--- a +++ b/experiments/bleed_exp/old_preprocessing.py @@ -0,0 +1,181 @@ +#!/usr/bin/env python +# Copyright 2018 Division of Medical Image Computing, German Cancer Research Center (DKFZ). +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================== + +''' +This preprocessing script loads nrrd files obtained by the data conversion tool: https://github.com/MIC-DKFZ/LIDC-IDRI-processing/tree/v1.0.1 +After applying preprocessing, images are saved as numpy arrays and the meta information for the corresponding patient is stored +as a line in the dataframe saved as info_df.pickle. +''' + +import os +import SimpleITK as sitk +import numpy as np +from multiprocessing import Pool +import pandas as pd +import numpy.testing as npt +from skimage.transform import resize +import subprocess +import pickle + +import configs +cf = configs.configs() + + + +def resample_array(src_imgs, src_spacing, target_spacing): + + src_spacing = np.round(src_spacing, 3) + target_shape = [int(src_imgs.shape[ix] * src_spacing[::-1][ix] / target_spacing[::-1][ix]) for ix in range(len(src_imgs.shape))] + for i in range(len(target_shape)): + try: + assert target_shape[i] > 0 + except: + raise AssertionError("AssertionError:", src_imgs.shape, src_spacing, target_spacing) + + img = src_imgs.astype(float) + resampled_img = resize(img, target_shape, order=1, clip=True, mode='edge').astype('float32') + + return resampled_img + +#Convert .nii.gz to .nrrd + +def pp_patient(inputs): + + #read image + ix, path = inputs + pid = path.split('/')[-1] + img = sitk.ReadImage(os.path.join(path,'venous.nii.gz')) + img_arr = sitk.GetArrayFromImage(img) + print('processing {}'.format(pid), img.GetSpacing(), img_arr.shape) + img_arr = resample_array(img_arr, img.GetSpacing(), cf.target_spacing) + img_arr = np.clip(img_arr, -1200, 600) + #img_arr = (1200 + img_arr) / (600 + 1200) * 255 # a+x / (b-a) * (c-d) (c, d = new) + img_arr = img_arr.astype(np.float32) + img_arr = (img_arr - np.mean(img_arr)) / np.std(img_arr).astype(np.float16) + + #Open Characteristics File + df = pd.read_csv(os.path.join(cf.root_dir, 'raw_characteristics.csv'), sep=',',converters={'PatientID': lambda x: str(x)}) + df = df[df.PatientID == pid] + + #Make Masks Array, Grab Mask ID Per Patient + final_rois = np.zeros_like(img_arr, dtype=np.uint8) + mal_labels = [] + roi_ids = set([ii.split('.')[0].split('_')[0] for ii in os.listdir(path) if 'mask.nii.gz' in ii]) + rix = 1 + for rid in roi_ids: + + #Grab Mask Paths and Nodule IDs + roi_id_paths = [ii for ii in os.listdir(path) if 'mask.nii' in ii] + print ("ROI ID Paths:"+str(roi_id_paths)) + nodule_ids = [ii.split('.')[0].split('_')[0].lstrip("0") for ii in roi_id_paths] + print ("Nodule ID:"+str(nodule_ids)) + + #Grab Severity Value From Characteristics file + rater_labels = [df[df.ROI_ID == int(ii)].Severity.values[0] for ii in nodule_ids] + print ("Rater Labels:"+str(rater_labels)) + + ##Take Mean Severity Value + #rater_labels.extend([0] * (4-len(rater_labels))) + #mal_label = np.mean([ii for ii in rater_labels if ii > -1]) + mal_label = rater_labels + mal_list = mal_label + print ("#############Mal Label: "+str(mal_list)) + ##Read Mask Paths + #roi_rater_list = [] + # for rp in roi_id_paths: + rp = roi_id_paths[0] + roi = sitk.ReadImage(os.path.join(cf.raw_data_dir, pid, rp)) + roi_arr = sitk.GetArrayFromImage(roi).astype(np.uint8) + roi_arr = resample_array(roi_arr, roi.GetSpacing(), cf.target_spacing) + assert roi_arr.shape == img_arr.shape, [roi_arr.shape, img_arr.shape, pid, roi.GetSpacing()] + + for ix in range(len(img_arr.shape)): + npt.assert_almost_equal(roi.GetSpacing()[ix], img.GetSpacing()[ix]) + #roi_rater_list.append(roi_arr) + + final_rois = roi_arr + + # roi_rater_list.extend([np.zeros_like(roi_rater_list[-1])]*(4-len(roi_id_paths))) + # roi_raters = np.array(roi_rater_list) + # roi_raters = np.mean(roi_raters, axis=0) + # roi_raters[roi_raters < 0.5] = 0 + + # if np.sum(roi_raters) > 0: + # mal_labels.append(mal_label) + # final_rois[roi_raters >= 0.5] = rix + # rix += 1 + # else: + # # indicate rois suppressed by majority voting of raters + # print('suppressed roi!', roi_id_paths) + # with open(os.path.join(cf.pp_dir, 'suppressed_rois.txt'), 'a') as handle: + # handle.write(" ".join(roi_id_paths)) + + #Generate Foreground Slice Indices + final_rois = np.around(final_rois) + fg_slices = [ii for ii in np.unique(np.argwhere(final_rois != 0)[:, 0])] + + #Make Array From Severity + #mal_labels = np.array(mal_label) + + if mal_list[0] == [0]: + mal_labels_assert_test = [] + else: + mal_labels_assert_test = mal_list + + print ("Print Malignancy Labels:"+str(mal_list)) + print ("Print Unique Values in ROI Array:"+str(len(np.unique(final_rois)))) + + + assert len(mal_labels_assert_test) + 1 == len(np.unique(final_rois)), [len(mal_labels), np.unique(final_rois), pid] + + np.save(os.path.join(cf.pp_dir, '{}_rois.npy'.format(pid)), final_rois) + np.save(os.path.join(cf.pp_dir, '{}_img.npy'.format(pid)), img_arr) + + with open(os.path.join(cf.pp_dir, 'meta_info_{}.pickle'.format(pid)), 'wb') as handle: + meta_info_dict = {'pid': pid, 'class_target': mal_list, 'spacing': img.GetSpacing(), 'fg_slices': fg_slices} + print (meta_info_dict) + pickle.dump(meta_info_dict, handle) + + + +def aggregate_meta_info(exp_dir): + + files = [os.path.join(exp_dir, f) for f in os.listdir(exp_dir) if 'meta_info' in f] + df = pd.DataFrame(columns=['pid', 'class_target', 'spacing', 'fg_slices']) + for f in files: + with open(f, 'rb') as handle: + df.loc[len(df)] = pickle.load(handle) + + df.to_pickle(os.path.join(exp_dir, 'info_df.pickle')) + print ("aggregated meta info to df with length", len(df)) + + +if __name__ == "__main__": + + paths = [os.path.join(cf.raw_data_dir, ii) for ii in os.listdir(cf.raw_data_dir) if not ii.startswith('.')] + + if not os.path.exists(cf.pp_dir): + os.makedirs(cf.pp_dir) + + # pool = Pool(processes=1) + # p1 = pool.map(pp_patient, enumerate(paths), chunksize=1) + # pool.close() + # pool.join() + for i in enumerate(paths): + pp_patient(i) + + aggregate_meta_info(cf.pp_dir) + subprocess.call('cp {} {}'.format(os.path.join(cf.pp_dir, 'info_df.pickle'), os.path.join(cf.pp_dir, 'info_df_bk.pickle')), shell=True)