--- a +++ b/Segmentation/infrence.py @@ -0,0 +1,45 @@ +import os +import cv2 +import numpy as np +import matplotlib.pyplot as plt + +os.environ["SM_FRAMEWORK"] = "tf.keras" +import segmentation_models as sm + +sm.framework() + +my_model = "efficientnetb1" +model = sm.Unet(my_model, encoder_weights="imagenet", input_shape=(256, 256, 3), classes=3, activation='sigmoid') +model.load_weights("Submission_segmentation/weights/unet_model_weights.h5") + +# Define the directory to save the images +output_dir = "result/Test-Dataset2" + +# Create the output directory if it doesn't exist +if not os.path.exists(output_dir): + os.makedirs(output_dir) + +def save_single_image_prediction(model, image_path, output_dir): + # Load the image + original_img = cv2.imread(image_path) + resized_img = cv2.resize(original_img, (256, 256)) + + # Predict the mask + X = np.expand_dims(resized_img, 0) + y_pred = model.predict(X) + _, y_pred_thr = cv2.threshold(y_pred[0, :, :, 0] * 255, 127, 255, cv2.THRESH_BINARY) + y_pred = (y_pred_thr / 255).astype(int) + + # Resize the predicted mask back to the original size + y_pred_original = cv2.resize(y_pred.astype(float), (original_img.shape[1], original_img.shape[0]), interpolation=cv2.INTER_LINEAR) + + # Save the original image and predicted mask + output_image_path = os.path.join(output_dir, os.path.basename(image_path)) + # cv2.imwrite(output_image_path, cv2.cvtColor(original_img, cv2.COLOR_BGR2RGB)) + cv2.imwrite(os.path.join(output_dir, f"predicted_mask_{os.path.basename(image_path)}"), y_pred_original * 255) + + +# for i in os.listdir("Submission_segmentation/data/Auto-WCEBleedGen Challenge Test Dataset/Test Dataset 2"): +# model_path = "Submission_segmentation/data/Auto-WCEBleedGen Challenge Test Dataset/Test Dataset 2/"+i +# save_single_image_prediction(model,model_path,output_dir) +# print(i)