[bb7f56]: / utils / model_utils.py

Download this file

1012 lines (832 with data), 42.7 kB

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
#!/usr/bin/env python
# Copyright 2018 Division of Medical Image Computing, German Cancer Research Center (DKFZ).
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
Parts are based on https://github.com/multimodallearning/pytorch-mask-rcnn
published under MIT license.
"""
import numpy as np
import scipy.misc
import scipy.ndimage
import scipy.interpolate
import torch
from torch.autograd import Variable
import torch.nn as nn
import tqdm
############################################################
# Bounding Boxes
############################################################
def compute_iou_2D(box, boxes, box_area, boxes_area):
"""Calculates IoU of the given box with the array of the given boxes.
box: 1D vector [y1, x1, y2, x2] THIS IS THE GT BOX
boxes: [boxes_count, (y1, x1, y2, x2)]
box_area: float. the area of 'box'
boxes_area: array of length boxes_count.
Note: the areas are passed in rather than calculated here for
efficency. Calculate once in the caller to avoid duplicate work.
"""
# Calculate intersection areas
y1 = np.maximum(box[0], boxes[:, 0])
y2 = np.minimum(box[2], boxes[:, 2])
x1 = np.maximum(box[1], boxes[:, 1])
x2 = np.minimum(box[3], boxes[:, 3])
intersection = np.maximum(x2 - x1, 0) * np.maximum(y2 - y1, 0)
union = box_area + boxes_area[:] - intersection[:]
iou = intersection / union
return iou
def compute_iou_3D(box, boxes, box_volume, boxes_volume):
"""Calculates IoU of the given box with the array of the given boxes.
box: 1D vector [y1, x1, y2, x2, z1, z2] (typically gt box)
boxes: [boxes_count, (y1, x1, y2, x2, z1, z2)]
box_area: float. the area of 'box'
boxes_area: array of length boxes_count.
Note: the areas are passed in rather than calculated here for
efficency. Calculate once in the caller to avoid duplicate work.
"""
# Calculate intersection areas
y1 = np.maximum(box[0], boxes[:, 0])
y2 = np.minimum(box[2], boxes[:, 2])
x1 = np.maximum(box[1], boxes[:, 1])
x2 = np.minimum(box[3], boxes[:, 3])
z1 = np.maximum(box[4], boxes[:, 4])
z2 = np.minimum(box[5], boxes[:, 5])
intersection = np.maximum(x2 - x1, 0) * np.maximum(y2 - y1, 0) * np.maximum(z2 - z1, 0)
union = box_volume + boxes_volume[:] - intersection[:]
iou = intersection / union
return iou
def compute_overlaps(boxes1, boxes2):
"""Computes IoU overlaps between two sets of boxes.
boxes1, boxes2: [N, (y1, x1, y2, x2)]. / 3D: (z1, z2))
For better performance, pass the largest set first and the smaller second.
"""
# Areas of anchors and GT boxes
if boxes1.shape[1] == 4:
area1 = (boxes1[:, 2] - boxes1[:, 0]) * (boxes1[:, 3] - boxes1[:, 1])
area2 = (boxes2[:, 2] - boxes2[:, 0]) * (boxes2[:, 3] - boxes2[:, 1])
# Compute overlaps to generate matrix [boxes1 count, boxes2 count]
# Each cell contains the IoU value.
overlaps = np.zeros((boxes1.shape[0], boxes2.shape[0]))
for i in range(overlaps.shape[1]):
box2 = boxes2[i] #this is the gt box
overlaps[:, i] = compute_iou_2D(box2, boxes1, area2[i], area1)
return overlaps
else:
# Areas of anchors and GT boxes
volume1 = (boxes1[:, 2] - boxes1[:, 0]) * (boxes1[:, 3] - boxes1[:, 1]) * (boxes1[:, 5] - boxes1[:, 4])
volume2 = (boxes2[:, 2] - boxes2[:, 0]) * (boxes2[:, 3] - boxes2[:, 1]) * (boxes2[:, 5] - boxes2[:, 4])
# Compute overlaps to generate matrix [boxes1 count, boxes2 count]
# Each cell contains the IoU value.
overlaps = np.zeros((boxes1.shape[0], boxes2.shape[0]))
for i in range(overlaps.shape[1]):
box2 = boxes2[i] # this is the gt box
overlaps[:, i] = compute_iou_3D(box2, boxes1, volume2[i], volume1)
return overlaps
def box_refinement(box, gt_box):
"""Compute refinement needed to transform box to gt_box.
box and gt_box are [N, (y1, x1, y2, x2)] / 3D: (z1, z2))
"""
height = box[:, 2] - box[:, 0]
width = box[:, 3] - box[:, 1]
center_y = box[:, 0] + 0.5 * height
center_x = box[:, 1] + 0.5 * width
gt_height = gt_box[:, 2] - gt_box[:, 0]
gt_width = gt_box[:, 3] - gt_box[:, 1]
gt_center_y = gt_box[:, 0] + 0.5 * gt_height
gt_center_x = gt_box[:, 1] + 0.5 * gt_width
dy = (gt_center_y - center_y) / height
dx = (gt_center_x - center_x) / width
dh = torch.log(gt_height / height)
dw = torch.log(gt_width / width)
result = torch.stack([dy, dx, dh, dw], dim=1)
if box.shape[1] > 4:
depth = box[:, 5] - box[:, 4]
center_z = box[:, 4] + 0.5 * depth
gt_depth = gt_box[:, 5] - gt_box[:, 4]
gt_center_z = gt_box[:, 4] + 0.5 * gt_depth
dz = (gt_center_z - center_z) / depth
dd = torch.log(gt_depth / depth)
result = torch.stack([dy, dx, dz, dh, dw, dd], dim=1)
return result
def unmold_mask_2D(mask, bbox, image_shape):
"""Converts a mask generated by the neural network into a format similar
to it's original shape.
mask: [height, width] of type float. A small, typically 28x28 mask.
bbox: [y1, x1, y2, x2]. The box to fit the mask in.
Returns a binary mask with the same size as the original image.
"""
y1, x1, y2, x2 = bbox
out_zoom = [y2 - y1, x2 - x1]
zoom_factor = [i / j for i, j in zip(out_zoom, mask.shape)]
mask = scipy.ndimage.zoom(mask, zoom_factor, order=1).astype(np.float32)
# Put the mask in the right location.
full_mask = np.zeros(image_shape[:2])
full_mask[y1:y2, x1:x2] = mask
return full_mask
def unmold_mask_3D(mask, bbox, image_shape):
"""Converts a mask generated by the neural network into a format similar
to it's original shape.
mask: [height, width] of type float. A small, typically 28x28 mask.
bbox: [y1, x1, y2, x2, z1, z2]. The box to fit the mask in.
Returns a binary mask with the same size as the original image.
"""
y1, x1, y2, x2, z1, z2 = bbox
out_zoom = [y2 - y1, x2 - x1, z2 - z1]
zoom_factor = [i/j for i,j in zip(out_zoom, mask.shape)]
mask = scipy.ndimage.zoom(mask, zoom_factor, order=1).astype(np.float32)
# Put the mask in the right location.
full_mask = np.zeros(image_shape[:3])
full_mask[y1:y2, x1:x2, z1:z2] = mask
return full_mask
############################################################
# Anchors
############################################################
def generate_anchors(scales, ratios, shape, feature_stride, anchor_stride):
"""
scales: 1D array of anchor sizes in pixels. Example: [32, 64, 128]
ratios: 1D array of anchor ratios of width/height. Example: [0.5, 1, 2]
shape: [height, width] spatial shape of the feature map over which
to generate anchors.
feature_stride: Stride of the feature map relative to the image in pixels.
anchor_stride: Stride of anchors on the feature map. For example, if the
value is 2 then generate anchors for every other feature map pixel.
"""
# Get all combinations of scales and ratios
scales, ratios = np.meshgrid(np.array(scales), np.array(ratios))
scales = scales.flatten()
ratios = ratios.flatten()
# Enumerate heights and widths from scales and ratios
heights = scales / np.sqrt(ratios)
widths = scales * np.sqrt(ratios)
# Enumerate shifts in feature space
shifts_y = np.arange(0, shape[0], anchor_stride) * feature_stride
shifts_x = np.arange(0, shape[1], anchor_stride) * feature_stride
shifts_x, shifts_y = np.meshgrid(shifts_x, shifts_y)
# Enumerate combinations of shifts, widths, and heights
box_widths, box_centers_x = np.meshgrid(widths, shifts_x)
box_heights, box_centers_y = np.meshgrid(heights, shifts_y)
# Reshape to get a list of (y, x) and a list of (h, w)
box_centers = np.stack(
[box_centers_y, box_centers_x], axis=2).reshape([-1, 2])
box_sizes = np.stack([box_heights, box_widths], axis=2).reshape([-1, 2])
# Convert to corner coordinates (y1, x1, y2, x2)
boxes = np.concatenate([box_centers - 0.5 * box_sizes,
box_centers + 0.5 * box_sizes], axis=1)
return boxes
def generate_anchors_3D(scales_xy, scales_z, ratios, shape, feature_stride_xy, feature_stride_z, anchor_stride):
"""
scales: 1D array of anchor sizes in pixels. Example: [32, 64, 128]
ratios: 1D array of anchor ratios of width/height. Example: [0.5, 1, 2]
shape: [height, width] spatial shape of the feature map over which
to generate anchors.
feature_stride: Stride of the feature map relative to the image in pixels.
anchor_stride: Stride of anchors on the feature map. For example, if the
value is 2 then generate anchors for every other feature map pixel.
"""
# Get all combinations of scales and ratios
scales_xy, ratios_meshed = np.meshgrid(np.array(scales_xy), np.array(ratios))
scales_xy = scales_xy.flatten()
ratios_meshed = ratios_meshed.flatten()
# Enumerate heights and widths from scales and ratios
heights = scales_xy / np.sqrt(ratios_meshed)
widths = scales_xy * np.sqrt(ratios_meshed)
depths = np.tile(np.array(scales_z), len(ratios_meshed)//np.array(scales_z)[..., None].shape[0])
# Enumerate shifts in feature space
shifts_y = np.arange(0, shape[0], anchor_stride) * feature_stride_xy #translate from fm positions to input coords.
shifts_x = np.arange(0, shape[1], anchor_stride) * feature_stride_xy
shifts_z = np.arange(0, shape[2], anchor_stride) * (feature_stride_z)
shifts_x, shifts_y, shifts_z = np.meshgrid(shifts_x, shifts_y, shifts_z)
# Enumerate combinations of shifts, widths, and heights
box_widths, box_centers_x = np.meshgrid(widths, shifts_x)
box_heights, box_centers_y = np.meshgrid(heights, shifts_y)
box_depths, box_centers_z = np.meshgrid(depths, shifts_z)
# Reshape to get a list of (y, x, z) and a list of (h, w, d)
box_centers = np.stack(
[box_centers_y, box_centers_x, box_centers_z], axis=2).reshape([-1, 3])
box_sizes = np.stack([box_heights, box_widths, box_depths], axis=2).reshape([-1, 3])
# Convert to corner coordinates (y1, x1, y2, x2, z1, z2)
boxes = np.concatenate([box_centers - 0.5 * box_sizes,
box_centers + 0.5 * box_sizes], axis=1)
boxes = np.transpose(np.array([boxes[:, 0], boxes[:, 1], boxes[:, 3], boxes[:, 4], boxes[:, 2], boxes[:, 5]]), axes=(1, 0))
return boxes
def generate_pyramid_anchors(logger, cf):
"""Generate anchors at different levels of a feature pyramid. Each scale
is associated with a level of the pyramid, but each ratio is used in
all levels of the pyramid.
from configs:
:param scales: cf.RPN_ANCHOR_SCALES , e.g. [4, 8, 16, 32]
:param ratios: cf.RPN_ANCHOR_RATIOS , e.g. [0.5, 1, 2]
:param feature_shapes: cf.BACKBONE_SHAPES , e.g. [array of shapes per feature map] [80, 40, 20, 10, 5]
:param feature_strides: cf.BACKBONE_STRIDES , e.g. [2, 4, 8, 16, 32, 64]
:param anchors_stride: cf.RPN_ANCHOR_STRIDE , e.g. 1
:return anchors: (N, (y1, x1, y2, x2, (z1), (z2)). All generated anchors in one array. Sorted
with the same order of the given scales. So, anchors of scale[0] come first, then anchors of scale[1], and so on.
"""
scales = cf.rpn_anchor_scales
ratios = cf.rpn_anchor_ratios
feature_shapes = cf.backbone_shapes
anchor_stride = cf.rpn_anchor_stride
pyramid_levels = cf.pyramid_levels
feature_strides = cf.backbone_strides
anchors = []
logger.info("feature map shapes: {}".format(feature_shapes))
logger.info("anchor scales: {}".format(scales))
expected_anchors = [np.prod(feature_shapes[ii]) * len(ratios) * len(scales['xy'][ii]) for ii in pyramid_levels]
for lix, level in enumerate(pyramid_levels):
if len(feature_shapes[level]) == 2:
anchors.append(generate_anchors(scales['xy'][level], ratios, feature_shapes[level],
feature_strides['xy'][level], anchor_stride))
else:
anchors.append(generate_anchors_3D(scales['xy'][level], scales['z'][level], ratios, feature_shapes[level],
feature_strides['xy'][level], feature_strides['z'][level], anchor_stride))
logger.info("level {}: built anchors {} / expected anchors {} ||| total build {} / total expected {}".format(
level, anchors[-1].shape, expected_anchors[lix], np.concatenate(anchors).shape, np.sum(expected_anchors)))
out_anchors = np.concatenate(anchors, axis=0)
return out_anchors
def apply_box_deltas_2D(boxes, deltas):
"""Applies the given deltas to the given boxes.
boxes: [N, 4] where each row is y1, x1, y2, x2
deltas: [N, 4] where each row is [dy, dx, log(dh), log(dw)]
"""
# Convert to y, x, h, w
height = boxes[:, 2] - boxes[:, 0]
width = boxes[:, 3] - boxes[:, 1]
center_y = boxes[:, 0] + 0.5 * height
center_x = boxes[:, 1] + 0.5 * width
# Apply deltas
center_y += deltas[:, 0] * height
center_x += deltas[:, 1] * width
height *= torch.exp(deltas[:, 2])
width *= torch.exp(deltas[:, 3])
# Convert back to y1, x1, y2, x2
y1 = center_y - 0.5 * height
x1 = center_x - 0.5 * width
y2 = y1 + height
x2 = x1 + width
result = torch.stack([y1, x1, y2, x2], dim=1)
return result
def apply_box_deltas_3D(boxes, deltas):
"""Applies the given deltas to the given boxes.
boxes: [N, 6] where each row is y1, x1, y2, x2, z1, z2
deltas: [N, 6] where each row is [dy, dx, dz, log(dh), log(dw), log(dd)]
"""
# Convert to y, x, h, w
height = boxes[:, 2] - boxes[:, 0]
width = boxes[:, 3] - boxes[:, 1]
depth = boxes[:, 5] - boxes[:, 4]
center_y = boxes[:, 0] + 0.5 * height
center_x = boxes[:, 1] + 0.5 * width
center_z = boxes[:, 4] + 0.5 * depth
# Apply deltas
center_y += deltas[:, 0] * height
center_x += deltas[:, 1] * width
center_z += deltas[:, 2] * depth
height *= torch.exp(deltas[:, 3])
width *= torch.exp(deltas[:, 4])
depth *= torch.exp(deltas[:, 5])
# Convert back to y1, x1, y2, x2
y1 = center_y - 0.5 * height
x1 = center_x - 0.5 * width
z1 = center_z - 0.5 * depth
y2 = y1 + height
x2 = x1 + width
z2 = z1 + depth
result = torch.stack([y1, x1, y2, x2, z1, z2], dim=1)
return result
def clip_boxes_2D(boxes, window):
"""
boxes: [N, 4] each col is y1, x1, y2, x2
window: [4] in the form y1, x1, y2, x2
"""
boxes = torch.stack( \
[boxes[:, 0].clamp(float(window[0]), float(window[2])),
boxes[:, 1].clamp(float(window[1]), float(window[3])),
boxes[:, 2].clamp(float(window[0]), float(window[2])),
boxes[:, 3].clamp(float(window[1]), float(window[3]))], 1)
return boxes
def clip_boxes_3D(boxes, window):
"""
boxes: [N, 6] each col is y1, x1, y2, x2, z1, z2
window: [6] in the form y1, x1, y2, x2, z1, z2
"""
boxes = torch.stack( \
[boxes[:, 0].clamp(float(window[0]), float(window[2])),
boxes[:, 1].clamp(float(window[1]), float(window[3])),
boxes[:, 2].clamp(float(window[0]), float(window[2])),
boxes[:, 3].clamp(float(window[1]), float(window[3])),
boxes[:, 4].clamp(float(window[4]), float(window[5])),
boxes[:, 5].clamp(float(window[4]), float(window[5]))], 1)
return boxes
def clip_boxes_numpy(boxes, window):
"""
boxes: [N, 4] each col is y1, x1, y2, x2 / [N, 6] in 3D.
window: iamge shape (y, x, (z))
"""
if boxes.shape[1] == 4:
boxes = np.concatenate(
(np.clip(boxes[:, 0], 0, window[0])[:, None],
np.clip(boxes[:, 1], 0, window[0])[:, None],
np.clip(boxes[:, 2], 0, window[1])[:, None],
np.clip(boxes[:, 3], 0, window[1])[:, None]), 1
)
else:
boxes = np.concatenate(
(np.clip(boxes[:, 0], 0, window[0])[:, None],
np.clip(boxes[:, 1], 0, window[0])[:, None],
np.clip(boxes[:, 2], 0, window[1])[:, None],
np.clip(boxes[:, 3], 0, window[1])[:, None],
np.clip(boxes[:, 4], 0, window[2])[:, None],
np.clip(boxes[:, 5], 0, window[2])[:, None]), 1
)
return boxes
def bbox_overlaps_2D(boxes1, boxes2):
"""Computes IoU overlaps between two sets of boxes.
boxes1, boxes2: [N, (y1, x1, y2, x2)].
"""
# 1. Tile boxes2 and repeate boxes1. This allows us to compare
# every boxes1 against every boxes2 without loops.
# TF doesn't have an equivalent to np.repeate() so simulate it
# using tf.tile() and tf.reshape.
boxes1_repeat = boxes2.size()[0]
boxes2_repeat = boxes1.size()[0]
boxes1 = boxes1.repeat(1,boxes1_repeat).view(-1,4)
boxes2 = boxes2.repeat(boxes2_repeat,1)
# 2. Compute intersections
b1_y1, b1_x1, b1_y2, b1_x2 = boxes1.chunk(4, dim=1)
b2_y1, b2_x1, b2_y2, b2_x2 = boxes2.chunk(4, dim=1)
y1 = torch.max(b1_y1, b2_y1)[:, 0]
x1 = torch.max(b1_x1, b2_x1)[:, 0]
y2 = torch.min(b1_y2, b2_y2)[:, 0]
x2 = torch.min(b1_x2, b2_x2)[:, 0]
zeros = Variable(torch.zeros(y1.size()[0]), requires_grad=False)
if y1.is_cuda:
zeros = zeros.cuda()
intersection = torch.max(x2 - x1, zeros) * torch.max(y2 - y1, zeros)
# 3. Compute unions
b1_area = (b1_y2 - b1_y1) * (b1_x2 - b1_x1)
b2_area = (b2_y2 - b2_y1) * (b2_x2 - b2_x1)
union = b1_area[:,0] + b2_area[:,0] - intersection
# 4. Compute IoU and reshape to [boxes1, boxes2]
iou = intersection / union
overlaps = iou.view(boxes2_repeat, boxes1_repeat)
return overlaps
def bbox_overlaps_3D(boxes1, boxes2):
"""Computes IoU overlaps between two sets of boxes.
boxes1, boxes2: [N, (y1, x1, y2, x2, z1, z2)].
"""
# 1. Tile boxes2 and repeate boxes1. This allows us to compare
# every boxes1 against every boxes2 without loops.
# TF doesn't have an equivalent to np.repeate() so simulate it
# using tf.tile() and tf.reshape.
boxes1_repeat = boxes2.size()[0]
boxes2_repeat = boxes1.size()[0]
boxes1 = boxes1.repeat(1,boxes1_repeat).view(-1,6)
boxes2 = boxes2.repeat(boxes2_repeat,1)
# 2. Compute intersections
b1_y1, b1_x1, b1_y2, b1_x2, b1_z1, b1_z2 = boxes1.chunk(6, dim=1)
b2_y1, b2_x1, b2_y2, b2_x2, b2_z1, b2_z2 = boxes2.chunk(6, dim=1)
y1 = torch.max(b1_y1, b2_y1)[:, 0]
x1 = torch.max(b1_x1, b2_x1)[:, 0]
y2 = torch.min(b1_y2, b2_y2)[:, 0]
x2 = torch.min(b1_x2, b2_x2)[:, 0]
z1 = torch.max(b1_z1, b2_z1)[:, 0]
z2 = torch.min(b1_z2, b2_z2)[:, 0]
zeros = Variable(torch.zeros(y1.size()[0]), requires_grad=False)
if y1.is_cuda:
zeros = zeros.cuda()
intersection = torch.max(x2 - x1, zeros) * torch.max(y2 - y1, zeros) * torch.max(z2 - z1, zeros)
# 3. Compute unions
b1_volume = (b1_y2 - b1_y1) * (b1_x2 - b1_x1) * (b1_z2 - b1_z1)
b2_volume = (b2_y2 - b2_y1) * (b2_x2 - b2_x1) * (b2_z2 - b2_z1)
union = b1_volume[:,0] + b2_volume[:,0] - intersection
# 4. Compute IoU and reshape to [boxes1, boxes2]
iou = intersection / union
overlaps = iou.view(boxes2_repeat, boxes1_repeat)
return overlaps
def gt_anchor_matching(cf, anchors, gt_boxes, gt_class_ids=None):
"""Given the anchors and GT boxes, compute overlaps and identify positive
anchors and deltas to refine them to match their corresponding GT boxes.
anchors: [num_anchors, (y1, x1, y2, x2, (z1), (z2))]
gt_boxes: [num_gt_boxes, (y1, x1, y2, x2, (z1), (z2))]
gt_class_ids (optional): [num_gt_boxes] Integer class IDs for one stage detectors. in RPN case of Mask R-CNN,
set all positive matches to 1 (foreground)
Returns:
anchor_class_matches: [N] (int32) matches between anchors and GT boxes.
1 = positive anchor, -1 = negative anchor, 0 = neutral.
In case of one stage detectors like RetinaNet/RetinaUNet this flag takes
class_ids as positive anchor values, i.e. values >= 1!
anchor_delta_targets: [N, (dy, dx, (dz), log(dh), log(dw), (log(dd)))] Anchor bbox deltas.
"""
anchor_class_matches = np.zeros([anchors.shape[0]], dtype=np.int32)
anchor_delta_targets = np.zeros((cf.rpn_train_anchors_per_image, 2*cf.dim))
anchor_matching_iou = cf.anchor_matching_iou
if gt_boxes is None:
anchor_class_matches = np.full(anchor_class_matches.shape, fill_value=-1)
return anchor_class_matches, anchor_delta_targets
# for mrcnn: anchor matching is done for RPN loss, so positive labels are all 1 (foreground)
if gt_class_ids is None:
gt_class_ids = np.array([1] * len(gt_boxes))
# Compute overlaps [num_anchors, num_gt_boxes]
overlaps = compute_overlaps(anchors, gt_boxes)
# Match anchors to GT Boxes
# If an anchor overlaps a GT box with IoU >= anchor_matching_iou then it's positive.
# If an anchor overlaps a GT box with IoU < 0.1 then it's negative.
# Neutral anchors are those that don't match the conditions above,
# and they don't influence the loss function.
# However, don't keep any GT box unmatched (rare, but happens). Instead,
# match it to the closest anchor (even if its max IoU is < 0.1).
# 1. Set negative anchors first. They get overwritten below if a GT box is
# matched to them. Skip boxes in crowd areas.
anchor_iou_argmax = np.argmax(overlaps, axis=1)
anchor_iou_max = overlaps[np.arange(overlaps.shape[0]), anchor_iou_argmax]
if anchors.shape[1] == 4:
anchor_class_matches[(anchor_iou_max < 0.1)] = -1
elif anchors.shape[1] == 6:
anchor_class_matches[(anchor_iou_max < 0.01)] = -1
else:
raise ValueError('anchor shape wrong {}'.format(anchors.shape))
# 2. Set an anchor for each GT box (regardless of IoU value).
gt_iou_argmax = np.argmax(overlaps, axis=0)
for ix, ii in enumerate(gt_iou_argmax):
anchor_class_matches[ii] = gt_class_ids[ix]
# 3. Set anchors with high overlap as positive.
above_trhesh_ixs = np.argwhere(anchor_iou_max >= anchor_matching_iou)
anchor_class_matches[above_trhesh_ixs] = gt_class_ids[anchor_iou_argmax[above_trhesh_ixs]]
# Subsample to balance positive anchors.
ids = np.where(anchor_class_matches > 0)[0]
# extra == these positive anchors are too many --> reset them to negative ones.
extra = len(ids) - (cf.rpn_train_anchors_per_image // 2)
if extra > 0:
# Reset the extra ones to neutral
extra_ids = np.random.choice(ids, extra, replace=False)
anchor_class_matches[extra_ids] = 0
# Leave all negative proposals negative now and sample from them in online hard example mining.
# For positive anchors, compute shift and scale needed to transform them to match the corresponding GT boxes.
ids = np.where(anchor_class_matches > 0)[0]
ix = 0 # index into anchor_delta_targets
for i, a in zip(ids, anchors[ids]):
# closest gt box (it might have IoU < anchor_matching_iou)
gt = gt_boxes[anchor_iou_argmax[i]]
# convert coordinates to center plus width/height.
gt_h = gt[2] - gt[0]
gt_w = gt[3] - gt[1]
gt_center_y = gt[0] + 0.5 * gt_h
gt_center_x = gt[1] + 0.5 * gt_w
# Anchor
a_h = a[2] - a[0]
a_w = a[3] - a[1]
a_center_y = a[0] + 0.5 * a_h
a_center_x = a[1] + 0.5 * a_w
if cf.dim == 2:
anchor_delta_targets[ix] = [
(gt_center_y - a_center_y) / a_h,
(gt_center_x - a_center_x) / a_w,
np.log(gt_h / a_h),
np.log(gt_w / a_w),
]
else:
gt_d = gt[5] - gt[4]
gt_center_z = gt[4] + 0.5 * gt_d
a_d = a[5] - a[4]
a_center_z = a[4] + 0.5 * a_d
anchor_delta_targets[ix] = [
(gt_center_y - a_center_y) / a_h,
(gt_center_x - a_center_x) / a_w,
(gt_center_z - a_center_z) / a_d,
np.log(gt_h / a_h),
np.log(gt_w / a_w),
np.log(gt_d / a_d)
]
# normalize.
anchor_delta_targets[ix] /= cf.rpn_bbox_std_dev
ix += 1
return anchor_class_matches, anchor_delta_targets
def clip_to_window(window, boxes):
"""
window: (y1, x1, y2, x2) / 3D: (z1, z2). The window in the image we want to clip to.
boxes: [N, (y1, x1, y2, x2)] / 3D: (z1, z2)
"""
boxes[:, 0] = boxes[:, 0].clamp(float(window[0]), float(window[2]))
boxes[:, 1] = boxes[:, 1].clamp(float(window[1]), float(window[3]))
boxes[:, 2] = boxes[:, 2].clamp(float(window[0]), float(window[2]))
boxes[:, 3] = boxes[:, 3].clamp(float(window[1]), float(window[3]))
if boxes.shape[1] > 5:
boxes[:, 4] = boxes[:, 4].clamp(float(window[4]), float(window[5]))
boxes[:, 5] = boxes[:, 5].clamp(float(window[4]), float(window[5]))
return boxes
def nms_numpy(box_coords, scores, thresh):
""" non-maximum suppression on 2D or 3D boxes in numpy.
:param box_coords: [y1,x1,y2,x2 (,z1,z2)] with y1<=y2, x1<=x2, z1<=z2.
:param scores: ranking scores (higher score == higher rank) of boxes.
:param thresh: IoU threshold for clustering.
:return:
"""
y1 = box_coords[:, 0]
x1 = box_coords[:, 1]
y2 = box_coords[:, 2]
x2 = box_coords[:, 3]
assert np.all(y1 <= y2) and np.all(x1 <= x2), """"the definition of the coordinates is crucially important here:
coordinates of which maxima are taken need to be the lower coordinates"""
areas = (x2 - x1) * (y2 - y1)
is_3d = box_coords.shape[1] == 6
if is_3d: # 3-dim case
z1 = box_coords[:, 4]
z2 = box_coords[:, 5]
assert np.all(z1<=z2), """"the definition of the coordinates is crucially important here:
coordinates of which maxima are taken need to be the lower coordinates"""
areas *= (z2 - z1)
order = scores.argsort()[::-1]
keep = []
while order.size > 0: # order is the sorted index. maps order to index: order[1] = 24 means (rank1, ix 24)
i = order[0] # highest scoring element
yy1 = np.maximum(y1[i], y1[order]) # highest scoring element still in >order<, is compared to itself, that is okay.
xx1 = np.maximum(x1[i], x1[order])
yy2 = np.minimum(y2[i], y2[order])
xx2 = np.minimum(x2[i], x2[order])
h = np.maximum(0.0, yy2 - yy1)
w = np.maximum(0.0, xx2 - xx1)
inter = h * w
if is_3d:
zz1 = np.maximum(z1[i], z1[order])
zz2 = np.minimum(z2[i], z2[order])
d = np.maximum(0.0, zz2 - zz1)
inter *= d
iou = inter / (areas[i] + areas[order] - inter)
non_matches = np.nonzero(iou <= thresh)[0] # get all elements that were not matched and discard all others.
order = order[non_matches]
keep.append(i)
return keep
def roi_align_3d_numpy(input: np.ndarray, rois, output_size: tuple,
spatial_scale: float = 1., sampling_ratio: int = -1) -> np.ndarray:
""" This fct mainly serves as a verification method for 3D CUDA implementation of RoIAlign, it's highly
inefficient due to the nested loops.
:param input: (ndarray[N, C, H, W, D]): input feature map
:param rois: list (N,K(n), 6), K(n) = nr of rois in batch-element n, single roi of format (y1,x1,y2,x2,z1,z2)
:param output_size:
:param spatial_scale:
:param sampling_ratio:
:return: (List[N, K(n), C, output_size[0], output_size[1], output_size[2]])
"""
out_height, out_width, out_depth = output_size
coord_grid = tuple([np.linspace(0, input.shape[dim] - 1, num=input.shape[dim]) for dim in range(2, 5)])
pooled_rois = [[]] * len(rois)
assert len(rois) == input.shape[0], "batch dim mismatch, rois: {}, input: {}".format(len(rois), input.shape[0])
print("Numpy 3D RoIAlign progress:", end="\n")
for b in range(input.shape[0]):
for roi in tqdm.tqdm(rois[b]):
y1, x1, y2, x2, z1, z2 = np.array(roi) * spatial_scale
roi_height = max(float(y2 - y1), 1.)
roi_width = max(float(x2 - x1), 1.)
roi_depth = max(float(z2 - z1), 1.)
if sampling_ratio <= 0:
sampling_ratio_h = int(np.ceil(roi_height / out_height))
sampling_ratio_w = int(np.ceil(roi_width / out_width))
sampling_ratio_d = int(np.ceil(roi_depth / out_depth))
else:
sampling_ratio_h = sampling_ratio_w = sampling_ratio_d = sampling_ratio # == n points per bin
bin_height = roi_height / out_height
bin_width = roi_width / out_width
bin_depth = roi_depth / out_depth
n_points = sampling_ratio_h * sampling_ratio_w * sampling_ratio_d
pooled_roi = np.empty((input.shape[1], out_height, out_width, out_depth), dtype="float32")
for chan in range(input.shape[1]):
lin_interpolator = scipy.interpolate.RegularGridInterpolator(coord_grid, input[b, chan],
method="linear")
for bin_iy in range(out_height):
for bin_ix in range(out_width):
for bin_iz in range(out_depth):
bin_val = 0.
for i in range(sampling_ratio_h):
for j in range(sampling_ratio_w):
for k in range(sampling_ratio_d):
loc_ijk = [
y1 + bin_iy * bin_height + (i + 0.5) * (bin_height / sampling_ratio_h),
x1 + bin_ix * bin_width + (j + 0.5) * (bin_width / sampling_ratio_w),
z1 + bin_iz * bin_depth + (k + 0.5) * (bin_depth / sampling_ratio_d)]
# print("loc_ijk", loc_ijk)
if not (np.any([c < -1.0 for c in loc_ijk]) or loc_ijk[0] > input.shape[2] or
loc_ijk[1] > input.shape[3] or loc_ijk[2] > input.shape[4]):
for catch_case in range(3):
# catch on-border cases
if int(loc_ijk[catch_case]) == input.shape[catch_case + 2] - 1:
loc_ijk[catch_case] = input.shape[catch_case + 2] - 1
bin_val += lin_interpolator(loc_ijk)
pooled_roi[chan, bin_iy, bin_ix, bin_iz] = bin_val / n_points
pooled_rois[b].append(pooled_roi)
return np.array(pooled_rois)
############################################################
# Pytorch Utility Functions
############################################################
def unique1d(tensor):
if tensor.shape[0] == 0 or tensor.shape[0] == 1:
return tensor
tensor = tensor.sort()[0]
unique_bool = tensor[1:] != tensor [:-1]
first_element = torch.tensor([True], dtype=torch.bool, requires_grad=False)
if tensor.is_cuda:
first_element = first_element.cuda()
unique_bool = torch.cat((first_element, unique_bool),dim=0)
return tensor[unique_bool]
def log2(x):
"""Implementatin of Log2. Pytorch doesn't have a native implemenation."""
ln2 = Variable(torch.log(torch.FloatTensor([2.0])), requires_grad=False)
if x.is_cuda:
ln2 = ln2.cuda()
return torch.log(x) / ln2
def intersect1d(tensor1, tensor2):
aux = torch.cat((tensor1, tensor2), dim=0)
aux = aux.sort(descending=True)[0]
return aux[:-1][(aux[1:] == aux[:-1]).data]
def shem(roi_probs_neg, negative_count, ohem_poolsize):
"""
stochastic hard example mining: from a list of indices (referring to non-matched predictions),
determine a pool of highest scoring (worst false positives) of size negative_count*ohem_poolsize.
Then, sample n (= negative_count) predictions of this pool as negative examples for loss.
:param roi_probs_neg: tensor of shape (n_predictions, n_classes).
:param negative_count: int.
:param ohem_poolsize: int.
:return: (negative_count). indices refer to the positions in roi_probs_neg. If pool smaller than expected due to
limited negative proposals availabel, this function will return sampled indices of number < negative_count without
throwing an error.
"""
# sort according to higehst foreground score.
probs, order = roi_probs_neg[:, 1:].max(1)[0].sort(descending=True)
select = torch.tensor((ohem_poolsize * int(negative_count), order.size()[0])).min().int()
pool_indices = order[:select]
rand_idx = torch.randperm(pool_indices.size()[0])
return pool_indices[rand_idx[:negative_count].cuda()]
def initialize_weights(net):
"""
Initialize model weights. Current Default in Pytorch (version 0.4.1) is initialization from a uniform distriubtion.
Will expectably be changed to kaiming_uniform in future versions.
"""
init_type = net.cf.weight_init
for m in [module for module in net.modules() if type(module) in [nn.Conv2d, nn.Conv3d,
nn.ConvTranspose2d,
nn.ConvTranspose3d,
nn.Linear]]:
if init_type == 'xavier_uniform':
nn.init.xavier_uniform_(m.weight.data)
if m.bias is not None:
m.bias.data.zero_()
elif init_type == 'xavier_normal':
nn.init.xavier_normal_(m.weight.data)
if m.bias is not None:
m.bias.data.zero_()
elif init_type == "kaiming_uniform":
nn.init.kaiming_uniform_(m.weight.data, mode='fan_out', nonlinearity=net.cf.relu, a=0)
if m.bias is not None:
fan_in, fan_out = nn.init._calculate_fan_in_and_fan_out(m.weight.data)
bound = 1 / np.sqrt(fan_out)
nn.init.uniform_(m.bias, -bound, bound)
elif init_type == "kaiming_normal":
nn.init.kaiming_normal_(m.weight.data, mode='fan_out', nonlinearity=net.cf.relu, a=0)
if m.bias is not None:
fan_in, fan_out = nn.init._calculate_fan_in_and_fan_out(m.weight.data)
bound = 1 / np.sqrt(fan_out)
nn.init.normal_(m.bias, -bound, bound)
class NDConvGenerator(object):
"""
generic wrapper around conv-layers to avoid 2D vs. 3D distinguishing in code.
"""
def __init__(self, dim):
self.dim = dim
def __call__(self, c_in, c_out, ks, pad=0, stride=1, norm=None, relu='relu'):
"""
:param c_in: number of in_channels.
:param c_out: number of out_channels.
:param ks: kernel size.
:param pad: pad size.
:param stride: kernel stride.
:param norm: string specifying type of feature map normalization. If None, no normalization is applied.
:param relu: string specifying type of nonlinearity. If None, no nonlinearity is applied.
:return: convolved feature_map.
"""
if self.dim == 2:
conv = nn.Conv2d(c_in, c_out, kernel_size=ks, padding=pad, stride=stride)
if norm is not None:
if norm == 'instance_norm':
norm_layer = nn.InstanceNorm2d(c_out)
elif norm == 'batch_norm':
norm_layer = nn.BatchNorm2d(c_out)
else:
raise ValueError('norm type as specified in configs is not implemented...')
conv = nn.Sequential(conv, norm_layer)
else:
conv = nn.Conv3d(c_in, c_out, kernel_size=ks, padding=pad, stride=stride)
if norm is not None:
if norm == 'instance_norm':
norm_layer = nn.InstanceNorm3d(c_out)
elif norm == 'batch_norm':
norm_layer = nn.BatchNorm3d(c_out)
else:
raise ValueError('norm type as specified in configs is not implemented... {}'.format(norm))
conv = nn.Sequential(conv, norm_layer)
if relu is not None:
if relu == 'relu':
relu_layer = nn.ReLU(inplace=True)
elif relu == 'leaky_relu':
relu_layer = nn.LeakyReLU(inplace=True)
else:
raise ValueError('relu type as specified in configs is not implemented...')
conv = nn.Sequential(conv, relu_layer)
return conv
def get_one_hot_encoding(y, n_classes):
"""
transform a numpy label array to a one-hot array of the same shape.
:param y: array of shape (b, 1, y, x, (z)).
:param n_classes: int, number of classes to unfold in one-hot encoding.
:return y_ohe: array of shape (b, n_classes, y, x, (z))
"""
dim = len(y.shape) - 2
if dim == 2:
y_ohe = np.zeros((y.shape[0], n_classes, y.shape[2], y.shape[3])).astype('int32')
if dim ==3:
y_ohe = np.zeros((y.shape[0], n_classes, y.shape[2], y.shape[3], y.shape[4])).astype('int32')
for cl in range(n_classes):
y_ohe[:, cl][y[:, 0] == cl] = 1
return y_ohe
def get_dice_per_batch_and_class(pred, y, n_classes):
'''
computes dice scores per batch instance and class.
:param pred: prediction array of shape (b, 1, y, x, (z)) (e.g. softmax prediction with argmax over dim 1)
:param y: ground truth array of shape (b, 1, y, x, (z)) (contains int [0, ..., n_classes]
:param n_classes: int
:return: dice scores of shape (b, c)
'''
pred = get_one_hot_encoding(pred, n_classes)
y = get_one_hot_encoding(y, n_classes)
axes = tuple(range(2, len(pred.shape)))
intersect = np.sum(pred*y, axis=axes)
denominator = np.sum(pred, axis=axes)+np.sum(y, axis=axes) + 1e-8
dice = 2.0*intersect / denominator
return dice
def sum_tensor(input, axes, keepdim=False):
axes = np.unique(axes)
if keepdim:
for ax in axes:
input = input.sum(ax, keepdim=True)
else:
for ax in sorted(axes, reverse=True):
input = input.sum(int(ax))
return input
def batch_dice(pred, y, false_positive_weight=1.0, smooth=1e-6):
'''
compute soft dice over batch. this is a differentiable score and can be used as a loss function.
only dice scores of foreground classes are returned, since training typically
does not benefit from explicit background optimization. Pixels of the entire batch are considered a pseudo-volume to compute dice scores of.
This way, single patches with missing foreground classes can not produce faulty gradients.
:param pred: (b, c, y, x, (z)), softmax probabilities (network output). (c==classes)
:param y: (b, c, y, x, (z)), one-hot-encoded segmentation mask.
:param false_positive_weight: float [0,1]. For weighting of imbalanced classes,
reduces the penalty for false-positive pixels. Can be beneficial sometimes in data with heavy fg/bg imbalances.
:return: soft dice score (float). This function discards the background score and returns the mean of foreground scores.
'''
if len(pred.size()) == 4:
axes = (0, 2, 3)
intersect = sum_tensor(pred * y, axes, keepdim=False)
denom = sum_tensor(false_positive_weight*pred + y, axes, keepdim=False)
return torch.mean(( (2 * intersect + smooth) / (denom + smooth) )[1:]) # only fg dice here.
elif len(pred.size()) == 5:
axes = (0, 2, 3, 4)
intersect = sum_tensor(pred * y, axes, keepdim=False)
denom = sum_tensor(false_positive_weight*pred + y, axes, keepdim=False)
return torch.mean(( (2*intersect + smooth) / (denom + smooth) )[1:]) # only fg dice here.
else:
raise ValueError('wrong input dimension in dice loss')
def batch_dice_mask(pred, y, mask, false_positive_weight=1.0, smooth=1e-6):
'''
compute soft dice over batch. this is a diffrentiable score and can be used as a loss function.
only dice scores of foreground classes are returned, since training typically
does not benefit from explicit background optimization. Pixels of the entire batch are considered a pseudo-volume to compute dice scores of.
This way, single patches with missing foreground classes can not produce faulty gradients.
:param pred: (b, c, y, x, (z)), softmax probabilities (network output).
:param y: (b, c, y, x, (z)), one hote encoded segmentation mask.
:param false_positive_weight: float [0,1]. For weighting of imbalanced classes,
reduces the penalty for false-positive pixels. Can be beneficial sometimes in data with heavy fg/bg imbalances.
:return: soft dice score (float). This function discards the background score and returns the mean of foreground scores.
'''
mask = mask.unsqueeze(1).repeat(1, 2, 1, 1)
if len(pred.size()) == 4:
axes = (0, 2, 3)
intersect = sum_tensor(pred * y * mask, axes, keepdim=False)
denom = sum_tensor(false_positive_weight*pred * mask + y * mask, axes, keepdim=False)
return torch.mean(( (2*intersect + smooth) / (denom + smooth))[1:]) # only fg dice here.
elif len(pred.size()) == 5:
axes = (0, 2, 3, 4)
intersect = sum_tensor(pred * y, axes, keepdim=False)
denom = sum_tensor(false_positive_weight*pred + y, axes, keepdim=False)
return torch.mean(( (2*intersect + smooth) / (denom + smooth) )[1:]) # only fg dice here.
else:
raise ValueError('wrong input dimension in dice loss')