Switch to unified view

a b/BleedingImageClassification.ipynb
1
{
2
  "nbformat": 4,
3
  "nbformat_minor": 0,
4
  "metadata": {
5
    "colab": {
6
      "name": "BleedingImageClassification.ipynb",
7
      "provenance": [],
8
      "collapsed_sections": []
9
    },
10
    "kernelspec": {
11
      "name": "python3",
12
      "display_name": "Python 3"
13
    },
14
    "language_info": {
15
      "name": "python"
16
    }
17
  },
18
  "cells": [
19
    {
20
      "cell_type": "code",
21
      "metadata": {
22
        "id": "tGZBwBkjWevk"
23
      },
24
      "source": [
25
        "!pip install tensorflow\n",
26
        "!pip install opencv-python\n",
27
        "!pip install numpy"
28
      ],
29
      "execution_count": null,
30
      "outputs": []
31
    },
32
    {
33
      "cell_type": "code",
34
      "metadata": {
35
        "id": "L7taERIgXXH6"
36
      },
37
      "source": [
38
        "import tensorflow.keras\n",
39
        "import numpy as np\n",
40
        "import cv2\n",
41
        "import os\n",
42
        "np.set_printoptions(suppress=True)"
43
      ],
44
      "execution_count": null,
45
      "outputs": []
46
    },
47
    {
48
      "cell_type": "code",
49
      "metadata": {
50
        "colab": {
51
          "base_uri": "https://localhost:8080/"
52
        },
53
        "id": "87r5fH7FaDta",
54
        "outputId": "95ace021-e41f-4eeb-db35-ae25082e64fe"
55
      },
56
      "source": [
57
        "model = tensorflow.keras.models.load_model('keras_model.h5')"
58
      ],
59
      "execution_count": null,
60
      "outputs": [
61
        {
62
          "output_type": "stream",
63
          "text": [
64
            "WARNING:tensorflow:No training configuration found in the save file, so the model was *not* compiled. Compile it manually.\n"
65
          ],
66
          "name": "stdout"
67
        }
68
      ]
69
    },
70
    {
71
      "cell_type": "code",
72
      "metadata": {
73
        "id": "0wGpjGSBa0Ga"
74
      },
75
      "source": [
76
        "data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32)"
77
      ],
78
      "execution_count": null,
79
      "outputs": []
80
    },
81
    {
82
      "cell_type": "code",
83
      "metadata": {
84
        "id": "YsDvM6oga0Rp"
85
      },
86
      "source": [
87
        "image = cv2.imread('/content/Capture.jpg')\n",
88
        "\n",
89
        "#resizing the image to be at least 224x224 and then cropping from the center\n",
90
        "size = (224, 224)\n",
91
        "\n",
92
        "image = cv2.resize(image, size, fx=0.5, fy=0.5, interpolation = cv2.INTER_AREA)\n",
93
        "#turn the image into a numpy array\n",
94
        "image_array = np.asarray(image)"
95
      ],
96
      "execution_count": null,
97
      "outputs": []
98
    },
99
    {
100
      "cell_type": "code",
101
      "metadata": {
102
        "id": "oP537pQFa9Sq"
103
      },
104
      "source": [
105
        "normalized_image_array = (image_array.astype(np.float32) / 127.0) - 1"
106
      ],
107
      "execution_count": null,
108
      "outputs": []
109
    },
110
    {
111
      "cell_type": "code",
112
      "metadata": {
113
        "id": "d6V-tVTha-dS"
114
      },
115
      "source": [
116
        "data[0] = normalized_image_array"
117
      ],
118
      "execution_count": null,
119
      "outputs": []
120
    },
121
    {
122
      "cell_type": "code",
123
      "metadata": {
124
        "colab": {
125
          "base_uri": "https://localhost:8080/"
126
        },
127
        "id": "LWzMOv2pbBPC",
128
        "outputId": "7f04c9f2-6785-4158-e0cc-2f1856a9a6bb"
129
      },
130
      "source": [
131
        "prediction = model.predict(data)\n",
132
        "print(prediction)"
133
      ],
134
      "execution_count": null,
135
      "outputs": [
136
        {
137
          "output_type": "stream",
138
          "text": [
139
            "[[0.00362582 0.9963742 ]]\n"
140
          ],
141
          "name": "stdout"
142
        }
143
      ]
144
    },
145
    {
146
      "cell_type": "code",
147
      "metadata": {
148
        "colab": {
149
          "base_uri": "https://localhost:8080/"
150
        },
151
        "id": "tuV4H65bZtT6",
152
        "outputId": "73aafe0a-ffb6-48cb-f099-d34e6d8cca7a"
153
      },
154
      "source": [
155
        "if prediction[0][0] > 0.7 and prediction[0][0] > prediction[0][1]:\n",
156
        "  print(\"Bleeding Brain\")\n",
157
        "else:\n",
158
        "  print(\"Non Bleeding Brain\")"
159
      ],
160
      "execution_count": null,
161
      "outputs": [
162
        {
163
          "output_type": "stream",
164
          "text": [
165
            "Non Bleeding Brain\n"
166
          ],
167
          "name": "stdout"
168
        }
169
      ]
170
    },
171
    {
172
      "cell_type": "code",
173
      "metadata": {
174
        "id": "b74k8FzlbL8h"
175
      },
176
      "source": [
177
        ""
178
      ],
179
      "execution_count": null,
180
      "outputs": []
181
    }
182
  ]
183
}