[bb7f56]: / models / mrcnn.py

Download this file

1181 lines (993 with data), 59.2 kB

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
#!/usr/bin/env python
# Copyright 2018 Division of Medical Image Computing, German Cancer Research Center (DKFZ).
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
Parts are based on https://github.com/multimodallearning/pytorch-mask-rcnn
published under MIT license.
"""
import sys
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils
sys.path.append("..")
import utils.model_utils as mutils
import utils.exp_utils as utils
from custom_extensions.nms import nms
from custom_extensions.roi_align import roi_align
############################################################
# Networks on top of backbone
############################################################
class RPN(nn.Module):
"""
Region Proposal Network.
"""
def __init__(self, cf, conv):
super(RPN, self).__init__()
self.dim = conv.dim
self.conv_shared = conv(cf.end_filts, cf.n_rpn_features, ks=3, stride=cf.rpn_anchor_stride, pad=1, relu=cf.relu)
self.conv_class = conv(cf.n_rpn_features, 2 * len(cf.rpn_anchor_ratios), ks=1, stride=1, relu=None)
self.conv_bbox = conv(cf.n_rpn_features, 2 * self.dim * len(cf.rpn_anchor_ratios), ks=1, stride=1, relu=None)
def forward(self, x):
"""
:param x: input feature maps (b, in_channels, y, x, (z))
:return: rpn_class_logits (b, 2, n_anchors)
:return: rpn_probs_logits (b, 2, n_anchors)
:return: rpn_bbox (b, 2 * dim, n_anchors)
"""
# Shared convolutional base of the RPN.
x = self.conv_shared(x)
# Anchor Score. (batch, anchors per location * 2, y, x, (z)).
rpn_class_logits = self.conv_class(x)
# Reshape to (batch, 2, anchors)
axes = (0, 2, 3, 1) if self.dim == 2 else (0, 2, 3, 4, 1)
rpn_class_logits = rpn_class_logits.permute(*axes)
rpn_class_logits = rpn_class_logits.contiguous()
rpn_class_logits = rpn_class_logits.view(x.size()[0], -1, 2)
# Softmax on last dimension (fg vs. bg).
rpn_probs = F.softmax(rpn_class_logits, dim=2)
# Bounding box refinement. (batch, anchors_per_location * (y, x, (z), log(h), log(w), (log(d)), y, x, (z))
rpn_bbox = self.conv_bbox(x)
# Reshape to (batch, 2*dim, anchors)
rpn_bbox = rpn_bbox.permute(*axes)
rpn_bbox = rpn_bbox.contiguous()
rpn_bbox = rpn_bbox.view(x.size()[0], -1, self.dim * 2)
return [rpn_class_logits, rpn_probs, rpn_bbox]
class Classifier(nn.Module):
"""
Head network for classification and bounding box refinement. Performs RoiAlign, processes resulting features through a
shared convolutional base and finally branches off the classifier- and regression head.
"""
def __init__(self, cf, conv):
super(Classifier, self).__init__()
self.dim = conv.dim
self.in_channels = cf.end_filts
self.pool_size = cf.pool_size
self.pyramid_levels = cf.pyramid_levels
# instance_norm does not work with spatial dims (1, 1, (1))
norm = cf.norm if cf.norm != 'instance_norm' else None
self.conv1 = conv(cf.end_filts, cf.end_filts * 4, ks=self.pool_size, stride=1, norm=norm, relu=cf.relu)
self.conv2 = conv(cf.end_filts * 4, cf.end_filts * 4, ks=1, stride=1, norm=norm, relu=cf.relu)
self.linear_class = nn.Linear(cf.end_filts * 4, cf.head_classes)
self.linear_bbox = nn.Linear(cf.end_filts * 4, cf.head_classes * 2 * self.dim)
def forward(self, x, rois):
"""
:param x: input feature maps (b, in_channels, y, x, (z))
:param rois: normalized box coordinates as proposed by the RPN to be forwarded through
the second stage (n_proposals, (y1, x1, y2, x2, (z1), (z2), batch_ix). Proposals of all batch elements
have been merged to one vector, while the origin info has been stored for re-allocation.
:return: mrcnn_class_logits (n_proposals, n_head_classes)
:return: mrcnn_bbox (n_proposals, n_head_classes, 2 * dim) predicted corrections to be applied to proposals for refinement.
"""
x = pyramid_roi_align(x, rois, self.pool_size, self.pyramid_levels, self.dim)
x = self.conv1(x)
x = self.conv2(x)
x = x.view(-1, self.in_channels * 4)
mrcnn_class_logits = self.linear_class(x)
mrcnn_bbox = self.linear_bbox(x)
mrcnn_bbox = mrcnn_bbox.view(mrcnn_bbox.size()[0], -1, self.dim * 2)
return [mrcnn_class_logits, mrcnn_bbox]
class Mask(nn.Module):
"""
Head network for proposal-based mask segmentation. Performs RoiAlign, some convolutions and applies sigmoid on the
output logits to allow for overlapping classes.
"""
def __init__(self, cf, conv):
super(Mask, self).__init__()
self.pool_size = cf.mask_pool_size
self.pyramid_levels = cf.pyramid_levels
self.dim = conv.dim
self.conv1 = conv(cf.end_filts, cf.end_filts, ks=3, stride=1, pad=1, norm=cf.norm, relu=cf.relu)
self.conv2 = conv(cf.end_filts, cf.end_filts, ks=3, stride=1, pad=1, norm=cf.norm, relu=cf.relu)
self.conv3 = conv(cf.end_filts, cf.end_filts, ks=3, stride=1, pad=1, norm=cf.norm, relu=cf.relu)
self.conv4 = conv(cf.end_filts, cf.end_filts, ks=3, stride=1, pad=1, norm=cf.norm, relu=cf.relu)
if conv.dim == 2:
self.deconv = nn.ConvTranspose2d(cf.end_filts, cf.end_filts, kernel_size=2, stride=2)
else:
self.deconv = nn.ConvTranspose3d(cf.end_filts, cf.end_filts, kernel_size=2, stride=2)
self.relu = nn.ReLU(inplace=True) if cf.relu == 'relu' else nn.LeakyReLU(inplace=True)
self.conv5 = conv(cf.end_filts, cf.head_classes, ks=1, stride=1, relu=None)
self.sigmoid = nn.Sigmoid()
def forward(self, x, rois):
"""
:param x: input feature maps (b, in_channels, y, x, (z))
:param rois: normalized box coordinates as proposed by the RPN to be forwarded through
the second stage (n_proposals, (y1, x1, y2, x2, (z1), (z2), batch_ix). Proposals of all batch elements
have been merged to one vector, while the origin info has been stored for re-allocation.
:return: x: masks (n_sampled_proposals (n_detections in inference), n_classes, y, x, (z))
"""
x = pyramid_roi_align(x, rois, self.pool_size, self.pyramid_levels, self.dim)
x = self.conv1(x)
x = self.conv2(x)
x = self.conv3(x)
x = self.conv4(x)
x = self.relu(self.deconv(x))
x = self.conv5(x)
x = self.sigmoid(x)
return x
############################################################
# Loss Functions
############################################################
def compute_rpn_class_loss(rpn_match, rpn_class_logits, shem_poolsize):
"""
:param rpn_match: (n_anchors). [-1, 0, 1] for negative, neutral, and positive matched anchors.
:param rpn_class_logits: (n_anchors, 2). logits from RPN classifier.
:param shem_poolsize: int. factor of top-k candidates to draw from per negative sample
(stochastic-hard-example-mining).
:return: loss: torch tensor
:return: np_neg_ix: 1D array containing indices of the neg_roi_logits, which have been sampled for training.
"""
# filter out neutral anchors.
pos_indices = torch.nonzero(rpn_match == 1)
neg_indices = torch.nonzero(rpn_match == -1)
# loss for positive samples
if 0 not in pos_indices.size():
pos_indices = pos_indices.squeeze(1)
roi_logits_pos = rpn_class_logits[pos_indices]
pos_loss = F.cross_entropy(roi_logits_pos, torch.LongTensor([1] * pos_indices.shape[0]).cuda())
else:
pos_loss = torch.FloatTensor([0]).cuda()
# loss for negative samples: draw hard negative examples (SHEM)
# that match the number of positive samples, but at least 1.
if 0 not in neg_indices.size():
neg_indices = neg_indices.squeeze(1)
roi_logits_neg = rpn_class_logits[neg_indices]
negative_count = np.max((1, pos_indices.cpu().data.numpy().size))
roi_probs_neg = F.softmax(roi_logits_neg, dim=1)
neg_ix = mutils.shem(roi_probs_neg, negative_count, shem_poolsize)
neg_loss = F.cross_entropy(roi_logits_neg[neg_ix], torch.LongTensor([0] * neg_ix.shape[0]).cuda())
np_neg_ix = neg_ix.cpu().data.numpy()
else:
neg_loss = torch.FloatTensor([0]).cuda()
np_neg_ix = np.array([]).astype('int32')
loss = (pos_loss + neg_loss) / 2
return loss, np_neg_ix
def compute_rpn_bbox_loss(rpn_target_deltas, rpn_pred_deltas, rpn_match):
"""
:param rpn_target_deltas: (b, n_positive_anchors, (dy, dx, (dz), log(dh), log(dw), (log(dd)))).
Uses 0 padding to fill in unsed bbox deltas.
:param rpn_pred_deltas: predicted deltas from RPN. (b, n_anchors, (dy, dx, (dz), log(dh), log(dw), (log(dd))))
:param rpn_match: (n_anchors). [-1, 0, 1] for negative, neutral, and positive matched anchors.
:return: loss: torch 1D tensor.
"""
if 0 not in torch.nonzero(rpn_match == 1).size():
indices = torch.nonzero(rpn_match == 1).squeeze(1)
# Pick bbox deltas that contribute to the loss
rpn_pred_deltas = rpn_pred_deltas[indices]
# Trim target bounding box deltas to the same length as rpn_bbox.
target_deltas = rpn_target_deltas[:rpn_pred_deltas.size()[0], :]
# Smooth L1 loss
loss = F.smooth_l1_loss(rpn_pred_deltas, target_deltas)
else:
loss = torch.FloatTensor([0]).cuda()
return loss
def compute_mrcnn_class_loss(target_class_ids, pred_class_logits):
"""
:param target_class_ids: (n_sampled_rois) batch dimension was merged into roi dimension.
:param pred_class_logits: (n_sampled_rois, n_classes)
:return: loss: torch 1D tensor.
"""
if 0 not in target_class_ids.size():
loss = F.cross_entropy(pred_class_logits, target_class_ids.long())
else:
loss = torch.FloatTensor([0.]).cuda()
return loss
def compute_mrcnn_bbox_loss(mrcnn_target_deltas, mrcnn_pred_deltas, target_class_ids):
"""
:param mrcnn_target_deltas: (n_sampled_rois, (dy, dx, (dz), log(dh), log(dw), (log(dh)))
:param mrcnn_pred_deltas: (n_sampled_rois, n_classes, (dy, dx, (dz), log(dh), log(dw), (log(dh)))
:param target_class_ids: (n_sampled_rois)
:return: loss: torch 1D tensor.
"""
if 0 not in torch.nonzero(target_class_ids > 0).size():
positive_roi_ix = torch.nonzero(target_class_ids > 0)[:, 0]
positive_roi_class_ids = target_class_ids[positive_roi_ix].long()
target_bbox = mrcnn_target_deltas[positive_roi_ix, :].detach()
pred_bbox = mrcnn_pred_deltas[positive_roi_ix, positive_roi_class_ids, :]
loss = F.smooth_l1_loss(pred_bbox, target_bbox)
else:
loss = torch.FloatTensor([0]).cuda()
return loss
def compute_mrcnn_mask_loss(target_masks, pred_masks, target_class_ids):
"""
:param target_masks: (n_sampled_rois, y, x, (z)) A float32 tensor of values 0 or 1. Uses zero padding to fill array.
:param pred_masks: (n_sampled_rois, n_classes, y, x, (z)) float32 tensor with values between [0, 1].
:param target_class_ids: (n_sampled_rois)
:return: loss: torch 1D tensor.
"""
if 0 not in torch.nonzero(target_class_ids > 0).size():
# Only positive ROIs contribute to the loss. And only
# the class specific mask of each ROI.
positive_ix = torch.nonzero(target_class_ids > 0)[:, 0]
positive_class_ids = target_class_ids[positive_ix].long()
y_true = target_masks[positive_ix, :, :].detach()
y_pred = pred_masks[positive_ix, positive_class_ids, :, :]
loss = F.binary_cross_entropy(y_pred, y_true)
else:
loss = torch.FloatTensor([0]).cuda()
return loss
############################################################
# Helper Layers
############################################################
def refine_proposals(rpn_pred_probs, rpn_pred_deltas, proposal_count, batch_anchors, cf):
"""
Receives anchor scores and selects a subset to pass as proposals
to the second stage. Filtering is done based on anchor scores and
non-max suppression to remove overlaps. It also applies bounding
box refinment details to anchors.
:param rpn_pred_probs: (b, n_anchors, 2)
:param rpn_pred_deltas: (b, n_anchors, (y, x, (z), log(h), log(w), (log(d))))
:return: batch_normalized_props: Proposals in normalized coordinates (b, proposal_count, (y1, x1, y2, x2, (z1), (z2), score))
:return: batch_out_proposals: Box coords + RPN foreground scores
for monitoring/plotting (b, proposal_count, (y1, x1, y2, x2, (z1), (z2), score))
"""
std_dev = torch.from_numpy(cf.rpn_bbox_std_dev[None]).float().cuda()
norm = torch.from_numpy(cf.scale).float().cuda()
anchors = batch_anchors.clone()
batch_scores = rpn_pred_probs[:, :, 1]
# norm deltas
batch_deltas = rpn_pred_deltas * std_dev
batch_normalized_props = []
batch_out_proposals = []
# loop over batch dimension.
for ix in range(batch_scores.shape[0]):
scores = batch_scores[ix]
deltas = batch_deltas[ix]
# improve performance by trimming to top anchors by score
# and doing the rest on the smaller subset.
pre_nms_limit = min(cf.pre_nms_limit, anchors.size()[0])
scores, order = scores.sort(descending=True)
order = order[:pre_nms_limit]
scores = scores[:pre_nms_limit]
deltas = deltas[order, :]
# apply deltas to anchors to get refined anchors and filter with non-maximum suppression.
if batch_deltas.shape[-1] == 4:
boxes = mutils.apply_box_deltas_2D(anchors[order, :], deltas)
boxes = mutils.clip_boxes_2D(boxes, cf.window)
else:
boxes = mutils.apply_box_deltas_3D(anchors[order, :], deltas)
boxes = mutils.clip_boxes_3D(boxes, cf.window)
# boxes are y1,x1,y2,x2, torchvision-nms requires x1,y1,x2,y2, but consistent swap x<->y is irrelevant.
keep = nms.nms(boxes, scores, cf.rpn_nms_threshold)
keep = keep[:proposal_count]
boxes = boxes[keep, :]
rpn_scores = scores[keep][:, None]
# pad missing boxes with 0.
if boxes.shape[0] < proposal_count:
n_pad_boxes = proposal_count - boxes.shape[0]
zeros = torch.zeros([n_pad_boxes, boxes.shape[1]]).cuda()
boxes = torch.cat([boxes, zeros], dim=0)
zeros = torch.zeros([n_pad_boxes, rpn_scores.shape[1]]).cuda()
rpn_scores = torch.cat([rpn_scores, zeros], dim=0)
# concat box and score info for monitoring/plotting.
batch_out_proposals.append(torch.cat((boxes, rpn_scores), 1).cpu().data.numpy())
# normalize dimensions to range of 0 to 1.
normalized_boxes = boxes / norm
assert torch.all(normalized_boxes <= 1), "normalized box coords >1 found"
# add again batch dimension
batch_normalized_props.append(normalized_boxes.unsqueeze(0))
batch_normalized_props = torch.cat(batch_normalized_props)
batch_out_proposals = np.array(batch_out_proposals)
return batch_normalized_props, batch_out_proposals
def pyramid_roi_align(feature_maps, rois, pool_size, pyramid_levels, dim):
"""
Implements ROI Pooling on multiple levels of the feature pyramid.
:param feature_maps: list of feature maps, each of shape (b, c, y, x , (z))
:param rois: proposals (normalized coords.) as returned by RPN. contain info about original batch element allocation.
(n_proposals, (y1, x1, y2, x2, (z1), (z2), batch_ixs)
:param pool_size: list of poolsizes in dims: [x, y, (z)]
:param pyramid_levels: list. [0, 1, 2, ...]
:return: pooled: pooled feature map rois (n_proposals, c, poolsize_y, poolsize_x, (poolsize_z))
Output:
Pooled regions in the shape: [num_boxes, height, width, channels].
The width and height are those specific in the pool_shape in the layer
constructor.
"""
boxes = rois[:, :dim*2]
batch_ixs = rois[:, dim*2]
# Assign each ROI to a level in the pyramid based on the ROI area.
if dim == 2:
y1, x1, y2, x2 = boxes.chunk(4, dim=1)
else:
y1, x1, y2, x2, z1, z2 = boxes.chunk(6, dim=1)
h = y2 - y1
w = x2 - x1
# Equation 1 in https://arxiv.org/abs/1612.03144. Account for
# the fact that our coordinates are normalized here.
# divide sqrt(h*w) by 1 instead image_area.
roi_level = (4 + torch.log2(torch.sqrt(h*w))).round().int().clamp(pyramid_levels[0], pyramid_levels[-1])
# if Pyramid contains additional level P6, adapt the roi_level assignment accordingly.
if len(pyramid_levels) == 5:
roi_level[h*w > 0.65] = 5
# Loop through levels and apply ROI pooling to each.
pooled = []
box_to_level = []
fmap_shapes = [f.shape for f in feature_maps]
for level_ix, level in enumerate(pyramid_levels):
ix = roi_level == level
if not ix.any():
continue
ix = torch.nonzero(ix)[:, 0]
level_boxes = boxes[ix, :]
# re-assign rois to feature map of original batch element.
ind = batch_ixs[ix].int()
# Keep track of which box is mapped to which level
box_to_level.append(ix)
# Stop gradient propogation to ROI proposals
level_boxes = level_boxes.detach()
if len(pool_size) == 2:
# remap to feature map coordinate system
y_exp, x_exp = fmap_shapes[level_ix][2:] # exp = expansion
level_boxes.mul_(torch.tensor([y_exp, x_exp, y_exp, x_exp], dtype=torch.float32).cuda())
pooled_features = roi_align.roi_align_2d(feature_maps[level_ix],
torch.cat((ind.unsqueeze(1).float(), level_boxes), dim=1),
pool_size)
else:
y_exp, x_exp, z_exp = fmap_shapes[level_ix][2:]
level_boxes.mul_(torch.tensor([y_exp, x_exp, y_exp, x_exp, z_exp, z_exp], dtype=torch.float32).cuda())
pooled_features = roi_align.roi_align_3d(feature_maps[level_ix],
torch.cat((ind.unsqueeze(1).float(), level_boxes), dim=1),
pool_size)
pooled.append(pooled_features)
# Pack pooled features into one tensor
pooled = torch.cat(pooled, dim=0)
# Pack box_to_level mapping into one array and add another
# column representing the order of pooled boxes
box_to_level = torch.cat(box_to_level, dim=0)
# Rearrange pooled features to match the order of the original boxes
_, box_to_level = torch.sort(box_to_level)
pooled = pooled[box_to_level, :, :]
return pooled
def detection_target_layer(batch_proposals, batch_mrcnn_class_scores, batch_gt_class_ids, batch_gt_boxes, batch_gt_masks, cf):
"""
Subsamples proposals for mrcnn losses and generates targets. Sampling is done per batch element, seems to have positive
effects on training, as opposed to sampling over entire batch. Negatives are sampled via stochastic-hard-example-mining
(SHEM), where a number of negative proposals are drawn from larger pool of highest scoring proposals for stochasticity.
Scoring is obtained here as the max over all foreground probabilities as returned by mrcnn_classifier (worked better than
loss-based class balancing methods like "online-hard-example-mining" or "focal loss".)
:param batch_proposals: (n_proposals, (y1, x1, y2, x2, (z1), (z2), batch_ixs).
boxes as proposed by RPN. n_proposals here is determined by batch_size * POST_NMS_ROIS.
:param batch_mrcnn_class_scores: (n_proposals, n_classes)
:param batch_gt_class_ids: list over batch elements. Each element is a list over the corresponding roi target labels.
:param batch_gt_boxes: list over batch elements. Each element is a list over the corresponding roi target coordinates.
:param batch_gt_masks: list over batch elements. Each element is binary mask of shape (n_gt_rois, y, x, (z), c)
:return: sample_indices: (n_sampled_rois) indices of sampled proposals to be used for loss functions.
:return: target_class_ids: (n_sampled_rois)containing target class labels of sampled proposals.
:return: target_deltas: (n_sampled_rois, 2 * dim) containing target deltas of sampled proposals for box refinement.
:return: target_masks: (n_sampled_rois, y, x, (z)) containing target masks of sampled proposals.
"""
# normalization of target coordinates
if cf.dim == 2:
h, w = cf.patch_size
scale = torch.from_numpy(np.array([h, w, h, w])).float().cuda()
else:
h, w, z = cf.patch_size
scale = torch.from_numpy(np.array([h, w, h, w, z, z])).float().cuda()
positive_count = 0
negative_count = 0
sample_positive_indices = []
sample_negative_indices = []
sample_deltas = []
sample_masks = []
sample_class_ids = []
std_dev = torch.from_numpy(cf.bbox_std_dev).float().cuda()
# loop over batch and get positive and negative sample rois.
for b in range(len(batch_gt_class_ids)):
gt_class_ids = torch.from_numpy(batch_gt_class_ids[b]).int().cuda()
gt_masks = torch.from_numpy(batch_gt_masks[b]).float().cuda()
if np.any(batch_gt_class_ids[b] > 0): # skip roi selection for no gt images.
gt_boxes = torch.from_numpy(batch_gt_boxes[b]).float().cuda() / scale
else:
gt_boxes = torch.FloatTensor().cuda()
# get proposals and indices of current batch element.
proposals = batch_proposals[batch_proposals[:, -1] == b][:, :-1]
batch_element_indices = torch.nonzero(batch_proposals[:, -1] == b).squeeze(1)
# Compute overlaps matrix [proposals, gt_boxes]
if 0 not in gt_boxes.size():
if gt_boxes.shape[1] == 4:
assert cf.dim == 2, "gt_boxes shape {} doesnt match cf.dim{}".format(gt_boxes.shape, cf.dim)
overlaps = mutils.bbox_overlaps_2D(proposals, gt_boxes)
else:
assert cf.dim == 3, "gt_boxes shape {} doesnt match cf.dim{}".format(gt_boxes.shape, cf.dim)
overlaps = mutils.bbox_overlaps_3D(proposals, gt_boxes)
# Determine postive and negative ROIs
roi_iou_max = torch.max(overlaps, dim=1)[0]
# 1. Positive ROIs are those with >= 0.5 IoU with a GT box
positive_roi_bool = roi_iou_max >= (0.5 if cf.dim == 2 else 0.3)
# 2. Negative ROIs are those with < 0.1 with every GT box.
negative_roi_bool = roi_iou_max < (0.1 if cf.dim == 2 else 0.01)
else:
positive_roi_bool = torch.FloatTensor().cuda()
negative_roi_bool = torch.from_numpy(np.array([1]*proposals.shape[0])).cuda()
# Sample Positive ROIs
if 0 not in torch.nonzero(positive_roi_bool).size():
positive_indices = torch.nonzero(positive_roi_bool).squeeze(1)
positive_samples = int(cf.train_rois_per_image * cf.roi_positive_ratio)
rand_idx = torch.randperm(positive_indices.size()[0])
rand_idx = rand_idx[:positive_samples].cuda()
positive_indices = positive_indices[rand_idx]
positive_samples = positive_indices.size()[0]
positive_rois = proposals[positive_indices, :]
# Assign positive ROIs to GT boxes.
positive_overlaps = overlaps[positive_indices, :]
roi_gt_box_assignment = torch.max(positive_overlaps, dim=1)[1]
roi_gt_boxes = gt_boxes[roi_gt_box_assignment, :]
roi_gt_class_ids = gt_class_ids[roi_gt_box_assignment]
# Compute bbox refinement targets for positive ROIs
deltas = mutils.box_refinement(positive_rois, roi_gt_boxes)
deltas /= std_dev
# Assign positive ROIs to GT masks
roi_masks = gt_masks[roi_gt_box_assignment]
assert roi_masks.shape[1] == 1, "desired to have more than one channel in gt masks?"
# Compute mask targets
boxes = positive_rois
box_ids = torch.arange(roi_masks.shape[0]).cuda().unsqueeze(1).float()
if len(cf.mask_shape) == 2:
# need to remap normalized box coordinates to unnormalized mask coordinates.
y_exp, x_exp = roi_masks.shape[2:] # exp = expansion
boxes.mul_(torch.tensor([y_exp, x_exp, y_exp, x_exp], dtype=torch.float32).cuda())
masks = roi_align.roi_align_2d(roi_masks, torch.cat((box_ids, boxes), dim=1), cf.mask_shape)
else:
y_exp, x_exp, z_exp = roi_masks.shape[2:] # exp = expansion
boxes.mul_(torch.tensor([y_exp, x_exp, y_exp, x_exp, z_exp, z_exp], dtype=torch.float32).cuda())
masks = roi_align.roi_align_3d(roi_masks, torch.cat((box_ids, boxes), dim=1), cf.mask_shape)
masks = masks.squeeze(1)
# Threshold mask pixels at 0.5 to have GT masks be 0 or 1 to use with
# binary cross entropy loss.
masks = torch.round(masks)
sample_positive_indices.append(batch_element_indices[positive_indices])
sample_deltas.append(deltas)
sample_masks.append(masks)
sample_class_ids.append(roi_gt_class_ids)
positive_count += positive_samples
else:
positive_samples = 0
# Negative ROIs. Add enough to maintain positive:negative ratio, but at least 1. Sample via SHEM.
if 0 not in torch.nonzero(negative_roi_bool).size():
negative_indices = torch.nonzero(negative_roi_bool).squeeze(1)
r = 1.0 / cf.roi_positive_ratio
b_neg_count = np.max((int(r * positive_samples - positive_samples), 1))
roi_probs_neg = batch_mrcnn_class_scores[batch_element_indices[negative_indices]]
raw_sampled_indices = mutils.shem(roi_probs_neg, b_neg_count, cf.shem_poolsize)
sample_negative_indices.append(batch_element_indices[negative_indices[raw_sampled_indices]])
negative_count += raw_sampled_indices.size()[0]
if len(sample_positive_indices) > 0:
target_deltas = torch.cat(sample_deltas)
target_masks = torch.cat(sample_masks)
target_class_ids = torch.cat(sample_class_ids)
# Pad target information with zeros for negative ROIs.
if positive_count > 0 and negative_count > 0:
sample_indices = torch.cat((torch.cat(sample_positive_indices), torch.cat(sample_negative_indices)), dim=0)
zeros = torch.zeros(negative_count).int().cuda()
target_class_ids = torch.cat([target_class_ids, zeros], dim=0)
zeros = torch.zeros(negative_count, cf.dim * 2).cuda()
target_deltas = torch.cat([target_deltas, zeros], dim=0)
zeros = torch.zeros(negative_count, *cf.mask_shape).cuda()
target_masks = torch.cat([target_masks, zeros], dim=0)
elif positive_count > 0:
sample_indices = torch.cat(sample_positive_indices)
elif negative_count > 0:
sample_indices = torch.cat(sample_negative_indices)
zeros = torch.zeros(negative_count).int().cuda()
target_class_ids = zeros
zeros = torch.zeros(negative_count, cf.dim * 2).cuda()
target_deltas = zeros
zeros = torch.zeros(negative_count, *cf.mask_shape).cuda()
target_masks = zeros
else:
sample_indices = torch.LongTensor().cuda()
target_class_ids = torch.IntTensor().cuda()
target_deltas = torch.FloatTensor().cuda()
target_masks = torch.FloatTensor().cuda()
return sample_indices, target_class_ids, target_deltas, target_masks
############################################################
# Output Handler
############################################################
# def refine_detections(rois, probs, deltas, batch_ixs, cf):
# """
# Refine classified proposals, filter overlaps and return final detections.
#
# :param rois: (n_proposals, 2 * dim) normalized boxes as proposed by RPN. n_proposals = batch_size * POST_NMS_ROIS
# :param probs: (n_proposals, n_classes) softmax probabilities for all rois as predicted by mrcnn classifier.
# :param deltas: (n_proposals, n_classes, 2 * dim) box refinement deltas as predicted by mrcnn bbox regressor.
# :param batch_ixs: (n_proposals) batch element assignemnt info for re-allocation.
# :return: result: (n_final_detections, (y1, x1, y2, x2, (z1), (z2), batch_ix, pred_class_id, pred_score))
# """
# # class IDs per ROI. Since scores of all classes are of interest (not just max class), all are kept at this point.
# class_ids = []
# fg_classes = cf.head_classes - 1
# # repeat vectors to fill in predictions for all foreground classes.
# for ii in range(1, fg_classes + 1):
# class_ids += [ii] * rois.shape[0]
# class_ids = torch.from_numpy(np.array(class_ids)).cuda()
#
# rois = rois.repeat(fg_classes, 1)
# probs = probs.repeat(fg_classes, 1)
# deltas = deltas.repeat(fg_classes, 1, 1)
# batch_ixs = batch_ixs.repeat(fg_classes)
#
# # get class-specific scores and bounding box deltas
# idx = torch.arange(class_ids.size()[0]).long().cuda()
# class_scores = probs[idx, class_ids]
# deltas_specific = deltas[idx, class_ids]
# batch_ixs = batch_ixs[idx]
#
# # apply bounding box deltas. re-scale to image coordinates.
# std_dev = torch.from_numpy(np.reshape(cf.rpn_bbox_std_dev, [1, cf.dim * 2])).float().cuda()
# scale = torch.from_numpy(cf.scale).float().cuda()
# refined_rois = mutils.apply_box_deltas_2D(rois, deltas_specific * std_dev) * scale if cf.dim == 2 else \
# mutils.apply_box_deltas_3D(rois, deltas_specific * std_dev) * scale
#
# # round and cast to int since we're deadling with pixels now
# refined_rois = mutils.clip_to_window(cf.window, refined_rois)
# refined_rois = torch.round(refined_rois)
#
# # filter out low confidence boxes
# keep = idx
# keep_bool = (class_scores >= cf.model_min_confidence)
# if 0 not in torch.nonzero(keep_bool).size():
#
# score_keep = torch.nonzero(keep_bool)[:, 0]
# pre_nms_class_ids = class_ids[score_keep]
# pre_nms_rois = refined_rois[score_keep]
# pre_nms_scores = class_scores[score_keep]
# pre_nms_batch_ixs = batch_ixs[score_keep]
#
# for j, b in enumerate(mutils.unique1d(pre_nms_batch_ixs)):
#
# bixs = torch.nonzero(pre_nms_batch_ixs == b)[:, 0]
# bix_class_ids = pre_nms_class_ids[bixs]
# bix_rois = pre_nms_rois[bixs]
# bix_scores = pre_nms_scores[bixs]
#
# for i, class_id in enumerate(mutils.unique1d(bix_class_ids)):
#
# ixs = torch.nonzero(bix_class_ids == class_id)[:, 0]
# # nms expects boxes sorted by score.
# ix_rois = bix_rois[ixs]
# ix_scores = bix_scores[ixs]
# ix_scores, order = ix_scores.sort(descending=True)
# ix_rois = ix_rois[order, :]
#
# if cf.dim == 2:
# class_keep = nms_2D(torch.cat((ix_rois, ix_scores.unsqueeze(1)), dim=1), cf.detection_nms_threshold)
# else:
# class_keep = nms_3D(torch.cat((ix_rois, ix_scores.unsqueeze(1)), dim=1), cf.detection_nms_threshold)
#
# # map indices back.
# class_keep = keep[score_keep[bixs[ixs[order[class_keep]]]]]
# # merge indices over classes for current batch element
# b_keep = class_keep if i == 0 else mutils.unique1d(torch.cat((b_keep, class_keep)))
#
# # only keep top-k boxes of current batch-element
# top_ids = class_scores[b_keep].sort(descending=True)[1][:cf.model_max_instances_per_batch_element]
# b_keep = b_keep[top_ids]
#
# # merge indices over batch elements.
# batch_keep = b_keep if j == 0 else mutils.unique1d(torch.cat((batch_keep, b_keep)))
#
# keep = batch_keep
#
# else:
# keep = torch.tensor([0]).long().cuda()
#
# # arrange output
# result = torch.cat((refined_rois[keep],
# batch_ixs[keep].unsqueeze(1),
# class_ids[keep].unsqueeze(1).float(),
# class_scores[keep].unsqueeze(1)), dim=1)
#
# return result
def refine_detections(cf, batch_ixs, rois, deltas, scores):
"""
Refine classified proposals (apply deltas to rpn rois), filter overlaps (nms) and return final detections.
:param rois: (n_proposals, 2 * dim) normalized boxes as proposed by RPN. n_proposals = batch_size * POST_NMS_ROIS
:param deltas: (n_proposals, n_classes, 2 * dim) box refinement deltas as predicted by mrcnn bbox regressor.
:param batch_ixs: (n_proposals) batch element assignment info for re-allocation.
:param scores: (n_proposals, n_classes) probabilities for all classes per roi as predicted by mrcnn classifier.
:return: result: (n_final_detections, (y1, x1, y2, x2, (z1), (z2), batch_ix, pred_class_id, pred_score, *regression vector features))
"""
# class IDs per ROI. Since scores of all classes are of interest (not just max class), all are kept at this point.
class_ids = []
fg_classes = cf.head_classes - 1
# repeat vectors to fill in predictions for all foreground classes.
for ii in range(1, fg_classes + 1):
class_ids += [ii] * rois.shape[0]
class_ids = torch.from_numpy(np.array(class_ids)).cuda()
batch_ixs = batch_ixs.repeat(fg_classes)
rois = rois.repeat(fg_classes, 1)
deltas = deltas.repeat(fg_classes, 1, 1)
scores = scores.repeat(fg_classes, 1)
# get class-specific scores and bounding box deltas
idx = torch.arange(class_ids.size()[0]).long().cuda()
# using idx instead of slice [:,] squashes first dimension.
#len(class_ids)>scores.shape[1] --> probs is broadcasted by expansion from fg_classes-->len(class_ids)
batch_ixs = batch_ixs[idx]
deltas_specific = deltas[idx, class_ids]
class_scores = scores[idx, class_ids]
# apply bounding box deltas. re-scale to image coordinates.
std_dev = torch.from_numpy(np.reshape(cf.rpn_bbox_std_dev, [1, cf.dim * 2])).float().cuda()
scale = torch.from_numpy(cf.scale).float().cuda()
refined_rois = mutils.apply_box_deltas_2D(rois, deltas_specific * std_dev) * scale if cf.dim == 2 else \
mutils.apply_box_deltas_3D(rois, deltas_specific * std_dev) * scale
# round and cast to int since we're dealing with pixels now
refined_rois = mutils.clip_to_window(cf.window, refined_rois)
refined_rois = torch.round(refined_rois)
# filter out low confidence boxes
keep = idx
keep_bool = (class_scores >= cf.model_min_confidence)
if not 0 in torch.nonzero(keep_bool).size():
score_keep = torch.nonzero(keep_bool)[:, 0]
pre_nms_class_ids = class_ids[score_keep]
pre_nms_rois = refined_rois[score_keep]
pre_nms_scores = class_scores[score_keep]
pre_nms_batch_ixs = batch_ixs[score_keep]
for j, b in enumerate(mutils.unique1d(pre_nms_batch_ixs)):
bixs = torch.nonzero(pre_nms_batch_ixs == b)[:, 0]
bix_class_ids = pre_nms_class_ids[bixs]
bix_rois = pre_nms_rois[bixs]
bix_scores = pre_nms_scores[bixs]
for i, class_id in enumerate(mutils.unique1d(bix_class_ids)):
ixs = torch.nonzero(bix_class_ids == class_id)[:, 0]
# nms expects boxes sorted by score.
ix_rois = bix_rois[ixs]
ix_scores = bix_scores[ixs]
ix_scores, order = ix_scores.sort(descending=True)
ix_rois = ix_rois[order, :]
class_keep = nms.nms(ix_rois, ix_scores, cf.detection_nms_threshold)
# map indices back.
class_keep = keep[score_keep[bixs[ixs[order[class_keep]]]]]
# merge indices over classes for current batch element
b_keep = class_keep if i == 0 else mutils.unique1d(torch.cat((b_keep, class_keep)))
# only keep top-k boxes of current batch-element
top_ids = class_scores[b_keep].sort(descending=True)[1][:cf.model_max_instances_per_batch_element]
b_keep = b_keep[top_ids]
# merge indices over batch elements.
batch_keep = b_keep if j == 0 else mutils.unique1d(torch.cat((batch_keep, b_keep)))
keep = batch_keep
else:
keep = torch.tensor([0]).long().cuda()
# arrange output
output = [refined_rois[keep], batch_ixs[keep].unsqueeze(1)]
output += [class_ids[keep].unsqueeze(1).float(), class_scores[keep].unsqueeze(1)]
result = torch.cat(output, dim=1)
# shape: (n_keeps, catted feats), catted feats: [0:dim*2] are box_coords, [dim*2] are batch_ics,
# [dim*2+1] are class_ids, [dim*2+2] are scores, [dim*2+3:] are regression vector features (incl uncertainty)
return result
def get_results(cf, img_shape, detections, detection_masks, box_results_list=None, return_masks=True):
"""
Restores batch dimension of merged detections, unmolds detections, creates and fills results dict.
:param img_shape:
:param detections: (n_final_detections, (y1, x1, y2, x2, (z1), (z2), batch_ix, pred_class_id, pred_score)
:param detection_masks: (n_final_detections, n_classes, y, x, (z)) raw molded masks as returned by mask-head.
:param box_results_list: None or list of output boxes for monitoring/plotting.
each element is a list of boxes per batch element.
:param return_masks: boolean. If True, full resolution masks are returned for all proposals (speed trade-off).
:return: results_dict: dictionary with keys:
'boxes': list over batch elements. each batch element is a list of boxes. each box is a dictionary:
[[{box_0}, ... {box_n}], [{box_0}, ... {box_n}], ...]
'seg_preds': pixel-wise class predictions (b, 1, y, x, (z)) with values [0, 1] only fg. vs. bg for now.
class-specific return of masks will come with implementation of instance segmentation evaluation.
"""
detections = detections.cpu().data.numpy()
if cf.dim == 2:
detection_masks = detection_masks.permute(0, 2, 3, 1).cpu().data.numpy()
else:
detection_masks = detection_masks.permute(0, 2, 3, 4, 1).cpu().data.numpy()
# restore batch dimension of merged detections using the batch_ix info.
batch_ixs = detections[:, cf.dim*2]
detections = [detections[batch_ixs == ix] for ix in range(img_shape[0])]
mrcnn_mask = [detection_masks[batch_ixs == ix] for ix in range(img_shape[0])]
# for test_forward, where no previous list exists.
if box_results_list is None:
box_results_list = [[] for _ in range(img_shape[0])]
seg_preds = []
# loop over batch and unmold detections.
for ix in range(img_shape[0]):
if 0 not in detections[ix].shape:
boxes = detections[ix][:, :2 * cf.dim].astype(np.int32)
class_ids = detections[ix][:, 2 * cf.dim + 1].astype(np.int32)
scores = detections[ix][:, 2 * cf.dim + 2]
masks = mrcnn_mask[ix][np.arange(boxes.shape[0]), ..., class_ids]
# Filter out detections with zero area. Often only happens in early
# stages of training when the network weights are still a bit random.
if cf.dim == 2:
exclude_ix = np.where((boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1]) <= 0)[0]
else:
exclude_ix = np.where(
(boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1]) * (boxes[:, 5] - boxes[:, 4]) <= 0)[0]
if exclude_ix.shape[0] > 0:
boxes = np.delete(boxes, exclude_ix, axis=0)
class_ids = np.delete(class_ids, exclude_ix, axis=0)
scores = np.delete(scores, exclude_ix, axis=0)
masks = np.delete(masks, exclude_ix, axis=0)
# Resize masks to original image size and set boundary threshold.
full_masks = []
permuted_image_shape = list(img_shape[2:]) + [img_shape[1]]
if return_masks:
for i in range(masks.shape[0]):
# Convert neural network mask to full size mask.
full_masks.append(mutils.unmold_mask_2D(masks[i], boxes[i], permuted_image_shape)
if cf.dim == 2 else mutils.unmold_mask_3D(masks[i], boxes[i], permuted_image_shape))
# if masks are returned, take max over binary full masks of all predictions in this image.
# right now only binary masks for plotting/monitoring. for instance segmentation return all proposal masks.
final_masks = np.max(np.array(full_masks), 0) if len(full_masks) > 0 else np.zeros(
(*permuted_image_shape[:-1],))
# add final predictions to results.
if 0 not in boxes.shape:
for ix2, score in enumerate(scores):
box_results_list[ix].append({'box_coords': boxes[ix2], 'box_score': score,
'box_type': 'det', 'box_pred_class_id': class_ids[ix2]})
else:
# pad with zero dummy masks.
final_masks = np.zeros(img_shape[2:])
seg_preds.append(final_masks)
# create and fill results dictionary.
results_dict = {'boxes': box_results_list,
'seg_preds': np.round(np.array(seg_preds))[:, np.newaxis].astype('uint8')}
return results_dict
############################################################
# Mask R-CNN Class
############################################################
class net(nn.Module):
def __init__(self, cf, logger):
super(net, self).__init__()
self.cf = cf
self.logger = logger
self.build()
if self.cf.weight_init is not None:
logger.info("using pytorch weight init of type {}".format(self.cf.weight_init))
mutils.initialize_weights(self)
else:
logger.info("using default pytorch weight init")
def build(self):
"""Build Mask R-CNN architecture."""
# Image size must be dividable by 2 multiple times.
h, w = self.cf.patch_size[:2]
if h / 2**5 != int(h / 2**5) or w / 2**5 != int(w / 2**5):
raise Exception("Image size must be dividable by 2 at least 5 times "
"to avoid fractions when downscaling and upscaling."
"For example, use 256, 320, 384, 448, 512, ... etc. ")
if len(self.cf.patch_size) == 3:
d = self.cf.patch_size[2]
if d / 2**3 != int(d / 2**3):
raise Exception("Image z dimension must be dividable by 2 at least 3 times "
"to avoid fractions when downscaling and upscaling.")
# instanciate abstract multi dimensional conv class and backbone class.
conv = mutils.NDConvGenerator(self.cf.dim)
backbone = utils.import_module('bbone', self.cf.backbone_path)
# build Anchors, FPN, RPN, Classifier / Bbox-Regressor -head, Mask-head
self.np_anchors = mutils.generate_pyramid_anchors(self.logger, self.cf)
self.anchors = torch.from_numpy(self.np_anchors).float().cuda()
self.fpn = backbone.FPN(self.cf, conv)
self.rpn = RPN(self.cf, conv)
self.classifier = Classifier(self.cf, conv)
self.mask = Mask(self.cf, conv)
def train_forward(self, batch, is_validation=False):
"""
train method (also used for validation monitoring). wrapper around forward pass of network. prepares input data
for processing, computes losses, and stores outputs in a dictionary.
:param batch: dictionary containing 'data', 'seg', etc.
data_dict['roi_masks']: (b, n(b), 1, h(n), w(n) (z(n))) list like batch['class_target'] but with
arrays (masks) inplace of integers. n == number of rois per this batch element.
:return: results_dict: dictionary with keys:
'boxes': list over batch elements. each batch element is a list of boxes. each box is a dictionary:
[[{box_0}, ... {box_n}], [{box_0}, ... {box_n}], ...]
'seg_preds': pixel-wise class predictions (b, 1, y, x, (z)) with values [0, n_classes].
'monitor_values': dict of values to be monitored.
"""
img = batch['data']
if "roi_labels" in batch.keys():
raise Exception("Key for roi-wise class targets changed in v0.1.0 from 'roi_labels' to 'class_target'.\n"
"If you use DKFZ's batchgenerators, please make sure you run version >= 0.20.1.")
gt_class_ids = batch['class_target']
gt_boxes = batch['bb_target']
#axes = (0, 2, 3, 1) if self.cf.dim == 2 else (0, 2, 3, 4, 1)
#gt_masks = [np.transpose(batch['roi_masks'][ii], axes=axes) for ii in range(len(batch['roi_masks']))]
# --> now GT masks has c==channels in last dimension.
gt_masks = batch['roi_masks']
img = torch.from_numpy(img).float().cuda()
batch_rpn_class_loss = torch.FloatTensor([0]).cuda()
batch_rpn_bbox_loss = torch.FloatTensor([0]).cuda()
# list of output boxes for monitoring/plotting. each element is a list of boxes per batch element.
box_results_list = [[] for _ in range(img.shape[0])]
#forward passes. 1. general forward pass, where no activations are saved in second stage (for performance
# monitoring and loss sampling). 2. second stage forward pass of sampled rois with stored activations for backprop.
rpn_class_logits, rpn_pred_deltas, proposal_boxes, detections, detection_masks = self.forward(img)
mrcnn_class_logits, mrcnn_pred_deltas, mrcnn_pred_mask, target_class_ids, mrcnn_target_deltas, target_mask, \
sample_proposals = self.loss_samples_forward(gt_class_ids, gt_boxes, gt_masks)
# loop over batch
for b in range(img.shape[0]):
if len(gt_boxes[b]) > 0:
# add gt boxes to output list for monitoring.
for ix in range(len(gt_boxes[b])):
box_results_list[b].append({'box_coords': batch['bb_target'][b][ix],
'box_label': batch['class_target'][b][ix], 'box_type': 'gt'})
# match gt boxes with anchors to generate targets for RPN losses.
rpn_match, rpn_target_deltas = mutils.gt_anchor_matching(self.cf, self.np_anchors, gt_boxes[b])
# add positive anchors used for loss to output list for monitoring.
pos_anchors = mutils.clip_boxes_numpy(self.np_anchors[np.argwhere(rpn_match == 1)][:, 0], img.shape[2:])
for p in pos_anchors:
box_results_list[b].append({'box_coords': p, 'box_type': 'pos_anchor'})
else:
rpn_match = np.array([-1]*self.np_anchors.shape[0])
rpn_target_deltas = np.array([0])
rpn_match_gpu = torch.from_numpy(rpn_match).cuda()
rpn_target_deltas = torch.from_numpy(rpn_target_deltas).float().cuda()
# compute RPN losses.
rpn_class_loss, neg_anchor_ix = compute_rpn_class_loss(rpn_match_gpu, rpn_class_logits[b], self.cf.shem_poolsize)
rpn_bbox_loss = compute_rpn_bbox_loss(rpn_target_deltas, rpn_pred_deltas[b], rpn_match_gpu)
batch_rpn_class_loss += rpn_class_loss / img.shape[0]
batch_rpn_bbox_loss += rpn_bbox_loss / img.shape[0]
# add negative anchors used for loss to output list for monitoring.
neg_anchors = mutils.clip_boxes_numpy(self.np_anchors[rpn_match == -1][neg_anchor_ix], img.shape[2:])
for n in neg_anchors:
box_results_list[b].append({'box_coords': n, 'box_type': 'neg_anchor'})
# add highest scoring proposals to output list for monitoring.
rpn_proposals = proposal_boxes[b][proposal_boxes[b, :, -1].argsort()][::-1]
for r in rpn_proposals[:self.cf.n_plot_rpn_props, :-1]:
box_results_list[b].append({'box_coords': r, 'box_type': 'prop'})
# add positive and negative roi samples used for mrcnn losses to output list for monitoring.
if 0 not in sample_proposals.shape:
rois = mutils.clip_to_window(self.cf.window, sample_proposals).cpu().data.numpy()
for ix, r in enumerate(rois):
box_results_list[int(r[-1])].append({'box_coords': r[:-1] * self.cf.scale,
'box_type': 'pos_class' if target_class_ids[ix] > 0 else 'neg_class'})
batch_rpn_class_loss = batch_rpn_class_loss
batch_rpn_bbox_loss = batch_rpn_bbox_loss
# compute mrcnn losses.
mrcnn_class_loss = compute_mrcnn_class_loss(target_class_ids, mrcnn_class_logits)
mrcnn_bbox_loss = compute_mrcnn_bbox_loss(mrcnn_target_deltas, mrcnn_pred_deltas, target_class_ids)
# mrcnn can be run without pixelwise annotations available (Faster R-CNN mode).
# In this case, the mask_loss is taken out of training.
if not self.cf.frcnn_mode:
mrcnn_mask_loss = compute_mrcnn_mask_loss(target_mask, mrcnn_pred_mask, target_class_ids)
else:
mrcnn_mask_loss = torch.FloatTensor([0]).cuda()
loss = batch_rpn_class_loss + batch_rpn_bbox_loss + mrcnn_class_loss + mrcnn_bbox_loss + mrcnn_mask_loss
# monitor RPN performance: detection count = the number of correctly matched proposals per fg-class.
dcount = [list(target_class_ids.cpu().data.numpy()).count(c) for c in np.arange(self.cf.head_classes)[1:]]
# run unmolding of predictions for monitoring and merge all results to one dictionary.
return_masks = True#self.cf.return_masks_in_val if is_validation else False
results_dict = get_results(self.cf, img.shape, detections, detection_masks,
box_results_list, return_masks=return_masks)
results_dict['torch_loss'] = loss
results_dict['monitor_values'] = {'loss': loss.item(), 'class_loss': mrcnn_class_loss.item()}
results_dict['logger_string'] = \
"loss: {0:.2f}, rpn_class: {1:.2f}, rpn_bbox: {2:.2f}, mrcnn_class: {3:.2f}, mrcnn_bbox: {4:.2f}, " \
"mrcnn_mask: {5:.2f}, dcount {6}".format(loss.item(), batch_rpn_class_loss.item(),
batch_rpn_bbox_loss.item(), mrcnn_class_loss.item(),
mrcnn_bbox_loss.item(), mrcnn_mask_loss.item(), dcount)
return results_dict
def test_forward(self, batch, return_masks=True):
"""
test method. wrapper around forward pass of network without usage of any ground truth information.
prepares input data for processing and stores outputs in a dictionary.
:param batch: dictionary containing 'data'
:param return_masks: boolean. If True, full resolution masks are returned for all proposals (speed trade-off).
:return: results_dict: dictionary with keys:
'boxes': list over batch elements. each batch element is a list of boxes. each box is a dictionary:
[[{box_0}, ... {box_n}], [{box_0}, ... {box_n}], ...]
'seg_preds': pixel-wise class predictions (b, 1, y, x, (z)) with values [0, n_classes]
"""
img = batch['data']
img = torch.from_numpy(img).float().cuda()
_, _, _, detections, detection_masks = self.forward(img)
results_dict = get_results(self.cf, img.shape, detections, detection_masks, return_masks=return_masks)
return results_dict
def forward(self, img, is_training=True):
"""
:param img: input images (b, c, y, x, (z)).
:return: rpn_pred_logits: (b, n_anchors, 2)
:return: rpn_pred_deltas: (b, n_anchors, (y, x, (z), log(h), log(w), (log(d))))
:return: batch_proposal_boxes: (b, n_proposals, (y1, x1, y2, x2, (z1), (z2), batch_ix)) only for monitoring/plotting.
:return: detections: (n_final_detections, (y1, x1, y2, x2, (z1), (z2), batch_ix, pred_class_id, pred_score)
:return: detection_masks: (n_final_detections, n_classes, y, x, (z)) raw molded masks as returned by mask-head.
"""
# extract features.
fpn_outs = self.fpn(img)
rpn_feature_maps = [fpn_outs[i] for i in self.cf.pyramid_levels]
self.mrcnn_feature_maps = rpn_feature_maps
# loop through pyramid layers and apply RPN.
layer_outputs = [] # list of lists
for p in rpn_feature_maps:
layer_outputs.append(self.rpn(p))
# concatenate layer outputs.
# convert from list of lists of level outputs to list of lists of outputs across levels.
# e.g. [[a1, b1, c1], [a2, b2, c2]] => [[a1, a2], [b1, b2], [c1, c2]]
outputs = list(zip(*layer_outputs))
outputs = [torch.cat(list(o), dim=1) for o in outputs]
rpn_pred_logits, rpn_pred_probs, rpn_pred_deltas = outputs
# generate proposals: apply predicted deltas to anchors and filter by foreground scores from RPN classifier.
proposal_count = self.cf.post_nms_rois_training if is_training else self.cf.post_nms_rois_inference
batch_rpn_rois, batch_proposal_boxes = refine_proposals(rpn_pred_probs, rpn_pred_deltas, proposal_count, self.anchors, self.cf)
# merge batch dimension of proposals while storing allocation info in coordinate dimension.
batch_ixs = torch.from_numpy(np.repeat(np.arange(batch_rpn_rois.shape[0]), batch_rpn_rois.shape[1])).float().cuda()
rpn_rois = batch_rpn_rois.view(-1, batch_rpn_rois.shape[2])
self.rpn_rois_batch_info = torch.cat((rpn_rois, batch_ixs.unsqueeze(1)), dim=1)
# this is the first of two forward passes in the second stage, where no activations are stored for backprop.
# here, all proposals are forwarded (with virtual_batch_size = batch_size * post_nms_rois.)
# for inference/monitoring as well as sampling of rois for the loss functions.
# processed in chunks of roi_chunk_size to re-adjust to gpu-memory.
chunked_rpn_rois = self.rpn_rois_batch_info.split(self.cf.roi_chunk_size)
class_logits_list, bboxes_list = [], []
with torch.no_grad():
for chunk in chunked_rpn_rois:
chunk_class_logits, chunk_bboxes = self.classifier(self.mrcnn_feature_maps, chunk)
class_logits_list.append(chunk_class_logits)
bboxes_list.append(chunk_bboxes)
batch_mrcnn_class_logits = torch.cat(class_logits_list, 0)
batch_mrcnn_bbox = torch.cat(bboxes_list, 0)
self.batch_mrcnn_class_scores = F.softmax(batch_mrcnn_class_logits, dim=1)
# refine classified proposals, filter and return final detections.
detections = refine_detections(self.cf, batch_ixs, rpn_rois, batch_mrcnn_bbox, self.batch_mrcnn_class_scores)
# forward remaining detections through mask-head to generate corresponding masks.
scale = [img.shape[2]] * 4 + [img.shape[-1]] * 2
scale = torch.from_numpy(np.array(scale[:self.cf.dim * 2] + [1])[None]).float().cuda()
detection_boxes = detections[:, :self.cf.dim * 2 + 1] / scale
with torch.no_grad():
detection_masks = self.mask(self.mrcnn_feature_maps, detection_boxes)
return [rpn_pred_logits, rpn_pred_deltas, batch_proposal_boxes, detections, detection_masks]
def loss_samples_forward(self, batch_gt_class_ids, batch_gt_boxes, batch_gt_masks):
"""
this is the second forward pass through the second stage (features from stage one are re-used).
samples few rois in detection_target_layer and forwards only those for loss computation.
:param batch_gt_class_ids: list over batch elements. Each element is a list over the corresponding roi target labels.
:param batch_gt_boxes: list over batch elements. Each element is a list over the corresponding roi target coordinates.
:param batch_gt_masks: list over batch elements. Each element is binary mask of shape (n_gt_rois, y, x, (z), c)
:return: sample_logits: (n_sampled_rois, n_classes) predicted class scores.
:return: sample_boxes: (n_sampled_rois, n_classes, 2 * dim) predicted corrections to be applied to proposals for refinement.
:return: sample_mask: (n_sampled_rois, n_classes, y, x, (z)) predicted masks per class and proposal.
:return: sample_target_class_ids: (n_sampled_rois) target class labels of sampled proposals.
:return: sample_target_deltas: (n_sampled_rois, 2 * dim) target deltas of sampled proposals for box refinement.
:return: sample_target_masks: (n_sampled_rois, y, x, (z)) target masks of sampled proposals.
:return: sample_proposals: (n_sampled_rois, 2 * dim) RPN output for sampled proposals. only for monitoring/plotting.
"""
# sample rois for loss and get corresponding targets for all Mask R-CNN head network losses.
sample_ix, sample_target_class_ids, sample_target_deltas, sample_target_mask = \
detection_target_layer(self.rpn_rois_batch_info, self.batch_mrcnn_class_scores,
batch_gt_class_ids, batch_gt_boxes, batch_gt_masks, self.cf)
# re-use feature maps and RPN output from first forward pass.
sample_proposals = self.rpn_rois_batch_info[sample_ix]
if 0 not in sample_proposals.size():
sample_logits, sample_boxes = self.classifier(self.mrcnn_feature_maps, sample_proposals)
sample_mask = self.mask(self.mrcnn_feature_maps, sample_proposals)
else:
sample_logits = torch.FloatTensor().cuda()
sample_boxes = torch.FloatTensor().cuda()
sample_mask = torch.FloatTensor().cuda()
return [sample_logits, sample_boxes, sample_mask, sample_target_class_ids, sample_target_deltas,
sample_target_mask, sample_proposals]