|
a |
|
b/Segmentation/config.py |
|
|
1 |
import numpy as np |
|
|
2 |
import os |
|
|
3 |
from sklearn.model_selection import KFold |
|
|
4 |
import tensorflow as tf |
|
|
5 |
|
|
|
6 |
|
|
|
7 |
file_list = np.asarray(os.listdir("Submission_segmentation/data/WCEBleedGen/WCEBleedGen/bleeding/Images")) |
|
|
8 |
image_path = "Submission_segmentation/data/WCEBleedGen/WCEBleedGen/bleeding/Images/" |
|
|
9 |
mask_path = "Submission_segmentation/data/WCEBleedGen/WCEBleedGen/bleeding/Annotations/" |
|
|
10 |
|
|
|
11 |
batchsize = 30 |
|
|
12 |
data_size = len(file_list) |
|
|
13 |
num_epoch = 5 |
|
|
14 |
splits = 10 |
|
|
15 |
kf = KFold(n_splits=splits) |
|
|
16 |
valsize = data_size // splits |
|
|
17 |
trainsize = data_size - valsize |
|
|
18 |
|
|
|
19 |
my_model = "efficientnetb1" |
|
|
20 |
data_num = np.arange(data_size) |
|
|
21 |
|
|
|
22 |
img_size = (256, 256) |
|
|
23 |
num_classes = 3 |
|
|
24 |
|
|
|
25 |
reduce_lr = tf.keras.callbacks.ReduceLROnPlateau( |
|
|
26 |
monitor='val_loss', factor=0.1, patience=3, verbose=0, mode='min', |
|
|
27 |
min_delta=0.0001, cooldown=4, min_lr=0 |
|
|
28 |
) |
|
|
29 |
print(file_list) |