183 lines (183 with data), 4.3 kB
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"name": "BleedingImageClassification.ipynb",
"provenance": [],
"collapsed_sections": []
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"language_info": {
"name": "python"
}
},
"cells": [
{
"cell_type": "code",
"metadata": {
"id": "tGZBwBkjWevk"
},
"source": [
"!pip install tensorflow\n",
"!pip install opencv-python\n",
"!pip install numpy"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "L7taERIgXXH6"
},
"source": [
"import tensorflow.keras\n",
"import numpy as np\n",
"import cv2\n",
"import os\n",
"np.set_printoptions(suppress=True)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "87r5fH7FaDta",
"outputId": "95ace021-e41f-4eeb-db35-ae25082e64fe"
},
"source": [
"model = tensorflow.keras.models.load_model('keras_model.h5')"
],
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"text": [
"WARNING:tensorflow:No training configuration found in the save file, so the model was *not* compiled. Compile it manually.\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "0wGpjGSBa0Ga"
},
"source": [
"data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "YsDvM6oga0Rp"
},
"source": [
"image = cv2.imread('/content/Capture.jpg')\n",
"\n",
"#resizing the image to be at least 224x224 and then cropping from the center\n",
"size = (224, 224)\n",
"\n",
"image = cv2.resize(image, size, fx=0.5, fy=0.5, interpolation = cv2.INTER_AREA)\n",
"#turn the image into a numpy array\n",
"image_array = np.asarray(image)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "oP537pQFa9Sq"
},
"source": [
"normalized_image_array = (image_array.astype(np.float32) / 127.0) - 1"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "d6V-tVTha-dS"
},
"source": [
"data[0] = normalized_image_array"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "LWzMOv2pbBPC",
"outputId": "7f04c9f2-6785-4158-e0cc-2f1856a9a6bb"
},
"source": [
"prediction = model.predict(data)\n",
"print(prediction)"
],
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"text": [
"[[0.00362582 0.9963742 ]]\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "tuV4H65bZtT6",
"outputId": "73aafe0a-ffb6-48cb-f099-d34e6d8cca7a"
},
"source": [
"if prediction[0][0] > 0.7 and prediction[0][0] > prediction[0][1]:\n",
" print(\"Bleeding Brain\")\n",
"else:\n",
" print(\"Non Bleeding Brain\")"
],
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"text": [
"Non Bleeding Brain\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "b74k8FzlbL8h"
},
"source": [
""
],
"execution_count": null,
"outputs": []
}
]
}