[d986f2]: / experiments / toy_exp / data_loader.py

Download this file

312 lines (248 with data), 14.2 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
#!/usr/bin/env python
# Copyright 2018 Division of Medical Image Computing, German Cancer Research Center (DKFZ).
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import numpy as np
import os
from collections import OrderedDict
import pandas as pd
import pickle
import time
import subprocess
import utils.dataloader_utils as dutils
# batch generator tools from https://github.com/MIC-DKFZ/batchgenerators
from batchgenerators.dataloading.data_loader import SlimDataLoaderBase
from batchgenerators.transforms.spatial_transforms import MirrorTransform as Mirror
from batchgenerators.transforms.abstract_transforms import Compose
from batchgenerators.dataloading.multi_threaded_augmenter import MultiThreadedAugmenter
from batchgenerators.dataloading import SingleThreadedAugmenter
from batchgenerators.transforms.spatial_transforms import SpatialTransform
from batchgenerators.transforms.crop_and_pad_transforms import CenterCropTransform
from batchgenerators.transforms.utility_transforms import ConvertSegToBoundingBoxCoordinates
def get_train_generators(cf, logger):
"""
wrapper function for creating the training batch generator pipeline. returns the train/val generators.
selects patients according to cv folds (generated by first run/fold of experiment):
splits the data into n-folds, where 1 split is used for val, 1 split for testing and the rest for training. (inner loop test set)
If cf.hold_out_test_set is True, adds the test split to the training data.
"""
all_data = load_dataset(cf, logger)
all_pids_list = np.unique([v['pid'] for (k, v) in all_data.items()])
assert cf.n_train_val_data <= len(all_pids_list), \
"requested {} train val samples, but dataset only has {} train val samples.".format(
cf.n_train_val_data, len(all_pids_list))
train_pids = all_pids_list[:int(2*cf.n_train_val_data//3)]
val_pids = all_pids_list[int(np.ceil(2*cf.n_train_val_data//3)):cf.n_train_val_data]
train_data = {k: v for (k, v) in all_data.items() if any(p == v['pid'] for p in train_pids)}
val_data = {k: v for (k, v) in all_data.items() if any(p == v['pid'] for p in val_pids)}
logger.info("data set loaded with: {} train / {} val patients".format(len(train_pids), len(val_pids)))
batch_gen = {}
batch_gen['train'] = create_data_gen_pipeline(train_data, cf=cf, do_aug=False)
batch_gen['val_sampling'] = create_data_gen_pipeline(val_data, cf=cf, do_aug=False)
if cf.val_mode == 'val_patient':
batch_gen['val_patient'] = PatientBatchIterator(val_data, cf=cf)
batch_gen['n_val'] = len(val_pids) if cf.max_val_patients is None else min(len(val_pids), cf.max_val_patients)
else:
batch_gen['n_val'] = cf.num_val_batches
return batch_gen
def get_test_generator(cf, logger):
"""
wrapper function for creating the test batch generator pipeline.
selects patients according to cv folds (generated by first run/fold of experiment)
If cf.hold_out_test_set is True, gets the data from an external folder instead.
"""
if cf.hold_out_test_set:
pp_name = cf.pp_test_name
test_ix = None
else:
pp_name = None
with open(os.path.join(cf.exp_dir, 'fold_ids.pickle'), 'rb') as handle:
fold_list = pickle.load(handle)
_, _, test_ix, _ = fold_list[cf.fold]
# warnings.warn('WARNING: using validation set for testing!!!')
test_data = load_dataset(cf, logger, test_ix, pp_data_path=cf.pp_test_data_path, pp_name=pp_name)
logger.info("data set loaded with: {} test patients from {}".format(len(test_data.keys()), cf.pp_test_data_path))
batch_gen = {}
batch_gen['test'] = PatientBatchIterator(test_data, cf=cf)
batch_gen['n_test'] = len(test_data.keys()) if cf.max_test_patients=="all" else \
min(cf.max_test_patients, len(test_data.keys()))
return batch_gen
def load_dataset(cf, logger, subset_ixs=None, pp_data_path=None, pp_name=None):
"""
loads the dataset. if deployed in cloud also copies and unpacks the data to the working directory.
:param subset_ixs: subset indices to be loaded from the dataset. used e.g. for testing to only load the test folds.
:return: data: dictionary with one entry per patient (in this case per patient-breast, since they are treated as
individual images for training) each entry is a dictionary containing respective meta-info as well as paths to the preprocessed
numpy arrays to be loaded during batch-generation
"""
if pp_data_path is None:
pp_data_path = cf.pp_data_path
if pp_name is None:
pp_name = cf.pp_name
if cf.server_env:
copy_data = True
target_dir = os.path.join(cf.data_dest, pp_name)
if not os.path.exists(target_dir):
cf.data_source_dir = pp_data_path
os.makedirs(target_dir)
subprocess.call('rsync -av {} {}'.format(
os.path.join(cf.data_source_dir, cf.input_df_name), os.path.join(target_dir, cf.input_df_name)), shell=True)
logger.info('created target dir and info df at {}'.format(os.path.join(target_dir, cf.input_df_name)))
elif subset_ixs is None:
copy_data = False
pp_data_path = target_dir
p_df = pd.read_pickle(os.path.join(pp_data_path, cf.input_df_name))
if subset_ixs is not None:
subset_pids = [np.unique(p_df.pid.tolist())[ix] for ix in subset_ixs]
p_df = p_df[p_df.pid.isin(subset_pids)]
logger.info('subset: selected {} instances from df'.format(len(p_df)))
if cf.server_env:
if copy_data:
copy_and_unpack_data(logger, p_df.pid.tolist(), cf.fold_dir, cf.data_source_dir, target_dir)
class_targets = p_df['class_id'].tolist()
pids = p_df.pid.tolist()
imgs = [os.path.join(pp_data_path, '{}.npy'.format(pid)) for pid in pids]
segs = [os.path.join(pp_data_path,'{}.npy'.format(pid)) for pid in pids]
data = OrderedDict()
for ix, pid in enumerate(pids):
data[pid] = {'data': imgs[ix], 'seg': segs[ix], 'pid': pid, 'class_target': [class_targets[ix]]}
return data
def create_data_gen_pipeline(patient_data, cf, do_aug=True):
"""
create mutli-threaded train/val/test batch generation and augmentation pipeline.
:param patient_data: dictionary containing one dictionary per patient in the train/test subset.
:param is_training: (optional) whether to perform data augmentation (training) or not (validation/testing)
:return: multithreaded_generator
"""
# create instance of batch generator as first element in pipeline.
data_gen = BatchGenerator(patient_data, batch_size=cf.batch_size, cf=cf)
# add transformations to pipeline.
my_transforms = []
if do_aug:
mirror_transform = Mirror(axes=np.arange(2, cf.dim+2, 1))
my_transforms.append(mirror_transform)
spatial_transform = SpatialTransform(patch_size=cf.patch_size[:cf.dim],
patch_center_dist_from_border=cf.da_kwargs['rand_crop_dist'],
do_elastic_deform=cf.da_kwargs['do_elastic_deform'],
alpha=cf.da_kwargs['alpha'], sigma=cf.da_kwargs['sigma'],
do_rotation=cf.da_kwargs['do_rotation'], angle_x=cf.da_kwargs['angle_x'],
angle_y=cf.da_kwargs['angle_y'], angle_z=cf.da_kwargs['angle_z'],
do_scale=cf.da_kwargs['do_scale'], scale=cf.da_kwargs['scale'],
random_crop=cf.da_kwargs['random_crop'])
my_transforms.append(spatial_transform)
else:
my_transforms.append(CenterCropTransform(crop_size=cf.patch_size[:cf.dim]))
my_transforms.append(ConvertSegToBoundingBoxCoordinates(cf.dim, get_rois_from_seg_flag=False, class_specific_seg_flag=cf.class_specific_seg_flag))
all_transforms = Compose(my_transforms)
# multithreaded_generator = SingleThreadedAugmenter(data_gen, all_transforms)
multithreaded_generator = MultiThreadedAugmenter(data_gen, all_transforms, num_processes=cf.n_workers, seeds=range(cf.n_workers))
return multithreaded_generator
class BatchGenerator(SlimDataLoaderBase):
"""
creates the training/validation batch generator. Samples n_batch_size patients (draws a slice from each patient if 2D)
from the data set while maintaining foreground-class balance. Returned patches are cropped/padded to pre_crop_size.
Actual patch_size is obtained after data augmentation.
:param data: data dictionary as provided by 'load_dataset'.
:param batch_size: number of patients to sample for the batch
:return dictionary containing the batch data (b, c, y, x, (z)) / seg (b, 1, y, x, (z)) / pids / class_target
"""
def __init__(self, data, batch_size, cf):
super(BatchGenerator, self).__init__(data, batch_size)
self.cf = cf
def generate_train_batch(self):
batch_data, batch_segs, batch_pids, batch_targets = [], [], [], []
class_targets_list = [v['class_target'] for (k, v) in self._data.items()]
#samples patients towards equilibrium of foreground classes on a roi-level (after randomly sampling the ratio "batch_sample_slack).
batch_ixs = dutils.get_class_balanced_patients(
class_targets_list, self.batch_size, self.cf.head_classes - 1, slack_factor=self.cf.batch_sample_slack)
patients = list(self._data.items())
for b in batch_ixs:
patient = patients[b][1]
all_data = np.load(patient['data'], mmap_mode='r')
data = all_data[0]
seg = all_data[1].astype('uint8')
batch_pids.append(patient['pid'])
batch_targets.append(patient['class_target'])
batch_data.append(data[np.newaxis])
batch_segs.append(seg[np.newaxis])
data = np.array(batch_data)
seg = np.array(batch_segs).astype(np.uint8)
class_target = np.array(batch_targets)
return {'data': data, 'seg': seg, 'pid': batch_pids, 'class_target': class_target}
class PatientBatchIterator(SlimDataLoaderBase):
"""
creates a test generator that iterates over entire given dataset returning 1 patient per batch.
Can be used for monitoring if cf.val_mode = 'patient_val' for a monitoring closer to actualy evaluation (done in 3D),
if willing to accept speed-loss during training.
:return: out_batch: dictionary containing one patient with batch_size = n_3D_patches in 3D or
batch_size = n_2D_patches in 2D .
"""
def __init__(self, data, cf): #threads in augmenter
super(PatientBatchIterator, self).__init__(data, 0)
self.cf = cf
self.patient_ix = 0
self.dataset_pids = [v['pid'] for (k, v) in data.items()]
self.patch_size = cf.patch_size
if len(self.patch_size) == 2:
self.patch_size = self.patch_size + [1]
def generate_train_batch(self):
pid = self.dataset_pids[self.patient_ix]
patient = self._data[pid]
all_data = np.load(patient['data'], mmap_mode='r')
data = all_data[0]
seg = all_data[1].astype('uint8')
batch_class_targets = np.array([patient['class_target']])
out_data = data[None, None]
out_seg = seg[None, None]
#print('check patient data loader', out_data.shape, out_seg.shape)
batch_2D = {'data': out_data, 'seg': out_seg, 'class_target': batch_class_targets, 'pid': pid}
converter = ConvertSegToBoundingBoxCoordinates(dim=2, get_rois_from_seg_flag=False, class_specific_seg_flag=self.cf.class_specific_seg_flag)
batch_2D = converter(**batch_2D)
batch_2D.update({'patient_bb_target': batch_2D['bb_target'],
'patient_roi_labels': batch_2D['class_target'],
'original_img_shape': out_data.shape})
self.patient_ix += 1
if self.patient_ix == len(self.dataset_pids):
self.patient_ix = 0
return batch_2D
def copy_and_unpack_data(logger, pids, fold_dir, source_dir, target_dir):
start_time = time.time()
with open(os.path.join(fold_dir, 'file_list.txt'), 'w') as handle:
for pid in pids:
handle.write('{}.npy\n'.format(pid))
subprocess.call('rsync -ahv --files-from {} {} {}'.format(os.path.join(fold_dir, 'file_list.txt'),
source_dir, target_dir), shell=True)
# dutils.unpack_dataset(target_dir)
copied_files = os.listdir(target_dir)
logger.info("copying data set finished : {} files in target dir: {}. took {} sec".format(
len(copied_files), target_dir, np.round(time.time() - start_time, 0)))
if __name__=="__main__":
import utils.exp_utils as utils
total_stime = time.time()
cf_file = utils.import_module("cf", "configs.py")
cf = cf_file.configs()
logger = utils.get_logger("dev")
batch_gen = get_train_generators(cf, logger)
train_batch = next(batch_gen["train"])
pids = []
total = 100
for i in range(total):
print("\r producing batch {}/{}.".format(i, total), end="", flush=True)
train_batch = next(batch_gen["train"])
pids.append(train_batch["pid"])
print()
mins, secs = divmod((time.time() - total_stime), 60)
h, mins = divmod(mins, 60)
t = "{:d}h:{:02d}m:{:02d}s".format(int(h), int(mins), int(secs))
print("{} total runtime: {}".format(os.path.split(__file__)[1], t))