[d986f2]: / exec_dp.py

Download this file

411 lines (339 with data), 20.7 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
#!/usr/bin/env python
# Copyright 2018 Division of Medical Image Computing, German Cancer Research Center (DKFZ).
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""execution script."""
import code
import argparse
import os, warnings
import time
import pandas as pd
import pickle
import sys
import cProfile, pstats
import torch
import torch.nn as nn
import utils.exp_utils as utils
from evaluator import Evaluator
from predictor import Predictor
from plotting import plot_batch_prediction
from datetime import datetime
for msg in ["Attempting to set identical bottom==top results",
"This figure includes Axes that are not compatible with tight_layout",
"Data has no positive values, and therefore cannot be log-scaled.",
".*invalid value encountered in double_scalars.*",
".*Mean of empty slice.*"]:
warnings.filterwarnings("ignore", msg)
def train(logger):
"""
perform the training routine for a given fold. saves plots and selected parameters to the experiment dir
specified in the configs.
"""
time_start_train = time.time()
logger.info('performing training in {}D over fold {} on experiment {} with model {}'.format(
cf.dim, cf.fold, cf.exp_dir, cf.model))
print ("Number of cuda devices available ",torch.cuda.device_count())
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") ## specify the GPU id's, GPU id's start from 0.
net = model.net(cf, logger).cuda()
#net = nn.DataParallel(net).to(device)
print ("Did data parallel get carried out for net in exec script?? ",isinstance(net, nn.DataParallel))
if hasattr(cf, "optimizer") and cf.optimizer.lower() == "adam":
logger.info("Using Adam optimizer.")
optimizer = torch.optim.Adam(utils.parse_params_for_optim(net, weight_decay=cf.weight_decay,
exclude_from_wd=cf.exclude_from_wd),
lr=cf.learning_rate[0])
else:
logger.info("Using AdamW optimizer.")
optimizer = torch.optim.AdamW(utils.parse_params_for_optim(net, weight_decay=cf.weight_decay,
exclude_from_wd=cf.exclude_from_wd),
lr=cf.learning_rate[0])
if cf.dynamic_lr_scheduling:
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode=cf.scheduling_mode, factor=cf.lr_decay_factor,
patience=cf.scheduling_patience)
model_selector = utils.ModelSelector(cf, logger)
train_evaluator = Evaluator(cf, logger, mode='train')
val_evaluator = Evaluator(cf, logger, mode=cf.val_mode)
starting_epoch = 1
# prepare monitoring
monitor_metrics = utils.prepare_monitoring(cf)
if cf.resume:
checkpoint_path = os.path.join(cf.fold_dir, "last_checkpoint")
starting_epoch, net, optimizer, monitor_metrics = \
utils.load_checkpoint(checkpoint_path, net, optimizer)
logger.info('resumed from checkpoint {} to epoch {}'.format(checkpoint_path, starting_epoch))
####### Use this to create hdf5
logger.info('loading dataset and initializing batch generators...')
print ("Starting data_loader.get_train_generators in exec...",datetime.now().strftime("%m/%d/%Y %H:%M:%S:%f"))
batch_gen = data_loader.get_train_generators(cf, logger)
print ("Finished data_loader.get_train_generators in exec...",datetime.now().strftime("%m/%d/%Y %H:%M:%S:%f"))
####### Writing out train data to file
#train_data = dict()
#print ('Write training data to json')
#for bix in range(cf.num_train_batches):
# batch = next(batch_gen['train'])
# train_data.update(batch)
#with open('train_data.json', 'w') as outfile:
# json.dump(train_data, outfile)
#####################################
for epoch in range(starting_epoch, cf.num_epochs + 1):
logger.info('starting training epoch {}'.format(epoch))
start_time = time.time()
net.train()
train_results_list = []
for bix in range(cf.num_train_batches):
# profiler = cProfile.Profile()
# profiler.enable()
######### Insert call to grab right training data fold from hdf5
print ("Get next batch_gen['train] ...",datetime.now().strftime("%m/%d/%Y %H:%M:%S:%f"))
##Stalled
batch = next(batch_gen['train']) ######## Instead of this line, grab a batch from training data fold
tic_fw = time.time()
print ("Start forward pass...",datetime.now().strftime("%m/%d/%Y %H:%M:%S:%f"))
results_dict = net.train_forward(batch)
tic_bw = time.time()
optimizer.zero_grad()
print ("Start backward pass..",datetime.now().strftime("%m/%d/%Y %H:%M:%S:%f"))
results_dict['torch_loss'].backward()
print ("Start optimizing...",datetime.now().strftime("%m/%d/%Y %H:%M:%S:%f"))
optimizer.step()
print('\rtr. batch {0}/{1} (ep. {2}) fw {3:.2f}s / bw {4:.2f} s / total {5:.2f} s || '.format(
bix + 1, cf.num_train_batches, epoch, tic_bw - tic_fw, time.time() - tic_bw,
time.time() - tic_fw) + results_dict['logger_string'], flush=True, end="")
print ("Results Dict Size: ",sys.getsizeof(results_dict))
train_results_list.append(({k:v for k,v in results_dict.items() if k != "seg_preds"}, batch["pid"]))
print("Loop through train batch DONE",datetime.now().strftime("%m/%d/%Y %H:%M:%S:%f"),(time.time()-time_start_train)/60, "minutes since training started")
# profiler.disable()
# stats = pstats.Stats(profiler).sort_stats('cumtime')
# stats.print_stats()
_, monitor_metrics['train'] = train_evaluator.evaluate_predictions(train_results_list, monitor_metrics['train'])
# logger.info('generating training example plot.')
# utils.split_off_process(plot_batch_prediction, batch, results_dict, cf, outfile=os.path.join(
# cf.plot_dir, 'pred_example_{}_train.png'.format(cf.fold)))
train_time = time.time() - start_time
logger.info('starting validation in mode {}.'.format(cf.val_mode))
with torch.no_grad():
net.eval()
if cf.do_validation:
val_results_list = []
val_predictor = Predictor(cf, net, logger, mode='val')
for _ in range(batch_gen['n_val']):
########## Insert call to grab right validation data fold from hdf5
batch = next(batch_gen[cf.val_mode])
if cf.val_mode == 'val_patient':
results_dict = val_predictor.predict_patient(batch)
elif cf.val_mode == 'val_sampling':
results_dict = net.train_forward(batch, is_validation=True)
#val_results_list.append([results_dict['boxes'], batch['pid']])
val_results_list.append(({k:v for k,v in results_dict.items() if k != "seg_preds"}, batch["pid"]))
#monitor_metrics['val']['monitor_values'][epoch].append(results_dict['monitor_values'])
_, monitor_metrics['val'] = val_evaluator.evaluate_predictions(val_results_list, monitor_metrics['val'])
model_selector.run_model_selection(net, optimizer, monitor_metrics, epoch)
# update monitoring and prediction plots
monitor_metrics.update({"lr":
{str(g): group['lr'] for (g, group) in enumerate(optimizer.param_groups)}})
logger.metrics2tboard(monitor_metrics, global_step=epoch)
epoch_time = time.time() - start_time
logger.info('trained epoch {}: took {} ({} train / {} val)'.format(
epoch, utils.get_formatted_duration(epoch_time, "ms"), utils.get_formatted_duration(train_time, "ms"),
utils.get_formatted_duration(epoch_time-train_time, "ms")))
########### Insert call to grab right validation data fold from hdf5
batch = next(batch_gen['val_sampling'])
results_dict = net.train_forward(batch, is_validation=True)
logger.info('generating validation-sampling example plot.')
utils.split_off_process(plot_batch_prediction, batch, results_dict, cf, outfile=os.path.join(
cf.plot_dir, 'pred_example_{}_val.png'.format(cf.fold)))
# -------------- scheduling -----------------
if cf.dynamic_lr_scheduling:
scheduler.step(monitor_metrics["val"][cf.scheduling_criterion][-1])
else:
for param_group in optimizer.param_groups:
param_group['lr'] = cf.learning_rate[epoch-1]
def test(logger):
"""
perform testing for a given fold (or hold out set). save stats in evaluator.
"""
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") ## specify the GPU id's, GPU id's start from 0.
logger.info('starting testing model of fold {} in exp {}'.format(cf.fold, cf.exp_dir))
net = model.net(cf, logger).cuda()
#net = nn.DataParallel(net).to(device)
test_predictor = Predictor(cf, net, logger, mode='test')
test_evaluator = Evaluator(cf, logger, mode='test')
################ Insert call to grab right test data (fold?) from hdf5
batch_gen = data_loader.get_test_generator(cf, logger)
####code.interact(local=locals())
test_results_list = test_predictor.predict_test_set(batch_gen, return_results=True)
test_evaluator.evaluate_predictions(test_results_list)
test_evaluator.score_test_df()
if __name__ == '__main__':
stime = time.time()
parser = argparse.ArgumentParser()
parser.add_argument('-m', '--mode', type=str, default='train_test',
help='one out of: train / test / train_test / analysis / create_exp')
parser.add_argument('-f','--folds', nargs='+', type=int, default=None,
help='None runs over all folds in CV. otherwise specify list of folds.')
parser.add_argument('--exp_dir', type=str, default='/path/to/experiment/directory',
help='path to experiment dir. will be created if non existent.')
parser.add_argument('--server_env', default=False, action='store_true',
help='change IO settings to deploy models on a cluster.')
parser.add_argument('--data_dest', type=str, default=None, help="path to final data folder if different from config.")
parser.add_argument('--use_stored_settings', default=False, action='store_true',
help='load configs from existing exp_dir instead of source dir. always done for testing, '
'but can be set to true to do the same for training. useful in job scheduler environment, '
'where source code might change before the job actually runs.')
parser.add_argument('--resume', action="store_true", default=False,
help='if given, resume from checkpoint(s) of the specified folds.')
parser.add_argument('--exp_source', type=str, default='experiments/toy_exp',
help='specifies, from which source experiment to load configs and data_loader.')
parser.add_argument('--no_benchmark', action='store_true', help="Do not use cudnn.benchmark.")
parser.add_argument('--cuda_device', type=int, default=0, help="Index of CUDA device to use.")
parser.add_argument('-d', '--dev', default=False, action='store_true', help="development mode: shorten everything")
args = parser.parse_args()
folds = args.folds
torch.backends.cudnn.benchmark = not args.no_benchmark
########### Creating hdf5
#if args.mode = 'create_hdf5':
# if folds is None:
# folds = range(cf.n_cv_splits)
# for fold in folds:
# create_hdf_foldwise_with_batch_generator_for_train/val/test
if args.mode == 'train' or args.mode == 'train_test':
cf = utils.prep_exp(args.exp_source, args.exp_dir, args.server_env, args.use_stored_settings)
if args.dev:
folds = [0,1]
cf.batch_size, cf.num_epochs, cf.min_save_thresh, cf.save_n_models = 3 if cf.dim==2 else 1, 1, 0, 2
cf.num_train_batches, cf.num_val_batches, cf.max_val_patients = 5, 1, 1
cf.test_n_epochs = cf.save_n_models
cf.max_test_patients = 2
cf.data_dest = args.data_dest
logger = utils.get_logger(cf.exp_dir, cf.server_env)
logger.info("cudnn benchmark: {}, deterministic: {}.".format(torch.backends.cudnn.benchmark,
torch.backends.cudnn.deterministic))
logger.info("sending tensors to CUDA device: {}.".format(torch.cuda.get_device_name(args.cuda_device)))
data_loader = utils.import_module('dl', os.path.join(args.exp_source, 'data_loader.py'))
model = utils.import_module('model', cf.model_path)
logger.info("loaded model from {}".format(cf.model_path))
if folds is None:
folds = range(cf.n_cv_splits)
with torch.cuda.device(args.cuda_device):
for fold in folds:
cf.fold_dir = os.path.join(cf.exp_dir, 'fold_{}'.format(fold))
cf.fold = fold
cf.resume = args.resume
if not os.path.exists(cf.fold_dir):
os.mkdir(cf.fold_dir)
logger.set_logfile(fold=fold)
train(logger)
cf.resume = False
if args.mode == 'train_test':
test(logger)
#Concatenate test results by detection
if cf.hold_out_test_set == False:
test_frames = [pd.read_pickle(os.path.join(cf.test_dir,f)) for f in os.listdir(cf.test_dir) if '_test_df.pickle' in f]
all_preds = pd.concat(test_frames)
all_preds.to_csv(os.path.join(cf.test_dir,"all_folds_test.csv"))
#Concatenate detection raw boxes across folds
det_frames = [pd.read_pickle(os.path.join(cf.exp_dir,f,'raw_pred_boxes_list.pickle')) for f in os.listdir(cf.exp_dir) if 'fold_' in f]
all_dets=list()
for i in det_frames:
all_dets.extend(i)
with open(os.path.join(cf.exp_dir, 'all_raw_dets.pickle'), 'wb') as handle:
pickle.dump(all_dets, handle)
#Concatenate detection wbc boxes across folds
det_frames = [pd.read_pickle(os.path.join(cf.exp_dir,f,'wbc_pred_boxes_list.pickle')) for f in os.listdir(cf.exp_dir) if 'fold_' in f]
all_dets=list()
for i in det_frames:
all_dets.extend(i)
with open(os.path.join(cf.exp_dir, 'all_wbc_dets.pickle'), 'wb') as handle:
pickle.dump(all_dets, handle)
elif args.mode == 'test':
cf = utils.prep_exp(args.exp_source, args.exp_dir, args.server_env, is_training=False, use_stored_settings=True)
if args.dev:
folds = [0,1]
cf.test_n_epochs = 2; cf.max_test_patients = 2
cf.data_dest = args.data_dest
logger = utils.get_logger(cf.exp_dir, cf.server_env)
data_loader = utils.import_module('dl', os.path.join(args.exp_source, 'data_loader.py'))
model = utils.import_module('model', cf.model_path)
logger.info("loaded model from {}".format(cf.model_path))
if folds is None:
folds = range(cf.n_cv_splits)
with torch.cuda.device(args.cuda_device):
for fold in folds:
cf.fold_dir = os.path.join(cf.exp_dir, 'fold_{}'.format(fold))
cf.fold = fold
logger.set_logfile(fold=fold)
test(logger)
if cf.hold_out_test_set == False:
test_frames = [pd.read_pickle(os.path.join(cf.test_dir,f)) for f in os.listdir(cf.test_dir) if '_test_df.pickle' in f]
all_preds = pd.concat(test_frames)
all_preds.to_csv(os.path.join(cf.test_dir,"all_folds_test.csv"))
#Concatenate detection raw boxes across folds
det_frames = [pd.read_pickle(os.path.join(cf.exp_dir,f,'raw_pred_boxes_list.pickle')) for f in os.listdir(cf.exp_dir) if 'fold_' in f]
all_dets=list()
for i in det_frames:
all_dets.extend(i)
with open(os.path.join(cf.exp_dir, 'all_raw_dets.pickle'), 'wb') as handle:
pickle.dump(all_dets, handle)
#Concatenate detection wbc boxes across folds
det_frames = [pd.read_pickle(os.path.join(cf.exp_dir,f,'wbc_pred_boxes_list.pickle')) for f in os.listdir(cf.exp_dir) if 'fold_' in f]
all_dets=list()
for i in det_frames:
all_dets.extend(i)
with open(os.path.join(cf.exp_dir, 'all_wbc_dets.pickle'), 'wb') as handle:
pickle.dump(all_dets, handle)
# load raw predictions saved by predictor during testing, run aggregation algorithms and evaluation.
elif args.mode == 'analysis':
cf = utils.prep_exp(args.exp_source, args.exp_dir, args.server_env, is_training=False, use_stored_settings=True)
logger = utils.get_logger(cf.exp_dir, cf.server_env)
if args.dev:
cf.test_n_epochs = 2
if cf.hold_out_test_set and cf.ensemble_folds:
# create and save (unevaluated) predictions across all folds
predictor = Predictor(cf, net=None, logger=logger, mode='analysis')
results_list = predictor.load_saved_predictions(apply_wbc=True)
utils.create_csv_output([(res_dict["boxes"], pid) for res_dict, pid in results_list], cf, logger)
logger.info('starting evaluation...')
cf.fold = 'overall_hold_out'
evaluator = Evaluator(cf, logger, mode='test')
evaluator.evaluate_predictions(results_list)
evaluator.score_test_df()
else:
fold_dirs = sorted([os.path.join(cf.exp_dir, f) for f in os.listdir(cf.exp_dir) if
os.path.isdir(os.path.join(cf.exp_dir, f)) and f.startswith("fold")])
if folds is None:
folds = range(cf.n_cv_splits)
for fold in folds:
cf.fold_dir = os.path.join(cf.exp_dir, 'fold_{}'.format(fold))
cf.fold = fold
logger.set_logfile(fold=fold)
if cf.fold_dir in fold_dirs:
predictor = Predictor(cf, net=None, logger=logger, mode='analysis')
results_list = predictor.load_saved_predictions(apply_wbc=True)
logger.info('starting evaluation...')
evaluator = Evaluator(cf, logger, mode='test')
evaluator.evaluate_predictions(results_list)
evaluator.score_test_df()
else:
logger.info("Skipping fold {} since no model parameters found.".format(fold))
# create experiment folder and copy scripts without starting job.
# useful for cloud deployment where configs might change before job actually runs.
elif args.mode == 'create_exp':
cf = utils.prep_exp(args.exp_source, args.exp_dir, args.server_env, use_stored_settings=False)
logger = utils.get_logger(cf.exp_dir)
logger.info('created experiment directory at {}'.format(cf.exp_dir))
else:
raise RuntimeError('mode specified in args is not implemented...')
t = utils.get_formatted_duration(time.time() - stime)
logger.info("{} total runtime: {}".format(os.path.split(__file__)[1], t))
del logger