip('.jpg') + '.txt',currentimage) |
|
|
282 |
# Augment BBs and images. |
|
|
283 |
# As we only have one image and list of BBs, we use |
|
|
284 |
# [image] and [bbs] to turn both into lists (batches) for the# functions and then [0] to reverse that. In a real experiment, your |
|
|
285 |
# variables would likely already be lists. |
|
|
286 |
image_aug = seq_det.augment_images([currentimage])[0] |
|
|
287 |
bbs_aug = seq_det.augment_bounding_boxes([bbs])[0] |
|
|
288 |
augImgFolder = current_operation + "Images" |
|
|
289 |
augTxTFolder = current_operation + "TXT" |
|
|
290 |
createFolder(augImgFolder) |
|
|
291 |
createFolder(augTxTFolder) |
|
|
292 |
# Save aug images and bboxes |
|
|
293 |
skimage.io.imsave(augImgFolder + '/'+ |
|
|
294 |
img.rstrip('.jpg') + |
|
|
295 |
'_' + current_operation + |
|
|
296 |
'.jpg' |
|
|
297 |
,image_aug) |
|
|
298 |
saveAugbbox2TXT(augTxTFolder+ '/'+ |
|
|
299 |
img.rstrip('.jpg') + |
|
|
300 |
'_'+ current_operation + |
|
|
301 |
'.txt',bbs_aug) |
|
|
302 |
# image with BBs before/after augmentation (shown below) |
|
|
303 |
# image_before = bbs.draw_on_image(currentimage, thickness=2) |
|
|
304 |
# image_after = bbs_aug.draw_on_image(image_aug, |
|
|
305 |
# thickness=2, color=[0, 0, 255]) |
|
|
306 |
# image with BBs before/after augmentation (shown below) |
|
|
307 |
# plot and save figures before and after data augmentations |
|
|
308 |
#skimage.io.imshow(image_before) |
|
|
309 |
#skimage.io.imshow(image_after) |
|
|
310 |
# for i in range(len(bbs.bounding_boxes)): |
|
|
311 |
# before = bbs.bounding_boxes[i] |
|
|
312 |
# after = bbs_aug.bounding_boxes[i] |
|
|
313 |
# print("BB %d: (%.4f, %.4f, %.4f, %.4f) -> (%.4f, %.4f, %.4f, %.4f)" % ( |
|
|
314 |
# i, |
|
|
315 |
# before.x1, before.y1, before.x2, before.y2, |
|
|
316 |
# after.x1, after.y1, after.x2, after.y2) |
|
|
317 |
# ) |
|
|
318 |
|
|
|
319 |
################################################## |
|
|
320 |
# 1. Define data augmentation operations |
|
|
321 |
################################################## |
|
|
322 |
|
|
|
323 |
trainImageTxtFile = dataPath + "trainimages.txt" |
|
|
324 |
imageList = getImageList(trainImageTxtFile) |
|
|
325 |
|
|
|
326 |
current_operation = "Fliplr" |
|
|
327 |
|
|
|
328 |
# Flip/mirror input images horizontally. |
|
|
329 |
|
|
|
330 |
from imgaug import augmenters as iaa |
|
|
331 |
|
|
|
332 |
ia.seed(1) |
|
|
333 |
seq = iaa.Sequential([ |
|
|
334 |
iaa.Fliplr(1.0) |
|
|
335 |
]) |
|
|
336 |
|
|
|
337 |
# seq = iaa.Sequential([ |
|
|
338 |
# # Adjust contrast by scaling each pixel value to (I_ij/255.0)**gamma. |
|
|
339 |
# # Values in the range gamma=(0.5, 2.0) seem to be sensible. |
|
|
340 |
# iaa.GammaContrast((0.5, 1.5)) |
|
|
341 |
# ]) |
|
|
342 |
|
|
|
343 |
# Make our sequence deterministic. |
|
|
344 |
# We can now apply it to the image and then to the BBs and it will |
|
|
345 |
# lead to the same augmentations. |
|
|
346 |
# IMPORTANT: Call this once PER BATCH, otherwise you will always get the exactly same augmentations for every batch! |
|
|
347 |
seq_det = seq.to_deterministic() |
|
|
348 |
|
|
|
349 |
################################################## |
|
|
350 |
# 2. loop through images |
|
|
351 |
################################################## |
|
|
352 |
|
|
|
353 |
for img in imageList: |
|
|
354 |
print(img) |
|
|
355 |
# Grayscale images must have shape (height, width, 1) each. |
|
|
356 |
# print(os.listdir(dataPath+'images/')) |
|
|
357 |
currentimage = skimage.io.imread(dataPath + 'images/' + img).astype(np.uint8) |
|
|
358 |
# gray2rgb() simply duplicates the gray values over the three color channels. |
|
|
359 |
currentimage = color.gray2rgb(currentimage) |
|
|
360 |
bbs = bboxSetupInImage(dataPath, img.rstrip('.jpg') + '.txt', currentimage) |
|
|
361 |
# Augment BBs and images. |
|
|
362 |
# As we only have one image and list of BBs, we use |
|
|
363 |
# [image] and [bbs] to turn both into lists (batches) for the# functions and then [0] to reverse that. In a real experiment, your |
|
|
364 |
# variables would likely already be lists. |
|
|
365 |
image_aug = seq_det.augment_images([currentimage])[0] |
|
|
366 |
bbs_aug = seq_det.augment_bounding_boxes([bbs])[0] |
|
|
367 |
augImgFolder = current_operation + "Images" |
|
|
368 |
augTxTFolder = current_operation + "TXT" |
|
|
369 |
createFolder(augImgFolder) |
|
|
370 |
createFolder(augTxTFolder) |
|
|
371 |
# Save aug images and bboxes |
|
|
372 |
skimage.io.imsave(augImgFolder + '/' + |
|
|
373 |
img.rstrip('.jpg') + |
|
|
374 |
'_' + current_operation + |
|
|
375 |
'.jpg' |
|
|
376 |
, image_aug) |
|
|
377 |
saveAugbbox2TXT(augTxTFolder + '/' + |
|
|
378 |
img.rstrip('.jpg') + |
|
|
379 |
'_' + current_operation + |
|
|
380 |
'.txt', bbs_aug) |
|
|
381 |
# image with BBs before/after augmentation (shown below) |
|
|
382 |
# image_before = bbs.draw_on_image(currentimage, thickness=2) |
|
|
383 |
# image_after = bbs_aug.draw_on_image(image_aug, |
|
|
384 |
# thickness=2, color=[0, 0, 255]) |
|
|
385 |
# image with BBs before/after augmentation (shown below) |
|
|
386 |
# plot and save figures before and after data augmentations |
|
|
387 |
# skimage.io.imshow(image_before) |
|
|
388 |
# skimage.io.imshow(image_after) |
|
|
389 |
# for i in range(len(bbs.bounding_boxes)): |
|
|
390 |
# before = bbs.bounding_boxes[i] |
|
|
391 |
# after = bbs_aug.bounding_boxes[i] |
|
|
392 |
# print("BB %d: (%.4f, %.4f, %.4f, %.4f) -> (%.4f, %.4f, %.4f, %.4f)" % ( |
|
|
393 |
# i, |
|
|
394 |
# before.x1, before.y1, before.x2, before.y2, |
|
|
395 |
# after.x1, after.y1, after.x2, after.y2) |
|
|
396 |
# ) |
|
|
397 |
|
|
|
398 |
################################################## |
|
|
399 |
# 1. Define data augmentation operations |
|
|
400 |
################################################## |
|
|
401 |
|
|
|
402 |
trainImageTxtFile = dataPath + "trainimages.txt" |
|
|
403 |
imageList = getImageList(trainImageTxtFile) |
|
|
404 |
|
|
|
405 |
current_operation = "Flipud" |
|
|
406 |
|
|
|
407 |
# Flip/mirror input images vertically. |
|
|
408 |
|
|
|
409 |
from imgaug import augmenters as iaa |
|
|
410 |
|
|
|
411 |
ia.seed(1) |
|
|
412 |
seq = iaa.Sequential([ |
|
|
413 |
iaa.Flipud(1.0) |
|
|
414 |
]) |
|
|
415 |
|
|
|
416 |
# seq = iaa.Sequential([ |
|
|
417 |
# # Adjust contrast by scaling each pixel value to (I_ij/255.0)**gamma. |
|
|
418 |
# # Values in the range gamma=(0.5, 2.0) seem to be sensible. |
|
|
419 |
# iaa.GammaContrast((0.5, 1.5)) |
|
|
420 |
# ]) |
|
|
421 |
|
|
|
422 |
# Make our sequence deterministic. |
|
|
423 |
# We can now apply it to the image and then to the BBs and it will |
|
|
424 |
# lead to the same augmentations. |
|
|
425 |
# IMPORTANT: Call this once PER BATCH, otherwise you will always get the exactly same augmentations for every batch! |
|
|
426 |
seq_det = seq.to_deterministic() |
|
|
427 |
|
|
|
428 |
################################################## |
|
|
429 |
# 2. loop through images |
|
|
430 |
################################################## |
|
|
431 |
|
|
|
432 |
for img in imageList: |
|
|
433 |
print(img) |
|
|
434 |
# Grayscale images must have shape (height, width, 1) each. |
|
|
435 |
# print(os.listdir(dataPath+'images/')) |
|
|
436 |
currentimage = skimage.io.imread(dataPath + 'images/' + img).astype(np.uint8) |
|
|
437 |
# gray2rgb() simply duplicates the gray values over the three color channels. |
|
|
438 |
currentimage = color.gray2rgb(currentimage) |
|
|
439 |
bbs = bboxSetupInImage(dataPath, img.rstrip('.jpg') + '.txt', currentimage) |
|
|
440 |
# Augment BBs and images. |
|
|
441 |
# As we only have one image and list of BBs, we use |
|
|
442 |
# [image] and [bbs] to turn both into lists (batches) for the# functions and then [0] to reverse that. In a real experiment, your |
|
|
443 |
# variables would likely already be lists. |
|
|
444 |
image_aug = seq_det.augment_images([currentimage])[0] |
|
|
445 |
bbs_aug = seq_det.augment_bounding_boxes([bbs])[0] |
|
|
446 |
augImgFolder = current_operation + "Images" |
|
|
447 |
augTxTFolder = current_operation + "TXT" |
|
|
448 |
createFolder(augImgFolder) |
|
|
449 |
createFolder(augTxTFolder) |
|
|
450 |
# Save aug images and bboxes |
|
|
451 |
skimage.io.imsave(augImgFolder + '/' + |
|
|
452 |
img.rstrip('.jpg') + |
|
|
453 |
'_' + current_operation + |
|
|
454 |
'.jpg' |
|
|
455 |
, image_aug) |
|
|
456 |
saveAugbbox2TXT(augTxTFolder + '/' + |
|
|
457 |
img.rstrip('.jpg') + |
|
|
458 |
'_' + current_operation + |
|
|
459 |
'.txt', bbs_aug) |
|
|
460 |
# image with BBs before/after augmentation (shown below) |
|
|
461 |
# image_before = bbs.draw_on_image(currentimage, thickness=2) |
|
|
462 |
# image_after = bbs_aug.draw_on_image(image_aug, |
|
|
463 |
# thickness=2, color=[0, 0, 255]) |
|
|
464 |
# image with BBs before/after augmentation (shown below) |
|
|
465 |
# plot and save figures before and after data augmentations |
|
|
466 |
# skimage.io.imshow(image_before) |
|
|
467 |
# skimage.io.imshow(image_after) |
|
|
468 |
# for i in range(len(bbs.bounding_boxes)): |
|
|
469 |
# before = bbs.bounding_boxes[i] |
|
|
470 |
# after = bbs_aug.bounding_boxes[i] |
|
|
471 |
# print("BB %d: (%.4f, %.4f, %.4f, %.4f) -> (%.4f, %.4f, %.4f, %.4f)" % ( |
|
|
472 |
# i, |
|
|
473 |
# before.x1, before.y1, before.x2, before.y2, |
|
|
474 |
# after.x1, after.y1, after.x2, after.y2) |
|
|
475 |
# ) |
|
|
476 |
|
|
|
477 |
################################################## |
|
|
478 |
# 1. Define data augmentation operations |
|
|
479 |
################################################## |
|
|
480 |
|
|
|
481 |
trainImageTxtFile = dataPath + "trainimages.txt" |
|
|
482 |
imageList = getImageList(trainImageTxtFile) |
|
|
483 |
|
|
|
484 |
current_operation = "Rot90or270Degree" |
|
|
485 |
|
|
|
486 |
# Rotates all images by 90 or 270 degrees. |
|
|
487 |
|
|
|
488 |
from imgaug import augmenters as iaa |
|
|
489 |
|
|
|
490 |
ia.seed(1) |
|
|
491 |
seq = iaa.Sequential([ |
|
|
492 |
iaa.Rot90([1, 3]) |
|
|
493 |
]) |
|
|
494 |
|
|
|
495 |
# seq = iaa.Sequential([ |
|
|
496 |
# # Adjust contrast by scaling each pixel value to (I_ij/255.0)**gamma. |
|
|
497 |
# # Values in the range gamma=(0.5, 2.0) seem to be sensible. |
|
|
498 |
# iaa.GammaContrast((0.5, 1.5)) |
|
|
499 |
# ]) |
|
|
500 |
|
|
|
501 |
# Make our sequence deterministic. |
|
|
502 |
# We can now apply it to the image and then to the BBs and it will |
|
|
503 |
# lead to the same augmentations. |
|
|
504 |
# IMPORTANT: Call this once PER BATCH, otherwise you will always get the exactly same augmentations for every batch! |
|
|
505 |
seq_det = seq.to_deterministic() |
|
|
506 |
|
|
|
507 |
################################################## |
|
|
508 |
# 2. loop through images |
|
|
509 |
################################################## |
|
|
510 |
|
|
|
511 |
for img in imageList: |
|
|
512 |
print(img) |
|
|
513 |
# Grayscale images must have shape (height, width, 1) each. |
|
|
514 |
# print(os.listdir(dataPath+'images/')) |
|
|
515 |
currentimage = skimage.io.imread(dataPath + 'images/' + img).astype(np.uint8) |
|
|
516 |
# gray2rgb() simply duplicates the gray values over the three color channels. |
|
|
517 |
currentimage = color.gray2rgb(currentimage) |
|
|
518 |
bbs = bboxSetupInImage(dataPath, img.rstrip('.jpg') + '.txt', currentimage) |
|
|
519 |
# Augment BBs and images. |
|
|
520 |
# As we only have one image and list of BBs, we use |
|
|
521 |
# [image] and [bbs] to turn both into lists (batches) for the# functions and then [0] to reverse that. In a real experiment, your |
|
|
522 |
# variables would likely already be lists. |
|
|
523 |
image_aug = seq_det.augment_images([currentimage])[0] |
|
|
524 |
bbs_aug = seq_det.augment_bounding_boxes([bbs])[0] |
|
|
525 |
augImgFolder = current_operation + "Images" |
|
|
526 |
augTxTFolder = current_operation + "TXT" |
|
|
527 |
createFolder(augImgFolder) |
|
|
528 |
createFolder(augTxTFolder) |
|
|
529 |
# Save aug images and bboxes |
|
|
530 |
skimage.io.imsave(augImgFolder + '/' + |
|
|
531 |
img.rstrip('.jpg') + |
|
|
532 |
'_' + current_operation + |
|
|
533 |
'.jpg' |
|
|
534 |
, image_aug) |
|
|
535 |
saveAugbbox2TXT(augTxTFolder + '/' + |
|
|
536 |
img.rstrip('.jpg') + |
|
|
537 |
'_' + current_operation + |
|
|
538 |
'.txt', bbs_aug) |
|
|
539 |
# image with BBs before/after augmentation (shown below) |
|
|
540 |
# image_before = bbs.draw_on_image(currentimage, thickness=2) |
|
|
541 |
# image_after = bbs_aug.draw_on_image(image_aug, |
|
|
542 |
# thickness=2, color=[0, 0, 255]) |
|
|
543 |
# image with BBs before/after augmentation (shown below) |
|
|
544 |
# plot and save figures before and after data augmentations |
|
|
545 |
# skimage.io.imshow(image_before) |
|
|
546 |
# skimage.io.imshow(image_after) |
|
|
547 |
# for i in range(len(bbs.bounding_boxes)): |
|
|
548 |
# before = bbs.bounding_boxes[i] |
|
|
549 |
# after = bbs_aug.bounding_boxes[i] |
|
|
550 |
# print("BB %d: (%.4f, %.4f, %.4f, %.4f) -> (%.4f, %.4f, %.4f, %.4f)" % ( |
|
|
551 |
# i, |
|
|
552 |
# before.x1, before.y1, before.x2, before.y2, |
|
|
553 |
# after.x1, after.y1, after.x2, after.y2) |
|
|
554 |
# ) |
|
|
555 |
|