[d986f2]: / experiments / toy_exp / configs.py

Download this file

352 lines (273 with data), 15.8 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
#!/usr/bin/env python
# Copyright 2018 Division of Medical Image Computing, German Cancer Research Center (DKFZ).
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import sys
import os
sys.path.append(os.path.dirname(os.path.realpath(__file__)))
import numpy as np
from default_configs import DefaultConfigs
class configs(DefaultConfigs):
def __init__(self, server_env=False):
#########################
# Preprocessing #
#########################
self.root_dir = '/home/gregor/datasets/toy_mdt'
#########################
# I/O #
#########################
# one out of [2, 3]. dimension the model operates in.
self.dim = 2
# one out of ['mrcnn', 'retina_net', 'retina_unet', 'detection_unet', 'ufrcnn'].
self.model = 'retina_unet'
DefaultConfigs.__init__(self, self.model, server_env, self.dim)
# int [0 < dataset_size]. select n patients from dataset for prototyping.
self.select_prototype_subset = None
self.hold_out_test_set = True
# including val set. will be 3/4 train, 1/4 val.
self.n_train_val_data = 2500
# choose one of the 3 toy experiments described in https://arxiv.org/pdf/1811.08661.pdf
# one of ['donuts_shape', 'donuts_pattern', 'circles_scale'].
toy_mode = 'donuts_shape_noise'
# path to preprocessed data.
self.input_df_name = 'info_df.pickle'
self.pp_name = os.path.join(toy_mode, 'train')
self.pp_data_path = os.path.join(self.root_dir, self.pp_name)
self.pp_test_name = os.path.join(toy_mode, 'test')
self.pp_test_data_path = os.path.join(self.root_dir, self.pp_test_name)
# settings for deployment in cloud.
if server_env:
# path to preprocessed data.
pp_root_dir = '/datasets/datasets_ramien/toy_exp/data'
self.pp_name = os.path.join(toy_mode, 'train')
self.pp_data_path = os.path.join(pp_root_dir, self.pp_name)
self.pp_test_name = os.path.join(toy_mode, 'test')
self.pp_test_data_path = os.path.join(pp_root_dir, self.pp_test_name)
self.select_prototype_subset = None
#########################
# Data Loader #
#########################
# select modalities from preprocessed data
self.channels = [0]
self.n_channels = len(self.channels)
# patch_size to be used for training. pre_crop_size is the patch_size before data augmentation.
self.pre_crop_size_2D = [320, 320]
self.patch_size_2D = [320, 320]
self.patch_size = self.patch_size_2D if self.dim == 2 else self.patch_size_3D
self.pre_crop_size = self.pre_crop_size_2D if self.dim == 2 else self.pre_crop_size_3D
# ratio of free sampled batch elements before class balancing is triggered
# (>0 to include "empty"/background patches.)
self.batch_sample_slack = 0.2
# set 2D network to operate in 3D images.
self.merge_2D_to_3D_preds = False
# feed +/- n neighbouring slices into channel dimension. set to None for no context.
self.n_3D_context = None
if self.n_3D_context is not None and self.dim == 2:
self.n_channels *= (self.n_3D_context * 2 + 1)
#########################
# Architecture #
#########################
self.start_filts = 48 if self.dim == 2 else 18
self.end_filts = self.start_filts * 4 if self.dim == 2 else self.start_filts * 2
self.res_architecture = 'resnet50' # 'resnet101', 'resnet50'
self.norm = None # one of None, 'instance_norm', 'batch_norm'
# 0 for no weight decay
self.weight_decay = 3e-6
# which weights to exclude from weight decay, options: ["norm", "bias"].
self.exclude_from_wd = ("norm",)
# one of 'xavier_uniform', 'xavier_normal', or 'kaiming_normal', None (= default = 'kaiming_uniform')
self.weight_init = None
#########################
# Schedule / Selection #
#########################
self.num_epochs = 28
self.num_train_batches = 100 if self.dim == 2 else 200
self.batch_size = 16 if self.dim == 2 else 8
self.do_validation = True
# decide whether to validate on entire patient volumes (like testing) or sampled patches (like training)
# the former is more accurate, while the latter is faster (depending on volume size)
self.val_mode = 'val_patient' # one of 'val_sampling' , 'val_patient'
if self.val_mode == 'val_patient':
self.max_val_patients = None # if 'None' iterates over entire val_set once.
if self.val_mode == 'val_sampling':
self.num_val_batches = 50
# set dynamic_lr_scheduling to True to apply LR scheduling with below settings.
self.dynamic_lr_scheduling = True
self.lr_decay_factor = 0.5
self.scheduling_patience = np.ceil(7200 / (self.num_train_batches * self.batch_size))
self.scheduling_criterion = 'malignant_ap'
self.scheduling_mode = 'min' if "loss" in self.scheduling_criterion else 'max'
#########################
# Testing / Plotting #
#########################
# set the top-n epochs to be saved for temporal averaging in testing.
self.save_n_models = 5
self.test_n_epochs = 5
# set a minimum epoch number for saving in case of instabilities in the first phase of training.
self.min_save_thresh = 0 if self.dim == 2 else 0
self.report_score_level = ['patient', 'rois'] # choose list from 'patient', 'rois'
self.class_dict = {1: 'benign', 2: 'malignant'} # 0 is background.
self.patient_class_of_interest = 2 # patient metrics are only plotted for one class.
self.ap_match_ious = [0.1] # list of ious to be evaluated for ap-scoring.
self.model_selection_criteria = ['benign_ap', 'malignant_ap'] # criteria to average over for saving epochs.
self.min_det_thresh = 0.1 # minimum confidence value to select predictions for evaluation.
# threshold for clustering predictions together (wcs = weighted cluster scoring).
# needs to be >= the expected overlap of predictions coming from one model (typically NMS threshold).
# if too high, preds of the same object are separate clusters.
self.wcs_iou = 1e-5
self.plot_prediction_histograms = True
self.plot_stat_curves = False
#########################
# Data Augmentation #
#########################
self.da_kwargs={
'do_elastic_deform': True,
'alpha':(0., 1500.),
'sigma':(30., 50.),
'do_rotation':True,
'angle_x': (0., 2 * np.pi),
'angle_y': (0., 0),
'angle_z': (0., 0),
'do_scale': True,
'scale':(0.8, 1.1),
'random_crop':False,
'rand_crop_dist': (self.patch_size[0] / 2. - 3, self.patch_size[1] / 2. - 3),
'border_mode_data': 'constant',
'border_cval_data': 0,
'order_data': 1
}
if self.dim == 3:
self.da_kwargs['do_elastic_deform'] = False
self.da_kwargs['angle_x'] = (0, 0.0)
self.da_kwargs['angle_y'] = (0, 0.0) #must be 0!!
self.da_kwargs['angle_z'] = (0., 2 * np.pi)
#########################
# Add model specifics #
#########################
{'detection_unet': self.add_det_unet_configs,
'mrcnn': self.add_mrcnn_configs,
'ufrcnn': self.add_mrcnn_configs,
'retina_net': self.add_mrcnn_configs,
'retina_unet': self.add_mrcnn_configs,
}[self.model]()
def add_det_unet_configs(self):
self.learning_rate = [1e-4] * self.num_epochs
# aggregation from pixel perdiction to object scores (connected component). One of ['max', 'median']
self.aggregation_operation = 'max'
# max number of roi candidates to identify per image (slice in 2D, volume in 3D)
self.n_roi_candidates = 3 if self.dim == 2 else 8
# loss mode: either weighted cross entropy ('wce'), batch-wise dice loss ('dice), or the sum of both ('dice_wce')
self.seg_loss_mode = 'dice_wce'
# if <1, false positive predictions in foreground are penalized less.
self.fp_dice_weight = 1 if self.dim == 2 else 1
self.wce_weights = [0.3, 1, 1]
self.detection_min_confidence = self.min_det_thresh
# if 'True', loss distinguishes all classes, else only foreground vs. background (class agnostic).
self.class_specific_seg_flag = True
self.num_seg_classes = 3 if self.class_specific_seg_flag else 2
self.head_classes = self.num_seg_classes
def add_mrcnn_configs(self):
# learning rate is a list with one entry per epoch.
self.learning_rate = [3e-4] * self.num_epochs
# disable mask head loss. (e.g. if no pixelwise annotations available)
self.frcnn_mode = False
# disable the re-sampling of mask proposals to original size for speed-up.
# since evaluation is detection-driven (box-matching) and not instance segmentation-driven (iou-matching),
# mask-outputs are optional.
self.return_masks_in_val = True
self.return_masks_in_test = False
# set number of proposal boxes to plot after each epoch.
self.n_plot_rpn_props = 0 if self.dim == 2 else 0
# number of classes for head networks: n_foreground_classes + 1 (background)
self.head_classes = 3
# seg_classes hier refers to the first stage classifier (RPN)
self.num_seg_classes = 2 # foreground vs. background
# feature map strides per pyramid level are inferred from architecture.
self.backbone_strides = {'xy': [4, 8, 16, 32], 'z': [1, 2, 4, 8]}
# anchor scales are chosen according to expected object sizes in data set. Default uses only one anchor scale
# per pyramid level. (outer list are pyramid levels (corresponding to BACKBONE_STRIDES), inner list are scales per level.)
self.rpn_anchor_scales = {'xy': [[8], [16], [32], [64]], 'z': [[2], [4], [8], [16]]}
# choose which pyramid levels to extract features from: P2: 0, P3: 1, P4: 2, P5: 3.
self.pyramid_levels = [0, 1, 2, 3]
# number of feature maps in rpn. typically lowered in 3D to save gpu-memory.
self.n_rpn_features = 512 if self.dim == 2 else 128
# anchor ratios and strides per position in feature maps.
self.rpn_anchor_ratios = [0.5, 1., 2.]
self.rpn_anchor_stride = 1
# Threshold for first stage (RPN) non-maximum suppression (NMS): LOWER == HARDER SELECTION
self.rpn_nms_threshold = 0.7 if self.dim == 2 else 0.7
# loss sampling settings.
self.rpn_train_anchors_per_image = 64 #per batch element
self.train_rois_per_image = 2 #per batch element
self.roi_positive_ratio = 0.5
self.anchor_matching_iou = 0.7
# factor of top-k candidates to draw from per negative sample (stochastic-hard-example-mining).
# poolsize to draw top-k candidates from will be shem_poolsize * n_negative_samples.
self.shem_poolsize = 10
self.pool_size = (7, 7) if self.dim == 2 else (7, 7, 3)
self.mask_pool_size = (14, 14) if self.dim == 2 else (14, 14, 5)
self.mask_shape = (28, 28) if self.dim == 2 else (28, 28, 10)
self.rpn_bbox_std_dev = np.array([0.1, 0.1, 0.1, 0.2, 0.2, 0.2])
self.bbox_std_dev = np.array([0.1, 0.1, 0.1, 0.2, 0.2, 0.2])
self.window = np.array([0, 0, self.patch_size[0], self.patch_size[1]])
self.scale = np.array([self.patch_size[0], self.patch_size[1], self.patch_size[0], self.patch_size[1]])
if self.dim == 2:
self.rpn_bbox_std_dev = self.rpn_bbox_std_dev[:4]
self.bbox_std_dev = self.bbox_std_dev[:4]
self.window = self.window[:4]
self.scale = self.scale[:4]
# pre-selection in proposal-layer (stage 1) for NMS-speedup. applied per batch element.
self.pre_nms_limit = 3000 if self.dim == 2 else 6000
# n_proposals to be selected after NMS per batch element. too high numbers blow up memory if "detect_while_training" is True,
# since proposals of the entire batch are forwarded through second stage in as one "batch".
self.roi_chunk_size = 800 if self.dim == 2 else 600
self.post_nms_rois_training = 500 if self.dim == 2 else 75
self.post_nms_rois_inference = 500
# Final selection of detections (refine_detections)
self.model_max_instances_per_batch_element = 10 if self.dim == 2 else 30 # per batch element and class.
self.detection_nms_threshold = 1e-5 # needs to be > 0, otherwise all predictions are one cluster.
self.model_min_confidence = 0.1
if self.dim == 2:
self.backbone_shapes = np.array(
[[int(np.ceil(self.patch_size[0] / stride)),
int(np.ceil(self.patch_size[1] / stride))]
for stride in self.backbone_strides['xy']])
else:
self.backbone_shapes = np.array(
[[int(np.ceil(self.patch_size[0] / stride)),
int(np.ceil(self.patch_size[1] / stride)),
int(np.ceil(self.patch_size[2] / stride_z))]
for stride, stride_z in zip(self.backbone_strides['xy'], self.backbone_strides['z']
)])
if self.model == 'ufrcnn':
self.operate_stride1 = True
self.class_specific_seg_flag = True
self.num_seg_classes = 3 if self.class_specific_seg_flag else 2
self.frcnn_mode = True
if self.model == 'retina_net' or self.model == 'retina_unet':
# implement extra anchor-scales according to retina-net publication.
self.rpn_anchor_scales['xy'] = [[ii[0], ii[0] * (2 ** (1 / 3)), ii[0] * (2 ** (2 / 3))] for ii in
self.rpn_anchor_scales['xy']]
self.rpn_anchor_scales['z'] = [[ii[0], ii[0] * (2 ** (1 / 3)), ii[0] * (2 ** (2 / 3))] for ii in
self.rpn_anchor_scales['z']]
self.n_anchors_per_pos = len(self.rpn_anchor_ratios) * 3
self.n_rpn_features = 256 if self.dim == 2 else 64
# pre-selection of detections for NMS-speedup. per entire batch.
self.pre_nms_limit = 10000 if self.dim == 2 else 50000
# anchor matching iou is lower than in Mask R-CNN according to https://arxiv.org/abs/1708.02002
self.anchor_matching_iou = 0.5
# if 'True', seg loss distinguishes all classes, else only foreground vs. background (class agnostic).
self.num_seg_classes = 3 if self.class_specific_seg_flag else 2
if self.model == 'retina_unet':
self.operate_stride1 = True