--- a +++ b/AnalysisCodes/YOLO/train.py @@ -0,0 +1,190 @@ +""" +Retrain the YOLO model for your own dataset. +""" + +import numpy as np +import keras.backend as K +from keras.layers import Input, Lambda +from keras.models import Model +from keras.optimizers import Adam +from keras.callbacks import TensorBoard, ModelCheckpoint, ReduceLROnPlateau, EarlyStopping + +from yolo3.model import preprocess_true_boxes, yolo_body, tiny_yolo_body, yolo_loss +from yolo3.utils import get_random_data + + +def _main(): + annotation_path = 'train.txt' + log_dir = 'logs/000/' + classes_path = 'model_data/med_classes.txt' + anchors_path = 'model_data/yolo_anchors.txt' + class_names = get_classes(classes_path) + num_classes = len(class_names) + print(num_classes) + anchors = get_anchors(anchors_path) + + input_shape = (416,416) # multiple of 32, hw + + is_tiny_version = len(anchors)==6 # default setting + if is_tiny_version: + model = create_tiny_model(input_shape, anchors, num_classes, + freeze_body=2, weights_path='model_data/tiny_yolo_weights.h5') + else: + model = create_model(input_shape, anchors, num_classes, + freeze_body=2, weights_path='model_data/yolo_weights.h5') # make sure you know what you freeze + + logging = TensorBoard(log_dir=log_dir) + checkpoint = ModelCheckpoint(log_dir + 'ep{epoch:03d}-loss{loss:.3f}-val_loss{val_loss:.3f}.h5', + monitor='val_loss', save_weights_only=True, save_best_only=True, period=3) + reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=3, verbose=1) + early_stopping = EarlyStopping(monitor='val_loss', min_delta=0, patience=10, verbose=1) + + val_split = 0.1 + with open(annotation_path) as f: + lines = f.readlines() + np.random.seed(10101) + np.random.shuffle(lines) + np.random.seed(None) + num_val = int(len(lines)*val_split) + num_train = len(lines) - num_val + + # Train with frozen layers first, to get a stable loss. + # Adjust num epochs to your dataset. This step is enough to obtain a not bad model. + if True: + model.compile(optimizer=Adam(lr=1e-3), loss={ + # use custom yolo_loss Lambda layer. + 'yolo_loss': lambda y_true, y_pred: y_pred}) + + batch_size = 2 + print('Train on {} samples, val on {} samples, with batch size {}.'.format(num_train, num_val, batch_size)) + model.fit_generator(data_generator_wrapper(lines[:num_train], batch_size, input_shape, anchors, num_classes), + steps_per_epoch=max(1, num_train//batch_size), + validation_data=data_generator_wrapper(lines[num_train:], batch_size, input_shape, anchors, num_classes), + validation_steps=max(1, num_val//batch_size), + epochs=1, + initial_epoch=0, + callbacks=[logging, checkpoint]) + model.save_weights(log_dir + 'trained_weights_stage_1.h5') + + # Unfreeze and continue training, to fine-tune. + # Train longer if the result is not good. + if True: + for i in range(len(model.layers)): + model.layers[i].trainable = True + model.compile(optimizer=Adam(lr=1e-4), loss={'yolo_loss': lambda y_true, y_pred: y_pred}) # recompile to apply the change + print('Unfreeze all of the layers.') + + batch_size = 32 # note that more GPU memory is required after unfreezing the body + print('Train on {} samples, val on {} samples, with batch size {}.'.format(num_train, num_val, batch_size)) + model.fit_generator(data_generator_wrapper(lines[:num_train], batch_size, input_shape, anchors, num_classes), + steps_per_epoch=max(1, num_train//batch_size), + validation_data=data_generator_wrapper(lines[num_train:], batch_size, input_shape, anchors, num_classes), + validation_steps=max(1, num_val//batch_size), + epochs=100, + initial_epoch=50, + callbacks=[logging, checkpoint, reduce_lr, early_stopping]) + model.save_weights(log_dir + 'trained_weights_final.h5') + + # Further training if needed. + + +def get_classes(classes_path): + '''loads the classes''' + with open(classes_path) as f: + class_names = f.readlines() + class_names = [c.strip() for c in class_names] + return class_names + +def get_anchors(anchors_path): + '''loads the anchors from a file''' + with open(anchors_path) as f: + anchors = f.readline() + anchors = [float(x) for x in anchors.split(',')] + return np.array(anchors).reshape(-1, 2) + + +def create_model(input_shape, anchors, num_classes, load_pretrained=False, freeze_body=2, + weights_path='model_data/yolo_weights.h5'): + '''create the training model''' + K.clear_session() # get a new session + image_input = Input(shape=(None, None, 3)) + h, w = input_shape + num_anchors = len(anchors) + + y_true = [Input(shape=(h//{0:32, 1:16, 2:8}[l], w//{0:32, 1:16, 2:8}[l], num_anchors//3, num_classes+5)) for l in range(3)] + + model_body = yolo_body(image_input, num_anchors//3, num_classes) + print('Create YOLOv3 model with {} anchors and {} classes.'.format(num_anchors, num_classes)) + + if load_pretrained: + model_body.load_weights(weights_path, by_name=True, skip_mismatch=True) + print('Load weights {}.'.format(weights_path)) + if freeze_body in [1, 2]: + # Freeze darknet53 body or freeze all but 3 output layers. + num = (185, len(model_body.layers)-3)[freeze_body-1] + for i in range(num): model_body.layers[i].trainable = False + print('Freeze the first {} layers of total {} layers.'.format(num, len(model_body.layers))) + + model_loss = Lambda(yolo_loss, output_shape=(1,), name='yolo_loss', + arguments={'anchors': anchors, 'num_classes': num_classes, 'ignore_thresh': 0.5})( + [*model_body.output, *y_true]) + model = Model([model_body.input, *y_true], model_loss) + + return model + +def create_tiny_model(input_shape, anchors, num_classes, load_pretrained=True, freeze_body=2, + weights_path='model_data/tiny_yolo_weights.h5'): + '''create the training model, for Tiny YOLOv3''' + K.clear_session() # get a new session + image_input = Input(shape=(None, None, 3)) + h, w = input_shape + num_anchors = len(anchors) + + y_true = [Input(shape=(h//{0:32, 1:16}[l], w//{0:32, 1:16}[l], \ + num_anchors//2, num_classes+5)) for l in range(2)] + + model_body = tiny_yolo_body(image_input, num_anchors//2, num_classes) + print('Create Tiny YOLOv3 model with {} anchors and {} classes.'.format(num_anchors, num_classes)) + + if load_pretrained: + model_body.load_weights(weights_path, by_name=True, skip_mismatch=True) + print('Load weights {}.'.format(weights_path)) + if freeze_body in [1, 2]: + # Freeze the darknet body or freeze all but 2 output layers. + num = (20, len(model_body.layers)-2)[freeze_body-1] + for i in range(num): model_body.layers[i].trainable = False + print('Freeze the first {} layers of total {} layers.'.format(num, len(model_body.layers))) + + model_loss = Lambda(yolo_loss, output_shape=(1,), name='yolo_loss', + arguments={'anchors': anchors, 'num_classes': num_classes, 'ignore_thresh': 0.7})( + [*model_body.output, *y_true]) + model = Model([model_body.input, *y_true], model_loss) + + return model + +def data_generator(annotation_lines, batch_size, input_shape, anchors, num_classes): + '''data generator for fit_generator''' + n = len(annotation_lines) + i = 0 + while True: + image_data = [] + box_data = [] + for b in range(batch_size): + if i==0: + np.random.shuffle(annotation_lines) + image, box = get_random_data(annotation_lines[i], input_shape, random=True) + image_data.append(image) + box_data.append(box) + i = (i+1) % n + image_data = np.array(image_data) + box_data = np.array(box_data) + y_true = preprocess_true_boxes(box_data, input_shape, anchors, num_classes) + yield [image_data, *y_true], np.zeros(batch_size) + +def data_generator_wrapper(annotation_lines, batch_size, input_shape, anchors, num_classes): + n = len(annotation_lines) + if n==0 or batch_size<=0: return None + return data_generator(annotation_lines, batch_size, input_shape, anchors, num_classes) + +if __name__ == '__main__': + _main()