Switch to side-by-side view

--- a
+++ b/BleedingImageClassification.ipynb
@@ -0,0 +1,183 @@
+{
+  "nbformat": 4,
+  "nbformat_minor": 0,
+  "metadata": {
+    "colab": {
+      "name": "BleedingImageClassification.ipynb",
+      "provenance": [],
+      "collapsed_sections": []
+    },
+    "kernelspec": {
+      "name": "python3",
+      "display_name": "Python 3"
+    },
+    "language_info": {
+      "name": "python"
+    }
+  },
+  "cells": [
+    {
+      "cell_type": "code",
+      "metadata": {
+        "id": "tGZBwBkjWevk"
+      },
+      "source": [
+        "!pip install tensorflow\n",
+        "!pip install opencv-python\n",
+        "!pip install numpy"
+      ],
+      "execution_count": null,
+      "outputs": []
+    },
+    {
+      "cell_type": "code",
+      "metadata": {
+        "id": "L7taERIgXXH6"
+      },
+      "source": [
+        "import tensorflow.keras\n",
+        "import numpy as np\n",
+        "import cv2\n",
+        "import os\n",
+        "np.set_printoptions(suppress=True)"
+      ],
+      "execution_count": null,
+      "outputs": []
+    },
+    {
+      "cell_type": "code",
+      "metadata": {
+        "colab": {
+          "base_uri": "https://localhost:8080/"
+        },
+        "id": "87r5fH7FaDta",
+        "outputId": "95ace021-e41f-4eeb-db35-ae25082e64fe"
+      },
+      "source": [
+        "model = tensorflow.keras.models.load_model('keras_model.h5')"
+      ],
+      "execution_count": null,
+      "outputs": [
+        {
+          "output_type": "stream",
+          "text": [
+            "WARNING:tensorflow:No training configuration found in the save file, so the model was *not* compiled. Compile it manually.\n"
+          ],
+          "name": "stdout"
+        }
+      ]
+    },
+    {
+      "cell_type": "code",
+      "metadata": {
+        "id": "0wGpjGSBa0Ga"
+      },
+      "source": [
+        "data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32)"
+      ],
+      "execution_count": null,
+      "outputs": []
+    },
+    {
+      "cell_type": "code",
+      "metadata": {
+        "id": "YsDvM6oga0Rp"
+      },
+      "source": [
+        "image = cv2.imread('/content/Capture.jpg')\n",
+        "\n",
+        "#resizing the image to be at least 224x224 and then cropping from the center\n",
+        "size = (224, 224)\n",
+        "\n",
+        "image = cv2.resize(image, size, fx=0.5, fy=0.5, interpolation = cv2.INTER_AREA)\n",
+        "#turn the image into a numpy array\n",
+        "image_array = np.asarray(image)"
+      ],
+      "execution_count": null,
+      "outputs": []
+    },
+    {
+      "cell_type": "code",
+      "metadata": {
+        "id": "oP537pQFa9Sq"
+      },
+      "source": [
+        "normalized_image_array = (image_array.astype(np.float32) / 127.0) - 1"
+      ],
+      "execution_count": null,
+      "outputs": []
+    },
+    {
+      "cell_type": "code",
+      "metadata": {
+        "id": "d6V-tVTha-dS"
+      },
+      "source": [
+        "data[0] = normalized_image_array"
+      ],
+      "execution_count": null,
+      "outputs": []
+    },
+    {
+      "cell_type": "code",
+      "metadata": {
+        "colab": {
+          "base_uri": "https://localhost:8080/"
+        },
+        "id": "LWzMOv2pbBPC",
+        "outputId": "7f04c9f2-6785-4158-e0cc-2f1856a9a6bb"
+      },
+      "source": [
+        "prediction = model.predict(data)\n",
+        "print(prediction)"
+      ],
+      "execution_count": null,
+      "outputs": [
+        {
+          "output_type": "stream",
+          "text": [
+            "[[0.00362582 0.9963742 ]]\n"
+          ],
+          "name": "stdout"
+        }
+      ]
+    },
+    {
+      "cell_type": "code",
+      "metadata": {
+        "colab": {
+          "base_uri": "https://localhost:8080/"
+        },
+        "id": "tuV4H65bZtT6",
+        "outputId": "73aafe0a-ffb6-48cb-f099-d34e6d8cca7a"
+      },
+      "source": [
+        "if prediction[0][0] > 0.7 and prediction[0][0] > prediction[0][1]:\n",
+        "  print(\"Bleeding Brain\")\n",
+        "else:\n",
+        "  print(\"Non Bleeding Brain\")"
+      ],
+      "execution_count": null,
+      "outputs": [
+        {
+          "output_type": "stream",
+          "text": [
+            "Non Bleeding Brain\n"
+          ],
+          "name": "stdout"
+        }
+      ]
+    },
+    {
+      "cell_type": "code",
+      "metadata": {
+        "id": "b74k8FzlbL8h"
+      },
+      "source": [
+        ""
+      ],
+      "execution_count": null,
+      "outputs": []
+    }
+  ]
+}
\ No newline at end of file